]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGValue.h
MFC r244628:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / CodeGen / CGValue.h
1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes implement wrappers around llvm::Value in order to
11 // fully represent the range of values for C L- and R- values.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef CLANG_CODEGEN_CGVALUE_H
16 #define CLANG_CODEGEN_CGVALUE_H
17
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Type.h"
21
22 namespace llvm {
23   class Constant;
24   class Value;
25 }
26
27 namespace clang {
28 namespace CodeGen {
29   class AggValueSlot;
30   class CGBitFieldInfo;
31
32 /// RValue - This trivial value class is used to represent the result of an
33 /// expression that is evaluated.  It can be one of three things: either a
34 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
35 /// address of an aggregate value in memory.
36 class RValue {
37   enum Flavor { Scalar, Complex, Aggregate };
38
39   // Stores first value and flavor.
40   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
41   // Stores second value and volatility.
42   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
43
44 public:
45   bool isScalar() const { return V1.getInt() == Scalar; }
46   bool isComplex() const { return V1.getInt() == Complex; }
47   bool isAggregate() const { return V1.getInt() == Aggregate; }
48
49   bool isVolatileQualified() const { return V2.getInt(); }
50
51   /// getScalarVal() - Return the Value* of this scalar value.
52   llvm::Value *getScalarVal() const {
53     assert(isScalar() && "Not a scalar!");
54     return V1.getPointer();
55   }
56
57   /// getComplexVal - Return the real/imag components of this complex value.
58   ///
59   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
60     return std::make_pair(V1.getPointer(), V2.getPointer());
61   }
62
63   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
64   llvm::Value *getAggregateAddr() const {
65     assert(isAggregate() && "Not an aggregate!");
66     return V1.getPointer();
67   }
68
69   static RValue get(llvm::Value *V) {
70     RValue ER;
71     ER.V1.setPointer(V);
72     ER.V1.setInt(Scalar);
73     ER.V2.setInt(false);
74     return ER;
75   }
76   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
77     RValue ER;
78     ER.V1.setPointer(V1);
79     ER.V2.setPointer(V2);
80     ER.V1.setInt(Complex);
81     ER.V2.setInt(false);
82     return ER;
83   }
84   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
85     return getComplex(C.first, C.second);
86   }
87   // FIXME: Aggregate rvalues need to retain information about whether they are
88   // volatile or not.  Remove default to find all places that probably get this
89   // wrong.
90   static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
91     RValue ER;
92     ER.V1.setPointer(V);
93     ER.V1.setInt(Aggregate);
94     ER.V2.setInt(Volatile);
95     return ER;
96   }
97 };
98
99
100 /// LValue - This represents an lvalue references.  Because C/C++ allow
101 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
102 /// bitrange.
103 class LValue {
104   enum {
105     Simple,       // This is a normal l-value, use getAddress().
106     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
107     BitField,     // This is a bitfield l-value, use getBitfield*.
108     ExtVectorElt  // This is an extended vector subset, use getExtVectorComp
109   } LVType;
110
111   llvm::Value *V;
112
113   union {
114     // Index into a vector subscript: V[i]
115     llvm::Value *VectorIdx;
116
117     // ExtVector element subset: V.xyx
118     llvm::Constant *VectorElts;
119
120     // BitField start bit and size
121     const CGBitFieldInfo *BitFieldInfo;
122   };
123
124   QualType Type;
125
126   // 'const' is unused here
127   Qualifiers Quals;
128
129   // The alignment to use when accessing this lvalue.  (For vector elements,
130   // this is the alignment of the whole vector.)
131   int64_t Alignment;
132
133   // objective-c's ivar
134   bool Ivar:1;
135   
136   // objective-c's ivar is an array
137   bool ObjIsArray:1;
138
139   // LValue is non-gc'able for any reason, including being a parameter or local
140   // variable.
141   bool NonGC: 1;
142
143   // Lvalue is a global reference of an objective-c object
144   bool GlobalObjCRef : 1;
145   
146   // Lvalue is a thread local reference
147   bool ThreadLocalRef : 1;
148
149   Expr *BaseIvarExp;
150
151   /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
152   llvm::MDNode *TBAAInfo;
153
154 private:
155   void Initialize(QualType Type, Qualifiers Quals,
156                   CharUnits Alignment,
157                   llvm::MDNode *TBAAInfo = 0) {
158     this->Type = Type;
159     this->Quals = Quals;
160     this->Alignment = Alignment.getQuantity();
161     assert(this->Alignment == Alignment.getQuantity() &&
162            "Alignment exceeds allowed max!");
163
164     // Initialize Objective-C flags.
165     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
166     this->ThreadLocalRef = false;
167     this->BaseIvarExp = 0;
168     this->TBAAInfo = TBAAInfo;
169   }
170
171 public:
172   bool isSimple() const { return LVType == Simple; }
173   bool isVectorElt() const { return LVType == VectorElt; }
174   bool isBitField() const { return LVType == BitField; }
175   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
176
177   bool isVolatileQualified() const { return Quals.hasVolatile(); }
178   bool isRestrictQualified() const { return Quals.hasRestrict(); }
179   unsigned getVRQualifiers() const {
180     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
181   }
182
183   QualType getType() const { return Type; }
184
185   Qualifiers::ObjCLifetime getObjCLifetime() const {
186     return Quals.getObjCLifetime();
187   }
188
189   bool isObjCIvar() const { return Ivar; }
190   void setObjCIvar(bool Value) { Ivar = Value; }
191
192   bool isObjCArray() const { return ObjIsArray; }
193   void setObjCArray(bool Value) { ObjIsArray = Value; }
194
195   bool isNonGC () const { return NonGC; }
196   void setNonGC(bool Value) { NonGC = Value; }
197
198   bool isGlobalObjCRef() const { return GlobalObjCRef; }
199   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
200
201   bool isThreadLocalRef() const { return ThreadLocalRef; }
202   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
203
204   bool isObjCWeak() const {
205     return Quals.getObjCGCAttr() == Qualifiers::Weak;
206   }
207   bool isObjCStrong() const {
208     return Quals.getObjCGCAttr() == Qualifiers::Strong;
209   }
210
211   bool isVolatile() const {
212     return Quals.hasVolatile();
213   }
214   
215   Expr *getBaseIvarExp() const { return BaseIvarExp; }
216   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
217
218   llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
219   void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
220
221   const Qualifiers &getQuals() const { return Quals; }
222   Qualifiers &getQuals() { return Quals; }
223
224   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
225
226   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
227   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
228
229   // simple lvalue
230   llvm::Value *getAddress() const { assert(isSimple()); return V; }
231   void setAddress(llvm::Value *address) {
232     assert(isSimple());
233     V = address;
234   }
235
236   // vector elt lvalue
237   llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
238   llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
239
240   // extended vector elements.
241   llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
242   llvm::Constant *getExtVectorElts() const {
243     assert(isExtVectorElt());
244     return VectorElts;
245   }
246
247   // bitfield lvalue
248   llvm::Value *getBitFieldBaseAddr() const {
249     assert(isBitField());
250     return V;
251   }
252   const CGBitFieldInfo &getBitFieldInfo() const {
253     assert(isBitField());
254     return *BitFieldInfo;
255   }
256
257   static LValue MakeAddr(llvm::Value *address, QualType type,
258                          CharUnits alignment, ASTContext &Context,
259                          llvm::MDNode *TBAAInfo = 0) {
260     Qualifiers qs = type.getQualifiers();
261     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
262
263     LValue R;
264     R.LVType = Simple;
265     R.V = address;
266     R.Initialize(type, qs, alignment, TBAAInfo);
267     return R;
268   }
269
270   static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
271                               QualType type, CharUnits Alignment) {
272     LValue R;
273     R.LVType = VectorElt;
274     R.V = Vec;
275     R.VectorIdx = Idx;
276     R.Initialize(type, type.getQualifiers(), Alignment);
277     return R;
278   }
279
280   static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
281                                  QualType type, CharUnits Alignment) {
282     LValue R;
283     R.LVType = ExtVectorElt;
284     R.V = Vec;
285     R.VectorElts = Elts;
286     R.Initialize(type, type.getQualifiers(), Alignment);
287     return R;
288   }
289
290   /// \brief Create a new object to represent a bit-field access.
291   ///
292   /// \param BaseValue - The base address of the structure containing the
293   /// bit-field.
294   /// \param Info - The information describing how to perform the bit-field
295   /// access.
296   static LValue MakeBitfield(llvm::Value *BaseValue,
297                              const CGBitFieldInfo &Info,
298                              QualType type, CharUnits Alignment) {
299     LValue R;
300     R.LVType = BitField;
301     R.V = BaseValue;
302     R.BitFieldInfo = &Info;
303     R.Initialize(type, type.getQualifiers(), Alignment);
304     return R;
305   }
306
307   RValue asAggregateRValue() const {
308     // FIMXE: Alignment
309     return RValue::getAggregate(getAddress(), isVolatileQualified());
310   }
311 };
312
313 /// An aggregate value slot.
314 class AggValueSlot {
315   /// The address.
316   llvm::Value *Addr;
317
318   // Qualifiers
319   Qualifiers Quals;
320
321   unsigned short Alignment;
322
323   /// DestructedFlag - This is set to true if some external code is
324   /// responsible for setting up a destructor for the slot.  Otherwise
325   /// the code which constructs it should push the appropriate cleanup.
326   bool DestructedFlag : 1;
327
328   /// ObjCGCFlag - This is set to true if writing to the memory in the
329   /// slot might require calling an appropriate Objective-C GC
330   /// barrier.  The exact interaction here is unnecessarily mysterious.
331   bool ObjCGCFlag : 1;
332   
333   /// ZeroedFlag - This is set to true if the memory in the slot is
334   /// known to be zero before the assignment into it.  This means that
335   /// zero fields don't need to be set.
336   bool ZeroedFlag : 1;
337
338   /// AliasedFlag - This is set to true if the slot might be aliased
339   /// and it's not undefined behavior to access it through such an
340   /// alias.  Note that it's always undefined behavior to access a C++
341   /// object that's under construction through an alias derived from
342   /// outside the construction process.
343   ///
344   /// This flag controls whether calls that produce the aggregate
345   /// value may be evaluated directly into the slot, or whether they
346   /// must be evaluated into an unaliased temporary and then memcpy'ed
347   /// over.  Since it's invalid in general to memcpy a non-POD C++
348   /// object, it's important that this flag never be set when
349   /// evaluating an expression which constructs such an object.
350   bool AliasedFlag : 1;
351
352 public:
353   enum IsAliased_t { IsNotAliased, IsAliased };
354   enum IsDestructed_t { IsNotDestructed, IsDestructed };
355   enum IsZeroed_t { IsNotZeroed, IsZeroed };
356   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
357
358   /// ignored - Returns an aggregate value slot indicating that the
359   /// aggregate value is being ignored.
360   static AggValueSlot ignored() {
361     return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed,
362                    DoesNotNeedGCBarriers, IsNotAliased);
363   }
364
365   /// forAddr - Make a slot for an aggregate value.
366   ///
367   /// \param quals - The qualifiers that dictate how the slot should
368   /// be initialied. Only 'volatile' and the Objective-C lifetime
369   /// qualifiers matter.
370   ///
371   /// \param isDestructed - true if something else is responsible
372   ///   for calling destructors on this object
373   /// \param needsGC - true if the slot is potentially located
374   ///   somewhere that ObjC GC calls should be emitted for
375   static AggValueSlot forAddr(llvm::Value *addr, CharUnits align,
376                               Qualifiers quals,
377                               IsDestructed_t isDestructed,
378                               NeedsGCBarriers_t needsGC,
379                               IsAliased_t isAliased,
380                               IsZeroed_t isZeroed = IsNotZeroed) {
381     AggValueSlot AV;
382     AV.Addr = addr;
383     AV.Alignment = align.getQuantity();
384     AV.Quals = quals;
385     AV.DestructedFlag = isDestructed;
386     AV.ObjCGCFlag = needsGC;
387     AV.ZeroedFlag = isZeroed;
388     AV.AliasedFlag = isAliased;
389     return AV;
390   }
391
392   static AggValueSlot forLValue(const LValue &LV,
393                                 IsDestructed_t isDestructed,
394                                 NeedsGCBarriers_t needsGC,
395                                 IsAliased_t isAliased,
396                                 IsZeroed_t isZeroed = IsNotZeroed) {
397     return forAddr(LV.getAddress(), LV.getAlignment(),
398                    LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed);
399   }
400
401   IsDestructed_t isExternallyDestructed() const {
402     return IsDestructed_t(DestructedFlag);
403   }
404   void setExternallyDestructed(bool destructed = true) {
405     DestructedFlag = destructed;
406   }
407
408   Qualifiers getQualifiers() const { return Quals; }
409
410   bool isVolatile() const {
411     return Quals.hasVolatile();
412   }
413
414   Qualifiers::ObjCLifetime getObjCLifetime() const {
415     return Quals.getObjCLifetime();
416   }
417
418   NeedsGCBarriers_t requiresGCollection() const {
419     return NeedsGCBarriers_t(ObjCGCFlag);
420   }
421   
422   llvm::Value *getAddr() const {
423     return Addr;
424   }
425
426   bool isIgnored() const {
427     return Addr == 0;
428   }
429
430   CharUnits getAlignment() const {
431     return CharUnits::fromQuantity(Alignment);
432   }
433
434   IsAliased_t isPotentiallyAliased() const {
435     return IsAliased_t(AliasedFlag);
436   }
437
438   // FIXME: Alignment?
439   RValue asRValue() const {
440     return RValue::getAggregate(getAddr(), isVolatile());
441   }
442
443   void setZeroed(bool V = true) { ZeroedFlag = V; }
444   IsZeroed_t isZeroed() const {
445     return IsZeroed_t(ZeroedFlag);
446   }
447 };
448
449 }  // end namespace CodeGen
450 }  // end namespace clang
451
452 #endif