]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
MFC r234353:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / CodeGen / CGCall.cpp
1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Attributes.h"
27 #include "llvm/Support/CallSite.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/InlineAsm.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace clang;
32 using namespace CodeGen;
33
34 /***/
35
36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37   switch (CC) {
38   default: return llvm::CallingConv::C;
39   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44   // TODO: add support for CC_X86Pascal to llvm
45   }
46 }
47
48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
49 /// qualification.
50 /// FIXME: address space qualification?
51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54 }
55
56 /// Returns the canonical formal type of the given C++ method.
57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58   return MD->getType()->getCanonicalTypeUnqualified()
59            .getAs<FunctionProtoType>();
60 }
61
62 /// Returns the "extra-canonicalized" return type, which discards
63 /// qualifiers on the return type.  Codegen doesn't care about them,
64 /// and it makes ABI code a little easier to be able to assume that
65 /// all parameter and return types are top-level unqualified.
66 static CanQualType GetReturnType(QualType RetTy) {
67   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68 }
69
70 /// Arrange the argument and result information for a value of the
71 /// given unprototyped function type.
72 const CGFunctionInfo &
73 CodeGenTypes::arrangeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74   // When translating an unprototyped function type, always use a
75   // variadic type.
76   return arrangeFunctionType(FTNP->getResultType().getUnqualifiedType(),
77                              ArrayRef<CanQualType>(),
78                              FTNP->getExtInfo(),
79                              RequiredArgs(0));
80 }
81
82 /// Arrange the argument and result information for a value of the
83 /// given function type, on top of any implicit parameters already
84 /// stored.
85 static const CGFunctionInfo &arrangeFunctionType(CodeGenTypes &CGT,
86                                   SmallVectorImpl<CanQualType> &argTypes,
87                                              CanQual<FunctionProtoType> FTP) {
88   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
89   // FIXME: Kill copy.
90   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
91     argTypes.push_back(FTP->getArgType(i));
92   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
93   return CGT.arrangeFunctionType(resultType, argTypes,
94                                  FTP->getExtInfo(), required);
95 }
96
97 /// Arrange the argument and result information for a value of the
98 /// given function type.
99 const CGFunctionInfo &
100 CodeGenTypes::arrangeFunctionType(CanQual<FunctionProtoType> FTP) {
101   SmallVector<CanQualType, 16> argTypes;
102   return ::arrangeFunctionType(*this, argTypes, FTP);
103 }
104
105 static CallingConv getCallingConventionForDecl(const Decl *D) {
106   // Set the appropriate calling convention for the Function.
107   if (D->hasAttr<StdCallAttr>())
108     return CC_X86StdCall;
109
110   if (D->hasAttr<FastCallAttr>())
111     return CC_X86FastCall;
112
113   if (D->hasAttr<ThisCallAttr>())
114     return CC_X86ThisCall;
115
116   if (D->hasAttr<PascalAttr>())
117     return CC_X86Pascal;
118
119   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
120     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
121
122   return CC_C;
123 }
124
125 /// Arrange the argument and result information for a call to an
126 /// unknown C++ non-static member function of the given abstract type.
127 /// The member function must be an ordinary function, i.e. not a
128 /// constructor or destructor.
129 const CGFunctionInfo &
130 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
131                                    const FunctionProtoType *FTP) {
132   SmallVector<CanQualType, 16> argTypes;
133
134   // Add the 'this' pointer.
135   argTypes.push_back(GetThisType(Context, RD));
136
137   return ::arrangeFunctionType(*this, argTypes,
138               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
139 }
140
141 /// Arrange the argument and result information for a declaration or
142 /// definition of the given C++ non-static member function.  The
143 /// member function must be an ordinary function, i.e. not a
144 /// constructor or destructor.
145 const CGFunctionInfo &
146 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
147   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
148   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
149
150   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
151
152   if (MD->isInstance()) {
153     // The abstract case is perfectly fine.
154     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
155   }
156
157   return arrangeFunctionType(prototype);
158 }
159
160 /// Arrange the argument and result information for a declaration
161 /// or definition to the given constructor variant.
162 const CGFunctionInfo &
163 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
164                                                CXXCtorType ctorKind) {
165   SmallVector<CanQualType, 16> argTypes;
166   argTypes.push_back(GetThisType(Context, D->getParent()));
167   CanQualType resultType = Context.VoidTy;
168
169   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
170
171   CanQual<FunctionProtoType> FTP = GetFormalType(D);
172
173   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
174
175   // Add the formal parameters.
176   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
177     argTypes.push_back(FTP->getArgType(i));
178
179   return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), required);
180 }
181
182 /// Arrange the argument and result information for a declaration,
183 /// definition, or call to the given destructor variant.  It so
184 /// happens that all three cases produce the same information.
185 const CGFunctionInfo &
186 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
187                                    CXXDtorType dtorKind) {
188   SmallVector<CanQualType, 2> argTypes;
189   argTypes.push_back(GetThisType(Context, D->getParent()));
190   CanQualType resultType = Context.VoidTy;
191
192   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
193
194   CanQual<FunctionProtoType> FTP = GetFormalType(D);
195   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
196
197   return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(),
198                              RequiredArgs::All);
199 }
200
201 /// Arrange the argument and result information for the declaration or
202 /// definition of the given function.
203 const CGFunctionInfo &
204 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
205   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
206     if (MD->isInstance())
207       return arrangeCXXMethodDeclaration(MD);
208
209   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
210
211   assert(isa<FunctionType>(FTy));
212
213   // When declaring a function without a prototype, always use a
214   // non-variadic type.
215   if (isa<FunctionNoProtoType>(FTy)) {
216     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
217     return arrangeFunctionType(noProto->getResultType(),
218                                ArrayRef<CanQualType>(),
219                                noProto->getExtInfo(),
220                                RequiredArgs::All);
221   }
222
223   assert(isa<FunctionProtoType>(FTy));
224   return arrangeFunctionType(FTy.getAs<FunctionProtoType>());
225 }
226
227 /// Arrange the argument and result information for the declaration or
228 /// definition of an Objective-C method.
229 const CGFunctionInfo &
230 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
231   // It happens that this is the same as a call with no optional
232   // arguments, except also using the formal 'self' type.
233   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
234 }
235
236 /// Arrange the argument and result information for the function type
237 /// through which to perform a send to the given Objective-C method,
238 /// using the given receiver type.  The receiver type is not always
239 /// the 'self' type of the method or even an Objective-C pointer type.
240 /// This is *not* the right method for actually performing such a
241 /// message send, due to the possibility of optional arguments.
242 const CGFunctionInfo &
243 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
244                                               QualType receiverType) {
245   SmallVector<CanQualType, 16> argTys;
246   argTys.push_back(Context.getCanonicalParamType(receiverType));
247   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
248   // FIXME: Kill copy?
249   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
250          e = MD->param_end(); i != e; ++i) {
251     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
252   }
253
254   FunctionType::ExtInfo einfo;
255   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
256
257   if (getContext().getLangOpts().ObjCAutoRefCount &&
258       MD->hasAttr<NSReturnsRetainedAttr>())
259     einfo = einfo.withProducesResult(true);
260
261   RequiredArgs required =
262     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
263
264   return arrangeFunctionType(GetReturnType(MD->getResultType()), argTys,
265                              einfo, required);
266 }
267
268 const CGFunctionInfo &
269 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
270   // FIXME: Do we need to handle ObjCMethodDecl?
271   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
272
273   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
274     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
275
276   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
277     return arrangeCXXDestructor(DD, GD.getDtorType());
278
279   return arrangeFunctionDeclaration(FD);
280 }
281
282 /// Figure out the rules for calling a function with the given formal
283 /// type using the given arguments.  The arguments are necessary
284 /// because the function might be unprototyped, in which case it's
285 /// target-dependent in crazy ways.
286 const CGFunctionInfo &
287 CodeGenTypes::arrangeFunctionCall(const CallArgList &args,
288                                   const FunctionType *fnType) {
289   RequiredArgs required = RequiredArgs::All;
290   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
291     if (proto->isVariadic())
292       required = RequiredArgs(proto->getNumArgs());
293   } else if (CGM.getTargetCodeGenInfo()
294                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
295     required = RequiredArgs(0);
296   }
297
298   return arrangeFunctionCall(fnType->getResultType(), args,
299                              fnType->getExtInfo(), required);
300 }
301
302 const CGFunctionInfo &
303 CodeGenTypes::arrangeFunctionCall(QualType resultType,
304                                   const CallArgList &args,
305                                   const FunctionType::ExtInfo &info,
306                                   RequiredArgs required) {
307   // FIXME: Kill copy.
308   SmallVector<CanQualType, 16> argTypes;
309   for (CallArgList::const_iterator i = args.begin(), e = args.end();
310        i != e; ++i)
311     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
312   return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
313                              required);
314 }
315
316 const CGFunctionInfo &
317 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
318                                          const FunctionArgList &args,
319                                          const FunctionType::ExtInfo &info,
320                                          bool isVariadic) {
321   // FIXME: Kill copy.
322   SmallVector<CanQualType, 16> argTypes;
323   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
324        i != e; ++i)
325     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
326
327   RequiredArgs required =
328     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
329   return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
330                              required);
331 }
332
333 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
334   return arrangeFunctionType(getContext().VoidTy, ArrayRef<CanQualType>(),
335                              FunctionType::ExtInfo(), RequiredArgs::All);
336 }
337
338 /// Arrange the argument and result information for an abstract value
339 /// of a given function type.  This is the method which all of the
340 /// above functions ultimately defer to.
341 const CGFunctionInfo &
342 CodeGenTypes::arrangeFunctionType(CanQualType resultType,
343                                   ArrayRef<CanQualType> argTypes,
344                                   const FunctionType::ExtInfo &info,
345                                   RequiredArgs required) {
346 #ifndef NDEBUG
347   for (ArrayRef<CanQualType>::const_iterator
348          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
349     assert(I->isCanonicalAsParam());
350 #endif
351
352   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
353
354   // Lookup or create unique function info.
355   llvm::FoldingSetNodeID ID;
356   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
357
358   void *insertPos = 0;
359   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
360   if (FI)
361     return *FI;
362
363   // Construct the function info.  We co-allocate the ArgInfos.
364   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
365   FunctionInfos.InsertNode(FI, insertPos);
366
367   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
368   assert(inserted && "Recursively being processed?");
369   
370   // Compute ABI information.
371   getABIInfo().computeInfo(*FI);
372
373   // Loop over all of the computed argument and return value info.  If any of
374   // them are direct or extend without a specified coerce type, specify the
375   // default now.
376   ABIArgInfo &retInfo = FI->getReturnInfo();
377   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
378     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
379
380   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
381        I != E; ++I)
382     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
383       I->info.setCoerceToType(ConvertType(I->type));
384
385   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
386   assert(erased && "Not in set?");
387   
388   return *FI;
389 }
390
391 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
392                                        const FunctionType::ExtInfo &info,
393                                        CanQualType resultType,
394                                        ArrayRef<CanQualType> argTypes,
395                                        RequiredArgs required) {
396   void *buffer = operator new(sizeof(CGFunctionInfo) +
397                               sizeof(ArgInfo) * (argTypes.size() + 1));
398   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
399   FI->CallingConvention = llvmCC;
400   FI->EffectiveCallingConvention = llvmCC;
401   FI->ASTCallingConvention = info.getCC();
402   FI->NoReturn = info.getNoReturn();
403   FI->ReturnsRetained = info.getProducesResult();
404   FI->Required = required;
405   FI->HasRegParm = info.getHasRegParm();
406   FI->RegParm = info.getRegParm();
407   FI->NumArgs = argTypes.size();
408   FI->getArgsBuffer()[0].type = resultType;
409   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
410     FI->getArgsBuffer()[i + 1].type = argTypes[i];
411   return FI;
412 }
413
414 /***/
415
416 void CodeGenTypes::GetExpandedTypes(QualType type,
417                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
418   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
419     uint64_t NumElts = AT->getSize().getZExtValue();
420     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
421       GetExpandedTypes(AT->getElementType(), expandedTypes);
422   } else if (const RecordType *RT = type->getAs<RecordType>()) {
423     const RecordDecl *RD = RT->getDecl();
424     assert(!RD->hasFlexibleArrayMember() &&
425            "Cannot expand structure with flexible array.");
426     if (RD->isUnion()) {
427       // Unions can be here only in degenerative cases - all the fields are same
428       // after flattening. Thus we have to use the "largest" field.
429       const FieldDecl *LargestFD = 0;
430       CharUnits UnionSize = CharUnits::Zero();
431
432       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
433            i != e; ++i) {
434         const FieldDecl *FD = *i;
435         assert(!FD->isBitField() &&
436                "Cannot expand structure with bit-field members.");
437         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
438         if (UnionSize < FieldSize) {
439           UnionSize = FieldSize;
440           LargestFD = FD;
441         }
442       }
443       if (LargestFD)
444         GetExpandedTypes(LargestFD->getType(), expandedTypes);
445     } else {
446       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
447            i != e; ++i) {
448         const FieldDecl *FD = *i;
449         assert(!FD->isBitField() &&
450                "Cannot expand structure with bit-field members.");
451         GetExpandedTypes(FD->getType(), expandedTypes);
452       }
453     }
454   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
455     llvm::Type *EltTy = ConvertType(CT->getElementType());
456     expandedTypes.push_back(EltTy);
457     expandedTypes.push_back(EltTy);
458   } else
459     expandedTypes.push_back(ConvertType(type));
460 }
461
462 llvm::Function::arg_iterator
463 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
464                                     llvm::Function::arg_iterator AI) {
465   assert(LV.isSimple() &&
466          "Unexpected non-simple lvalue during struct expansion.");
467
468   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
469     unsigned NumElts = AT->getSize().getZExtValue();
470     QualType EltTy = AT->getElementType();
471     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
472       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
473       LValue LV = MakeAddrLValue(EltAddr, EltTy);
474       AI = ExpandTypeFromArgs(EltTy, LV, AI);
475     }
476   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
477     RecordDecl *RD = RT->getDecl();
478     if (RD->isUnion()) {
479       // Unions can be here only in degenerative cases - all the fields are same
480       // after flattening. Thus we have to use the "largest" field.
481       const FieldDecl *LargestFD = 0;
482       CharUnits UnionSize = CharUnits::Zero();
483
484       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
485            i != e; ++i) {
486         const FieldDecl *FD = *i;
487         assert(!FD->isBitField() &&
488                "Cannot expand structure with bit-field members.");
489         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
490         if (UnionSize < FieldSize) {
491           UnionSize = FieldSize;
492           LargestFD = FD;
493         }
494       }
495       if (LargestFD) {
496         // FIXME: What are the right qualifiers here?
497         LValue SubLV = EmitLValueForField(LV, LargestFD);
498         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
499       }
500     } else {
501       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
502            i != e; ++i) {
503         FieldDecl *FD = *i;
504         QualType FT = FD->getType();
505
506         // FIXME: What are the right qualifiers here?
507         LValue SubLV = EmitLValueForField(LV, FD);
508         AI = ExpandTypeFromArgs(FT, SubLV, AI);
509       }
510     }
511   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
512     QualType EltTy = CT->getElementType();
513     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
514     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
515     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
516     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
517   } else {
518     EmitStoreThroughLValue(RValue::get(AI), LV);
519     ++AI;
520   }
521
522   return AI;
523 }
524
525 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
526 /// accessing some number of bytes out of it, try to gep into the struct to get
527 /// at its inner goodness.  Dive as deep as possible without entering an element
528 /// with an in-memory size smaller than DstSize.
529 static llvm::Value *
530 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
531                                    llvm::StructType *SrcSTy,
532                                    uint64_t DstSize, CodeGenFunction &CGF) {
533   // We can't dive into a zero-element struct.
534   if (SrcSTy->getNumElements() == 0) return SrcPtr;
535
536   llvm::Type *FirstElt = SrcSTy->getElementType(0);
537
538   // If the first elt is at least as large as what we're looking for, or if the
539   // first element is the same size as the whole struct, we can enter it.
540   uint64_t FirstEltSize =
541     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
542   if (FirstEltSize < DstSize &&
543       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
544     return SrcPtr;
545
546   // GEP into the first element.
547   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
548
549   // If the first element is a struct, recurse.
550   llvm::Type *SrcTy =
551     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
552   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
553     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
554
555   return SrcPtr;
556 }
557
558 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
559 /// are either integers or pointers.  This does a truncation of the value if it
560 /// is too large or a zero extension if it is too small.
561 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
562                                              llvm::Type *Ty,
563                                              CodeGenFunction &CGF) {
564   if (Val->getType() == Ty)
565     return Val;
566
567   if (isa<llvm::PointerType>(Val->getType())) {
568     // If this is Pointer->Pointer avoid conversion to and from int.
569     if (isa<llvm::PointerType>(Ty))
570       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
571
572     // Convert the pointer to an integer so we can play with its width.
573     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
574   }
575
576   llvm::Type *DestIntTy = Ty;
577   if (isa<llvm::PointerType>(DestIntTy))
578     DestIntTy = CGF.IntPtrTy;
579
580   if (Val->getType() != DestIntTy)
581     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
582
583   if (isa<llvm::PointerType>(Ty))
584     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
585   return Val;
586 }
587
588
589
590 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
591 /// a pointer to an object of type \arg Ty.
592 ///
593 /// This safely handles the case when the src type is smaller than the
594 /// destination type; in this situation the values of bits which not
595 /// present in the src are undefined.
596 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
597                                       llvm::Type *Ty,
598                                       CodeGenFunction &CGF) {
599   llvm::Type *SrcTy =
600     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
601
602   // If SrcTy and Ty are the same, just do a load.
603   if (SrcTy == Ty)
604     return CGF.Builder.CreateLoad(SrcPtr);
605
606   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
607
608   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
609     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
610     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
611   }
612
613   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
614
615   // If the source and destination are integer or pointer types, just do an
616   // extension or truncation to the desired type.
617   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
618       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
619     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
620     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
621   }
622
623   // If load is legal, just bitcast the src pointer.
624   if (SrcSize >= DstSize) {
625     // Generally SrcSize is never greater than DstSize, since this means we are
626     // losing bits. However, this can happen in cases where the structure has
627     // additional padding, for example due to a user specified alignment.
628     //
629     // FIXME: Assert that we aren't truncating non-padding bits when have access
630     // to that information.
631     llvm::Value *Casted =
632       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
633     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
634     // FIXME: Use better alignment / avoid requiring aligned load.
635     Load->setAlignment(1);
636     return Load;
637   }
638
639   // Otherwise do coercion through memory. This is stupid, but
640   // simple.
641   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
642   llvm::Value *Casted =
643     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
644   llvm::StoreInst *Store =
645     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
646   // FIXME: Use better alignment / avoid requiring aligned store.
647   Store->setAlignment(1);
648   return CGF.Builder.CreateLoad(Tmp);
649 }
650
651 // Function to store a first-class aggregate into memory.  We prefer to
652 // store the elements rather than the aggregate to be more friendly to
653 // fast-isel.
654 // FIXME: Do we need to recurse here?
655 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
656                           llvm::Value *DestPtr, bool DestIsVolatile,
657                           bool LowAlignment) {
658   // Prefer scalar stores to first-class aggregate stores.
659   if (llvm::StructType *STy =
660         dyn_cast<llvm::StructType>(Val->getType())) {
661     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
662       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
663       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
664       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
665                                                     DestIsVolatile);
666       if (LowAlignment)
667         SI->setAlignment(1);
668     }
669   } else {
670     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
671     if (LowAlignment)
672       SI->setAlignment(1);
673   }
674 }
675
676 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
677 /// where the source and destination may have different types.
678 ///
679 /// This safely handles the case when the src type is larger than the
680 /// destination type; the upper bits of the src will be lost.
681 static void CreateCoercedStore(llvm::Value *Src,
682                                llvm::Value *DstPtr,
683                                bool DstIsVolatile,
684                                CodeGenFunction &CGF) {
685   llvm::Type *SrcTy = Src->getType();
686   llvm::Type *DstTy =
687     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
688   if (SrcTy == DstTy) {
689     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
690     return;
691   }
692
693   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
694
695   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
696     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
697     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
698   }
699
700   // If the source and destination are integer or pointer types, just do an
701   // extension or truncation to the desired type.
702   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
703       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
704     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
705     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
706     return;
707   }
708
709   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
710
711   // If store is legal, just bitcast the src pointer.
712   if (SrcSize <= DstSize) {
713     llvm::Value *Casted =
714       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
715     // FIXME: Use better alignment / avoid requiring aligned store.
716     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
717   } else {
718     // Otherwise do coercion through memory. This is stupid, but
719     // simple.
720
721     // Generally SrcSize is never greater than DstSize, since this means we are
722     // losing bits. However, this can happen in cases where the structure has
723     // additional padding, for example due to a user specified alignment.
724     //
725     // FIXME: Assert that we aren't truncating non-padding bits when have access
726     // to that information.
727     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
728     CGF.Builder.CreateStore(Src, Tmp);
729     llvm::Value *Casted =
730       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
731     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
732     // FIXME: Use better alignment / avoid requiring aligned load.
733     Load->setAlignment(1);
734     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
735   }
736 }
737
738 /***/
739
740 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
741   return FI.getReturnInfo().isIndirect();
742 }
743
744 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
745   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
746     switch (BT->getKind()) {
747     default:
748       return false;
749     case BuiltinType::Float:
750       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
751     case BuiltinType::Double:
752       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
753     case BuiltinType::LongDouble:
754       return getContext().getTargetInfo().useObjCFPRetForRealType(
755         TargetInfo::LongDouble);
756     }
757   }
758
759   return false;
760 }
761
762 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
763   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
764     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
765       if (BT->getKind() == BuiltinType::LongDouble)
766         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
767     }
768   }
769
770   return false;
771 }
772
773 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
774   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
775   return GetFunctionType(FI);
776 }
777
778 llvm::FunctionType *
779 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
780   
781   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
782   assert(Inserted && "Recursively being processed?");
783   
784   SmallVector<llvm::Type*, 8> argTypes;
785   llvm::Type *resultType = 0;
786
787   const ABIArgInfo &retAI = FI.getReturnInfo();
788   switch (retAI.getKind()) {
789   case ABIArgInfo::Expand:
790     llvm_unreachable("Invalid ABI kind for return argument");
791
792   case ABIArgInfo::Extend:
793   case ABIArgInfo::Direct:
794     resultType = retAI.getCoerceToType();
795     break;
796
797   case ABIArgInfo::Indirect: {
798     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
799     resultType = llvm::Type::getVoidTy(getLLVMContext());
800
801     QualType ret = FI.getReturnType();
802     llvm::Type *ty = ConvertType(ret);
803     unsigned addressSpace = Context.getTargetAddressSpace(ret);
804     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
805     break;
806   }
807
808   case ABIArgInfo::Ignore:
809     resultType = llvm::Type::getVoidTy(getLLVMContext());
810     break;
811   }
812
813   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
814          ie = FI.arg_end(); it != ie; ++it) {
815     const ABIArgInfo &argAI = it->info;
816
817     switch (argAI.getKind()) {
818     case ABIArgInfo::Ignore:
819       break;
820
821     case ABIArgInfo::Indirect: {
822       // indirect arguments are always on the stack, which is addr space #0.
823       llvm::Type *LTy = ConvertTypeForMem(it->type);
824       argTypes.push_back(LTy->getPointerTo());
825       break;
826     }
827
828     case ABIArgInfo::Extend:
829     case ABIArgInfo::Direct: {
830       // Insert a padding type to ensure proper alignment.
831       if (llvm::Type *PaddingType = argAI.getPaddingType())
832         argTypes.push_back(PaddingType);
833       // If the coerce-to type is a first class aggregate, flatten it.  Either
834       // way is semantically identical, but fast-isel and the optimizer
835       // generally likes scalar values better than FCAs.
836       llvm::Type *argType = argAI.getCoerceToType();
837       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
838         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
839           argTypes.push_back(st->getElementType(i));
840       } else {
841         argTypes.push_back(argType);
842       }
843       break;
844     }
845
846     case ABIArgInfo::Expand:
847       GetExpandedTypes(it->type, argTypes);
848       break;
849     }
850   }
851
852   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
853   assert(Erased && "Not in set?");
854   
855   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
856 }
857
858 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
859   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
860   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
861
862   if (!isFuncTypeConvertible(FPT))
863     return llvm::StructType::get(getLLVMContext());
864     
865   const CGFunctionInfo *Info;
866   if (isa<CXXDestructorDecl>(MD))
867     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
868   else
869     Info = &arrangeCXXMethodDeclaration(MD);
870   return GetFunctionType(*Info);
871 }
872
873 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
874                                            const Decl *TargetDecl,
875                                            AttributeListType &PAL,
876                                            unsigned &CallingConv) {
877   llvm::Attributes FuncAttrs;
878   llvm::Attributes RetAttrs;
879
880   CallingConv = FI.getEffectiveCallingConvention();
881
882   if (FI.isNoReturn())
883     FuncAttrs |= llvm::Attribute::NoReturn;
884
885   // FIXME: handle sseregparm someday...
886   if (TargetDecl) {
887     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
888       FuncAttrs |= llvm::Attribute::ReturnsTwice;
889     if (TargetDecl->hasAttr<NoThrowAttr>())
890       FuncAttrs |= llvm::Attribute::NoUnwind;
891     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
892       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
893       if (FPT && FPT->isNothrow(getContext()))
894         FuncAttrs |= llvm::Attribute::NoUnwind;
895     }
896
897     if (TargetDecl->hasAttr<NoReturnAttr>())
898       FuncAttrs |= llvm::Attribute::NoReturn;
899
900     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
901       FuncAttrs |= llvm::Attribute::ReturnsTwice;
902
903     // 'const' and 'pure' attribute functions are also nounwind.
904     if (TargetDecl->hasAttr<ConstAttr>()) {
905       FuncAttrs |= llvm::Attribute::ReadNone;
906       FuncAttrs |= llvm::Attribute::NoUnwind;
907     } else if (TargetDecl->hasAttr<PureAttr>()) {
908       FuncAttrs |= llvm::Attribute::ReadOnly;
909       FuncAttrs |= llvm::Attribute::NoUnwind;
910     }
911     if (TargetDecl->hasAttr<MallocAttr>())
912       RetAttrs |= llvm::Attribute::NoAlias;
913   }
914
915   if (CodeGenOpts.OptimizeSize)
916     FuncAttrs |= llvm::Attribute::OptimizeForSize;
917   if (CodeGenOpts.DisableRedZone)
918     FuncAttrs |= llvm::Attribute::NoRedZone;
919   if (CodeGenOpts.NoImplicitFloat)
920     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
921
922   QualType RetTy = FI.getReturnType();
923   unsigned Index = 1;
924   const ABIArgInfo &RetAI = FI.getReturnInfo();
925   switch (RetAI.getKind()) {
926   case ABIArgInfo::Extend:
927    if (RetTy->hasSignedIntegerRepresentation())
928      RetAttrs |= llvm::Attribute::SExt;
929    else if (RetTy->hasUnsignedIntegerRepresentation())
930      RetAttrs |= llvm::Attribute::ZExt;
931     break;
932   case ABIArgInfo::Direct:
933   case ABIArgInfo::Ignore:
934     break;
935
936   case ABIArgInfo::Indirect:
937     PAL.push_back(llvm::AttributeWithIndex::get(Index,
938                                                 llvm::Attribute::StructRet));
939     ++Index;
940     // sret disables readnone and readonly
941     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
942                    llvm::Attribute::ReadNone);
943     break;
944
945   case ABIArgInfo::Expand:
946     llvm_unreachable("Invalid ABI kind for return argument");
947   }
948
949   if (RetAttrs)
950     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
951
952   // FIXME: RegParm should be reduced in case of global register variable.
953   signed RegParm;
954   if (FI.getHasRegParm())
955     RegParm = FI.getRegParm();
956   else
957     RegParm = CodeGenOpts.NumRegisterParameters;
958
959   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
960   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
961          ie = FI.arg_end(); it != ie; ++it) {
962     QualType ParamType = it->type;
963     const ABIArgInfo &AI = it->info;
964     llvm::Attributes Attrs;
965
966     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
967     // have the corresponding parameter variable.  It doesn't make
968     // sense to do it here because parameters are so messed up.
969     switch (AI.getKind()) {
970     case ABIArgInfo::Extend:
971       if (ParamType->isSignedIntegerOrEnumerationType())
972         Attrs |= llvm::Attribute::SExt;
973       else if (ParamType->isUnsignedIntegerOrEnumerationType())
974         Attrs |= llvm::Attribute::ZExt;
975       // FALL THROUGH
976     case ABIArgInfo::Direct:
977       if (RegParm > 0 &&
978           (ParamType->isIntegerType() || ParamType->isPointerType() ||
979            ParamType->isReferenceType())) {
980         RegParm -=
981         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
982         if (RegParm >= 0)
983           Attrs |= llvm::Attribute::InReg;
984       }
985       // FIXME: handle sseregparm someday...
986
987       // Increment Index if there is padding.
988       Index += (AI.getPaddingType() != 0);
989
990       if (llvm::StructType *STy =
991             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
992         Index += STy->getNumElements()-1;  // 1 will be added below.
993       break;
994
995     case ABIArgInfo::Indirect:
996       if (AI.getIndirectByVal())
997         Attrs |= llvm::Attribute::ByVal;
998
999       Attrs |=
1000         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
1001       // byval disables readnone and readonly.
1002       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1003                      llvm::Attribute::ReadNone);
1004       break;
1005
1006     case ABIArgInfo::Ignore:
1007       // Skip increment, no matching LLVM parameter.
1008       continue;
1009
1010     case ABIArgInfo::Expand: {
1011       SmallVector<llvm::Type*, 8> types;
1012       // FIXME: This is rather inefficient. Do we ever actually need to do
1013       // anything here? The result should be just reconstructed on the other
1014       // side, so extension should be a non-issue.
1015       getTypes().GetExpandedTypes(ParamType, types);
1016       Index += types.size();
1017       continue;
1018     }
1019     }
1020
1021     if (Attrs)
1022       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
1023     ++Index;
1024   }
1025   if (FuncAttrs)
1026     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
1027 }
1028
1029 /// An argument came in as a promoted argument; demote it back to its
1030 /// declared type.
1031 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1032                                          const VarDecl *var,
1033                                          llvm::Value *value) {
1034   llvm::Type *varType = CGF.ConvertType(var->getType());
1035
1036   // This can happen with promotions that actually don't change the
1037   // underlying type, like the enum promotions.
1038   if (value->getType() == varType) return value;
1039
1040   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1041          && "unexpected promotion type");
1042
1043   if (isa<llvm::IntegerType>(varType))
1044     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1045
1046   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1047 }
1048
1049 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1050                                          llvm::Function *Fn,
1051                                          const FunctionArgList &Args) {
1052   // If this is an implicit-return-zero function, go ahead and
1053   // initialize the return value.  TODO: it might be nice to have
1054   // a more general mechanism for this that didn't require synthesized
1055   // return statements.
1056   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1057     if (FD->hasImplicitReturnZero()) {
1058       QualType RetTy = FD->getResultType().getUnqualifiedType();
1059       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1060       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1061       Builder.CreateStore(Zero, ReturnValue);
1062     }
1063   }
1064
1065   // FIXME: We no longer need the types from FunctionArgList; lift up and
1066   // simplify.
1067
1068   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1069   llvm::Function::arg_iterator AI = Fn->arg_begin();
1070
1071   // Name the struct return argument.
1072   if (CGM.ReturnTypeUsesSRet(FI)) {
1073     AI->setName("agg.result");
1074     AI->addAttr(llvm::Attribute::NoAlias);
1075     ++AI;
1076   }
1077
1078   assert(FI.arg_size() == Args.size() &&
1079          "Mismatch between function signature & arguments.");
1080   unsigned ArgNo = 1;
1081   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1082   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 
1083        i != e; ++i, ++info_it, ++ArgNo) {
1084     const VarDecl *Arg = *i;
1085     QualType Ty = info_it->type;
1086     const ABIArgInfo &ArgI = info_it->info;
1087
1088     bool isPromoted =
1089       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1090
1091     switch (ArgI.getKind()) {
1092     case ABIArgInfo::Indirect: {
1093       llvm::Value *V = AI;
1094
1095       if (hasAggregateLLVMType(Ty)) {
1096         // Aggregates and complex variables are accessed by reference.  All we
1097         // need to do is realign the value, if requested
1098         if (ArgI.getIndirectRealign()) {
1099           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1100
1101           // Copy from the incoming argument pointer to the temporary with the
1102           // appropriate alignment.
1103           //
1104           // FIXME: We should have a common utility for generating an aggregate
1105           // copy.
1106           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1107           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1108           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1109           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1110           Builder.CreateMemCpy(Dst,
1111                                Src,
1112                                llvm::ConstantInt::get(IntPtrTy, 
1113                                                       Size.getQuantity()),
1114                                ArgI.getIndirectAlign(),
1115                                false);
1116           V = AlignedTemp;
1117         }
1118       } else {
1119         // Load scalar value from indirect argument.
1120         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1121         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1122
1123         if (isPromoted)
1124           V = emitArgumentDemotion(*this, Arg, V);
1125       }
1126       EmitParmDecl(*Arg, V, ArgNo);
1127       break;
1128     }
1129
1130     case ABIArgInfo::Extend:
1131     case ABIArgInfo::Direct: {
1132       // Skip the dummy padding argument.
1133       if (ArgI.getPaddingType())
1134         ++AI;
1135
1136       // If we have the trivial case, handle it with no muss and fuss.
1137       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1138           ArgI.getCoerceToType() == ConvertType(Ty) &&
1139           ArgI.getDirectOffset() == 0) {
1140         assert(AI != Fn->arg_end() && "Argument mismatch!");
1141         llvm::Value *V = AI;
1142
1143         if (Arg->getType().isRestrictQualified())
1144           AI->addAttr(llvm::Attribute::NoAlias);
1145
1146         // Ensure the argument is the correct type.
1147         if (V->getType() != ArgI.getCoerceToType())
1148           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1149
1150         if (isPromoted)
1151           V = emitArgumentDemotion(*this, Arg, V);
1152         
1153         EmitParmDecl(*Arg, V, ArgNo);
1154         break;
1155       }
1156
1157       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1158
1159       // The alignment we need to use is the max of the requested alignment for
1160       // the argument plus the alignment required by our access code below.
1161       unsigned AlignmentToUse =
1162         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1163       AlignmentToUse = std::max(AlignmentToUse,
1164                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1165
1166       Alloca->setAlignment(AlignmentToUse);
1167       llvm::Value *V = Alloca;
1168       llvm::Value *Ptr = V;    // Pointer to store into.
1169
1170       // If the value is offset in memory, apply the offset now.
1171       if (unsigned Offs = ArgI.getDirectOffset()) {
1172         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1173         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1174         Ptr = Builder.CreateBitCast(Ptr,
1175                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1176       }
1177
1178       // If the coerce-to type is a first class aggregate, we flatten it and
1179       // pass the elements. Either way is semantically identical, but fast-isel
1180       // and the optimizer generally likes scalar values better than FCAs.
1181       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1182       if (STy && STy->getNumElements() > 1) {
1183         uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
1184         llvm::Type *DstTy =
1185           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1186         uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
1187
1188         if (SrcSize <= DstSize) {
1189           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1190
1191           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1192             assert(AI != Fn->arg_end() && "Argument mismatch!");
1193             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1194             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1195             Builder.CreateStore(AI++, EltPtr);
1196           }
1197         } else {
1198           llvm::AllocaInst *TempAlloca =
1199             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1200           TempAlloca->setAlignment(AlignmentToUse);
1201           llvm::Value *TempV = TempAlloca;
1202
1203           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1204             assert(AI != Fn->arg_end() && "Argument mismatch!");
1205             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1206             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1207             Builder.CreateStore(AI++, EltPtr);
1208           }
1209
1210           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1211         }
1212       } else {
1213         // Simple case, just do a coerced store of the argument into the alloca.
1214         assert(AI != Fn->arg_end() && "Argument mismatch!");
1215         AI->setName(Arg->getName() + ".coerce");
1216         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1217       }
1218
1219
1220       // Match to what EmitParmDecl is expecting for this type.
1221       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1222         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1223         if (isPromoted)
1224           V = emitArgumentDemotion(*this, Arg, V);
1225       }
1226       EmitParmDecl(*Arg, V, ArgNo);
1227       continue;  // Skip ++AI increment, already done.
1228     }
1229
1230     case ABIArgInfo::Expand: {
1231       // If this structure was expanded into multiple arguments then
1232       // we need to create a temporary and reconstruct it from the
1233       // arguments.
1234       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1235       CharUnits Align = getContext().getDeclAlign(Arg);
1236       Alloca->setAlignment(Align.getQuantity());
1237       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1238       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1239       EmitParmDecl(*Arg, Alloca, ArgNo);
1240
1241       // Name the arguments used in expansion and increment AI.
1242       unsigned Index = 0;
1243       for (; AI != End; ++AI, ++Index)
1244         AI->setName(Arg->getName() + "." + Twine(Index));
1245       continue;
1246     }
1247
1248     case ABIArgInfo::Ignore:
1249       // Initialize the local variable appropriately.
1250       if (hasAggregateLLVMType(Ty))
1251         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1252       else
1253         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1254                      ArgNo);
1255
1256       // Skip increment, no matching LLVM parameter.
1257       continue;
1258     }
1259
1260     ++AI;
1261   }
1262   assert(AI == Fn->arg_end() && "Argument mismatch!");
1263 }
1264
1265 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1266   while (insn->use_empty()) {
1267     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1268     if (!bitcast) return;
1269
1270     // This is "safe" because we would have used a ConstantExpr otherwise.
1271     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1272     bitcast->eraseFromParent();
1273   }
1274 }
1275
1276 /// Try to emit a fused autorelease of a return result.
1277 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1278                                                     llvm::Value *result) {
1279   // We must be immediately followed the cast.
1280   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1281   if (BB->empty()) return 0;
1282   if (&BB->back() != result) return 0;
1283
1284   llvm::Type *resultType = result->getType();
1285
1286   // result is in a BasicBlock and is therefore an Instruction.
1287   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1288
1289   SmallVector<llvm::Instruction*,4> insnsToKill;
1290
1291   // Look for:
1292   //  %generator = bitcast %type1* %generator2 to %type2*
1293   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1294     // We would have emitted this as a constant if the operand weren't
1295     // an Instruction.
1296     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1297
1298     // Require the generator to be immediately followed by the cast.
1299     if (generator->getNextNode() != bitcast)
1300       return 0;
1301
1302     insnsToKill.push_back(bitcast);
1303   }
1304
1305   // Look for:
1306   //   %generator = call i8* @objc_retain(i8* %originalResult)
1307   // or
1308   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1309   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1310   if (!call) return 0;
1311
1312   bool doRetainAutorelease;
1313
1314   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1315     doRetainAutorelease = true;
1316   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1317                                           .objc_retainAutoreleasedReturnValue) {
1318     doRetainAutorelease = false;
1319
1320     // Look for an inline asm immediately preceding the call and kill it, too.
1321     llvm::Instruction *prev = call->getPrevNode();
1322     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1323       if (asmCall->getCalledValue()
1324             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1325         insnsToKill.push_back(prev);
1326   } else {
1327     return 0;
1328   }
1329
1330   result = call->getArgOperand(0);
1331   insnsToKill.push_back(call);
1332
1333   // Keep killing bitcasts, for sanity.  Note that we no longer care
1334   // about precise ordering as long as there's exactly one use.
1335   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1336     if (!bitcast->hasOneUse()) break;
1337     insnsToKill.push_back(bitcast);
1338     result = bitcast->getOperand(0);
1339   }
1340
1341   // Delete all the unnecessary instructions, from latest to earliest.
1342   for (SmallVectorImpl<llvm::Instruction*>::iterator
1343          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1344     (*i)->eraseFromParent();
1345
1346   // Do the fused retain/autorelease if we were asked to.
1347   if (doRetainAutorelease)
1348     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1349
1350   // Cast back to the result type.
1351   return CGF.Builder.CreateBitCast(result, resultType);
1352 }
1353
1354 /// If this is a +1 of the value of an immutable 'self', remove it.
1355 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1356                                           llvm::Value *result) {
1357   // This is only applicable to a method with an immutable 'self'.
1358   const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
1359   if (!method) return 0;
1360   const VarDecl *self = method->getSelfDecl();
1361   if (!self->getType().isConstQualified()) return 0;
1362
1363   // Look for a retain call.
1364   llvm::CallInst *retainCall =
1365     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1366   if (!retainCall ||
1367       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1368     return 0;
1369
1370   // Look for an ordinary load of 'self'.
1371   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1372   llvm::LoadInst *load =
1373     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1374   if (!load || load->isAtomic() || load->isVolatile() || 
1375       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1376     return 0;
1377
1378   // Okay!  Burn it all down.  This relies for correctness on the
1379   // assumption that the retain is emitted as part of the return and
1380   // that thereafter everything is used "linearly".
1381   llvm::Type *resultType = result->getType();
1382   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1383   assert(retainCall->use_empty());
1384   retainCall->eraseFromParent();
1385   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1386
1387   return CGF.Builder.CreateBitCast(load, resultType);
1388 }
1389
1390 /// Emit an ARC autorelease of the result of a function.
1391 ///
1392 /// \return the value to actually return from the function
1393 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1394                                             llvm::Value *result) {
1395   // If we're returning 'self', kill the initial retain.  This is a
1396   // heuristic attempt to "encourage correctness" in the really unfortunate
1397   // case where we have a return of self during a dealloc and we desperately
1398   // need to avoid the possible autorelease.
1399   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1400     return self;
1401
1402   // At -O0, try to emit a fused retain/autorelease.
1403   if (CGF.shouldUseFusedARCCalls())
1404     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1405       return fused;
1406
1407   return CGF.EmitARCAutoreleaseReturnValue(result);
1408 }
1409
1410 /// Heuristically search for a dominating store to the return-value slot.
1411 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1412   // If there are multiple uses of the return-value slot, just check
1413   // for something immediately preceding the IP.  Sometimes this can
1414   // happen with how we generate implicit-returns; it can also happen
1415   // with noreturn cleanups.
1416   if (!CGF.ReturnValue->hasOneUse()) {
1417     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1418     if (IP->empty()) return 0;
1419     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1420     if (!store) return 0;
1421     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1422     assert(!store->isAtomic() && !store->isVolatile()); // see below
1423     return store;
1424   }
1425
1426   llvm::StoreInst *store =
1427     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1428   if (!store) return 0;
1429
1430   // These aren't actually possible for non-coerced returns, and we
1431   // only care about non-coerced returns on this code path.
1432   assert(!store->isAtomic() && !store->isVolatile());
1433
1434   // Now do a first-and-dirty dominance check: just walk up the
1435   // single-predecessors chain from the current insertion point.
1436   llvm::BasicBlock *StoreBB = store->getParent();
1437   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1438   while (IP != StoreBB) {
1439     if (!(IP = IP->getSinglePredecessor()))
1440       return 0;
1441   }
1442
1443   // Okay, the store's basic block dominates the insertion point; we
1444   // can do our thing.
1445   return store;
1446 }
1447
1448 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1449   // Functions with no result always return void.
1450   if (ReturnValue == 0) {
1451     Builder.CreateRetVoid();
1452     return;
1453   }
1454
1455   llvm::DebugLoc RetDbgLoc;
1456   llvm::Value *RV = 0;
1457   QualType RetTy = FI.getReturnType();
1458   const ABIArgInfo &RetAI = FI.getReturnInfo();
1459
1460   switch (RetAI.getKind()) {
1461   case ABIArgInfo::Indirect: {
1462     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1463     if (RetTy->isAnyComplexType()) {
1464       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1465       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1466     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1467       // Do nothing; aggregrates get evaluated directly into the destination.
1468     } else {
1469       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1470                         false, Alignment, RetTy);
1471     }
1472     break;
1473   }
1474
1475   case ABIArgInfo::Extend:
1476   case ABIArgInfo::Direct:
1477     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1478         RetAI.getDirectOffset() == 0) {
1479       // The internal return value temp always will have pointer-to-return-type
1480       // type, just do a load.
1481
1482       // If there is a dominating store to ReturnValue, we can elide
1483       // the load, zap the store, and usually zap the alloca.
1484       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1485         // Get the stored value and nuke the now-dead store.
1486         RetDbgLoc = SI->getDebugLoc();
1487         RV = SI->getValueOperand();
1488         SI->eraseFromParent();
1489
1490         // If that was the only use of the return value, nuke it as well now.
1491         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1492           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1493           ReturnValue = 0;
1494         }
1495
1496       // Otherwise, we have to do a simple load.
1497       } else {
1498         RV = Builder.CreateLoad(ReturnValue);
1499       }
1500     } else {
1501       llvm::Value *V = ReturnValue;
1502       // If the value is offset in memory, apply the offset now.
1503       if (unsigned Offs = RetAI.getDirectOffset()) {
1504         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1505         V = Builder.CreateConstGEP1_32(V, Offs);
1506         V = Builder.CreateBitCast(V,
1507                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1508       }
1509
1510       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1511     }
1512
1513     // In ARC, end functions that return a retainable type with a call
1514     // to objc_autoreleaseReturnValue.
1515     if (AutoreleaseResult) {
1516       assert(getLangOpts().ObjCAutoRefCount &&
1517              !FI.isReturnsRetained() &&
1518              RetTy->isObjCRetainableType());
1519       RV = emitAutoreleaseOfResult(*this, RV);
1520     }
1521
1522     break;
1523
1524   case ABIArgInfo::Ignore:
1525     break;
1526
1527   case ABIArgInfo::Expand:
1528     llvm_unreachable("Invalid ABI kind for return argument");
1529   }
1530
1531   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1532   if (!RetDbgLoc.isUnknown())
1533     Ret->setDebugLoc(RetDbgLoc);
1534 }
1535
1536 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1537                                           const VarDecl *param) {
1538   // StartFunction converted the ABI-lowered parameter(s) into a
1539   // local alloca.  We need to turn that into an r-value suitable
1540   // for EmitCall.
1541   llvm::Value *local = GetAddrOfLocalVar(param);
1542
1543   QualType type = param->getType();
1544
1545   // For the most part, we just need to load the alloca, except:
1546   // 1) aggregate r-values are actually pointers to temporaries, and
1547   // 2) references to aggregates are pointers directly to the aggregate.
1548   // I don't know why references to non-aggregates are different here.
1549   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1550     if (hasAggregateLLVMType(ref->getPointeeType()))
1551       return args.add(RValue::getAggregate(local), type);
1552
1553     // Locals which are references to scalars are represented
1554     // with allocas holding the pointer.
1555     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1556   }
1557
1558   if (type->isAnyComplexType()) {
1559     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1560     return args.add(RValue::getComplex(complex), type);
1561   }
1562
1563   if (hasAggregateLLVMType(type))
1564     return args.add(RValue::getAggregate(local), type);
1565
1566   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1567   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1568   return args.add(RValue::get(value), type);
1569 }
1570
1571 static bool isProvablyNull(llvm::Value *addr) {
1572   return isa<llvm::ConstantPointerNull>(addr);
1573 }
1574
1575 static bool isProvablyNonNull(llvm::Value *addr) {
1576   return isa<llvm::AllocaInst>(addr);
1577 }
1578
1579 /// Emit the actual writing-back of a writeback.
1580 static void emitWriteback(CodeGenFunction &CGF,
1581                           const CallArgList::Writeback &writeback) {
1582   llvm::Value *srcAddr = writeback.Address;
1583   assert(!isProvablyNull(srcAddr) &&
1584          "shouldn't have writeback for provably null argument");
1585
1586   llvm::BasicBlock *contBB = 0;
1587
1588   // If the argument wasn't provably non-null, we need to null check
1589   // before doing the store.
1590   bool provablyNonNull = isProvablyNonNull(srcAddr);
1591   if (!provablyNonNull) {
1592     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1593     contBB = CGF.createBasicBlock("icr.done");
1594
1595     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1596     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1597     CGF.EmitBlock(writebackBB);
1598   }
1599
1600   // Load the value to writeback.
1601   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1602
1603   // Cast it back, in case we're writing an id to a Foo* or something.
1604   value = CGF.Builder.CreateBitCast(value,
1605                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1606                             "icr.writeback-cast");
1607   
1608   // Perform the writeback.
1609   QualType srcAddrType = writeback.AddressType;
1610   CGF.EmitStoreThroughLValue(RValue::get(value),
1611                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1612
1613   // Jump to the continuation block.
1614   if (!provablyNonNull)
1615     CGF.EmitBlock(contBB);
1616 }
1617
1618 static void emitWritebacks(CodeGenFunction &CGF,
1619                            const CallArgList &args) {
1620   for (CallArgList::writeback_iterator
1621          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1622     emitWriteback(CGF, *i);
1623 }
1624
1625 /// Emit an argument that's being passed call-by-writeback.  That is,
1626 /// we are passing the address of 
1627 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1628                              const ObjCIndirectCopyRestoreExpr *CRE) {
1629   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1630
1631   // The dest and src types don't necessarily match in LLVM terms
1632   // because of the crazy ObjC compatibility rules.
1633
1634   llvm::PointerType *destType =
1635     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1636
1637   // If the address is a constant null, just pass the appropriate null.
1638   if (isProvablyNull(srcAddr)) {
1639     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1640              CRE->getType());
1641     return;
1642   }
1643
1644   QualType srcAddrType =
1645     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1646
1647   // Create the temporary.
1648   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1649                                            "icr.temp");
1650
1651   // Zero-initialize it if we're not doing a copy-initialization.
1652   bool shouldCopy = CRE->shouldCopy();
1653   if (!shouldCopy) {
1654     llvm::Value *null =
1655       llvm::ConstantPointerNull::get(
1656         cast<llvm::PointerType>(destType->getElementType()));
1657     CGF.Builder.CreateStore(null, temp);
1658   }
1659
1660   llvm::BasicBlock *contBB = 0;
1661
1662   // If the address is *not* known to be non-null, we need to switch.
1663   llvm::Value *finalArgument;
1664
1665   bool provablyNonNull = isProvablyNonNull(srcAddr);
1666   if (provablyNonNull) {
1667     finalArgument = temp;
1668   } else {
1669     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1670
1671     finalArgument = CGF.Builder.CreateSelect(isNull, 
1672                                    llvm::ConstantPointerNull::get(destType),
1673                                              temp, "icr.argument");
1674
1675     // If we need to copy, then the load has to be conditional, which
1676     // means we need control flow.
1677     if (shouldCopy) {
1678       contBB = CGF.createBasicBlock("icr.cont");
1679       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1680       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1681       CGF.EmitBlock(copyBB);
1682     }
1683   }
1684
1685   // Perform a copy if necessary.
1686   if (shouldCopy) {
1687     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1688     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1689     assert(srcRV.isScalar());
1690
1691     llvm::Value *src = srcRV.getScalarVal();
1692     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1693                                     "icr.cast");
1694
1695     // Use an ordinary store, not a store-to-lvalue.
1696     CGF.Builder.CreateStore(src, temp);
1697   }
1698
1699   // Finish the control flow if we needed it.
1700   if (shouldCopy && !provablyNonNull)
1701     CGF.EmitBlock(contBB);
1702
1703   args.addWriteback(srcAddr, srcAddrType, temp);
1704   args.add(RValue::get(finalArgument), CRE->getType());
1705 }
1706
1707 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1708                                   QualType type) {
1709   if (const ObjCIndirectCopyRestoreExpr *CRE
1710         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1711     assert(getContext().getLangOpts().ObjCAutoRefCount);
1712     assert(getContext().hasSameType(E->getType(), type));
1713     return emitWritebackArg(*this, args, CRE);
1714   }
1715
1716   assert(type->isReferenceType() == E->isGLValue() &&
1717          "reference binding to unmaterialized r-value!");
1718
1719   if (E->isGLValue()) {
1720     assert(E->getObjectKind() == OK_Ordinary);
1721     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1722                     type);
1723   }
1724
1725   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1726       isa<ImplicitCastExpr>(E) &&
1727       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1728     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1729     assert(L.isSimple());
1730     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1731     return;
1732   }
1733
1734   args.add(EmitAnyExprToTemp(E), type);
1735 }
1736
1737 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1738 // optimizer it can aggressively ignore unwind edges.
1739 void
1740 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1741   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1742       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1743     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1744                       CGM.getNoObjCARCExceptionsMetadata());
1745 }
1746
1747 /// Emits a call or invoke instruction to the given function, depending
1748 /// on the current state of the EH stack.
1749 llvm::CallSite
1750 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1751                                   ArrayRef<llvm::Value *> Args,
1752                                   const Twine &Name) {
1753   llvm::BasicBlock *InvokeDest = getInvokeDest();
1754
1755   llvm::Instruction *Inst;
1756   if (!InvokeDest)
1757     Inst = Builder.CreateCall(Callee, Args, Name);
1758   else {
1759     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1760     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1761     EmitBlock(ContBB);
1762   }
1763
1764   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1765   // optimizer it can aggressively ignore unwind edges.
1766   if (CGM.getLangOpts().ObjCAutoRefCount)
1767     AddObjCARCExceptionMetadata(Inst);
1768
1769   return Inst;
1770 }
1771
1772 llvm::CallSite
1773 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1774                                   const Twine &Name) {
1775   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1776 }
1777
1778 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1779                             llvm::FunctionType *FTy) {
1780   if (ArgNo < FTy->getNumParams())
1781     assert(Elt->getType() == FTy->getParamType(ArgNo));
1782   else
1783     assert(FTy->isVarArg());
1784   ++ArgNo;
1785 }
1786
1787 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1788                                        SmallVector<llvm::Value*,16> &Args,
1789                                        llvm::FunctionType *IRFuncTy) {
1790   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1791     unsigned NumElts = AT->getSize().getZExtValue();
1792     QualType EltTy = AT->getElementType();
1793     llvm::Value *Addr = RV.getAggregateAddr();
1794     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1795       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1796       LValue LV = MakeAddrLValue(EltAddr, EltTy);
1797       RValue EltRV;
1798       if (EltTy->isAnyComplexType())
1799         // FIXME: Volatile?
1800         EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1801       else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1802         EltRV = LV.asAggregateRValue();
1803       else
1804         EltRV = EmitLoadOfLValue(LV);
1805       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1806     }
1807   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1808     RecordDecl *RD = RT->getDecl();
1809     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1810     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
1811
1812     if (RD->isUnion()) {
1813       const FieldDecl *LargestFD = 0;
1814       CharUnits UnionSize = CharUnits::Zero();
1815
1816       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1817            i != e; ++i) {
1818         const FieldDecl *FD = *i;
1819         assert(!FD->isBitField() &&
1820                "Cannot expand structure with bit-field members.");
1821         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
1822         if (UnionSize < FieldSize) {
1823           UnionSize = FieldSize;
1824           LargestFD = FD;
1825         }
1826       }
1827       if (LargestFD) {
1828         RValue FldRV = EmitRValueForField(LV, LargestFD);
1829         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
1830       }
1831     } else {
1832       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1833            i != e; ++i) {
1834         FieldDecl *FD = *i;
1835
1836         RValue FldRV = EmitRValueForField(LV, FD);
1837         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
1838       }
1839     }
1840   } else if (Ty->isAnyComplexType()) {
1841     ComplexPairTy CV = RV.getComplexVal();
1842     Args.push_back(CV.first);
1843     Args.push_back(CV.second);
1844   } else {
1845     assert(RV.isScalar() &&
1846            "Unexpected non-scalar rvalue during struct expansion.");
1847
1848     // Insert a bitcast as needed.
1849     llvm::Value *V = RV.getScalarVal();
1850     if (Args.size() < IRFuncTy->getNumParams() &&
1851         V->getType() != IRFuncTy->getParamType(Args.size()))
1852       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1853
1854     Args.push_back(V);
1855   }
1856 }
1857
1858
1859 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1860                                  llvm::Value *Callee,
1861                                  ReturnValueSlot ReturnValue,
1862                                  const CallArgList &CallArgs,
1863                                  const Decl *TargetDecl,
1864                                  llvm::Instruction **callOrInvoke) {
1865   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1866   SmallVector<llvm::Value*, 16> Args;
1867
1868   // Handle struct-return functions by passing a pointer to the
1869   // location that we would like to return into.
1870   QualType RetTy = CallInfo.getReturnType();
1871   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1872
1873   // IRArgNo - Keep track of the argument number in the callee we're looking at.
1874   unsigned IRArgNo = 0;
1875   llvm::FunctionType *IRFuncTy =
1876     cast<llvm::FunctionType>(
1877                   cast<llvm::PointerType>(Callee->getType())->getElementType());
1878
1879   // If the call returns a temporary with struct return, create a temporary
1880   // alloca to hold the result, unless one is given to us.
1881   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1882     llvm::Value *Value = ReturnValue.getValue();
1883     if (!Value)
1884       Value = CreateMemTemp(RetTy);
1885     Args.push_back(Value);
1886     checkArgMatches(Value, IRArgNo, IRFuncTy);
1887   }
1888
1889   assert(CallInfo.arg_size() == CallArgs.size() &&
1890          "Mismatch between function signature & arguments.");
1891   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1892   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1893        I != E; ++I, ++info_it) {
1894     const ABIArgInfo &ArgInfo = info_it->info;
1895     RValue RV = I->RV;
1896
1897     unsigned TypeAlign =
1898       getContext().getTypeAlignInChars(I->Ty).getQuantity();
1899     switch (ArgInfo.getKind()) {
1900     case ABIArgInfo::Indirect: {
1901       if (RV.isScalar() || RV.isComplex()) {
1902         // Make a temporary alloca to pass the argument.
1903         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1904         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1905           AI->setAlignment(ArgInfo.getIndirectAlign());
1906         Args.push_back(AI);
1907         
1908         if (RV.isScalar())
1909           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1910                             TypeAlign, I->Ty);
1911         else
1912           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1913         
1914         // Validate argument match.
1915         checkArgMatches(AI, IRArgNo, IRFuncTy);
1916       } else {
1917         // We want to avoid creating an unnecessary temporary+copy here;
1918         // however, we need one in two cases:
1919         // 1. If the argument is not byval, and we are required to copy the
1920         //    source.  (This case doesn't occur on any common architecture.)
1921         // 2. If the argument is byval, RV is not sufficiently aligned, and
1922         //    we cannot force it to be sufficiently aligned.
1923         llvm::Value *Addr = RV.getAggregateAddr();
1924         unsigned Align = ArgInfo.getIndirectAlign();
1925         const llvm::TargetData *TD = &CGM.getTargetData();
1926         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1927             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1928              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1929           // Create an aligned temporary, and copy to it.
1930           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1931           if (Align > AI->getAlignment())
1932             AI->setAlignment(Align);
1933           Args.push_back(AI);
1934           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1935               
1936           // Validate argument match.
1937           checkArgMatches(AI, IRArgNo, IRFuncTy);
1938         } else {
1939           // Skip the extra memcpy call.
1940           Args.push_back(Addr);
1941           
1942           // Validate argument match.
1943           checkArgMatches(Addr, IRArgNo, IRFuncTy);
1944         }
1945       }
1946       break;
1947     }
1948
1949     case ABIArgInfo::Ignore:
1950       break;
1951
1952     case ABIArgInfo::Extend:
1953     case ABIArgInfo::Direct: {
1954       // Insert a padding argument to ensure proper alignment.
1955       if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
1956         Args.push_back(llvm::UndefValue::get(PaddingType));
1957         ++IRArgNo;
1958       }
1959
1960       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1961           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1962           ArgInfo.getDirectOffset() == 0) {
1963         llvm::Value *V;
1964         if (RV.isScalar())
1965           V = RV.getScalarVal();
1966         else
1967           V = Builder.CreateLoad(RV.getAggregateAddr());
1968         
1969         // If the argument doesn't match, perform a bitcast to coerce it.  This
1970         // can happen due to trivial type mismatches.
1971         if (IRArgNo < IRFuncTy->getNumParams() &&
1972             V->getType() != IRFuncTy->getParamType(IRArgNo))
1973           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
1974         Args.push_back(V);
1975         
1976         checkArgMatches(V, IRArgNo, IRFuncTy);
1977         break;
1978       }
1979
1980       // FIXME: Avoid the conversion through memory if possible.
1981       llvm::Value *SrcPtr;
1982       if (RV.isScalar()) {
1983         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1984         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
1985       } else if (RV.isComplex()) {
1986         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1987         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1988       } else
1989         SrcPtr = RV.getAggregateAddr();
1990
1991       // If the value is offset in memory, apply the offset now.
1992       if (unsigned Offs = ArgInfo.getDirectOffset()) {
1993         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1994         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1995         SrcPtr = Builder.CreateBitCast(SrcPtr,
1996                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1997
1998       }
1999
2000       // If the coerce-to type is a first class aggregate, we flatten it and
2001       // pass the elements. Either way is semantically identical, but fast-isel
2002       // and the optimizer generally likes scalar values better than FCAs.
2003       if (llvm::StructType *STy =
2004             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2005         SrcPtr = Builder.CreateBitCast(SrcPtr,
2006                                        llvm::PointerType::getUnqual(STy));
2007         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2008           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2009           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2010           // We don't know what we're loading from.
2011           LI->setAlignment(1);
2012           Args.push_back(LI);
2013           
2014           // Validate argument match.
2015           checkArgMatches(LI, IRArgNo, IRFuncTy);
2016         }
2017       } else {
2018         // In the simple case, just pass the coerced loaded value.
2019         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2020                                          *this));
2021         
2022         // Validate argument match.
2023         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2024       }
2025
2026       break;
2027     }
2028
2029     case ABIArgInfo::Expand:
2030       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2031       IRArgNo = Args.size();
2032       break;
2033     }
2034   }
2035
2036   // If the callee is a bitcast of a function to a varargs pointer to function
2037   // type, check to see if we can remove the bitcast.  This handles some cases
2038   // with unprototyped functions.
2039   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2040     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2041       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2042       llvm::FunctionType *CurFT =
2043         cast<llvm::FunctionType>(CurPT->getElementType());
2044       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2045
2046       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2047           ActualFT->getReturnType() == CurFT->getReturnType() &&
2048           ActualFT->getNumParams() == CurFT->getNumParams() &&
2049           ActualFT->getNumParams() == Args.size() &&
2050           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2051         bool ArgsMatch = true;
2052         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2053           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2054             ArgsMatch = false;
2055             break;
2056           }
2057
2058         // Strip the cast if we can get away with it.  This is a nice cleanup,
2059         // but also allows us to inline the function at -O0 if it is marked
2060         // always_inline.
2061         if (ArgsMatch)
2062           Callee = CalleeF;
2063       }
2064     }
2065
2066   unsigned CallingConv;
2067   CodeGen::AttributeListType AttributeList;
2068   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2069   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
2070                                                    AttributeList.end());
2071
2072   llvm::BasicBlock *InvokeDest = 0;
2073   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
2074     InvokeDest = getInvokeDest();
2075
2076   llvm::CallSite CS;
2077   if (!InvokeDest) {
2078     CS = Builder.CreateCall(Callee, Args);
2079   } else {
2080     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2081     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2082     EmitBlock(Cont);
2083   }
2084   if (callOrInvoke)
2085     *callOrInvoke = CS.getInstruction();
2086
2087   CS.setAttributes(Attrs);
2088   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2089
2090   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2091   // optimizer it can aggressively ignore unwind edges.
2092   if (CGM.getLangOpts().ObjCAutoRefCount)
2093     AddObjCARCExceptionMetadata(CS.getInstruction());
2094
2095   // If the call doesn't return, finish the basic block and clear the
2096   // insertion point; this allows the rest of IRgen to discard
2097   // unreachable code.
2098   if (CS.doesNotReturn()) {
2099     Builder.CreateUnreachable();
2100     Builder.ClearInsertionPoint();
2101
2102     // FIXME: For now, emit a dummy basic block because expr emitters in
2103     // generally are not ready to handle emitting expressions at unreachable
2104     // points.
2105     EnsureInsertPoint();
2106
2107     // Return a reasonable RValue.
2108     return GetUndefRValue(RetTy);
2109   }
2110
2111   llvm::Instruction *CI = CS.getInstruction();
2112   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2113     CI->setName("call");
2114
2115   // Emit any writebacks immediately.  Arguably this should happen
2116   // after any return-value munging.
2117   if (CallArgs.hasWritebacks())
2118     emitWritebacks(*this, CallArgs);
2119
2120   switch (RetAI.getKind()) {
2121   case ABIArgInfo::Indirect: {
2122     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2123     if (RetTy->isAnyComplexType())
2124       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2125     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2126       return RValue::getAggregate(Args[0]);
2127     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2128   }
2129
2130   case ABIArgInfo::Ignore:
2131     // If we are ignoring an argument that had a result, make sure to
2132     // construct the appropriate return value for our caller.
2133     return GetUndefRValue(RetTy);
2134
2135   case ABIArgInfo::Extend:
2136   case ABIArgInfo::Direct: {
2137     llvm::Type *RetIRTy = ConvertType(RetTy);
2138     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2139       if (RetTy->isAnyComplexType()) {
2140         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2141         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2142         return RValue::getComplex(std::make_pair(Real, Imag));
2143       }
2144       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2145         llvm::Value *DestPtr = ReturnValue.getValue();
2146         bool DestIsVolatile = ReturnValue.isVolatile();
2147
2148         if (!DestPtr) {
2149           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2150           DestIsVolatile = false;
2151         }
2152         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2153         return RValue::getAggregate(DestPtr);
2154       }
2155       
2156       // If the argument doesn't match, perform a bitcast to coerce it.  This
2157       // can happen due to trivial type mismatches.
2158       llvm::Value *V = CI;
2159       if (V->getType() != RetIRTy)
2160         V = Builder.CreateBitCast(V, RetIRTy);
2161       return RValue::get(V);
2162     }
2163
2164     llvm::Value *DestPtr = ReturnValue.getValue();
2165     bool DestIsVolatile = ReturnValue.isVolatile();
2166
2167     if (!DestPtr) {
2168       DestPtr = CreateMemTemp(RetTy, "coerce");
2169       DestIsVolatile = false;
2170     }
2171
2172     // If the value is offset in memory, apply the offset now.
2173     llvm::Value *StorePtr = DestPtr;
2174     if (unsigned Offs = RetAI.getDirectOffset()) {
2175       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2176       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2177       StorePtr = Builder.CreateBitCast(StorePtr,
2178                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2179     }
2180     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2181
2182     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2183     if (RetTy->isAnyComplexType())
2184       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2185     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2186       return RValue::getAggregate(DestPtr);
2187     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2188   }
2189
2190   case ABIArgInfo::Expand:
2191     llvm_unreachable("Invalid ABI kind for return argument");
2192   }
2193
2194   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2195 }
2196
2197 /* VarArg handling */
2198
2199 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2200   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2201 }