]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprConstant.cpp
MFC r244628:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprConstant.cpp
1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Constant Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/Builtins.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/DataLayout.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 //===----------------------------------------------------------------------===//
32 //                            ConstStructBuilder
33 //===----------------------------------------------------------------------===//
34
35 namespace {
36 class ConstStructBuilder {
37   CodeGenModule &CGM;
38   CodeGenFunction *CGF;
39
40   bool Packed;
41   CharUnits NextFieldOffsetInChars;
42   CharUnits LLVMStructAlignment;
43   SmallVector<llvm::Constant *, 32> Elements;
44 public:
45   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                      InitListExpr *ILE);
47   static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
48                                      const APValue &Value, QualType ValTy);
49
50 private:
51   ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
52     : CGM(CGM), CGF(CGF), Packed(false), 
53     NextFieldOffsetInChars(CharUnits::Zero()),
54     LLVMStructAlignment(CharUnits::One()) { }
55
56   void AppendVTablePointer(BaseSubobject Base, llvm::Constant *VTable,
57                            const CXXRecordDecl *VTableClass);
58
59   void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
60                    llvm::Constant *InitExpr);
61
62   void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
63
64   void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
65                       llvm::ConstantInt *InitExpr);
66
67   void AppendPadding(CharUnits PadSize);
68
69   void AppendTailPadding(CharUnits RecordSize);
70
71   void ConvertStructToPacked();
72
73   bool Build(InitListExpr *ILE);
74   void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
75              llvm::Constant *VTable, const CXXRecordDecl *VTableClass,
76              CharUnits BaseOffset);
77   llvm::Constant *Finalize(QualType Ty);
78
79   CharUnits getAlignment(const llvm::Constant *C) const {
80     if (Packed)  return CharUnits::One();
81     return CharUnits::fromQuantity(
82         CGM.getDataLayout().getABITypeAlignment(C->getType()));
83   }
84
85   CharUnits getSizeInChars(const llvm::Constant *C) const {
86     return CharUnits::fromQuantity(
87         CGM.getDataLayout().getTypeAllocSize(C->getType()));
88   }
89 };
90
91 void ConstStructBuilder::AppendVTablePointer(BaseSubobject Base,
92                                              llvm::Constant *VTable,
93                                              const CXXRecordDecl *VTableClass) {
94   // Find the appropriate vtable within the vtable group.
95   uint64_t AddressPoint =
96     CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
97   llvm::Value *Indices[] = {
98     llvm::ConstantInt::get(CGM.Int64Ty, 0),
99     llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
100   };
101   llvm::Constant *VTableAddressPoint =
102     llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
103
104   // Add the vtable at the start of the object.
105   AppendBytes(Base.getBaseOffset(), VTableAddressPoint);
106 }
107
108 void ConstStructBuilder::
109 AppendField(const FieldDecl *Field, uint64_t FieldOffset,
110             llvm::Constant *InitCst) {
111   const ASTContext &Context = CGM.getContext();
112
113   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
114
115   AppendBytes(FieldOffsetInChars, InitCst);
116 }
117
118 void ConstStructBuilder::
119 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
120
121   assert(NextFieldOffsetInChars <= FieldOffsetInChars
122          && "Field offset mismatch!");
123
124   CharUnits FieldAlignment = getAlignment(InitCst);
125
126   // Round up the field offset to the alignment of the field type.
127   CharUnits AlignedNextFieldOffsetInChars =
128     NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
129
130   if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131     assert(!Packed && "Alignment is wrong even with a packed struct!");
132
133     // Convert the struct to a packed struct.
134     ConvertStructToPacked();
135
136     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
137   }
138
139   if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
140     // We need to append padding.
141     AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
142
143     assert(NextFieldOffsetInChars == FieldOffsetInChars &&
144            "Did not add enough padding!");
145
146     AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
147   }
148
149   // Add the field.
150   Elements.push_back(InitCst);
151   NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
152                            getSizeInChars(InitCst);
153
154   if (Packed)
155     assert(LLVMStructAlignment == CharUnits::One() &&
156            "Packed struct not byte-aligned!");
157   else
158     LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
159 }
160
161 void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
162                                         uint64_t FieldOffset,
163                                         llvm::ConstantInt *CI) {
164   const ASTContext &Context = CGM.getContext();
165   const uint64_t CharWidth = Context.getCharWidth();
166   uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
167   if (FieldOffset > NextFieldOffsetInBits) {
168     // We need to add padding.
169     CharUnits PadSize = Context.toCharUnitsFromBits(
170       llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits, 
171                                Context.getTargetInfo().getCharAlign()));
172
173     AppendPadding(PadSize);
174   }
175
176   uint64_t FieldSize = Field->getBitWidthValue(Context);
177
178   llvm::APInt FieldValue = CI->getValue();
179
180   // Promote the size of FieldValue if necessary
181   // FIXME: This should never occur, but currently it can because initializer
182   // constants are cast to bool, and because clang is not enforcing bitfield
183   // width limits.
184   if (FieldSize > FieldValue.getBitWidth())
185     FieldValue = FieldValue.zext(FieldSize);
186
187   // Truncate the size of FieldValue to the bit field size.
188   if (FieldSize < FieldValue.getBitWidth())
189     FieldValue = FieldValue.trunc(FieldSize);
190
191   NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
192   if (FieldOffset < NextFieldOffsetInBits) {
193     // Either part of the field or the entire field can go into the previous
194     // byte.
195     assert(!Elements.empty() && "Elements can't be empty!");
196
197     unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
198
199     bool FitsCompletelyInPreviousByte =
200       BitsInPreviousByte >= FieldValue.getBitWidth();
201
202     llvm::APInt Tmp = FieldValue;
203
204     if (!FitsCompletelyInPreviousByte) {
205       unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
206
207       if (CGM.getDataLayout().isBigEndian()) {
208         Tmp = Tmp.lshr(NewFieldWidth);
209         Tmp = Tmp.trunc(BitsInPreviousByte);
210
211         // We want the remaining high bits.
212         FieldValue = FieldValue.trunc(NewFieldWidth);
213       } else {
214         Tmp = Tmp.trunc(BitsInPreviousByte);
215
216         // We want the remaining low bits.
217         FieldValue = FieldValue.lshr(BitsInPreviousByte);
218         FieldValue = FieldValue.trunc(NewFieldWidth);
219       }
220     }
221
222     Tmp = Tmp.zext(CharWidth);
223     if (CGM.getDataLayout().isBigEndian()) {
224       if (FitsCompletelyInPreviousByte)
225         Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
226     } else {
227       Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
228     }
229
230     // 'or' in the bits that go into the previous byte.
231     llvm::Value *LastElt = Elements.back();
232     if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
233       Tmp |= Val->getValue();
234     else {
235       assert(isa<llvm::UndefValue>(LastElt));
236       // If there is an undef field that we're adding to, it can either be a
237       // scalar undef (in which case, we just replace it with our field) or it
238       // is an array.  If it is an array, we have to pull one byte off the
239       // array so that the other undef bytes stay around.
240       if (!isa<llvm::IntegerType>(LastElt->getType())) {
241         // The undef padding will be a multibyte array, create a new smaller
242         // padding and then an hole for our i8 to get plopped into.
243         assert(isa<llvm::ArrayType>(LastElt->getType()) &&
244                "Expected array padding of undefs");
245         llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
246         assert(AT->getElementType()->isIntegerTy(CharWidth) &&
247                AT->getNumElements() != 0 &&
248                "Expected non-empty array padding of undefs");
249         
250         // Remove the padding array.
251         NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
252         Elements.pop_back();
253         
254         // Add the padding back in two chunks.
255         AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
256         AppendPadding(CharUnits::One());
257         assert(isa<llvm::UndefValue>(Elements.back()) &&
258                Elements.back()->getType()->isIntegerTy(CharWidth) &&
259                "Padding addition didn't work right");
260       }
261     }
262
263     Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
264
265     if (FitsCompletelyInPreviousByte)
266       return;
267   }
268
269   while (FieldValue.getBitWidth() > CharWidth) {
270     llvm::APInt Tmp;
271
272     if (CGM.getDataLayout().isBigEndian()) {
273       // We want the high bits.
274       Tmp = 
275         FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
276     } else {
277       // We want the low bits.
278       Tmp = FieldValue.trunc(CharWidth);
279
280       FieldValue = FieldValue.lshr(CharWidth);
281     }
282
283     Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
284     ++NextFieldOffsetInChars;
285
286     FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
287   }
288
289   assert(FieldValue.getBitWidth() > 0 &&
290          "Should have at least one bit left!");
291   assert(FieldValue.getBitWidth() <= CharWidth &&
292          "Should not have more than a byte left!");
293
294   if (FieldValue.getBitWidth() < CharWidth) {
295     if (CGM.getDataLayout().isBigEndian()) {
296       unsigned BitWidth = FieldValue.getBitWidth();
297
298       FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
299     } else
300       FieldValue = FieldValue.zext(CharWidth);
301   }
302
303   // Append the last element.
304   Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
305                                             FieldValue));
306   ++NextFieldOffsetInChars;
307 }
308
309 void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
310   if (PadSize.isZero())
311     return;
312
313   llvm::Type *Ty = CGM.Int8Ty;
314   if (PadSize > CharUnits::One())
315     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
316
317   llvm::Constant *C = llvm::UndefValue::get(Ty);
318   Elements.push_back(C);
319   assert(getAlignment(C) == CharUnits::One() && 
320          "Padding must have 1 byte alignment!");
321
322   NextFieldOffsetInChars += getSizeInChars(C);
323 }
324
325 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
326   assert(NextFieldOffsetInChars <= RecordSize && 
327          "Size mismatch!");
328
329   AppendPadding(RecordSize - NextFieldOffsetInChars);
330 }
331
332 void ConstStructBuilder::ConvertStructToPacked() {
333   SmallVector<llvm::Constant *, 16> PackedElements;
334   CharUnits ElementOffsetInChars = CharUnits::Zero();
335
336   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
337     llvm::Constant *C = Elements[i];
338
339     CharUnits ElementAlign = CharUnits::fromQuantity(
340       CGM.getDataLayout().getABITypeAlignment(C->getType()));
341     CharUnits AlignedElementOffsetInChars =
342       ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
343
344     if (AlignedElementOffsetInChars > ElementOffsetInChars) {
345       // We need some padding.
346       CharUnits NumChars =
347         AlignedElementOffsetInChars - ElementOffsetInChars;
348
349       llvm::Type *Ty = CGM.Int8Ty;
350       if (NumChars > CharUnits::One())
351         Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
352
353       llvm::Constant *Padding = llvm::UndefValue::get(Ty);
354       PackedElements.push_back(Padding);
355       ElementOffsetInChars += getSizeInChars(Padding);
356     }
357
358     PackedElements.push_back(C);
359     ElementOffsetInChars += getSizeInChars(C);
360   }
361
362   assert(ElementOffsetInChars == NextFieldOffsetInChars &&
363          "Packing the struct changed its size!");
364
365   Elements.swap(PackedElements);
366   LLVMStructAlignment = CharUnits::One();
367   Packed = true;
368 }
369                             
370 bool ConstStructBuilder::Build(InitListExpr *ILE) {
371   if (ILE->initializesStdInitializerList()) {
372     //CGM.ErrorUnsupported(ILE, "global std::initializer_list");
373     return false;
374   }
375
376   RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
377   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
378
379   unsigned FieldNo = 0;
380   unsigned ElementNo = 0;
381   const FieldDecl *LastFD = 0;
382   bool IsMsStruct = RD->isMsStruct(CGM.getContext());
383   
384   for (RecordDecl::field_iterator Field = RD->field_begin(),
385        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
386     if (IsMsStruct) {
387       // Zero-length bitfields following non-bitfield members are
388       // ignored:
389       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield(*Field, LastFD)) {
390         --FieldNo;
391         continue;
392       }
393       LastFD = *Field;
394     }
395     
396     // If this is a union, skip all the fields that aren't being initialized.
397     if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
398       continue;
399
400     // Don't emit anonymous bitfields, they just affect layout.
401     if (Field->isUnnamedBitfield()) {
402       LastFD = *Field;
403       continue;
404     }
405
406     // Get the initializer.  A struct can include fields without initializers,
407     // we just use explicit null values for them.
408     llvm::Constant *EltInit;
409     if (ElementNo < ILE->getNumInits())
410       EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
411                                      Field->getType(), CGF);
412     else
413       EltInit = CGM.EmitNullConstant(Field->getType());
414
415     if (!EltInit)
416       return false;
417     
418     if (!Field->isBitField()) {
419       // Handle non-bitfield members.
420       AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
421     } else {
422       // Otherwise we have a bitfield.
423       AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
424                      cast<llvm::ConstantInt>(EltInit));
425     }
426   }
427
428   return true;
429 }
430
431 namespace {
432 struct BaseInfo {
433   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
434     : Decl(Decl), Offset(Offset), Index(Index) {
435   }
436
437   const CXXRecordDecl *Decl;
438   CharUnits Offset;
439   unsigned Index;
440
441   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
442 };
443 }
444
445 void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
446                                bool IsPrimaryBase, llvm::Constant *VTable,
447                                const CXXRecordDecl *VTableClass,
448                                CharUnits Offset) {
449   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
450
451   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
452     // Add a vtable pointer, if we need one and it hasn't already been added.
453     if (CD->isDynamicClass() && !IsPrimaryBase)
454       AppendVTablePointer(BaseSubobject(CD, Offset), VTable, VTableClass);
455
456     // Accumulate and sort bases, in order to visit them in address order, which
457     // may not be the same as declaration order.
458     llvm::SmallVector<BaseInfo, 8> Bases;
459     Bases.reserve(CD->getNumBases());
460     unsigned BaseNo = 0;
461     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
462          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
463       assert(!Base->isVirtual() && "should not have virtual bases here");
464       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
465       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
466       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
467     }
468     std::stable_sort(Bases.begin(), Bases.end());
469
470     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
471       BaseInfo &Base = Bases[I];
472
473       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
474       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
475             VTable, VTableClass, Offset + Base.Offset);
476     }
477   }
478
479   unsigned FieldNo = 0;
480   const FieldDecl *LastFD = 0;
481   bool IsMsStruct = RD->isMsStruct(CGM.getContext());
482   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
483
484   for (RecordDecl::field_iterator Field = RD->field_begin(),
485        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
486     if (IsMsStruct) {
487       // Zero-length bitfields following non-bitfield members are
488       // ignored:
489       if (CGM.getContext().ZeroBitfieldFollowsNonBitfield(*Field, LastFD)) {
490         --FieldNo;
491         continue;
492       }
493       LastFD = *Field;
494     }
495
496     // If this is a union, skip all the fields that aren't being initialized.
497     if (RD->isUnion() && Val.getUnionField() != *Field)
498       continue;
499
500     // Don't emit anonymous bitfields, they just affect layout.
501     if (Field->isUnnamedBitfield()) {
502       LastFD = *Field;
503       continue;
504     }
505
506     // Emit the value of the initializer.
507     const APValue &FieldValue =
508       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
509     llvm::Constant *EltInit =
510       CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF);
511     assert(EltInit && "EmitConstantValue can't fail");
512
513     if (!Field->isBitField()) {
514       // Handle non-bitfield members.
515       AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
516     } else {
517       // Otherwise we have a bitfield.
518       AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
519                      cast<llvm::ConstantInt>(EltInit));
520     }
521   }
522 }
523
524 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
525   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
526   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
527
528   CharUnits LayoutSizeInChars = Layout.getSize();
529
530   if (NextFieldOffsetInChars > LayoutSizeInChars) {
531     // If the struct is bigger than the size of the record type,
532     // we must have a flexible array member at the end.
533     assert(RD->hasFlexibleArrayMember() &&
534            "Must have flexible array member if struct is bigger than type!");
535
536     // No tail padding is necessary.
537   } else {
538     // Append tail padding if necessary.
539     AppendTailPadding(LayoutSizeInChars);
540
541     CharUnits LLVMSizeInChars =
542       NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
543
544     // Check if we need to convert the struct to a packed struct.
545     if (NextFieldOffsetInChars <= LayoutSizeInChars &&
546         LLVMSizeInChars > LayoutSizeInChars) {
547       assert(!Packed && "Size mismatch!");
548
549       ConvertStructToPacked();
550       assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
551              "Converting to packed did not help!");
552     }
553
554     assert(LayoutSizeInChars == NextFieldOffsetInChars &&
555            "Tail padding mismatch!");
556   }
557
558   // Pick the type to use.  If the type is layout identical to the ConvertType
559   // type then use it, otherwise use whatever the builder produced for us.
560   llvm::StructType *STy =
561       llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
562                                                Elements, Packed);
563   llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
564   if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
565     if (ValSTy->isLayoutIdentical(STy))
566       STy = ValSTy;
567   }
568
569   llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
570
571   assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
572          getSizeInChars(Result) && "Size mismatch!");
573
574   return Result;
575 }
576
577 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
578                                                 CodeGenFunction *CGF,
579                                                 InitListExpr *ILE) {
580   ConstStructBuilder Builder(CGM, CGF);
581
582   if (!Builder.Build(ILE))
583     return 0;
584
585   return Builder.Finalize(ILE->getType());
586 }
587
588 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
589                                                 CodeGenFunction *CGF,
590                                                 const APValue &Val,
591                                                 QualType ValTy) {
592   ConstStructBuilder Builder(CGM, CGF);
593
594   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
595   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
596   llvm::Constant *VTable = 0;
597   if (CD && CD->isDynamicClass())
598     VTable = CGM.getVTables().GetAddrOfVTable(CD);
599
600   Builder.Build(Val, RD, false, VTable, CD, CharUnits::Zero());
601
602   return Builder.Finalize(ValTy);
603 }
604
605
606 //===----------------------------------------------------------------------===//
607 //                             ConstExprEmitter
608 //===----------------------------------------------------------------------===//
609
610 /// This class only needs to handle two cases:
611 /// 1) Literals (this is used by APValue emission to emit literals).
612 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
613 ///    constant fold these types).
614 class ConstExprEmitter :
615   public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
616   CodeGenModule &CGM;
617   CodeGenFunction *CGF;
618   llvm::LLVMContext &VMContext;
619 public:
620   ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
621     : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
622   }
623
624   //===--------------------------------------------------------------------===//
625   //                            Visitor Methods
626   //===--------------------------------------------------------------------===//
627
628   llvm::Constant *VisitStmt(Stmt *S) {
629     return 0;
630   }
631
632   llvm::Constant *VisitParenExpr(ParenExpr *PE) {
633     return Visit(PE->getSubExpr());
634   }
635
636   llvm::Constant *
637   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
638     return Visit(PE->getReplacement());
639   }
640
641   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
642     return Visit(GE->getResultExpr());
643   }
644
645   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
646     return Visit(E->getInitializer());
647   }
648
649   llvm::Constant *VisitCastExpr(CastExpr* E) {
650     Expr *subExpr = E->getSubExpr();
651     llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
652     if (!C) return 0;
653
654     llvm::Type *destType = ConvertType(E->getType());
655
656     switch (E->getCastKind()) {
657     case CK_ToUnion: {
658       // GCC cast to union extension
659       assert(E->getType()->isUnionType() &&
660              "Destination type is not union type!");
661
662       // Build a struct with the union sub-element as the first member,
663       // and padded to the appropriate size
664       SmallVector<llvm::Constant*, 2> Elts;
665       SmallVector<llvm::Type*, 2> Types;
666       Elts.push_back(C);
667       Types.push_back(C->getType());
668       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
669       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType);
670
671       assert(CurSize <= TotalSize && "Union size mismatch!");
672       if (unsigned NumPadBytes = TotalSize - CurSize) {
673         llvm::Type *Ty = CGM.Int8Ty;
674         if (NumPadBytes > 1)
675           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
676
677         Elts.push_back(llvm::UndefValue::get(Ty));
678         Types.push_back(Ty);
679       }
680
681       llvm::StructType* STy =
682         llvm::StructType::get(C->getType()->getContext(), Types, false);
683       return llvm::ConstantStruct::get(STy, Elts);
684     }
685
686     case CK_LValueToRValue:
687     case CK_AtomicToNonAtomic:
688     case CK_NonAtomicToAtomic:
689     case CK_NoOp:
690       return C;
691
692     case CK_Dependent: llvm_unreachable("saw dependent cast!");
693
694     case CK_BuiltinFnToFnPtr:
695       llvm_unreachable("builtin functions are handled elsewhere");
696
697     case CK_ReinterpretMemberPointer:
698     case CK_DerivedToBaseMemberPointer:
699     case CK_BaseToDerivedMemberPointer:
700       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
701
702     // These will never be supported.
703     case CK_ObjCObjectLValueCast:
704     case CK_ARCProduceObject:
705     case CK_ARCConsumeObject:
706     case CK_ARCReclaimReturnedObject:
707     case CK_ARCExtendBlockObject:
708     case CK_CopyAndAutoreleaseBlockObject:
709       return 0;
710
711     // These don't need to be handled here because Evaluate knows how to
712     // evaluate them in the cases where they can be folded.
713     case CK_BitCast:
714     case CK_ToVoid:
715     case CK_Dynamic:
716     case CK_LValueBitCast:
717     case CK_NullToMemberPointer:
718     case CK_UserDefinedConversion:
719     case CK_ConstructorConversion:
720     case CK_CPointerToObjCPointerCast:
721     case CK_BlockPointerToObjCPointerCast:
722     case CK_AnyPointerToBlockPointerCast:
723     case CK_ArrayToPointerDecay:
724     case CK_FunctionToPointerDecay:
725     case CK_BaseToDerived:
726     case CK_DerivedToBase:
727     case CK_UncheckedDerivedToBase:
728     case CK_MemberPointerToBoolean:
729     case CK_VectorSplat:
730     case CK_FloatingRealToComplex:
731     case CK_FloatingComplexToReal:
732     case CK_FloatingComplexToBoolean:
733     case CK_FloatingComplexCast:
734     case CK_FloatingComplexToIntegralComplex:
735     case CK_IntegralRealToComplex:
736     case CK_IntegralComplexToReal:
737     case CK_IntegralComplexToBoolean:
738     case CK_IntegralComplexCast:
739     case CK_IntegralComplexToFloatingComplex:
740     case CK_PointerToIntegral:
741     case CK_PointerToBoolean:
742     case CK_NullToPointer:
743     case CK_IntegralCast:
744     case CK_IntegralToPointer:
745     case CK_IntegralToBoolean:
746     case CK_IntegralToFloating:
747     case CK_FloatingToIntegral:
748     case CK_FloatingToBoolean:
749     case CK_FloatingCast:
750       return 0;
751     }
752     llvm_unreachable("Invalid CastKind");
753   }
754
755   llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
756     return Visit(DAE->getExpr());
757   }
758
759   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
760     return Visit(E->GetTemporaryExpr());
761   }
762
763   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
764     if (ILE->isStringLiteralInit())
765       return Visit(ILE->getInit(0));
766
767     llvm::ArrayType *AType =
768         cast<llvm::ArrayType>(ConvertType(ILE->getType()));
769     llvm::Type *ElemTy = AType->getElementType();
770     unsigned NumInitElements = ILE->getNumInits();
771     unsigned NumElements = AType->getNumElements();
772
773     // Initialising an array requires us to automatically
774     // initialise any elements that have not been initialised explicitly
775     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
776
777     // Copy initializer elements.
778     std::vector<llvm::Constant*> Elts;
779     Elts.reserve(NumInitableElts + NumElements);
780
781     bool RewriteType = false;
782     for (unsigned i = 0; i < NumInitableElts; ++i) {
783       Expr *Init = ILE->getInit(i);
784       llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
785       if (!C)
786         return 0;
787       RewriteType |= (C->getType() != ElemTy);
788       Elts.push_back(C);
789     }
790
791     // Initialize remaining array elements.
792     // FIXME: This doesn't handle member pointers correctly!
793     llvm::Constant *fillC;
794     if (Expr *filler = ILE->getArrayFiller())
795       fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
796     else
797       fillC = llvm::Constant::getNullValue(ElemTy);
798     if (!fillC)
799       return 0;
800     RewriteType |= (fillC->getType() != ElemTy);
801     Elts.resize(NumElements, fillC);
802
803     if (RewriteType) {
804       // FIXME: Try to avoid packing the array
805       std::vector<llvm::Type*> Types;
806       Types.reserve(NumInitableElts + NumElements);
807       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
808         Types.push_back(Elts[i]->getType());
809       llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
810                                                             Types, true);
811       return llvm::ConstantStruct::get(SType, Elts);
812     }
813
814     return llvm::ConstantArray::get(AType, Elts);
815   }
816
817   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) {
818     return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
819   }
820
821   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
822     return CGM.EmitNullConstant(E->getType());
823   }
824
825   llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
826     if (ILE->getType()->isArrayType())
827       return EmitArrayInitialization(ILE);
828
829     if (ILE->getType()->isRecordType())
830       return EmitRecordInitialization(ILE);
831
832     return 0;
833   }
834
835   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
836     if (!E->getConstructor()->isTrivial())
837       return 0;
838
839     QualType Ty = E->getType();
840
841     // FIXME: We should not have to call getBaseElementType here.
842     const RecordType *RT = 
843       CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
844     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
845     
846     // If the class doesn't have a trivial destructor, we can't emit it as a
847     // constant expr.
848     if (!RD->hasTrivialDestructor())
849       return 0;
850     
851     // Only copy and default constructors can be trivial.
852
853
854     if (E->getNumArgs()) {
855       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
856       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
857              "trivial ctor has argument but isn't a copy/move ctor");
858
859       Expr *Arg = E->getArg(0);
860       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
861              "argument to copy ctor is of wrong type");
862
863       return Visit(Arg);
864     }
865
866     return CGM.EmitNullConstant(Ty);
867   }
868
869   llvm::Constant *VisitStringLiteral(StringLiteral *E) {
870     return CGM.GetConstantArrayFromStringLiteral(E);
871   }
872
873   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
874     // This must be an @encode initializing an array in a static initializer.
875     // Don't emit it as the address of the string, emit the string data itself
876     // as an inline array.
877     std::string Str;
878     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
879     const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
880
881     // Resize the string to the right size, adding zeros at the end, or
882     // truncating as needed.
883     Str.resize(CAT->getSize().getZExtValue(), '\0');
884     return llvm::ConstantDataArray::getString(VMContext, Str, false);
885   }
886
887   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
888     return Visit(E->getSubExpr());
889   }
890
891   // Utility methods
892   llvm::Type *ConvertType(QualType T) {
893     return CGM.getTypes().ConvertType(T);
894   }
895
896 public:
897   llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
898     if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
899       if (Decl->hasAttr<WeakRefAttr>())
900         return CGM.GetWeakRefReference(Decl);
901       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
902         return CGM.GetAddrOfFunction(FD);
903       if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
904         // We can never refer to a variable with local storage.
905         if (!VD->hasLocalStorage()) {
906           if (VD->isFileVarDecl() || VD->hasExternalStorage())
907             return CGM.GetAddrOfGlobalVar(VD);
908           else if (VD->isLocalVarDecl()) {
909             assert(CGF && "Can't access static local vars without CGF");
910             return CGF->GetAddrOfStaticLocalVar(VD);
911           }
912         }
913       }
914       return 0;
915     }
916
917     Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
918     switch (E->getStmtClass()) {
919     default: break;
920     case Expr::CompoundLiteralExprClass: {
921       // Note that due to the nature of compound literals, this is guaranteed
922       // to be the only use of the variable, so we just generate it here.
923       CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
924       llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
925                                                CLE->getType(), CGF);
926       // FIXME: "Leaked" on failure.
927       if (C)
928         C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
929                                      E->getType().isConstant(CGM.getContext()),
930                                      llvm::GlobalValue::InternalLinkage,
931                                      C, ".compoundliteral", 0,
932                                      llvm::GlobalVariable::NotThreadLocal,
933                           CGM.getContext().getTargetAddressSpace(E->getType()));
934       return C;
935     }
936     case Expr::StringLiteralClass:
937       return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
938     case Expr::ObjCEncodeExprClass:
939       return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
940     case Expr::ObjCStringLiteralClass: {
941       ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
942       llvm::Constant *C =
943           CGM.getObjCRuntime().GenerateConstantString(SL->getString());
944       return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
945     }
946     case Expr::PredefinedExprClass: {
947       unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
948       if (CGF) {
949         LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
950         return cast<llvm::Constant>(Res.getAddress());
951       } else if (Type == PredefinedExpr::PrettyFunction) {
952         return CGM.GetAddrOfConstantCString("top level", ".tmp");
953       }
954
955       return CGM.GetAddrOfConstantCString("", ".tmp");
956     }
957     case Expr::AddrLabelExprClass: {
958       assert(CGF && "Invalid address of label expression outside function.");
959       llvm::Constant *Ptr =
960         CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
961       return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
962     }
963     case Expr::CallExprClass: {
964       CallExpr* CE = cast<CallExpr>(E);
965       unsigned builtin = CE->isBuiltinCall();
966       if (builtin !=
967             Builtin::BI__builtin___CFStringMakeConstantString &&
968           builtin !=
969             Builtin::BI__builtin___NSStringMakeConstantString)
970         break;
971       const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
972       const StringLiteral *Literal = cast<StringLiteral>(Arg);
973       if (builtin ==
974             Builtin::BI__builtin___NSStringMakeConstantString) {
975         return CGM.getObjCRuntime().GenerateConstantString(Literal);
976       }
977       // FIXME: need to deal with UCN conversion issues.
978       return CGM.GetAddrOfConstantCFString(Literal);
979     }
980     case Expr::BlockExprClass: {
981       std::string FunctionName;
982       if (CGF)
983         FunctionName = CGF->CurFn->getName();
984       else
985         FunctionName = "global";
986
987       return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
988     }
989     case Expr::CXXTypeidExprClass: {
990       CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
991       QualType T;
992       if (Typeid->isTypeOperand())
993         T = Typeid->getTypeOperand();
994       else
995         T = Typeid->getExprOperand()->getType();
996       return CGM.GetAddrOfRTTIDescriptor(T);
997     }
998     case Expr::CXXUuidofExprClass: {
999       return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E));
1000     }
1001     }
1002
1003     return 0;
1004   }
1005 };
1006
1007 }  // end anonymous namespace.
1008
1009 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
1010                                                 CodeGenFunction *CGF) {
1011   if (const APValue *Value = D.evaluateValue())
1012     return EmitConstantValueForMemory(*Value, D.getType(), CGF);
1013
1014   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1015   // reference is a constant expression, and the reference binds to a temporary,
1016   // then constant initialization is performed. ConstExprEmitter will
1017   // incorrectly emit a prvalue constant in this case, and the calling code
1018   // interprets that as the (pointer) value of the reference, rather than the
1019   // desired value of the referee.
1020   if (D.getType()->isReferenceType())
1021     return 0;
1022
1023   const Expr *E = D.getInit();
1024   assert(E && "No initializer to emit");
1025
1026   llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1027   if (C && C->getType()->isIntegerTy(1)) {
1028     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1029     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1030   }
1031   return C;
1032 }
1033
1034 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
1035                                                 QualType DestType,
1036                                                 CodeGenFunction *CGF) {
1037   Expr::EvalResult Result;
1038
1039   bool Success = false;
1040
1041   if (DestType->isReferenceType())
1042     Success = E->EvaluateAsLValue(Result, Context);
1043   else
1044     Success = E->EvaluateAsRValue(Result, Context);
1045
1046   llvm::Constant *C = 0;
1047   if (Success && !Result.HasSideEffects)
1048     C = EmitConstantValue(Result.Val, DestType, CGF);
1049   else
1050     C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1051
1052   if (C && C->getType()->isIntegerTy(1)) {
1053     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1054     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1055   }
1056   return C;
1057 }
1058
1059 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
1060                                                  QualType DestType,
1061                                                  CodeGenFunction *CGF) {
1062   switch (Value.getKind()) {
1063   case APValue::Uninitialized:
1064     llvm_unreachable("Constant expressions should be initialized.");
1065   case APValue::LValue: {
1066     llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
1067     llvm::Constant *Offset =
1068       llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
1069
1070     llvm::Constant *C;
1071     if (APValue::LValueBase LVBase = Value.getLValueBase()) {
1072       // An array can be represented as an lvalue referring to the base.
1073       if (isa<llvm::ArrayType>(DestTy)) {
1074         assert(Offset->isNullValue() && "offset on array initializer");
1075         return ConstExprEmitter(*this, CGF).Visit(
1076           const_cast<Expr*>(LVBase.get<const Expr*>()));
1077       }
1078
1079       C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
1080
1081       // Apply offset if necessary.
1082       if (!Offset->isNullValue()) {
1083         llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy);
1084         Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
1085         C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
1086       }
1087
1088       // Convert to the appropriate type; this could be an lvalue for
1089       // an integer.
1090       if (isa<llvm::PointerType>(DestTy))
1091         return llvm::ConstantExpr::getBitCast(C, DestTy);
1092
1093       return llvm::ConstantExpr::getPtrToInt(C, DestTy);
1094     } else {
1095       C = Offset;
1096
1097       // Convert to the appropriate type; this could be an lvalue for
1098       // an integer.
1099       if (isa<llvm::PointerType>(DestTy))
1100         return llvm::ConstantExpr::getIntToPtr(C, DestTy);
1101
1102       // If the types don't match this should only be a truncate.
1103       if (C->getType() != DestTy)
1104         return llvm::ConstantExpr::getTrunc(C, DestTy);
1105
1106       return C;
1107     }
1108   }
1109   case APValue::Int:
1110     return llvm::ConstantInt::get(VMContext, Value.getInt());
1111   case APValue::ComplexInt: {
1112     llvm::Constant *Complex[2];
1113
1114     Complex[0] = llvm::ConstantInt::get(VMContext,
1115                                         Value.getComplexIntReal());
1116     Complex[1] = llvm::ConstantInt::get(VMContext,
1117                                         Value.getComplexIntImag());
1118
1119     // FIXME: the target may want to specify that this is packed.
1120     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1121                                                   Complex[1]->getType(),
1122                                                   NULL);
1123     return llvm::ConstantStruct::get(STy, Complex);
1124   }
1125   case APValue::Float: {
1126     const llvm::APFloat &Init = Value.getFloat();
1127     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf)
1128       return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
1129     else
1130       return llvm::ConstantFP::get(VMContext, Init);
1131   }
1132   case APValue::ComplexFloat: {
1133     llvm::Constant *Complex[2];
1134
1135     Complex[0] = llvm::ConstantFP::get(VMContext,
1136                                        Value.getComplexFloatReal());
1137     Complex[1] = llvm::ConstantFP::get(VMContext,
1138                                        Value.getComplexFloatImag());
1139
1140     // FIXME: the target may want to specify that this is packed.
1141     llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1142                                                   Complex[1]->getType(),
1143                                                   NULL);
1144     return llvm::ConstantStruct::get(STy, Complex);
1145   }
1146   case APValue::Vector: {
1147     SmallVector<llvm::Constant *, 4> Inits;
1148     unsigned NumElts = Value.getVectorLength();
1149
1150     for (unsigned i = 0; i != NumElts; ++i) {
1151       const APValue &Elt = Value.getVectorElt(i);
1152       if (Elt.isInt())
1153         Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1154       else
1155         Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1156     }
1157     return llvm::ConstantVector::get(Inits);
1158   }
1159   case APValue::AddrLabelDiff: {
1160     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1161     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1162     llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
1163     llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
1164
1165     // Compute difference
1166     llvm::Type *ResultType = getTypes().ConvertType(DestType);
1167     LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
1168     RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
1169     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1170
1171     // LLVM is a bit sensitive about the exact format of the
1172     // address-of-label difference; make sure to truncate after
1173     // the subtraction.
1174     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1175   }
1176   case APValue::Struct:
1177   case APValue::Union:
1178     return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
1179   case APValue::Array: {
1180     const ArrayType *CAT = Context.getAsArrayType(DestType);
1181     unsigned NumElements = Value.getArraySize();
1182     unsigned NumInitElts = Value.getArrayInitializedElts();
1183
1184     std::vector<llvm::Constant*> Elts;
1185     Elts.reserve(NumElements);
1186
1187     // Emit array filler, if there is one.
1188     llvm::Constant *Filler = 0;
1189     if (Value.hasArrayFiller())
1190       Filler = EmitConstantValueForMemory(Value.getArrayFiller(),
1191                                           CAT->getElementType(), CGF);
1192
1193     // Emit initializer elements.
1194     llvm::Type *CommonElementType = 0;
1195     for (unsigned I = 0; I < NumElements; ++I) {
1196       llvm::Constant *C = Filler;
1197       if (I < NumInitElts)
1198         C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I),
1199                                        CAT->getElementType(), CGF);
1200       if (I == 0)
1201         CommonElementType = C->getType();
1202       else if (C->getType() != CommonElementType)
1203         CommonElementType = 0;
1204       Elts.push_back(C);
1205     }
1206
1207     if (!CommonElementType) {
1208       // FIXME: Try to avoid packing the array
1209       std::vector<llvm::Type*> Types;
1210       Types.reserve(NumElements);
1211       for (unsigned i = 0, e = Elts.size(); i < e; ++i)
1212         Types.push_back(Elts[i]->getType());
1213       llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
1214       return llvm::ConstantStruct::get(SType, Elts);
1215     }
1216
1217     llvm::ArrayType *AType =
1218       llvm::ArrayType::get(CommonElementType, NumElements);
1219     return llvm::ConstantArray::get(AType, Elts);
1220   }
1221   case APValue::MemberPointer:
1222     return getCXXABI().EmitMemberPointer(Value, DestType);
1223   }
1224   llvm_unreachable("Unknown APValue kind");
1225 }
1226
1227 llvm::Constant *
1228 CodeGenModule::EmitConstantValueForMemory(const APValue &Value,
1229                                           QualType DestType,
1230                                           CodeGenFunction *CGF) {
1231   llvm::Constant *C = EmitConstantValue(Value, DestType, CGF);
1232   if (C->getType()->isIntegerTy(1)) {
1233     llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
1234     C = llvm::ConstantExpr::getZExt(C, BoolTy);
1235   }
1236   return C;
1237 }
1238
1239 llvm::Constant *
1240 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1241   assert(E->isFileScope() && "not a file-scope compound literal expr");
1242   return ConstExprEmitter(*this, 0).EmitLValue(E);
1243 }
1244
1245 llvm::Constant *
1246 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1247   // Member pointer constants always have a very particular form.
1248   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1249   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1250
1251   // A member function pointer.
1252   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1253     return getCXXABI().EmitMemberPointer(method);
1254
1255   // Otherwise, a member data pointer.
1256   uint64_t fieldOffset = getContext().getFieldOffset(decl);
1257   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1258   return getCXXABI().EmitMemberDataPointer(type, chars);
1259 }
1260
1261 static void
1262 FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1263                              SmallVectorImpl<llvm::Constant *> &Elements,
1264                              uint64_t StartOffset) {
1265   assert(StartOffset % CGM.getContext().getCharWidth() == 0 && 
1266          "StartOffset not byte aligned!");
1267
1268   if (CGM.getTypes().isZeroInitializable(T))
1269     return;
1270
1271   if (const ConstantArrayType *CAT = 
1272         CGM.getContext().getAsConstantArrayType(T)) {
1273     QualType ElementTy = CAT->getElementType();
1274     uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1275     
1276     for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1277       FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1278                                    StartOffset + I * ElementSize);
1279     }
1280   } else if (const RecordType *RT = T->getAs<RecordType>()) {
1281     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1282     const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1283
1284     // Go through all bases and fill in any null pointer to data members.
1285     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1286          E = RD->bases_end(); I != E; ++I) {
1287       if (I->isVirtual()) {
1288         // Ignore virtual bases.
1289         continue;
1290       }
1291       
1292       const CXXRecordDecl *BaseDecl = 
1293       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1294       
1295       // Ignore empty bases.
1296       if (BaseDecl->isEmpty())
1297         continue;
1298       
1299       // Ignore bases that don't have any pointer to data members.
1300       if (CGM.getTypes().isZeroInitializable(BaseDecl))
1301         continue;
1302
1303       uint64_t BaseOffset =
1304         CGM.getContext().toBits(Layout.getBaseClassOffset(BaseDecl));
1305       FillInNullDataMemberPointers(CGM, I->getType(),
1306                                    Elements, StartOffset + BaseOffset);
1307     }
1308     
1309     // Visit all fields.
1310     unsigned FieldNo = 0;
1311     for (RecordDecl::field_iterator I = RD->field_begin(),
1312          E = RD->field_end(); I != E; ++I, ++FieldNo) {
1313       QualType FieldType = I->getType();
1314       
1315       if (CGM.getTypes().isZeroInitializable(FieldType))
1316         continue;
1317
1318       uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1319       FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1320     }
1321   } else {
1322     assert(T->isMemberPointerType() && "Should only see member pointers here!");
1323     assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1324            "Should only see pointers to data members here!");
1325   
1326     CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1327     CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1328
1329     // FIXME: hardcodes Itanium member pointer representation!
1330     llvm::Constant *NegativeOne =
1331       llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true);
1332
1333     // Fill in the null data member pointer.
1334     for (CharUnits I = StartIndex; I != EndIndex; ++I)
1335       Elements[I.getQuantity()] = NegativeOne;
1336   }
1337 }
1338
1339 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1340                                                llvm::Type *baseType,
1341                                                const CXXRecordDecl *base);
1342
1343 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1344                                         const CXXRecordDecl *record,
1345                                         bool asCompleteObject) {
1346   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1347   llvm::StructType *structure =
1348     (asCompleteObject ? layout.getLLVMType()
1349                       : layout.getBaseSubobjectLLVMType());
1350
1351   unsigned numElements = structure->getNumElements();
1352   std::vector<llvm::Constant *> elements(numElements);
1353
1354   // Fill in all the bases.
1355   for (CXXRecordDecl::base_class_const_iterator
1356          I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1357     if (I->isVirtual()) {
1358       // Ignore virtual bases; if we're laying out for a complete
1359       // object, we'll lay these out later.
1360       continue;
1361     }
1362
1363     const CXXRecordDecl *base = 
1364       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1365
1366     // Ignore empty bases.
1367     if (base->isEmpty())
1368       continue;
1369     
1370     unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1371     llvm::Type *baseType = structure->getElementType(fieldIndex);
1372     elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1373   }
1374
1375   // Fill in all the fields.
1376   for (RecordDecl::field_iterator I = record->field_begin(),
1377          E = record->field_end(); I != E; ++I) {
1378     const FieldDecl *field = *I;
1379
1380     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1381     // will fill in later.)
1382     if (!field->isBitField()) {
1383       unsigned fieldIndex = layout.getLLVMFieldNo(field);
1384       elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1385     }
1386
1387     // For unions, stop after the first named field.
1388     if (record->isUnion() && field->getDeclName())
1389       break;
1390   }
1391
1392   // Fill in the virtual bases, if we're working with the complete object.
1393   if (asCompleteObject) {
1394     for (CXXRecordDecl::base_class_const_iterator
1395            I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1396       const CXXRecordDecl *base = 
1397         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1398
1399       // Ignore empty bases.
1400       if (base->isEmpty())
1401         continue;
1402
1403       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1404
1405       // We might have already laid this field out.
1406       if (elements[fieldIndex]) continue;
1407
1408       llvm::Type *baseType = structure->getElementType(fieldIndex);
1409       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1410     }
1411   }
1412
1413   // Now go through all other fields and zero them out.
1414   for (unsigned i = 0; i != numElements; ++i) {
1415     if (!elements[i])
1416       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1417   }
1418   
1419   return llvm::ConstantStruct::get(structure, elements);
1420 }
1421
1422 /// Emit the null constant for a base subobject.
1423 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1424                                                llvm::Type *baseType,
1425                                                const CXXRecordDecl *base) {
1426   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1427
1428   // Just zero out bases that don't have any pointer to data members.
1429   if (baseLayout.isZeroInitializableAsBase())
1430     return llvm::Constant::getNullValue(baseType);
1431
1432   // If the base type is a struct, we can just use its null constant.
1433   if (isa<llvm::StructType>(baseType)) {
1434     return EmitNullConstant(CGM, base, /*complete*/ false);
1435   }
1436
1437   // Otherwise, some bases are represented as arrays of i8 if the size
1438   // of the base is smaller than its corresponding LLVM type.  Figure
1439   // out how many elements this base array has.
1440   llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1441   unsigned numBaseElements = baseArrayType->getNumElements();
1442
1443   // Fill in null data member pointers.
1444   SmallVector<llvm::Constant *, 16> baseElements(numBaseElements);
1445   FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1446                                baseElements, 0);
1447
1448   // Now go through all other elements and zero them out.
1449   if (numBaseElements) {
1450     llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty);
1451     for (unsigned i = 0; i != numBaseElements; ++i) {
1452       if (!baseElements[i])
1453         baseElements[i] = i8_zero;
1454     }
1455   }
1456       
1457   return llvm::ConstantArray::get(baseArrayType, baseElements);
1458 }
1459
1460 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1461   if (getTypes().isZeroInitializable(T))
1462     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1463     
1464   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1465     llvm::ArrayType *ATy =
1466       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1467
1468     QualType ElementTy = CAT->getElementType();
1469
1470     llvm::Constant *Element = EmitNullConstant(ElementTy);
1471     unsigned NumElements = CAT->getSize().getZExtValue();
1472     
1473     if (Element->isNullValue())
1474       return llvm::ConstantAggregateZero::get(ATy);
1475     
1476     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
1477     return llvm::ConstantArray::get(ATy, Array);
1478   }
1479
1480   if (const RecordType *RT = T->getAs<RecordType>()) {
1481     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1482     return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1483   }
1484
1485   assert(T->isMemberPointerType() && "Should only see member pointers here!");
1486   assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1487          "Should only see pointers to data members here!");
1488   
1489   // Itanium C++ ABI 2.3:
1490   //   A NULL pointer is represented as -1.
1491   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1492 }
1493
1494 llvm::Constant *
1495 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1496   return ::EmitNullConstant(*this, Record, false);
1497 }