]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaInit.cpp
MFC r244628:
[FreeBSD/stable/9.git] / contrib / llvm / tools / clang / lib / Sema / SemaInit.cpp
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34
35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71
72     return 0;
73   }
74
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77
78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81
82   return IsStringInit(init, arrayType, Context);
83 }
84
85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                             Sema &S) {
87   // Get the length of the string as parsed.
88   uint64_t StrLength =
89     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90
91
92   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93     // C99 6.7.8p14. We have an array of character type with unknown size
94     // being initialized to a string literal.
95     llvm::APInt ConstVal(32, StrLength);
96     // Return a new array type (C99 6.7.8p22).
97     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98                                            ConstVal,
99                                            ArrayType::Normal, 0);
100     return;
101   }
102
103   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104
105   // We have an array of character type with known size.  However,
106   // the size may be smaller or larger than the string we are initializing.
107   // FIXME: Avoid truncation for 64-bit length strings.
108   if (S.getLangOpts().CPlusPlus) {
109     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
110       // For Pascal strings it's OK to strip off the terminating null character,
111       // so the example below is valid:
112       //
113       // unsigned char a[2] = "\pa";
114       if (SL->isPascal())
115         StrLength--;
116     }
117   
118     // [dcl.init.string]p2
119     if (StrLength > CAT->getSize().getZExtValue())
120       S.Diag(Str->getLocStart(),
121              diag::err_initializer_string_for_char_array_too_long)
122         << Str->getSourceRange();
123   } else {
124     // C99 6.7.8p14.
125     if (StrLength-1 > CAT->getSize().getZExtValue())
126       S.Diag(Str->getLocStart(),
127              diag::warn_initializer_string_for_char_array_too_long)
128         << Str->getSourceRange();
129   }
130
131   // Set the type to the actual size that we are initializing.  If we have
132   // something like:
133   //   char x[1] = "foo";
134   // then this will set the string literal's type to char[1].
135   Str->setType(DeclT);
136 }
137
138 //===----------------------------------------------------------------------===//
139 // Semantic checking for initializer lists.
140 //===----------------------------------------------------------------------===//
141
142 /// @brief Semantic checking for initializer lists.
143 ///
144 /// The InitListChecker class contains a set of routines that each
145 /// handle the initialization of a certain kind of entity, e.g.,
146 /// arrays, vectors, struct/union types, scalars, etc. The
147 /// InitListChecker itself performs a recursive walk of the subobject
148 /// structure of the type to be initialized, while stepping through
149 /// the initializer list one element at a time. The IList and Index
150 /// parameters to each of the Check* routines contain the active
151 /// (syntactic) initializer list and the index into that initializer
152 /// list that represents the current initializer. Each routine is
153 /// responsible for moving that Index forward as it consumes elements.
154 ///
155 /// Each Check* routine also has a StructuredList/StructuredIndex
156 /// arguments, which contains the current "structured" (semantic)
157 /// initializer list and the index into that initializer list where we
158 /// are copying initializers as we map them over to the semantic
159 /// list. Once we have completed our recursive walk of the subobject
160 /// structure, we will have constructed a full semantic initializer
161 /// list.
162 ///
163 /// C99 designators cause changes in the initializer list traversal,
164 /// because they make the initialization "jump" into a specific
165 /// subobject and then continue the initialization from that
166 /// point. CheckDesignatedInitializer() recursively steps into the
167 /// designated subobject and manages backing out the recursion to
168 /// initialize the subobjects after the one designated.
169 namespace {
170 class InitListChecker {
171   Sema &SemaRef;
172   bool hadError;
173   bool VerifyOnly; // no diagnostics, no structure building
174   bool AllowBraceElision;
175   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
176   InitListExpr *FullyStructuredList;
177
178   void CheckImplicitInitList(const InitializedEntity &Entity,
179                              InitListExpr *ParentIList, QualType T,
180                              unsigned &Index, InitListExpr *StructuredList,
181                              unsigned &StructuredIndex);
182   void CheckExplicitInitList(const InitializedEntity &Entity,
183                              InitListExpr *IList, QualType &T,
184                              unsigned &Index, InitListExpr *StructuredList,
185                              unsigned &StructuredIndex,
186                              bool TopLevelObject = false);
187   void CheckListElementTypes(const InitializedEntity &Entity,
188                              InitListExpr *IList, QualType &DeclType,
189                              bool SubobjectIsDesignatorContext,
190                              unsigned &Index,
191                              InitListExpr *StructuredList,
192                              unsigned &StructuredIndex,
193                              bool TopLevelObject = false);
194   void CheckSubElementType(const InitializedEntity &Entity,
195                            InitListExpr *IList, QualType ElemType,
196                            unsigned &Index,
197                            InitListExpr *StructuredList,
198                            unsigned &StructuredIndex);
199   void CheckComplexType(const InitializedEntity &Entity,
200                         InitListExpr *IList, QualType DeclType,
201                         unsigned &Index,
202                         InitListExpr *StructuredList,
203                         unsigned &StructuredIndex);
204   void CheckScalarType(const InitializedEntity &Entity,
205                        InitListExpr *IList, QualType DeclType,
206                        unsigned &Index,
207                        InitListExpr *StructuredList,
208                        unsigned &StructuredIndex);
209   void CheckReferenceType(const InitializedEntity &Entity,
210                           InitListExpr *IList, QualType DeclType,
211                           unsigned &Index,
212                           InitListExpr *StructuredList,
213                           unsigned &StructuredIndex);
214   void CheckVectorType(const InitializedEntity &Entity,
215                        InitListExpr *IList, QualType DeclType, unsigned &Index,
216                        InitListExpr *StructuredList,
217                        unsigned &StructuredIndex);
218   void CheckStructUnionTypes(const InitializedEntity &Entity,
219                              InitListExpr *IList, QualType DeclType,
220                              RecordDecl::field_iterator Field,
221                              bool SubobjectIsDesignatorContext, unsigned &Index,
222                              InitListExpr *StructuredList,
223                              unsigned &StructuredIndex,
224                              bool TopLevelObject = false);
225   void CheckArrayType(const InitializedEntity &Entity,
226                       InitListExpr *IList, QualType &DeclType,
227                       llvm::APSInt elementIndex,
228                       bool SubobjectIsDesignatorContext, unsigned &Index,
229                       InitListExpr *StructuredList,
230                       unsigned &StructuredIndex);
231   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
232                                   InitListExpr *IList, DesignatedInitExpr *DIE,
233                                   unsigned DesigIdx,
234                                   QualType &CurrentObjectType,
235                                   RecordDecl::field_iterator *NextField,
236                                   llvm::APSInt *NextElementIndex,
237                                   unsigned &Index,
238                                   InitListExpr *StructuredList,
239                                   unsigned &StructuredIndex,
240                                   bool FinishSubobjectInit,
241                                   bool TopLevelObject);
242   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
243                                            QualType CurrentObjectType,
244                                            InitListExpr *StructuredList,
245                                            unsigned StructuredIndex,
246                                            SourceRange InitRange);
247   void UpdateStructuredListElement(InitListExpr *StructuredList,
248                                    unsigned &StructuredIndex,
249                                    Expr *expr);
250   int numArrayElements(QualType DeclType);
251   int numStructUnionElements(QualType DeclType);
252
253   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
254                                const InitializedEntity &ParentEntity,
255                                InitListExpr *ILE, bool &RequiresSecondPass);
256   void FillInValueInitializations(const InitializedEntity &Entity,
257                                   InitListExpr *ILE, bool &RequiresSecondPass);
258   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
259                               Expr *InitExpr, FieldDecl *Field,
260                               bool TopLevelObject);
261   void CheckValueInitializable(const InitializedEntity &Entity);
262
263 public:
264   InitListChecker(Sema &S, const InitializedEntity &Entity,
265                   InitListExpr *IL, QualType &T, bool VerifyOnly,
266                   bool AllowBraceElision);
267   bool HadError() { return hadError; }
268
269   // @brief Retrieves the fully-structured initializer list used for
270   // semantic analysis and code generation.
271   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
272 };
273 } // end anonymous namespace
274
275 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
276   assert(VerifyOnly &&
277          "CheckValueInitializable is only inteded for verification mode.");
278
279   SourceLocation Loc;
280   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
281                                                             true);
282   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
283   if (InitSeq.Failed())
284     hadError = true;
285 }
286
287 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288                                         const InitializedEntity &ParentEntity,
289                                               InitListExpr *ILE,
290                                               bool &RequiresSecondPass) {
291   SourceLocation Loc = ILE->getLocStart();
292   unsigned NumInits = ILE->getNumInits();
293   InitializedEntity MemberEntity
294     = InitializedEntity::InitializeMember(Field, &ParentEntity);
295   if (Init >= NumInits || !ILE->getInit(Init)) {
296     // FIXME: We probably don't need to handle references
297     // specially here, since value-initialization of references is
298     // handled in InitializationSequence.
299     if (Field->getType()->isReferenceType()) {
300       // C++ [dcl.init.aggr]p9:
301       //   If an incomplete or empty initializer-list leaves a
302       //   member of reference type uninitialized, the program is
303       //   ill-formed.
304       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305         << Field->getType()
306         << ILE->getSyntacticForm()->getSourceRange();
307       SemaRef.Diag(Field->getLocation(),
308                    diag::note_uninit_reference_member);
309       hadError = true;
310       return;
311     }
312
313     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314                                                               true);
315     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316     if (!InitSeq) {
317       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318       hadError = true;
319       return;
320     }
321
322     ExprResult MemberInit
323       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
324     if (MemberInit.isInvalid()) {
325       hadError = true;
326       return;
327     }
328
329     if (hadError) {
330       // Do nothing
331     } else if (Init < NumInits) {
332       ILE->setInit(Init, MemberInit.takeAs<Expr>());
333     } else if (InitSeq.isConstructorInitialization()) {
334       // Value-initialization requires a constructor call, so
335       // extend the initializer list to include the constructor
336       // call and make a note that we'll need to take another pass
337       // through the initializer list.
338       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
339       RequiresSecondPass = true;
340     }
341   } else if (InitListExpr *InnerILE
342                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
343     FillInValueInitializations(MemberEntity, InnerILE,
344                                RequiresSecondPass);
345 }
346
347 /// Recursively replaces NULL values within the given initializer list
348 /// with expressions that perform value-initialization of the
349 /// appropriate type.
350 void
351 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
352                                             InitListExpr *ILE,
353                                             bool &RequiresSecondPass) {
354   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
355          "Should not have void type");
356   SourceLocation Loc = ILE->getLocStart();
357   if (ILE->getSyntacticForm())
358     Loc = ILE->getSyntacticForm()->getLocStart();
359
360   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
361     if (RType->getDecl()->isUnion() &&
362         ILE->getInitializedFieldInUnion())
363       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
364                               Entity, ILE, RequiresSecondPass);
365     else {
366       unsigned Init = 0;
367       for (RecordDecl::field_iterator
368              Field = RType->getDecl()->field_begin(),
369              FieldEnd = RType->getDecl()->field_end();
370            Field != FieldEnd; ++Field) {
371         if (Field->isUnnamedBitfield())
372           continue;
373
374         if (hadError)
375           return;
376
377         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
378         if (hadError)
379           return;
380
381         ++Init;
382
383         // Only look at the first initialization of a union.
384         if (RType->getDecl()->isUnion())
385           break;
386       }
387     }
388
389     return;
390   }
391
392   QualType ElementType;
393
394   InitializedEntity ElementEntity = Entity;
395   unsigned NumInits = ILE->getNumInits();
396   unsigned NumElements = NumInits;
397   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
398     ElementType = AType->getElementType();
399     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
400       NumElements = CAType->getSize().getZExtValue();
401     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
402                                                          0, Entity);
403   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
404     ElementType = VType->getElementType();
405     NumElements = VType->getNumElements();
406     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
407                                                          0, Entity);
408   } else
409     ElementType = ILE->getType();
410
411
412   for (unsigned Init = 0; Init != NumElements; ++Init) {
413     if (hadError)
414       return;
415
416     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
417         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
418       ElementEntity.setElementIndex(Init);
419
420     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
421     if (!InitExpr && !ILE->hasArrayFiller()) {
422       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
423                                                                 true);
424       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
425       if (!InitSeq) {
426         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
427         hadError = true;
428         return;
429       }
430
431       ExprResult ElementInit
432         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
433       if (ElementInit.isInvalid()) {
434         hadError = true;
435         return;
436       }
437
438       if (hadError) {
439         // Do nothing
440       } else if (Init < NumInits) {
441         // For arrays, just set the expression used for value-initialization
442         // of the "holes" in the array.
443         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
444           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
445         else
446           ILE->setInit(Init, ElementInit.takeAs<Expr>());
447       } else {
448         // For arrays, just set the expression used for value-initialization
449         // of the rest of elements and exit.
450         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
451           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
452           return;
453         }
454
455         if (InitSeq.isConstructorInitialization()) {
456           // Value-initialization requires a constructor call, so
457           // extend the initializer list to include the constructor
458           // call and make a note that we'll need to take another pass
459           // through the initializer list.
460           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
461           RequiresSecondPass = true;
462         }
463       }
464     } else if (InitListExpr *InnerILE
465                  = dyn_cast_or_null<InitListExpr>(InitExpr))
466       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
467   }
468 }
469
470
471 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
472                                  InitListExpr *IL, QualType &T,
473                                  bool VerifyOnly, bool AllowBraceElision)
474   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
475   hadError = false;
476
477   unsigned newIndex = 0;
478   unsigned newStructuredIndex = 0;
479   FullyStructuredList
480     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
481   CheckExplicitInitList(Entity, IL, T, newIndex,
482                         FullyStructuredList, newStructuredIndex,
483                         /*TopLevelObject=*/true);
484
485   if (!hadError && !VerifyOnly) {
486     bool RequiresSecondPass = false;
487     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
488     if (RequiresSecondPass && !hadError)
489       FillInValueInitializations(Entity, FullyStructuredList,
490                                  RequiresSecondPass);
491   }
492 }
493
494 int InitListChecker::numArrayElements(QualType DeclType) {
495   // FIXME: use a proper constant
496   int maxElements = 0x7FFFFFFF;
497   if (const ConstantArrayType *CAT =
498         SemaRef.Context.getAsConstantArrayType(DeclType)) {
499     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
500   }
501   return maxElements;
502 }
503
504 int InitListChecker::numStructUnionElements(QualType DeclType) {
505   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
506   int InitializableMembers = 0;
507   for (RecordDecl::field_iterator
508          Field = structDecl->field_begin(),
509          FieldEnd = structDecl->field_end();
510        Field != FieldEnd; ++Field) {
511     if (!Field->isUnnamedBitfield())
512       ++InitializableMembers;
513   }
514   if (structDecl->isUnion())
515     return std::min(InitializableMembers, 1);
516   return InitializableMembers - structDecl->hasFlexibleArrayMember();
517 }
518
519 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
520                                             InitListExpr *ParentIList,
521                                             QualType T, unsigned &Index,
522                                             InitListExpr *StructuredList,
523                                             unsigned &StructuredIndex) {
524   int maxElements = 0;
525
526   if (T->isArrayType())
527     maxElements = numArrayElements(T);
528   else if (T->isRecordType())
529     maxElements = numStructUnionElements(T);
530   else if (T->isVectorType())
531     maxElements = T->getAs<VectorType>()->getNumElements();
532   else
533     llvm_unreachable("CheckImplicitInitList(): Illegal type");
534
535   if (maxElements == 0) {
536     if (!VerifyOnly)
537       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
538                    diag::err_implicit_empty_initializer);
539     ++Index;
540     hadError = true;
541     return;
542   }
543
544   // Build a structured initializer list corresponding to this subobject.
545   InitListExpr *StructuredSubobjectInitList
546     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
547                                  StructuredIndex,
548           SourceRange(ParentIList->getInit(Index)->getLocStart(),
549                       ParentIList->getSourceRange().getEnd()));
550   unsigned StructuredSubobjectInitIndex = 0;
551
552   // Check the element types and build the structural subobject.
553   unsigned StartIndex = Index;
554   CheckListElementTypes(Entity, ParentIList, T,
555                         /*SubobjectIsDesignatorContext=*/false, Index,
556                         StructuredSubobjectInitList,
557                         StructuredSubobjectInitIndex);
558
559   if (VerifyOnly) {
560     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
561       hadError = true;
562   } else {
563     StructuredSubobjectInitList->setType(T);
564
565     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
566     // Update the structured sub-object initializer so that it's ending
567     // range corresponds with the end of the last initializer it used.
568     if (EndIndex < ParentIList->getNumInits()) {
569       SourceLocation EndLoc
570         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
571       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
572     }
573
574     // Complain about missing braces.
575     if (T->isArrayType() || T->isRecordType()) {
576       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
577                     AllowBraceElision ? diag::warn_missing_braces :
578                                         diag::err_missing_braces)
579         << StructuredSubobjectInitList->getSourceRange()
580         << FixItHint::CreateInsertion(
581               StructuredSubobjectInitList->getLocStart(), "{")
582         << FixItHint::CreateInsertion(
583               SemaRef.PP.getLocForEndOfToken(
584                                       StructuredSubobjectInitList->getLocEnd()),
585               "}");
586       if (!AllowBraceElision)
587         hadError = true;
588     }
589   }
590 }
591
592 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
593                                             InitListExpr *IList, QualType &T,
594                                             unsigned &Index,
595                                             InitListExpr *StructuredList,
596                                             unsigned &StructuredIndex,
597                                             bool TopLevelObject) {
598   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
599   if (!VerifyOnly) {
600     SyntacticToSemantic[IList] = StructuredList;
601     StructuredList->setSyntacticForm(IList);
602   }
603   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
604                         Index, StructuredList, StructuredIndex, TopLevelObject);
605   if (!VerifyOnly) {
606     QualType ExprTy = T;
607     if (!ExprTy->isArrayType())
608       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
609     IList->setType(ExprTy);
610     StructuredList->setType(ExprTy);
611   }
612   if (hadError)
613     return;
614
615   if (Index < IList->getNumInits()) {
616     // We have leftover initializers
617     if (VerifyOnly) {
618       if (SemaRef.getLangOpts().CPlusPlus ||
619           (SemaRef.getLangOpts().OpenCL &&
620            IList->getType()->isVectorType())) {
621         hadError = true;
622       }
623       return;
624     }
625
626     if (StructuredIndex == 1 &&
627         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
628       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
629       if (SemaRef.getLangOpts().CPlusPlus) {
630         DK = diag::err_excess_initializers_in_char_array_initializer;
631         hadError = true;
632       }
633       // Special-case
634       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
635         << IList->getInit(Index)->getSourceRange();
636     } else if (!T->isIncompleteType()) {
637       // Don't complain for incomplete types, since we'll get an error
638       // elsewhere
639       QualType CurrentObjectType = StructuredList->getType();
640       int initKind =
641         CurrentObjectType->isArrayType()? 0 :
642         CurrentObjectType->isVectorType()? 1 :
643         CurrentObjectType->isScalarType()? 2 :
644         CurrentObjectType->isUnionType()? 3 :
645         4;
646
647       unsigned DK = diag::warn_excess_initializers;
648       if (SemaRef.getLangOpts().CPlusPlus) {
649         DK = diag::err_excess_initializers;
650         hadError = true;
651       }
652       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
653         DK = diag::err_excess_initializers;
654         hadError = true;
655       }
656
657       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
658         << initKind << IList->getInit(Index)->getSourceRange();
659     }
660   }
661
662   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
663       !TopLevelObject)
664     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
665       << IList->getSourceRange()
666       << FixItHint::CreateRemoval(IList->getLocStart())
667       << FixItHint::CreateRemoval(IList->getLocEnd());
668 }
669
670 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
671                                             InitListExpr *IList,
672                                             QualType &DeclType,
673                                             bool SubobjectIsDesignatorContext,
674                                             unsigned &Index,
675                                             InitListExpr *StructuredList,
676                                             unsigned &StructuredIndex,
677                                             bool TopLevelObject) {
678   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
679     // Explicitly braced initializer for complex type can be real+imaginary
680     // parts.
681     CheckComplexType(Entity, IList, DeclType, Index,
682                      StructuredList, StructuredIndex);
683   } else if (DeclType->isScalarType()) {
684     CheckScalarType(Entity, IList, DeclType, Index,
685                     StructuredList, StructuredIndex);
686   } else if (DeclType->isVectorType()) {
687     CheckVectorType(Entity, IList, DeclType, Index,
688                     StructuredList, StructuredIndex);
689   } else if (DeclType->isRecordType()) {
690     assert(DeclType->isAggregateType() &&
691            "non-aggregate records should be handed in CheckSubElementType");
692     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694                           SubobjectIsDesignatorContext, Index,
695                           StructuredList, StructuredIndex,
696                           TopLevelObject);
697   } else if (DeclType->isArrayType()) {
698     llvm::APSInt Zero(
699                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700                     false);
701     CheckArrayType(Entity, IList, DeclType, Zero,
702                    SubobjectIsDesignatorContext, Index,
703                    StructuredList, StructuredIndex);
704   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
705     // This type is invalid, issue a diagnostic.
706     ++Index;
707     if (!VerifyOnly)
708       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
709         << DeclType;
710     hadError = true;
711   } else if (DeclType->isReferenceType()) {
712     CheckReferenceType(Entity, IList, DeclType, Index,
713                        StructuredList, StructuredIndex);
714   } else if (DeclType->isObjCObjectType()) {
715     if (!VerifyOnly)
716       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
717         << DeclType;
718     hadError = true;
719   } else {
720     if (!VerifyOnly)
721       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
722         << DeclType;
723     hadError = true;
724   }
725 }
726
727 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
728                                           InitListExpr *IList,
729                                           QualType ElemType,
730                                           unsigned &Index,
731                                           InitListExpr *StructuredList,
732                                           unsigned &StructuredIndex) {
733   Expr *expr = IList->getInit(Index);
734   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
735     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
736       unsigned newIndex = 0;
737       unsigned newStructuredIndex = 0;
738       InitListExpr *newStructuredList
739         = getStructuredSubobjectInit(IList, Index, ElemType,
740                                      StructuredList, StructuredIndex,
741                                      SubInitList->getSourceRange());
742       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
743                             newStructuredList, newStructuredIndex);
744       ++StructuredIndex;
745       ++Index;
746       return;
747     }
748     assert(SemaRef.getLangOpts().CPlusPlus &&
749            "non-aggregate records are only possible in C++");
750     // C++ initialization is handled later.
751   }
752
753   if (ElemType->isScalarType()) {
754     return CheckScalarType(Entity, IList, ElemType, Index,
755                            StructuredList, StructuredIndex);
756   } else if (ElemType->isReferenceType()) {
757     return CheckReferenceType(Entity, IList, ElemType, Index,
758                               StructuredList, StructuredIndex);
759   }
760
761   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
762     // arrayType can be incomplete if we're initializing a flexible
763     // array member.  There's nothing we can do with the completed
764     // type here, though.
765
766     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
767       if (!VerifyOnly) {
768         CheckStringInit(Str, ElemType, arrayType, SemaRef);
769         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
770       }
771       ++Index;
772       return;
773     }
774
775     // Fall through for subaggregate initialization.
776
777   } else if (SemaRef.getLangOpts().CPlusPlus) {
778     // C++ [dcl.init.aggr]p12:
779     //   All implicit type conversions (clause 4) are considered when
780     //   initializing the aggregate member with an initializer from
781     //   an initializer-list. If the initializer can initialize a
782     //   member, the member is initialized. [...]
783
784     // FIXME: Better EqualLoc?
785     InitializationKind Kind =
786       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
787     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
788
789     if (Seq) {
790       if (!VerifyOnly) {
791         ExprResult Result =
792           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
793         if (Result.isInvalid())
794           hadError = true;
795
796         UpdateStructuredListElement(StructuredList, StructuredIndex,
797                                     Result.takeAs<Expr>());
798       }
799       ++Index;
800       return;
801     }
802
803     // Fall through for subaggregate initialization
804   } else {
805     // C99 6.7.8p13:
806     //
807     //   The initializer for a structure or union object that has
808     //   automatic storage duration shall be either an initializer
809     //   list as described below, or a single expression that has
810     //   compatible structure or union type. In the latter case, the
811     //   initial value of the object, including unnamed members, is
812     //   that of the expression.
813     ExprResult ExprRes = SemaRef.Owned(expr);
814     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
815         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
816                                                  !VerifyOnly)
817           == Sema::Compatible) {
818       if (ExprRes.isInvalid())
819         hadError = true;
820       else {
821         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
822               if (ExprRes.isInvalid())
823                 hadError = true;
824       }
825       UpdateStructuredListElement(StructuredList, StructuredIndex,
826                                   ExprRes.takeAs<Expr>());
827       ++Index;
828       return;
829     }
830     ExprRes.release();
831     // Fall through for subaggregate initialization
832   }
833
834   // C++ [dcl.init.aggr]p12:
835   //
836   //   [...] Otherwise, if the member is itself a non-empty
837   //   subaggregate, brace elision is assumed and the initializer is
838   //   considered for the initialization of the first member of
839   //   the subaggregate.
840   if (!SemaRef.getLangOpts().OpenCL && 
841       (ElemType->isAggregateType() || ElemType->isVectorType())) {
842     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
843                           StructuredIndex);
844     ++StructuredIndex;
845   } else {
846     if (!VerifyOnly) {
847       // We cannot initialize this element, so let
848       // PerformCopyInitialization produce the appropriate diagnostic.
849       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
850                                         SemaRef.Owned(expr),
851                                         /*TopLevelOfInitList=*/true);
852     }
853     hadError = true;
854     ++Index;
855     ++StructuredIndex;
856   }
857 }
858
859 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
860                                        InitListExpr *IList, QualType DeclType,
861                                        unsigned &Index,
862                                        InitListExpr *StructuredList,
863                                        unsigned &StructuredIndex) {
864   assert(Index == 0 && "Index in explicit init list must be zero");
865
866   // As an extension, clang supports complex initializers, which initialize
867   // a complex number component-wise.  When an explicit initializer list for
868   // a complex number contains two two initializers, this extension kicks in:
869   // it exepcts the initializer list to contain two elements convertible to
870   // the element type of the complex type. The first element initializes
871   // the real part, and the second element intitializes the imaginary part.
872
873   if (IList->getNumInits() != 2)
874     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
875                            StructuredIndex);
876
877   // This is an extension in C.  (The builtin _Complex type does not exist
878   // in the C++ standard.)
879   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
880     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
881       << IList->getSourceRange();
882
883   // Initialize the complex number.
884   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
885   InitializedEntity ElementEntity =
886     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
887
888   for (unsigned i = 0; i < 2; ++i) {
889     ElementEntity.setElementIndex(Index);
890     CheckSubElementType(ElementEntity, IList, elementType, Index,
891                         StructuredList, StructuredIndex);
892   }
893 }
894
895
896 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
897                                       InitListExpr *IList, QualType DeclType,
898                                       unsigned &Index,
899                                       InitListExpr *StructuredList,
900                                       unsigned &StructuredIndex) {
901   if (Index >= IList->getNumInits()) {
902     if (!VerifyOnly)
903       SemaRef.Diag(IList->getLocStart(),
904                    SemaRef.getLangOpts().CPlusPlus0x ?
905                      diag::warn_cxx98_compat_empty_scalar_initializer :
906                      diag::err_empty_scalar_initializer)
907         << IList->getSourceRange();
908     hadError = !SemaRef.getLangOpts().CPlusPlus0x;
909     ++Index;
910     ++StructuredIndex;
911     return;
912   }
913
914   Expr *expr = IList->getInit(Index);
915   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
916     if (!VerifyOnly)
917       SemaRef.Diag(SubIList->getLocStart(),
918                    diag::warn_many_braces_around_scalar_init)
919         << SubIList->getSourceRange();
920
921     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
922                     StructuredIndex);
923     return;
924   } else if (isa<DesignatedInitExpr>(expr)) {
925     if (!VerifyOnly)
926       SemaRef.Diag(expr->getLocStart(),
927                    diag::err_designator_for_scalar_init)
928         << DeclType << expr->getSourceRange();
929     hadError = true;
930     ++Index;
931     ++StructuredIndex;
932     return;
933   }
934
935   if (VerifyOnly) {
936     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
937       hadError = true;
938     ++Index;
939     return;
940   }
941
942   ExprResult Result =
943     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
944                                       SemaRef.Owned(expr),
945                                       /*TopLevelOfInitList=*/true);
946
947   Expr *ResultExpr = 0;
948
949   if (Result.isInvalid())
950     hadError = true; // types weren't compatible.
951   else {
952     ResultExpr = Result.takeAs<Expr>();
953
954     if (ResultExpr != expr) {
955       // The type was promoted, update initializer list.
956       IList->setInit(Index, ResultExpr);
957     }
958   }
959   if (hadError)
960     ++StructuredIndex;
961   else
962     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
963   ++Index;
964 }
965
966 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
967                                          InitListExpr *IList, QualType DeclType,
968                                          unsigned &Index,
969                                          InitListExpr *StructuredList,
970                                          unsigned &StructuredIndex) {
971   if (Index >= IList->getNumInits()) {
972     // FIXME: It would be wonderful if we could point at the actual member. In
973     // general, it would be useful to pass location information down the stack,
974     // so that we know the location (or decl) of the "current object" being
975     // initialized.
976     if (!VerifyOnly)
977       SemaRef.Diag(IList->getLocStart(),
978                     diag::err_init_reference_member_uninitialized)
979         << DeclType
980         << IList->getSourceRange();
981     hadError = true;
982     ++Index;
983     ++StructuredIndex;
984     return;
985   }
986
987   Expr *expr = IList->getInit(Index);
988   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus0x) {
989     if (!VerifyOnly)
990       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
991         << DeclType << IList->getSourceRange();
992     hadError = true;
993     ++Index;
994     ++StructuredIndex;
995     return;
996   }
997
998   if (VerifyOnly) {
999     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1000       hadError = true;
1001     ++Index;
1002     return;
1003   }
1004
1005   ExprResult Result =
1006     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1007                                       SemaRef.Owned(expr),
1008                                       /*TopLevelOfInitList=*/true);
1009
1010   if (Result.isInvalid())
1011     hadError = true;
1012
1013   expr = Result.takeAs<Expr>();
1014   IList->setInit(Index, expr);
1015
1016   if (hadError)
1017     ++StructuredIndex;
1018   else
1019     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1020   ++Index;
1021 }
1022
1023 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1024                                       InitListExpr *IList, QualType DeclType,
1025                                       unsigned &Index,
1026                                       InitListExpr *StructuredList,
1027                                       unsigned &StructuredIndex) {
1028   const VectorType *VT = DeclType->getAs<VectorType>();
1029   unsigned maxElements = VT->getNumElements();
1030   unsigned numEltsInit = 0;
1031   QualType elementType = VT->getElementType();
1032
1033   if (Index >= IList->getNumInits()) {
1034     // Make sure the element type can be value-initialized.
1035     if (VerifyOnly)
1036       CheckValueInitializable(
1037           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1038     return;
1039   }
1040
1041   if (!SemaRef.getLangOpts().OpenCL) {
1042     // If the initializing element is a vector, try to copy-initialize
1043     // instead of breaking it apart (which is doomed to failure anyway).
1044     Expr *Init = IList->getInit(Index);
1045     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1046       if (VerifyOnly) {
1047         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1048           hadError = true;
1049         ++Index;
1050         return;
1051       }
1052
1053       ExprResult Result =
1054         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1055                                           SemaRef.Owned(Init),
1056                                           /*TopLevelOfInitList=*/true);
1057
1058       Expr *ResultExpr = 0;
1059       if (Result.isInvalid())
1060         hadError = true; // types weren't compatible.
1061       else {
1062         ResultExpr = Result.takeAs<Expr>();
1063
1064         if (ResultExpr != Init) {
1065           // The type was promoted, update initializer list.
1066           IList->setInit(Index, ResultExpr);
1067         }
1068       }
1069       if (hadError)
1070         ++StructuredIndex;
1071       else
1072         UpdateStructuredListElement(StructuredList, StructuredIndex,
1073                                     ResultExpr);
1074       ++Index;
1075       return;
1076     }
1077
1078     InitializedEntity ElementEntity =
1079       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1080
1081     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1082       // Don't attempt to go past the end of the init list
1083       if (Index >= IList->getNumInits()) {
1084         if (VerifyOnly)
1085           CheckValueInitializable(ElementEntity);
1086         break;
1087       }
1088
1089       ElementEntity.setElementIndex(Index);
1090       CheckSubElementType(ElementEntity, IList, elementType, Index,
1091                           StructuredList, StructuredIndex);
1092     }
1093     return;
1094   }
1095
1096   InitializedEntity ElementEntity =
1097     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1098
1099   // OpenCL initializers allows vectors to be constructed from vectors.
1100   for (unsigned i = 0; i < maxElements; ++i) {
1101     // Don't attempt to go past the end of the init list
1102     if (Index >= IList->getNumInits())
1103       break;
1104
1105     ElementEntity.setElementIndex(Index);
1106
1107     QualType IType = IList->getInit(Index)->getType();
1108     if (!IType->isVectorType()) {
1109       CheckSubElementType(ElementEntity, IList, elementType, Index,
1110                           StructuredList, StructuredIndex);
1111       ++numEltsInit;
1112     } else {
1113       QualType VecType;
1114       const VectorType *IVT = IType->getAs<VectorType>();
1115       unsigned numIElts = IVT->getNumElements();
1116
1117       if (IType->isExtVectorType())
1118         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1119       else
1120         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1121                                                 IVT->getVectorKind());
1122       CheckSubElementType(ElementEntity, IList, VecType, Index,
1123                           StructuredList, StructuredIndex);
1124       numEltsInit += numIElts;
1125     }
1126   }
1127
1128   // OpenCL requires all elements to be initialized.
1129   if (numEltsInit != maxElements) {
1130     if (!VerifyOnly)
1131       SemaRef.Diag(IList->getLocStart(),
1132                    diag::err_vector_incorrect_num_initializers)
1133         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1134     hadError = true;
1135   }
1136 }
1137
1138 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1139                                      InitListExpr *IList, QualType &DeclType,
1140                                      llvm::APSInt elementIndex,
1141                                      bool SubobjectIsDesignatorContext,
1142                                      unsigned &Index,
1143                                      InitListExpr *StructuredList,
1144                                      unsigned &StructuredIndex) {
1145   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1146
1147   // Check for the special-case of initializing an array with a string.
1148   if (Index < IList->getNumInits()) {
1149     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1150                                  SemaRef.Context)) {
1151       // We place the string literal directly into the resulting
1152       // initializer list. This is the only place where the structure
1153       // of the structured initializer list doesn't match exactly,
1154       // because doing so would involve allocating one character
1155       // constant for each string.
1156       if (!VerifyOnly) {
1157         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1158         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1159         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1160       }
1161       ++Index;
1162       return;
1163     }
1164   }
1165   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1166     // Check for VLAs; in standard C it would be possible to check this
1167     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1168     // them in all sorts of strange places).
1169     if (!VerifyOnly)
1170       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1171                     diag::err_variable_object_no_init)
1172         << VAT->getSizeExpr()->getSourceRange();
1173     hadError = true;
1174     ++Index;
1175     ++StructuredIndex;
1176     return;
1177   }
1178
1179   // We might know the maximum number of elements in advance.
1180   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1181                            elementIndex.isUnsigned());
1182   bool maxElementsKnown = false;
1183   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1184     maxElements = CAT->getSize();
1185     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1186     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1187     maxElementsKnown = true;
1188   }
1189
1190   QualType elementType = arrayType->getElementType();
1191   while (Index < IList->getNumInits()) {
1192     Expr *Init = IList->getInit(Index);
1193     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1194       // If we're not the subobject that matches up with the '{' for
1195       // the designator, we shouldn't be handling the
1196       // designator. Return immediately.
1197       if (!SubobjectIsDesignatorContext)
1198         return;
1199
1200       // Handle this designated initializer. elementIndex will be
1201       // updated to be the next array element we'll initialize.
1202       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1203                                      DeclType, 0, &elementIndex, Index,
1204                                      StructuredList, StructuredIndex, true,
1205                                      false)) {
1206         hadError = true;
1207         continue;
1208       }
1209
1210       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1211         maxElements = maxElements.extend(elementIndex.getBitWidth());
1212       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1213         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1214       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1215
1216       // If the array is of incomplete type, keep track of the number of
1217       // elements in the initializer.
1218       if (!maxElementsKnown && elementIndex > maxElements)
1219         maxElements = elementIndex;
1220
1221       continue;
1222     }
1223
1224     // If we know the maximum number of elements, and we've already
1225     // hit it, stop consuming elements in the initializer list.
1226     if (maxElementsKnown && elementIndex == maxElements)
1227       break;
1228
1229     InitializedEntity ElementEntity =
1230       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1231                                            Entity);
1232     // Check this element.
1233     CheckSubElementType(ElementEntity, IList, elementType, Index,
1234                         StructuredList, StructuredIndex);
1235     ++elementIndex;
1236
1237     // If the array is of incomplete type, keep track of the number of
1238     // elements in the initializer.
1239     if (!maxElementsKnown && elementIndex > maxElements)
1240       maxElements = elementIndex;
1241   }
1242   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1243     // If this is an incomplete array type, the actual type needs to
1244     // be calculated here.
1245     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1246     if (maxElements == Zero) {
1247       // Sizing an array implicitly to zero is not allowed by ISO C,
1248       // but is supported by GNU.
1249       SemaRef.Diag(IList->getLocStart(),
1250                     diag::ext_typecheck_zero_array_size);
1251     }
1252
1253     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1254                                                      ArrayType::Normal, 0);
1255   }
1256   if (!hadError && VerifyOnly) {
1257     // Check if there are any members of the array that get value-initialized.
1258     // If so, check if doing that is possible.
1259     // FIXME: This needs to detect holes left by designated initializers too.
1260     if (maxElementsKnown && elementIndex < maxElements)
1261       CheckValueInitializable(InitializedEntity::InitializeElement(
1262                                                   SemaRef.Context, 0, Entity));
1263   }
1264 }
1265
1266 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1267                                              Expr *InitExpr,
1268                                              FieldDecl *Field,
1269                                              bool TopLevelObject) {
1270   // Handle GNU flexible array initializers.
1271   unsigned FlexArrayDiag;
1272   if (isa<InitListExpr>(InitExpr) &&
1273       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1274     // Empty flexible array init always allowed as an extension
1275     FlexArrayDiag = diag::ext_flexible_array_init;
1276   } else if (SemaRef.getLangOpts().CPlusPlus) {
1277     // Disallow flexible array init in C++; it is not required for gcc
1278     // compatibility, and it needs work to IRGen correctly in general.
1279     FlexArrayDiag = diag::err_flexible_array_init;
1280   } else if (!TopLevelObject) {
1281     // Disallow flexible array init on non-top-level object
1282     FlexArrayDiag = diag::err_flexible_array_init;
1283   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1284     // Disallow flexible array init on anything which is not a variable.
1285     FlexArrayDiag = diag::err_flexible_array_init;
1286   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1287     // Disallow flexible array init on local variables.
1288     FlexArrayDiag = diag::err_flexible_array_init;
1289   } else {
1290     // Allow other cases.
1291     FlexArrayDiag = diag::ext_flexible_array_init;
1292   }
1293
1294   if (!VerifyOnly) {
1295     SemaRef.Diag(InitExpr->getLocStart(),
1296                  FlexArrayDiag)
1297       << InitExpr->getLocStart();
1298     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299       << Field;
1300   }
1301
1302   return FlexArrayDiag != diag::ext_flexible_array_init;
1303 }
1304
1305 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1306                                             InitListExpr *IList,
1307                                             QualType DeclType,
1308                                             RecordDecl::field_iterator Field,
1309                                             bool SubobjectIsDesignatorContext,
1310                                             unsigned &Index,
1311                                             InitListExpr *StructuredList,
1312                                             unsigned &StructuredIndex,
1313                                             bool TopLevelObject) {
1314   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1315
1316   // If the record is invalid, some of it's members are invalid. To avoid
1317   // confusion, we forgo checking the intializer for the entire record.
1318   if (structDecl->isInvalidDecl()) {
1319     // Assume it was supposed to consume a single initializer.
1320     ++Index;
1321     hadError = true;
1322     return;
1323   }
1324
1325   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1326     // Value-initialize the first named member of the union.
1327     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1328     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1329          Field != FieldEnd; ++Field) {
1330       if (Field->getDeclName()) {
1331         if (VerifyOnly)
1332           CheckValueInitializable(
1333               InitializedEntity::InitializeMember(*Field, &Entity));
1334         else
1335           StructuredList->setInitializedFieldInUnion(*Field);
1336         break;
1337       }
1338     }
1339     return;
1340   }
1341
1342   // If structDecl is a forward declaration, this loop won't do
1343   // anything except look at designated initializers; That's okay,
1344   // because an error should get printed out elsewhere. It might be
1345   // worthwhile to skip over the rest of the initializer, though.
1346   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1347   RecordDecl::field_iterator FieldEnd = RD->field_end();
1348   bool InitializedSomething = false;
1349   bool CheckForMissingFields = true;
1350   while (Index < IList->getNumInits()) {
1351     Expr *Init = IList->getInit(Index);
1352
1353     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1354       // If we're not the subobject that matches up with the '{' for
1355       // the designator, we shouldn't be handling the
1356       // designator. Return immediately.
1357       if (!SubobjectIsDesignatorContext)
1358         return;
1359
1360       // Handle this designated initializer. Field will be updated to
1361       // the next field that we'll be initializing.
1362       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1363                                      DeclType, &Field, 0, Index,
1364                                      StructuredList, StructuredIndex,
1365                                      true, TopLevelObject))
1366         hadError = true;
1367
1368       InitializedSomething = true;
1369
1370       // Disable check for missing fields when designators are used.
1371       // This matches gcc behaviour.
1372       CheckForMissingFields = false;
1373       continue;
1374     }
1375
1376     if (Field == FieldEnd) {
1377       // We've run out of fields. We're done.
1378       break;
1379     }
1380
1381     // We've already initialized a member of a union. We're done.
1382     if (InitializedSomething && DeclType->isUnionType())
1383       break;
1384
1385     // If we've hit the flexible array member at the end, we're done.
1386     if (Field->getType()->isIncompleteArrayType())
1387       break;
1388
1389     if (Field->isUnnamedBitfield()) {
1390       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1391       ++Field;
1392       continue;
1393     }
1394
1395     // Make sure we can use this declaration.
1396     bool InvalidUse;
1397     if (VerifyOnly)
1398       InvalidUse = !SemaRef.CanUseDecl(*Field);
1399     else
1400       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1401                                           IList->getInit(Index)->getLocStart());
1402     if (InvalidUse) {
1403       ++Index;
1404       ++Field;
1405       hadError = true;
1406       continue;
1407     }
1408
1409     InitializedEntity MemberEntity =
1410       InitializedEntity::InitializeMember(*Field, &Entity);
1411     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1412                         StructuredList, StructuredIndex);
1413     InitializedSomething = true;
1414
1415     if (DeclType->isUnionType() && !VerifyOnly) {
1416       // Initialize the first field within the union.
1417       StructuredList->setInitializedFieldInUnion(*Field);
1418     }
1419
1420     ++Field;
1421   }
1422
1423   // Emit warnings for missing struct field initializers.
1424   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1425       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1426       !DeclType->isUnionType()) {
1427     // It is possible we have one or more unnamed bitfields remaining.
1428     // Find first (if any) named field and emit warning.
1429     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1430          it != end; ++it) {
1431       if (!it->isUnnamedBitfield()) {
1432         SemaRef.Diag(IList->getSourceRange().getEnd(),
1433                      diag::warn_missing_field_initializers) << it->getName();
1434         break;
1435       }
1436     }
1437   }
1438
1439   // Check that any remaining fields can be value-initialized.
1440   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1441       !Field->getType()->isIncompleteArrayType()) {
1442     // FIXME: Should check for holes left by designated initializers too.
1443     for (; Field != FieldEnd && !hadError; ++Field) {
1444       if (!Field->isUnnamedBitfield())
1445         CheckValueInitializable(
1446             InitializedEntity::InitializeMember(*Field, &Entity));
1447     }
1448   }
1449
1450   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1451       Index >= IList->getNumInits())
1452     return;
1453
1454   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1455                              TopLevelObject)) {
1456     hadError = true;
1457     ++Index;
1458     return;
1459   }
1460
1461   InitializedEntity MemberEntity =
1462     InitializedEntity::InitializeMember(*Field, &Entity);
1463
1464   if (isa<InitListExpr>(IList->getInit(Index)))
1465     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1466                         StructuredList, StructuredIndex);
1467   else
1468     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1469                           StructuredList, StructuredIndex);
1470 }
1471
1472 /// \brief Expand a field designator that refers to a member of an
1473 /// anonymous struct or union into a series of field designators that
1474 /// refers to the field within the appropriate subobject.
1475 ///
1476 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1477                                            DesignatedInitExpr *DIE,
1478                                            unsigned DesigIdx,
1479                                            IndirectFieldDecl *IndirectField) {
1480   typedef DesignatedInitExpr::Designator Designator;
1481
1482   // Build the replacement designators.
1483   SmallVector<Designator, 4> Replacements;
1484   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1485        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1486     if (PI + 1 == PE)
1487       Replacements.push_back(Designator((IdentifierInfo *)0,
1488                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1489                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1490     else
1491       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1492                                         SourceLocation()));
1493     assert(isa<FieldDecl>(*PI));
1494     Replacements.back().setField(cast<FieldDecl>(*PI));
1495   }
1496
1497   // Expand the current designator into the set of replacement
1498   // designators, so we have a full subobject path down to where the
1499   // member of the anonymous struct/union is actually stored.
1500   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1501                         &Replacements[0] + Replacements.size());
1502 }
1503
1504 /// \brief Given an implicit anonymous field, search the IndirectField that
1505 ///  corresponds to FieldName.
1506 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1507                                                  IdentifierInfo *FieldName) {
1508   if (!FieldName)
1509     return 0;
1510
1511   assert(AnonField->isAnonymousStructOrUnion());
1512   Decl *NextDecl = AnonField->getNextDeclInContext();
1513   while (IndirectFieldDecl *IF = 
1514           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1515     if (FieldName == IF->getAnonField()->getIdentifier())
1516       return IF;
1517     NextDecl = NextDecl->getNextDeclInContext();
1518   }
1519   return 0;
1520 }
1521
1522 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1523                                                    DesignatedInitExpr *DIE) {
1524   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1525   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1526   for (unsigned I = 0; I < NumIndexExprs; ++I)
1527     IndexExprs[I] = DIE->getSubExpr(I + 1);
1528   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1529                                     DIE->size(), IndexExprs,
1530                                     DIE->getEqualOrColonLoc(),
1531                                     DIE->usesGNUSyntax(), DIE->getInit());
1532 }
1533
1534 namespace {
1535
1536 // Callback to only accept typo corrections that are for field members of
1537 // the given struct or union.
1538 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1539  public:
1540   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1541       : Record(RD) {}
1542
1543   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1544     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1545     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1546   }
1547
1548  private:
1549   RecordDecl *Record;
1550 };
1551
1552 }
1553
1554 /// @brief Check the well-formedness of a C99 designated initializer.
1555 ///
1556 /// Determines whether the designated initializer @p DIE, which
1557 /// resides at the given @p Index within the initializer list @p
1558 /// IList, is well-formed for a current object of type @p DeclType
1559 /// (C99 6.7.8). The actual subobject that this designator refers to
1560 /// within the current subobject is returned in either
1561 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1562 ///
1563 /// @param IList  The initializer list in which this designated
1564 /// initializer occurs.
1565 ///
1566 /// @param DIE The designated initializer expression.
1567 ///
1568 /// @param DesigIdx  The index of the current designator.
1569 ///
1570 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1571 /// into which the designation in @p DIE should refer.
1572 ///
1573 /// @param NextField  If non-NULL and the first designator in @p DIE is
1574 /// a field, this will be set to the field declaration corresponding
1575 /// to the field named by the designator.
1576 ///
1577 /// @param NextElementIndex  If non-NULL and the first designator in @p
1578 /// DIE is an array designator or GNU array-range designator, this
1579 /// will be set to the last index initialized by this designator.
1580 ///
1581 /// @param Index  Index into @p IList where the designated initializer
1582 /// @p DIE occurs.
1583 ///
1584 /// @param StructuredList  The initializer list expression that
1585 /// describes all of the subobject initializers in the order they'll
1586 /// actually be initialized.
1587 ///
1588 /// @returns true if there was an error, false otherwise.
1589 bool
1590 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1591                                             InitListExpr *IList,
1592                                             DesignatedInitExpr *DIE,
1593                                             unsigned DesigIdx,
1594                                             QualType &CurrentObjectType,
1595                                           RecordDecl::field_iterator *NextField,
1596                                             llvm::APSInt *NextElementIndex,
1597                                             unsigned &Index,
1598                                             InitListExpr *StructuredList,
1599                                             unsigned &StructuredIndex,
1600                                             bool FinishSubobjectInit,
1601                                             bool TopLevelObject) {
1602   if (DesigIdx == DIE->size()) {
1603     // Check the actual initialization for the designated object type.
1604     bool prevHadError = hadError;
1605
1606     // Temporarily remove the designator expression from the
1607     // initializer list that the child calls see, so that we don't try
1608     // to re-process the designator.
1609     unsigned OldIndex = Index;
1610     IList->setInit(OldIndex, DIE->getInit());
1611
1612     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1613                         StructuredList, StructuredIndex);
1614
1615     // Restore the designated initializer expression in the syntactic
1616     // form of the initializer list.
1617     if (IList->getInit(OldIndex) != DIE->getInit())
1618       DIE->setInit(IList->getInit(OldIndex));
1619     IList->setInit(OldIndex, DIE);
1620
1621     return hadError && !prevHadError;
1622   }
1623
1624   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1625   bool IsFirstDesignator = (DesigIdx == 0);
1626   if (!VerifyOnly) {
1627     assert((IsFirstDesignator || StructuredList) &&
1628            "Need a non-designated initializer list to start from");
1629
1630     // Determine the structural initializer list that corresponds to the
1631     // current subobject.
1632     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1633       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1634                                    StructuredList, StructuredIndex,
1635                                    SourceRange(D->getStartLocation(),
1636                                                DIE->getSourceRange().getEnd()));
1637     assert(StructuredList && "Expected a structured initializer list");
1638   }
1639
1640   if (D->isFieldDesignator()) {
1641     // C99 6.7.8p7:
1642     //
1643     //   If a designator has the form
1644     //
1645     //      . identifier
1646     //
1647     //   then the current object (defined below) shall have
1648     //   structure or union type and the identifier shall be the
1649     //   name of a member of that type.
1650     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1651     if (!RT) {
1652       SourceLocation Loc = D->getDotLoc();
1653       if (Loc.isInvalid())
1654         Loc = D->getFieldLoc();
1655       if (!VerifyOnly)
1656         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1657           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1658       ++Index;
1659       return true;
1660     }
1661
1662     // Note: we perform a linear search of the fields here, despite
1663     // the fact that we have a faster lookup method, because we always
1664     // need to compute the field's index.
1665     FieldDecl *KnownField = D->getField();
1666     IdentifierInfo *FieldName = D->getFieldName();
1667     unsigned FieldIndex = 0;
1668     RecordDecl::field_iterator
1669       Field = RT->getDecl()->field_begin(),
1670       FieldEnd = RT->getDecl()->field_end();
1671     for (; Field != FieldEnd; ++Field) {
1672       if (Field->isUnnamedBitfield())
1673         continue;
1674
1675       // If we find a field representing an anonymous field, look in the
1676       // IndirectFieldDecl that follow for the designated initializer.
1677       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1678         if (IndirectFieldDecl *IF =
1679             FindIndirectFieldDesignator(*Field, FieldName)) {
1680           // In verify mode, don't modify the original.
1681           if (VerifyOnly)
1682             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1683           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1684           D = DIE->getDesignator(DesigIdx);
1685           break;
1686         }
1687       }
1688       if (KnownField && KnownField == *Field)
1689         break;
1690       if (FieldName && FieldName == Field->getIdentifier())
1691         break;
1692
1693       ++FieldIndex;
1694     }
1695
1696     if (Field == FieldEnd) {
1697       if (VerifyOnly) {
1698         ++Index;
1699         return true; // No typo correction when just trying this out.
1700       }
1701
1702       // There was no normal field in the struct with the designated
1703       // name. Perform another lookup for this name, which may find
1704       // something that we can't designate (e.g., a member function),
1705       // may find nothing, or may find a member of an anonymous
1706       // struct/union.
1707       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1708       FieldDecl *ReplacementField = 0;
1709       if (Lookup.first == Lookup.second) {
1710         // Name lookup didn't find anything. Determine whether this
1711         // was a typo for another field name.
1712         FieldInitializerValidatorCCC Validator(RT->getDecl());
1713         TypoCorrection Corrected = SemaRef.CorrectTypo(
1714             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1715             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1716             RT->getDecl());
1717         if (Corrected) {
1718           std::string CorrectedStr(
1719               Corrected.getAsString(SemaRef.getLangOpts()));
1720           std::string CorrectedQuotedStr(
1721               Corrected.getQuoted(SemaRef.getLangOpts()));
1722           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1723           SemaRef.Diag(D->getFieldLoc(),
1724                        diag::err_field_designator_unknown_suggest)
1725             << FieldName << CurrentObjectType << CorrectedQuotedStr
1726             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1727           SemaRef.Diag(ReplacementField->getLocation(),
1728                        diag::note_previous_decl) << CorrectedQuotedStr;
1729           hadError = true;
1730         } else {
1731           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1732             << FieldName << CurrentObjectType;
1733           ++Index;
1734           return true;
1735         }
1736       }
1737
1738       if (!ReplacementField) {
1739         // Name lookup found something, but it wasn't a field.
1740         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1741           << FieldName;
1742         SemaRef.Diag((*Lookup.first)->getLocation(),
1743                       diag::note_field_designator_found);
1744         ++Index;
1745         return true;
1746       }
1747
1748       if (!KnownField) {
1749         // The replacement field comes from typo correction; find it
1750         // in the list of fields.
1751         FieldIndex = 0;
1752         Field = RT->getDecl()->field_begin();
1753         for (; Field != FieldEnd; ++Field) {
1754           if (Field->isUnnamedBitfield())
1755             continue;
1756
1757           if (ReplacementField == *Field ||
1758               Field->getIdentifier() == ReplacementField->getIdentifier())
1759             break;
1760
1761           ++FieldIndex;
1762         }
1763       }
1764     }
1765
1766     // All of the fields of a union are located at the same place in
1767     // the initializer list.
1768     if (RT->getDecl()->isUnion()) {
1769       FieldIndex = 0;
1770       if (!VerifyOnly)
1771         StructuredList->setInitializedFieldInUnion(*Field);
1772     }
1773
1774     // Make sure we can use this declaration.
1775     bool InvalidUse;
1776     if (VerifyOnly)
1777       InvalidUse = !SemaRef.CanUseDecl(*Field);
1778     else
1779       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1780     if (InvalidUse) {
1781       ++Index;
1782       return true;
1783     }
1784
1785     if (!VerifyOnly) {
1786       // Update the designator with the field declaration.
1787       D->setField(*Field);
1788
1789       // Make sure that our non-designated initializer list has space
1790       // for a subobject corresponding to this field.
1791       if (FieldIndex >= StructuredList->getNumInits())
1792         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1793     }
1794
1795     // This designator names a flexible array member.
1796     if (Field->getType()->isIncompleteArrayType()) {
1797       bool Invalid = false;
1798       if ((DesigIdx + 1) != DIE->size()) {
1799         // We can't designate an object within the flexible array
1800         // member (because GCC doesn't allow it).
1801         if (!VerifyOnly) {
1802           DesignatedInitExpr::Designator *NextD
1803             = DIE->getDesignator(DesigIdx + 1);
1804           SemaRef.Diag(NextD->getStartLocation(),
1805                         diag::err_designator_into_flexible_array_member)
1806             << SourceRange(NextD->getStartLocation(),
1807                            DIE->getSourceRange().getEnd());
1808           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1809             << *Field;
1810         }
1811         Invalid = true;
1812       }
1813
1814       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1815           !isa<StringLiteral>(DIE->getInit())) {
1816         // The initializer is not an initializer list.
1817         if (!VerifyOnly) {
1818           SemaRef.Diag(DIE->getInit()->getLocStart(),
1819                         diag::err_flexible_array_init_needs_braces)
1820             << DIE->getInit()->getSourceRange();
1821           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1822             << *Field;
1823         }
1824         Invalid = true;
1825       }
1826
1827       // Check GNU flexible array initializer.
1828       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1829                                              TopLevelObject))
1830         Invalid = true;
1831
1832       if (Invalid) {
1833         ++Index;
1834         return true;
1835       }
1836
1837       // Initialize the array.
1838       bool prevHadError = hadError;
1839       unsigned newStructuredIndex = FieldIndex;
1840       unsigned OldIndex = Index;
1841       IList->setInit(Index, DIE->getInit());
1842
1843       InitializedEntity MemberEntity =
1844         InitializedEntity::InitializeMember(*Field, &Entity);
1845       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1846                           StructuredList, newStructuredIndex);
1847
1848       IList->setInit(OldIndex, DIE);
1849       if (hadError && !prevHadError) {
1850         ++Field;
1851         ++FieldIndex;
1852         if (NextField)
1853           *NextField = Field;
1854         StructuredIndex = FieldIndex;
1855         return true;
1856       }
1857     } else {
1858       // Recurse to check later designated subobjects.
1859       QualType FieldType = Field->getType();
1860       unsigned newStructuredIndex = FieldIndex;
1861
1862       InitializedEntity MemberEntity =
1863         InitializedEntity::InitializeMember(*Field, &Entity);
1864       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1865                                      FieldType, 0, 0, Index,
1866                                      StructuredList, newStructuredIndex,
1867                                      true, false))
1868         return true;
1869     }
1870
1871     // Find the position of the next field to be initialized in this
1872     // subobject.
1873     ++Field;
1874     ++FieldIndex;
1875
1876     // If this the first designator, our caller will continue checking
1877     // the rest of this struct/class/union subobject.
1878     if (IsFirstDesignator) {
1879       if (NextField)
1880         *NextField = Field;
1881       StructuredIndex = FieldIndex;
1882       return false;
1883     }
1884
1885     if (!FinishSubobjectInit)
1886       return false;
1887
1888     // We've already initialized something in the union; we're done.
1889     if (RT->getDecl()->isUnion())
1890       return hadError;
1891
1892     // Check the remaining fields within this class/struct/union subobject.
1893     bool prevHadError = hadError;
1894
1895     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1896                           StructuredList, FieldIndex);
1897     return hadError && !prevHadError;
1898   }
1899
1900   // C99 6.7.8p6:
1901   //
1902   //   If a designator has the form
1903   //
1904   //      [ constant-expression ]
1905   //
1906   //   then the current object (defined below) shall have array
1907   //   type and the expression shall be an integer constant
1908   //   expression. If the array is of unknown size, any
1909   //   nonnegative value is valid.
1910   //
1911   // Additionally, cope with the GNU extension that permits
1912   // designators of the form
1913   //
1914   //      [ constant-expression ... constant-expression ]
1915   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1916   if (!AT) {
1917     if (!VerifyOnly)
1918       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1919         << CurrentObjectType;
1920     ++Index;
1921     return true;
1922   }
1923
1924   Expr *IndexExpr = 0;
1925   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1926   if (D->isArrayDesignator()) {
1927     IndexExpr = DIE->getArrayIndex(*D);
1928     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1929     DesignatedEndIndex = DesignatedStartIndex;
1930   } else {
1931     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1932
1933     DesignatedStartIndex =
1934       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935     DesignatedEndIndex =
1936       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1937     IndexExpr = DIE->getArrayRangeEnd(*D);
1938
1939     // Codegen can't handle evaluating array range designators that have side
1940     // effects, because we replicate the AST value for each initialized element.
1941     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1942     // elements with something that has a side effect, so codegen can emit an
1943     // "error unsupported" error instead of miscompiling the app.
1944     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1945         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1946       FullyStructuredList->sawArrayRangeDesignator();
1947   }
1948
1949   if (isa<ConstantArrayType>(AT)) {
1950     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1951     DesignatedStartIndex
1952       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1953     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1954     DesignatedEndIndex
1955       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1956     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1957     if (DesignatedEndIndex >= MaxElements) {
1958       if (!VerifyOnly)
1959         SemaRef.Diag(IndexExpr->getLocStart(),
1960                       diag::err_array_designator_too_large)
1961           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1962           << IndexExpr->getSourceRange();
1963       ++Index;
1964       return true;
1965     }
1966   } else {
1967     // Make sure the bit-widths and signedness match.
1968     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1969       DesignatedEndIndex
1970         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1971     else if (DesignatedStartIndex.getBitWidth() <
1972              DesignatedEndIndex.getBitWidth())
1973       DesignatedStartIndex
1974         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1975     DesignatedStartIndex.setIsUnsigned(true);
1976     DesignatedEndIndex.setIsUnsigned(true);
1977   }
1978
1979   // Make sure that our non-designated initializer list has space
1980   // for a subobject corresponding to this array element.
1981   if (!VerifyOnly &&
1982       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1983     StructuredList->resizeInits(SemaRef.Context,
1984                                 DesignatedEndIndex.getZExtValue() + 1);
1985
1986   // Repeatedly perform subobject initializations in the range
1987   // [DesignatedStartIndex, DesignatedEndIndex].
1988
1989   // Move to the next designator
1990   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1991   unsigned OldIndex = Index;
1992
1993   InitializedEntity ElementEntity =
1994     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1995
1996   while (DesignatedStartIndex <= DesignatedEndIndex) {
1997     // Recurse to check later designated subobjects.
1998     QualType ElementType = AT->getElementType();
1999     Index = OldIndex;
2000
2001     ElementEntity.setElementIndex(ElementIndex);
2002     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2003                                    ElementType, 0, 0, Index,
2004                                    StructuredList, ElementIndex,
2005                                    (DesignatedStartIndex == DesignatedEndIndex),
2006                                    false))
2007       return true;
2008
2009     // Move to the next index in the array that we'll be initializing.
2010     ++DesignatedStartIndex;
2011     ElementIndex = DesignatedStartIndex.getZExtValue();
2012   }
2013
2014   // If this the first designator, our caller will continue checking
2015   // the rest of this array subobject.
2016   if (IsFirstDesignator) {
2017     if (NextElementIndex)
2018       *NextElementIndex = DesignatedStartIndex;
2019     StructuredIndex = ElementIndex;
2020     return false;
2021   }
2022
2023   if (!FinishSubobjectInit)
2024     return false;
2025
2026   // Check the remaining elements within this array subobject.
2027   bool prevHadError = hadError;
2028   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2029                  /*SubobjectIsDesignatorContext=*/false, Index,
2030                  StructuredList, ElementIndex);
2031   return hadError && !prevHadError;
2032 }
2033
2034 // Get the structured initializer list for a subobject of type
2035 // @p CurrentObjectType.
2036 InitListExpr *
2037 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2038                                             QualType CurrentObjectType,
2039                                             InitListExpr *StructuredList,
2040                                             unsigned StructuredIndex,
2041                                             SourceRange InitRange) {
2042   if (VerifyOnly)
2043     return 0; // No structured list in verification-only mode.
2044   Expr *ExistingInit = 0;
2045   if (!StructuredList)
2046     ExistingInit = SyntacticToSemantic.lookup(IList);
2047   else if (StructuredIndex < StructuredList->getNumInits())
2048     ExistingInit = StructuredList->getInit(StructuredIndex);
2049
2050   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2051     return Result;
2052
2053   if (ExistingInit) {
2054     // We are creating an initializer list that initializes the
2055     // subobjects of the current object, but there was already an
2056     // initialization that completely initialized the current
2057     // subobject, e.g., by a compound literal:
2058     //
2059     // struct X { int a, b; };
2060     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2061     //
2062     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2063     // designated initializer re-initializes the whole
2064     // subobject [0], overwriting previous initializers.
2065     SemaRef.Diag(InitRange.getBegin(),
2066                  diag::warn_subobject_initializer_overrides)
2067       << InitRange;
2068     SemaRef.Diag(ExistingInit->getLocStart(),
2069                   diag::note_previous_initializer)
2070       << /*FIXME:has side effects=*/0
2071       << ExistingInit->getSourceRange();
2072   }
2073
2074   InitListExpr *Result
2075     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2076                                          InitRange.getBegin(), MultiExprArg(),
2077                                          InitRange.getEnd());
2078
2079   QualType ResultType = CurrentObjectType;
2080   if (!ResultType->isArrayType())
2081     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2082   Result->setType(ResultType);
2083
2084   // Pre-allocate storage for the structured initializer list.
2085   unsigned NumElements = 0;
2086   unsigned NumInits = 0;
2087   bool GotNumInits = false;
2088   if (!StructuredList) {
2089     NumInits = IList->getNumInits();
2090     GotNumInits = true;
2091   } else if (Index < IList->getNumInits()) {
2092     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2093       NumInits = SubList->getNumInits();
2094       GotNumInits = true;
2095     }
2096   }
2097
2098   if (const ArrayType *AType
2099       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2100     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2101       NumElements = CAType->getSize().getZExtValue();
2102       // Simple heuristic so that we don't allocate a very large
2103       // initializer with many empty entries at the end.
2104       if (GotNumInits && NumElements > NumInits)
2105         NumElements = 0;
2106     }
2107   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2108     NumElements = VType->getNumElements();
2109   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2110     RecordDecl *RDecl = RType->getDecl();
2111     if (RDecl->isUnion())
2112       NumElements = 1;
2113     else
2114       NumElements = std::distance(RDecl->field_begin(),
2115                                   RDecl->field_end());
2116   }
2117
2118   Result->reserveInits(SemaRef.Context, NumElements);
2119
2120   // Link this new initializer list into the structured initializer
2121   // lists.
2122   if (StructuredList)
2123     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2124   else {
2125     Result->setSyntacticForm(IList);
2126     SyntacticToSemantic[IList] = Result;
2127   }
2128
2129   return Result;
2130 }
2131
2132 /// Update the initializer at index @p StructuredIndex within the
2133 /// structured initializer list to the value @p expr.
2134 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2135                                                   unsigned &StructuredIndex,
2136                                                   Expr *expr) {
2137   // No structured initializer list to update
2138   if (!StructuredList)
2139     return;
2140
2141   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2142                                                   StructuredIndex, expr)) {
2143     // This initializer overwrites a previous initializer. Warn.
2144     SemaRef.Diag(expr->getLocStart(),
2145                   diag::warn_initializer_overrides)
2146       << expr->getSourceRange();
2147     SemaRef.Diag(PrevInit->getLocStart(),
2148                   diag::note_previous_initializer)
2149       << /*FIXME:has side effects=*/0
2150       << PrevInit->getSourceRange();
2151   }
2152
2153   ++StructuredIndex;
2154 }
2155
2156 /// Check that the given Index expression is a valid array designator
2157 /// value. This is essentially just a wrapper around
2158 /// VerifyIntegerConstantExpression that also checks for negative values
2159 /// and produces a reasonable diagnostic if there is a
2160 /// failure. Returns the index expression, possibly with an implicit cast
2161 /// added, on success.  If everything went okay, Value will receive the
2162 /// value of the constant expression.
2163 static ExprResult
2164 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2165   SourceLocation Loc = Index->getLocStart();
2166
2167   // Make sure this is an integer constant expression.
2168   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2169   if (Result.isInvalid())
2170     return Result;
2171
2172   if (Value.isSigned() && Value.isNegative())
2173     return S.Diag(Loc, diag::err_array_designator_negative)
2174       << Value.toString(10) << Index->getSourceRange();
2175
2176   Value.setIsUnsigned(true);
2177   return Result;
2178 }
2179
2180 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2181                                             SourceLocation Loc,
2182                                             bool GNUSyntax,
2183                                             ExprResult Init) {
2184   typedef DesignatedInitExpr::Designator ASTDesignator;
2185
2186   bool Invalid = false;
2187   SmallVector<ASTDesignator, 32> Designators;
2188   SmallVector<Expr *, 32> InitExpressions;
2189
2190   // Build designators and check array designator expressions.
2191   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2192     const Designator &D = Desig.getDesignator(Idx);
2193     switch (D.getKind()) {
2194     case Designator::FieldDesignator:
2195       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2196                                           D.getFieldLoc()));
2197       break;
2198
2199     case Designator::ArrayDesignator: {
2200       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2201       llvm::APSInt IndexValue;
2202       if (!Index->isTypeDependent() && !Index->isValueDependent())
2203         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2204       if (!Index)
2205         Invalid = true;
2206       else {
2207         Designators.push_back(ASTDesignator(InitExpressions.size(),
2208                                             D.getLBracketLoc(),
2209                                             D.getRBracketLoc()));
2210         InitExpressions.push_back(Index);
2211       }
2212       break;
2213     }
2214
2215     case Designator::ArrayRangeDesignator: {
2216       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2217       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2218       llvm::APSInt StartValue;
2219       llvm::APSInt EndValue;
2220       bool StartDependent = StartIndex->isTypeDependent() ||
2221                             StartIndex->isValueDependent();
2222       bool EndDependent = EndIndex->isTypeDependent() ||
2223                           EndIndex->isValueDependent();
2224       if (!StartDependent)
2225         StartIndex =
2226             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2227       if (!EndDependent)
2228         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2229
2230       if (!StartIndex || !EndIndex)
2231         Invalid = true;
2232       else {
2233         // Make sure we're comparing values with the same bit width.
2234         if (StartDependent || EndDependent) {
2235           // Nothing to compute.
2236         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2237           EndValue = EndValue.extend(StartValue.getBitWidth());
2238         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2239           StartValue = StartValue.extend(EndValue.getBitWidth());
2240
2241         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2242           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2243             << StartValue.toString(10) << EndValue.toString(10)
2244             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2245           Invalid = true;
2246         } else {
2247           Designators.push_back(ASTDesignator(InitExpressions.size(),
2248                                               D.getLBracketLoc(),
2249                                               D.getEllipsisLoc(),
2250                                               D.getRBracketLoc()));
2251           InitExpressions.push_back(StartIndex);
2252           InitExpressions.push_back(EndIndex);
2253         }
2254       }
2255       break;
2256     }
2257     }
2258   }
2259
2260   if (Invalid || Init.isInvalid())
2261     return ExprError();
2262
2263   // Clear out the expressions within the designation.
2264   Desig.ClearExprs(*this);
2265
2266   DesignatedInitExpr *DIE
2267     = DesignatedInitExpr::Create(Context,
2268                                  Designators.data(), Designators.size(),
2269                                  InitExpressions, Loc, GNUSyntax,
2270                                  Init.takeAs<Expr>());
2271
2272   if (!getLangOpts().C99)
2273     Diag(DIE->getLocStart(), diag::ext_designated_init)
2274       << DIE->getSourceRange();
2275
2276   return Owned(DIE);
2277 }
2278
2279 //===----------------------------------------------------------------------===//
2280 // Initialization entity
2281 //===----------------------------------------------------------------------===//
2282
2283 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2284                                      const InitializedEntity &Parent)
2285   : Parent(&Parent), Index(Index)
2286 {
2287   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2288     Kind = EK_ArrayElement;
2289     Type = AT->getElementType();
2290   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2291     Kind = EK_VectorElement;
2292     Type = VT->getElementType();
2293   } else {
2294     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2295     assert(CT && "Unexpected type");
2296     Kind = EK_ComplexElement;
2297     Type = CT->getElementType();
2298   }
2299 }
2300
2301 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2302                                                     CXXBaseSpecifier *Base,
2303                                                     bool IsInheritedVirtualBase)
2304 {
2305   InitializedEntity Result;
2306   Result.Kind = EK_Base;
2307   Result.Base = reinterpret_cast<uintptr_t>(Base);
2308   if (IsInheritedVirtualBase)
2309     Result.Base |= 0x01;
2310
2311   Result.Type = Base->getType();
2312   return Result;
2313 }
2314
2315 DeclarationName InitializedEntity::getName() const {
2316   switch (getKind()) {
2317   case EK_Parameter: {
2318     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2319     return (D ? D->getDeclName() : DeclarationName());
2320   }
2321
2322   case EK_Variable:
2323   case EK_Member:
2324     return VariableOrMember->getDeclName();
2325
2326   case EK_LambdaCapture:
2327     return Capture.Var->getDeclName();
2328       
2329   case EK_Result:
2330   case EK_Exception:
2331   case EK_New:
2332   case EK_Temporary:
2333   case EK_Base:
2334   case EK_Delegating:
2335   case EK_ArrayElement:
2336   case EK_VectorElement:
2337   case EK_ComplexElement:
2338   case EK_BlockElement:
2339     return DeclarationName();
2340   }
2341
2342   llvm_unreachable("Invalid EntityKind!");
2343 }
2344
2345 DeclaratorDecl *InitializedEntity::getDecl() const {
2346   switch (getKind()) {
2347   case EK_Variable:
2348   case EK_Member:
2349     return VariableOrMember;
2350
2351   case EK_Parameter:
2352     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2353
2354   case EK_Result:
2355   case EK_Exception:
2356   case EK_New:
2357   case EK_Temporary:
2358   case EK_Base:
2359   case EK_Delegating:
2360   case EK_ArrayElement:
2361   case EK_VectorElement:
2362   case EK_ComplexElement:
2363   case EK_BlockElement:
2364   case EK_LambdaCapture:
2365     return 0;
2366   }
2367
2368   llvm_unreachable("Invalid EntityKind!");
2369 }
2370
2371 bool InitializedEntity::allowsNRVO() const {
2372   switch (getKind()) {
2373   case EK_Result:
2374   case EK_Exception:
2375     return LocAndNRVO.NRVO;
2376
2377   case EK_Variable:
2378   case EK_Parameter:
2379   case EK_Member:
2380   case EK_New:
2381   case EK_Temporary:
2382   case EK_Base:
2383   case EK_Delegating:
2384   case EK_ArrayElement:
2385   case EK_VectorElement:
2386   case EK_ComplexElement:
2387   case EK_BlockElement:
2388   case EK_LambdaCapture:
2389     break;
2390   }
2391
2392   return false;
2393 }
2394
2395 //===----------------------------------------------------------------------===//
2396 // Initialization sequence
2397 //===----------------------------------------------------------------------===//
2398
2399 void InitializationSequence::Step::Destroy() {
2400   switch (Kind) {
2401   case SK_ResolveAddressOfOverloadedFunction:
2402   case SK_CastDerivedToBaseRValue:
2403   case SK_CastDerivedToBaseXValue:
2404   case SK_CastDerivedToBaseLValue:
2405   case SK_BindReference:
2406   case SK_BindReferenceToTemporary:
2407   case SK_ExtraneousCopyToTemporary:
2408   case SK_UserConversion:
2409   case SK_QualificationConversionRValue:
2410   case SK_QualificationConversionXValue:
2411   case SK_QualificationConversionLValue:
2412   case SK_ListInitialization:
2413   case SK_ListConstructorCall:
2414   case SK_UnwrapInitList:
2415   case SK_RewrapInitList:
2416   case SK_ConstructorInitialization:
2417   case SK_ZeroInitialization:
2418   case SK_CAssignment:
2419   case SK_StringInit:
2420   case SK_ObjCObjectConversion:
2421   case SK_ArrayInit:
2422   case SK_ParenthesizedArrayInit:
2423   case SK_PassByIndirectCopyRestore:
2424   case SK_PassByIndirectRestore:
2425   case SK_ProduceObjCObject:
2426   case SK_StdInitializerList:
2427     break;
2428
2429   case SK_ConversionSequence:
2430     delete ICS;
2431   }
2432 }
2433
2434 bool InitializationSequence::isDirectReferenceBinding() const {
2435   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2436 }
2437
2438 bool InitializationSequence::isAmbiguous() const {
2439   if (!Failed())
2440     return false;
2441
2442   switch (getFailureKind()) {
2443   case FK_TooManyInitsForReference:
2444   case FK_ArrayNeedsInitList:
2445   case FK_ArrayNeedsInitListOrStringLiteral:
2446   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2447   case FK_NonConstLValueReferenceBindingToTemporary:
2448   case FK_NonConstLValueReferenceBindingToUnrelated:
2449   case FK_RValueReferenceBindingToLValue:
2450   case FK_ReferenceInitDropsQualifiers:
2451   case FK_ReferenceInitFailed:
2452   case FK_ConversionFailed:
2453   case FK_ConversionFromPropertyFailed:
2454   case FK_TooManyInitsForScalar:
2455   case FK_ReferenceBindingToInitList:
2456   case FK_InitListBadDestinationType:
2457   case FK_DefaultInitOfConst:
2458   case FK_Incomplete:
2459   case FK_ArrayTypeMismatch:
2460   case FK_NonConstantArrayInit:
2461   case FK_ListInitializationFailed:
2462   case FK_VariableLengthArrayHasInitializer:
2463   case FK_PlaceholderType:
2464   case FK_InitListElementCopyFailure:
2465   case FK_ExplicitConstructor:
2466     return false;
2467
2468   case FK_ReferenceInitOverloadFailed:
2469   case FK_UserConversionOverloadFailed:
2470   case FK_ConstructorOverloadFailed:
2471   case FK_ListConstructorOverloadFailed:
2472     return FailedOverloadResult == OR_Ambiguous;
2473   }
2474
2475   llvm_unreachable("Invalid EntityKind!");
2476 }
2477
2478 bool InitializationSequence::isConstructorInitialization() const {
2479   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2480 }
2481
2482 void
2483 InitializationSequence
2484 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2485                                    DeclAccessPair Found,
2486                                    bool HadMultipleCandidates) {
2487   Step S;
2488   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2489   S.Type = Function->getType();
2490   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2491   S.Function.Function = Function;
2492   S.Function.FoundDecl = Found;
2493   Steps.push_back(S);
2494 }
2495
2496 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2497                                                       ExprValueKind VK) {
2498   Step S;
2499   switch (VK) {
2500   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2501   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2502   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2503   }
2504   S.Type = BaseType;
2505   Steps.push_back(S);
2506 }
2507
2508 void InitializationSequence::AddReferenceBindingStep(QualType T,
2509                                                      bool BindingTemporary) {
2510   Step S;
2511   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2512   S.Type = T;
2513   Steps.push_back(S);
2514 }
2515
2516 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2517   Step S;
2518   S.Kind = SK_ExtraneousCopyToTemporary;
2519   S.Type = T;
2520   Steps.push_back(S);
2521 }
2522
2523 void
2524 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2525                                               DeclAccessPair FoundDecl,
2526                                               QualType T,
2527                                               bool HadMultipleCandidates) {
2528   Step S;
2529   S.Kind = SK_UserConversion;
2530   S.Type = T;
2531   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2532   S.Function.Function = Function;
2533   S.Function.FoundDecl = FoundDecl;
2534   Steps.push_back(S);
2535 }
2536
2537 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2538                                                             ExprValueKind VK) {
2539   Step S;
2540   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2541   switch (VK) {
2542   case VK_RValue:
2543     S.Kind = SK_QualificationConversionRValue;
2544     break;
2545   case VK_XValue:
2546     S.Kind = SK_QualificationConversionXValue;
2547     break;
2548   case VK_LValue:
2549     S.Kind = SK_QualificationConversionLValue;
2550     break;
2551   }
2552   S.Type = Ty;
2553   Steps.push_back(S);
2554 }
2555
2556 void InitializationSequence::AddConversionSequenceStep(
2557                                        const ImplicitConversionSequence &ICS,
2558                                                        QualType T) {
2559   Step S;
2560   S.Kind = SK_ConversionSequence;
2561   S.Type = T;
2562   S.ICS = new ImplicitConversionSequence(ICS);
2563   Steps.push_back(S);
2564 }
2565
2566 void InitializationSequence::AddListInitializationStep(QualType T) {
2567   Step S;
2568   S.Kind = SK_ListInitialization;
2569   S.Type = T;
2570   Steps.push_back(S);
2571 }
2572
2573 void
2574 InitializationSequence
2575 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2576                                    AccessSpecifier Access,
2577                                    QualType T,
2578                                    bool HadMultipleCandidates,
2579                                    bool FromInitList, bool AsInitList) {
2580   Step S;
2581   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2582                                        : SK_ConstructorInitialization;
2583   S.Type = T;
2584   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2585   S.Function.Function = Constructor;
2586   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2587   Steps.push_back(S);
2588 }
2589
2590 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2591   Step S;
2592   S.Kind = SK_ZeroInitialization;
2593   S.Type = T;
2594   Steps.push_back(S);
2595 }
2596
2597 void InitializationSequence::AddCAssignmentStep(QualType T) {
2598   Step S;
2599   S.Kind = SK_CAssignment;
2600   S.Type = T;
2601   Steps.push_back(S);
2602 }
2603
2604 void InitializationSequence::AddStringInitStep(QualType T) {
2605   Step S;
2606   S.Kind = SK_StringInit;
2607   S.Type = T;
2608   Steps.push_back(S);
2609 }
2610
2611 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2612   Step S;
2613   S.Kind = SK_ObjCObjectConversion;
2614   S.Type = T;
2615   Steps.push_back(S);
2616 }
2617
2618 void InitializationSequence::AddArrayInitStep(QualType T) {
2619   Step S;
2620   S.Kind = SK_ArrayInit;
2621   S.Type = T;
2622   Steps.push_back(S);
2623 }
2624
2625 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2626   Step S;
2627   S.Kind = SK_ParenthesizedArrayInit;
2628   S.Type = T;
2629   Steps.push_back(S);
2630 }
2631
2632 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2633                                                               bool shouldCopy) {
2634   Step s;
2635   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2636                        : SK_PassByIndirectRestore);
2637   s.Type = type;
2638   Steps.push_back(s);
2639 }
2640
2641 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2642   Step S;
2643   S.Kind = SK_ProduceObjCObject;
2644   S.Type = T;
2645   Steps.push_back(S);
2646 }
2647
2648 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2649   Step S;
2650   S.Kind = SK_StdInitializerList;
2651   S.Type = T;
2652   Steps.push_back(S);
2653 }
2654
2655 void InitializationSequence::RewrapReferenceInitList(QualType T,
2656                                                      InitListExpr *Syntactic) {
2657   assert(Syntactic->getNumInits() == 1 &&
2658          "Can only rewrap trivial init lists.");
2659   Step S;
2660   S.Kind = SK_UnwrapInitList;
2661   S.Type = Syntactic->getInit(0)->getType();
2662   Steps.insert(Steps.begin(), S);
2663
2664   S.Kind = SK_RewrapInitList;
2665   S.Type = T;
2666   S.WrappingSyntacticList = Syntactic;
2667   Steps.push_back(S);
2668 }
2669
2670 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2671                                                 OverloadingResult Result) {
2672   setSequenceKind(FailedSequence);
2673   this->Failure = Failure;
2674   this->FailedOverloadResult = Result;
2675 }
2676
2677 //===----------------------------------------------------------------------===//
2678 // Attempt initialization
2679 //===----------------------------------------------------------------------===//
2680
2681 static void MaybeProduceObjCObject(Sema &S,
2682                                    InitializationSequence &Sequence,
2683                                    const InitializedEntity &Entity) {
2684   if (!S.getLangOpts().ObjCAutoRefCount) return;
2685
2686   /// When initializing a parameter, produce the value if it's marked
2687   /// __attribute__((ns_consumed)).
2688   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2689     if (!Entity.isParameterConsumed())
2690       return;
2691
2692     assert(Entity.getType()->isObjCRetainableType() &&
2693            "consuming an object of unretainable type?");
2694     Sequence.AddProduceObjCObjectStep(Entity.getType());
2695
2696   /// When initializing a return value, if the return type is a
2697   /// retainable type, then returns need to immediately retain the
2698   /// object.  If an autorelease is required, it will be done at the
2699   /// last instant.
2700   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2701     if (!Entity.getType()->isObjCRetainableType())
2702       return;
2703
2704     Sequence.AddProduceObjCObjectStep(Entity.getType());
2705   }
2706 }
2707
2708 /// \brief When initializing from init list via constructor, handle
2709 /// initialization of an object of type std::initializer_list<T>.
2710 ///
2711 /// \return true if we have handled initialization of an object of type
2712 /// std::initializer_list<T>, false otherwise.
2713 static bool TryInitializerListConstruction(Sema &S,
2714                                            InitListExpr *List,
2715                                            QualType DestType,
2716                                            InitializationSequence &Sequence) {
2717   QualType E;
2718   if (!S.isStdInitializerList(DestType, &E))
2719     return false;
2720
2721   // Check that each individual element can be copy-constructed. But since we
2722   // have no place to store further information, we'll recalculate everything
2723   // later.
2724   InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2725       S.Context.getConstantArrayType(E,
2726           llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2727                       List->getNumInits()),
2728           ArrayType::Normal, 0));
2729   InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2730       0, HiddenArray);
2731   for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2732     Element.setElementIndex(i);
2733     if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2734       Sequence.SetFailed(
2735           InitializationSequence::FK_InitListElementCopyFailure);
2736       return true;
2737     }
2738   }
2739   Sequence.AddStdInitializerListConstructionStep(DestType);
2740   return true;
2741 }
2742
2743 static OverloadingResult
2744 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2745                            Expr **Args, unsigned NumArgs,
2746                            OverloadCandidateSet &CandidateSet,
2747                            DeclContext::lookup_iterator Con,
2748                            DeclContext::lookup_iterator ConEnd,
2749                            OverloadCandidateSet::iterator &Best,
2750                            bool CopyInitializing, bool AllowExplicit,
2751                            bool OnlyListConstructors, bool InitListSyntax) {
2752   CandidateSet.clear();
2753
2754   for (; Con != ConEnd; ++Con) {
2755     NamedDecl *D = *Con;
2756     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2757     bool SuppressUserConversions = false;
2758
2759     // Find the constructor (which may be a template).
2760     CXXConstructorDecl *Constructor = 0;
2761     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2762     if (ConstructorTmpl)
2763       Constructor = cast<CXXConstructorDecl>(
2764                                            ConstructorTmpl->getTemplatedDecl());
2765     else {
2766       Constructor = cast<CXXConstructorDecl>(D);
2767
2768       // If we're performing copy initialization using a copy constructor, we
2769       // suppress user-defined conversions on the arguments. We do the same for
2770       // move constructors.
2771       if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2772           Constructor->isCopyOrMoveConstructor())
2773         SuppressUserConversions = true;
2774     }
2775
2776     if (!Constructor->isInvalidDecl() &&
2777         (AllowExplicit || !Constructor->isExplicit()) &&
2778         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2779       if (ConstructorTmpl)
2780         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2781                                        /*ExplicitArgs*/ 0,
2782                                        llvm::makeArrayRef(Args, NumArgs),
2783                                        CandidateSet, SuppressUserConversions);
2784       else {
2785         // C++ [over.match.copy]p1:
2786         //   - When initializing a temporary to be bound to the first parameter 
2787         //     of a constructor that takes a reference to possibly cv-qualified 
2788         //     T as its first argument, called with a single argument in the 
2789         //     context of direct-initialization, explicit conversion functions
2790         //     are also considered.
2791         bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 
2792                                  NumArgs == 1 &&
2793                                  Constructor->isCopyOrMoveConstructor();
2794         S.AddOverloadCandidate(Constructor, FoundDecl,
2795                                llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2796                                SuppressUserConversions,
2797                                /*PartialOverloading=*/false,
2798                                /*AllowExplicit=*/AllowExplicitConv);
2799       }
2800     }
2801   }
2802
2803   // Perform overload resolution and return the result.
2804   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2805 }
2806
2807 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2808 /// enumerates the constructors of the initialized entity and performs overload
2809 /// resolution to select the best.
2810 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2811 /// class type.
2812 static void TryConstructorInitialization(Sema &S,
2813                                          const InitializedEntity &Entity,
2814                                          const InitializationKind &Kind,
2815                                          Expr **Args, unsigned NumArgs,
2816                                          QualType DestType,
2817                                          InitializationSequence &Sequence,
2818                                          bool InitListSyntax = false) {
2819   assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2820          "InitListSyntax must come with a single initializer list argument.");
2821
2822   // The type we're constructing needs to be complete.
2823   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2824     Sequence.setIncompleteTypeFailure(DestType);
2825     return;
2826   }
2827
2828   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2829   assert(DestRecordType && "Constructor initialization requires record type");
2830   CXXRecordDecl *DestRecordDecl
2831     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2832
2833   // Build the candidate set directly in the initialization sequence
2834   // structure, so that it will persist if we fail.
2835   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2836
2837   // Determine whether we are allowed to call explicit constructors or
2838   // explicit conversion operators.
2839   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2840   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2841
2842   //   - Otherwise, if T is a class type, constructors are considered. The
2843   //     applicable constructors are enumerated, and the best one is chosen
2844   //     through overload resolution.
2845   DeclContext::lookup_iterator ConStart, ConEnd;
2846   llvm::tie(ConStart, ConEnd) = S.LookupConstructors(DestRecordDecl);
2847
2848   OverloadingResult Result = OR_No_Viable_Function;
2849   OverloadCandidateSet::iterator Best;
2850   bool AsInitializerList = false;
2851
2852   // C++11 [over.match.list]p1:
2853   //   When objects of non-aggregate type T are list-initialized, overload
2854   //   resolution selects the constructor in two phases:
2855   //   - Initially, the candidate functions are the initializer-list
2856   //     constructors of the class T and the argument list consists of the
2857   //     initializer list as a single argument.
2858   if (InitListSyntax) {
2859     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2860     AsInitializerList = true;
2861
2862     // If the initializer list has no elements and T has a default constructor,
2863     // the first phase is omitted.
2864     if (ILE->getNumInits() != 0 ||
2865         (!DestRecordDecl->hasDeclaredDefaultConstructor() &&
2866          !DestRecordDecl->needsImplicitDefaultConstructor()))
2867       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2868                                           CandidateSet, ConStart, ConEnd, Best,
2869                                           CopyInitialization, AllowExplicit,
2870                                           /*OnlyListConstructor=*/true,
2871                                           InitListSyntax);
2872
2873     // Time to unwrap the init list.
2874     Args = ILE->getInits();
2875     NumArgs = ILE->getNumInits();
2876   }
2877
2878   // C++11 [over.match.list]p1:
2879   //   - If no viable initializer-list constructor is found, overload resolution
2880   //     is performed again, where the candidate functions are all the
2881   //     constructors of the class T and the argument list consists of the
2882   //     elements of the initializer list.
2883   if (Result == OR_No_Viable_Function) {
2884     AsInitializerList = false;
2885     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2886                                         CandidateSet, ConStart, ConEnd, Best,
2887                                         CopyInitialization, AllowExplicit,
2888                                         /*OnlyListConstructors=*/false,
2889                                         InitListSyntax);
2890   }
2891   if (Result) {
2892     Sequence.SetOverloadFailure(InitListSyntax ?
2893                       InitializationSequence::FK_ListConstructorOverloadFailed :
2894                       InitializationSequence::FK_ConstructorOverloadFailed,
2895                                 Result);
2896     return;
2897   }
2898
2899   // C++11 [dcl.init]p6:
2900   //   If a program calls for the default initialization of an object
2901   //   of a const-qualified type T, T shall be a class type with a
2902   //   user-provided default constructor.
2903   if (Kind.getKind() == InitializationKind::IK_Default &&
2904       Entity.getType().isConstQualified() &&
2905       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2906     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2907     return;
2908   }
2909
2910   // C++11 [over.match.list]p1:
2911   //   In copy-list-initialization, if an explicit constructor is chosen, the
2912   //   initializer is ill-formed.
2913   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2914   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2915     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2916     return;
2917   }
2918
2919   // Add the constructor initialization step. Any cv-qualification conversion is
2920   // subsumed by the initialization.
2921   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2922   Sequence.AddConstructorInitializationStep(CtorDecl,
2923                                             Best->FoundDecl.getAccess(),
2924                                             DestType, HadMultipleCandidates,
2925                                             InitListSyntax, AsInitializerList);
2926 }
2927
2928 static bool
2929 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2930                                              Expr *Initializer,
2931                                              QualType &SourceType,
2932                                              QualType &UnqualifiedSourceType,
2933                                              QualType UnqualifiedTargetType,
2934                                              InitializationSequence &Sequence) {
2935   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2936         S.Context.OverloadTy) {
2937     DeclAccessPair Found;
2938     bool HadMultipleCandidates = false;
2939     if (FunctionDecl *Fn
2940         = S.ResolveAddressOfOverloadedFunction(Initializer,
2941                                                UnqualifiedTargetType,
2942                                                false, Found,
2943                                                &HadMultipleCandidates)) {
2944       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2945                                                 HadMultipleCandidates);
2946       SourceType = Fn->getType();
2947       UnqualifiedSourceType = SourceType.getUnqualifiedType();
2948     } else if (!UnqualifiedTargetType->isRecordType()) {
2949       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2950       return true;
2951     }
2952   }
2953   return false;
2954 }
2955
2956 static void TryReferenceInitializationCore(Sema &S,
2957                                            const InitializedEntity &Entity,
2958                                            const InitializationKind &Kind,
2959                                            Expr *Initializer,
2960                                            QualType cv1T1, QualType T1,
2961                                            Qualifiers T1Quals,
2962                                            QualType cv2T2, QualType T2,
2963                                            Qualifiers T2Quals,
2964                                            InitializationSequence &Sequence);
2965
2966 static void TryValueInitialization(Sema &S,
2967                                    const InitializedEntity &Entity,
2968                                    const InitializationKind &Kind,
2969                                    InitializationSequence &Sequence,
2970                                    InitListExpr *InitList = 0);
2971
2972 static void TryListInitialization(Sema &S,
2973                                   const InitializedEntity &Entity,
2974                                   const InitializationKind &Kind,
2975                                   InitListExpr *InitList,
2976                                   InitializationSequence &Sequence);
2977
2978 /// \brief Attempt list initialization of a reference.
2979 static void TryReferenceListInitialization(Sema &S,
2980                                            const InitializedEntity &Entity,
2981                                            const InitializationKind &Kind,
2982                                            InitListExpr *InitList,
2983                                            InitializationSequence &Sequence)
2984 {
2985   // First, catch C++03 where this isn't possible.
2986   if (!S.getLangOpts().CPlusPlus0x) {
2987     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2988     return;
2989   }
2990
2991   QualType DestType = Entity.getType();
2992   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2993   Qualifiers T1Quals;
2994   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2995
2996   // Reference initialization via an initializer list works thus:
2997   // If the initializer list consists of a single element that is
2998   // reference-related to the referenced type, bind directly to that element
2999   // (possibly creating temporaries).
3000   // Otherwise, initialize a temporary with the initializer list and
3001   // bind to that.
3002   if (InitList->getNumInits() == 1) {
3003     Expr *Initializer = InitList->getInit(0);
3004     QualType cv2T2 = Initializer->getType();
3005     Qualifiers T2Quals;
3006     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3007
3008     // If this fails, creating a temporary wouldn't work either.
3009     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3010                                                      T1, Sequence))
3011       return;
3012
3013     SourceLocation DeclLoc = Initializer->getLocStart();
3014     bool dummy1, dummy2, dummy3;
3015     Sema::ReferenceCompareResult RefRelationship
3016       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3017                                        dummy2, dummy3);
3018     if (RefRelationship >= Sema::Ref_Related) {
3019       // Try to bind the reference here.
3020       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3021                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3022       if (Sequence)
3023         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3024       return;
3025     }
3026   }
3027
3028   // Not reference-related. Create a temporary and bind to that.
3029   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3030
3031   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3032   if (Sequence) {
3033     if (DestType->isRValueReferenceType() ||
3034         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3035       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3036     else
3037       Sequence.SetFailed(
3038           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3039   }
3040 }
3041
3042 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3043 static void TryListInitialization(Sema &S,
3044                                   const InitializedEntity &Entity,
3045                                   const InitializationKind &Kind,
3046                                   InitListExpr *InitList,
3047                                   InitializationSequence &Sequence) {
3048   QualType DestType = Entity.getType();
3049
3050   // C++ doesn't allow scalar initialization with more than one argument.
3051   // But C99 complex numbers are scalars and it makes sense there.
3052   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3053       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3054     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3055     return;
3056   }
3057   if (DestType->isReferenceType()) {
3058     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3059     return;
3060   }
3061   if (DestType->isRecordType()) {
3062     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3063       Sequence.setIncompleteTypeFailure(DestType);
3064       return;
3065     }
3066
3067     // C++11 [dcl.init.list]p3:
3068     //   - If T is an aggregate, aggregate initialization is performed.
3069     if (!DestType->isAggregateType()) {
3070       if (S.getLangOpts().CPlusPlus0x) {
3071         //   - Otherwise, if the initializer list has no elements and T is a
3072         //     class type with a default constructor, the object is
3073         //     value-initialized.
3074         if (InitList->getNumInits() == 0) {
3075           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3076           if (RD->hasDeclaredDefaultConstructor() ||
3077               RD->needsImplicitDefaultConstructor()) {
3078             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3079             return;
3080           }
3081         }
3082
3083         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3084         //     an initializer_list object constructed [...]
3085         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3086           return;
3087
3088         //   - Otherwise, if T is a class type, constructors are considered.
3089         Expr *Arg = InitList;
3090         TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3091                                      Sequence, /*InitListSyntax*/true);
3092       } else
3093         Sequence.SetFailed(
3094             InitializationSequence::FK_InitListBadDestinationType);
3095       return;
3096     }
3097   }
3098
3099   InitListChecker CheckInitList(S, Entity, InitList,
3100           DestType, /*VerifyOnly=*/true,
3101           Kind.getKind() != InitializationKind::IK_DirectList ||
3102             !S.getLangOpts().CPlusPlus0x);
3103   if (CheckInitList.HadError()) {
3104     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3105     return;
3106   }
3107
3108   // Add the list initialization step with the built init list.
3109   Sequence.AddListInitializationStep(DestType);
3110 }
3111
3112 /// \brief Try a reference initialization that involves calling a conversion
3113 /// function.
3114 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3115                                              const InitializedEntity &Entity,
3116                                              const InitializationKind &Kind,
3117                                              Expr *Initializer,
3118                                              bool AllowRValues,
3119                                              InitializationSequence &Sequence) {
3120   QualType DestType = Entity.getType();
3121   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3122   QualType T1 = cv1T1.getUnqualifiedType();
3123   QualType cv2T2 = Initializer->getType();
3124   QualType T2 = cv2T2.getUnqualifiedType();
3125
3126   bool DerivedToBase;
3127   bool ObjCConversion;
3128   bool ObjCLifetimeConversion;
3129   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3130                                          T1, T2, DerivedToBase,
3131                                          ObjCConversion,
3132                                          ObjCLifetimeConversion) &&
3133          "Must have incompatible references when binding via conversion");
3134   (void)DerivedToBase;
3135   (void)ObjCConversion;
3136   (void)ObjCLifetimeConversion;
3137   
3138   // Build the candidate set directly in the initialization sequence
3139   // structure, so that it will persist if we fail.
3140   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3141   CandidateSet.clear();
3142
3143   // Determine whether we are allowed to call explicit constructors or
3144   // explicit conversion operators.
3145   bool AllowExplicit = Kind.AllowExplicit();
3146   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3147   
3148   const RecordType *T1RecordType = 0;
3149   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3150       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3151     // The type we're converting to is a class type. Enumerate its constructors
3152     // to see if there is a suitable conversion.
3153     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3154
3155     DeclContext::lookup_iterator Con, ConEnd;
3156     for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3157          Con != ConEnd; ++Con) {
3158       NamedDecl *D = *Con;
3159       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3160
3161       // Find the constructor (which may be a template).
3162       CXXConstructorDecl *Constructor = 0;
3163       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3164       if (ConstructorTmpl)
3165         Constructor = cast<CXXConstructorDecl>(
3166                                          ConstructorTmpl->getTemplatedDecl());
3167       else
3168         Constructor = cast<CXXConstructorDecl>(D);
3169
3170       if (!Constructor->isInvalidDecl() &&
3171           Constructor->isConvertingConstructor(AllowExplicit)) {
3172         if (ConstructorTmpl)
3173           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3174                                          /*ExplicitArgs*/ 0,
3175                                          Initializer, CandidateSet,
3176                                          /*SuppressUserConversions=*/true);
3177         else
3178           S.AddOverloadCandidate(Constructor, FoundDecl,
3179                                  Initializer, CandidateSet,
3180                                  /*SuppressUserConversions=*/true);
3181       }
3182     }
3183   }
3184   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3185     return OR_No_Viable_Function;
3186
3187   const RecordType *T2RecordType = 0;
3188   if ((T2RecordType = T2->getAs<RecordType>()) &&
3189       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3190     // The type we're converting from is a class type, enumerate its conversion
3191     // functions.
3192     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3193
3194     const UnresolvedSetImpl *Conversions
3195       = T2RecordDecl->getVisibleConversionFunctions();
3196     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3197            E = Conversions->end(); I != E; ++I) {
3198       NamedDecl *D = *I;
3199       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3200       if (isa<UsingShadowDecl>(D))
3201         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3202
3203       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3204       CXXConversionDecl *Conv;
3205       if (ConvTemplate)
3206         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3207       else
3208         Conv = cast<CXXConversionDecl>(D);
3209
3210       // If the conversion function doesn't return a reference type,
3211       // it can't be considered for this conversion unless we're allowed to
3212       // consider rvalues.
3213       // FIXME: Do we need to make sure that we only consider conversion
3214       // candidates with reference-compatible results? That might be needed to
3215       // break recursion.
3216       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3217           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3218         if (ConvTemplate)
3219           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3220                                            ActingDC, Initializer,
3221                                            DestType, CandidateSet);
3222         else
3223           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3224                                    Initializer, DestType, CandidateSet);
3225       }
3226     }
3227   }
3228   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3229     return OR_No_Viable_Function;
3230
3231   SourceLocation DeclLoc = Initializer->getLocStart();
3232
3233   // Perform overload resolution. If it fails, return the failed result.
3234   OverloadCandidateSet::iterator Best;
3235   if (OverloadingResult Result
3236         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3237     return Result;
3238
3239   FunctionDecl *Function = Best->Function;
3240
3241   // This is the overload that will actually be used for the initialization, so
3242   // mark it as used.
3243   S.MarkFunctionReferenced(DeclLoc, Function);
3244
3245   // Compute the returned type of the conversion.
3246   if (isa<CXXConversionDecl>(Function))
3247     T2 = Function->getResultType();
3248   else
3249     T2 = cv1T1;
3250
3251   // Add the user-defined conversion step.
3252   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3253   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3254                                  T2.getNonLValueExprType(S.Context),
3255                                  HadMultipleCandidates);
3256
3257   // Determine whether we need to perform derived-to-base or
3258   // cv-qualification adjustments.
3259   ExprValueKind VK = VK_RValue;
3260   if (T2->isLValueReferenceType())
3261     VK = VK_LValue;
3262   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3263     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3264
3265   bool NewDerivedToBase = false;
3266   bool NewObjCConversion = false;
3267   bool NewObjCLifetimeConversion = false;
3268   Sema::ReferenceCompareResult NewRefRelationship
3269     = S.CompareReferenceRelationship(DeclLoc, T1,
3270                                      T2.getNonLValueExprType(S.Context),
3271                                      NewDerivedToBase, NewObjCConversion,
3272                                      NewObjCLifetimeConversion);
3273   if (NewRefRelationship == Sema::Ref_Incompatible) {
3274     // If the type we've converted to is not reference-related to the
3275     // type we're looking for, then there is another conversion step
3276     // we need to perform to produce a temporary of the right type
3277     // that we'll be binding to.
3278     ImplicitConversionSequence ICS;
3279     ICS.setStandard();
3280     ICS.Standard = Best->FinalConversion;
3281     T2 = ICS.Standard.getToType(2);
3282     Sequence.AddConversionSequenceStep(ICS, T2);
3283   } else if (NewDerivedToBase)
3284     Sequence.AddDerivedToBaseCastStep(
3285                                 S.Context.getQualifiedType(T1,
3286                                   T2.getNonReferenceType().getQualifiers()),
3287                                       VK);
3288   else if (NewObjCConversion)
3289     Sequence.AddObjCObjectConversionStep(
3290                                 S.Context.getQualifiedType(T1,
3291                                   T2.getNonReferenceType().getQualifiers()));
3292
3293   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3294     Sequence.AddQualificationConversionStep(cv1T1, VK);
3295
3296   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3297   return OR_Success;
3298 }
3299
3300 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3301                                            const InitializedEntity &Entity,
3302                                            Expr *CurInitExpr);
3303
3304 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3305 static void TryReferenceInitialization(Sema &S,
3306                                        const InitializedEntity &Entity,
3307                                        const InitializationKind &Kind,
3308                                        Expr *Initializer,
3309                                        InitializationSequence &Sequence) {
3310   QualType DestType = Entity.getType();
3311   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3312   Qualifiers T1Quals;
3313   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3314   QualType cv2T2 = Initializer->getType();
3315   Qualifiers T2Quals;
3316   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3317
3318   // If the initializer is the address of an overloaded function, try
3319   // to resolve the overloaded function. If all goes well, T2 is the
3320   // type of the resulting function.
3321   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3322                                                    T1, Sequence))
3323     return;
3324
3325   // Delegate everything else to a subfunction.
3326   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3327                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3328 }
3329
3330 /// \brief Reference initialization without resolving overloaded functions.
3331 static void TryReferenceInitializationCore(Sema &S,
3332                                            const InitializedEntity &Entity,
3333                                            const InitializationKind &Kind,
3334                                            Expr *Initializer,
3335                                            QualType cv1T1, QualType T1,
3336                                            Qualifiers T1Quals,
3337                                            QualType cv2T2, QualType T2,
3338                                            Qualifiers T2Quals,
3339                                            InitializationSequence &Sequence) {
3340   QualType DestType = Entity.getType();
3341   SourceLocation DeclLoc = Initializer->getLocStart();
3342   // Compute some basic properties of the types and the initializer.
3343   bool isLValueRef = DestType->isLValueReferenceType();
3344   bool isRValueRef = !isLValueRef;
3345   bool DerivedToBase = false;
3346   bool ObjCConversion = false;
3347   bool ObjCLifetimeConversion = false;
3348   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3349   Sema::ReferenceCompareResult RefRelationship
3350     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3351                                      ObjCConversion, ObjCLifetimeConversion);
3352
3353   // C++0x [dcl.init.ref]p5:
3354   //   A reference to type "cv1 T1" is initialized by an expression of type
3355   //   "cv2 T2" as follows:
3356   //
3357   //     - If the reference is an lvalue reference and the initializer
3358   //       expression
3359   // Note the analogous bullet points for rvlaue refs to functions. Because
3360   // there are no function rvalues in C++, rvalue refs to functions are treated
3361   // like lvalue refs.
3362   OverloadingResult ConvOvlResult = OR_Success;
3363   bool T1Function = T1->isFunctionType();
3364   if (isLValueRef || T1Function) {
3365     if (InitCategory.isLValue() &&
3366         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3367          (Kind.isCStyleOrFunctionalCast() &&
3368           RefRelationship == Sema::Ref_Related))) {
3369       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3370       //     reference-compatible with "cv2 T2," or
3371       //
3372       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3373       // bit-field when we're determining whether the reference initialization
3374       // can occur. However, we do pay attention to whether it is a bit-field
3375       // to decide whether we're actually binding to a temporary created from
3376       // the bit-field.
3377       if (DerivedToBase)
3378         Sequence.AddDerivedToBaseCastStep(
3379                          S.Context.getQualifiedType(T1, T2Quals),
3380                          VK_LValue);
3381       else if (ObjCConversion)
3382         Sequence.AddObjCObjectConversionStep(
3383                                      S.Context.getQualifiedType(T1, T2Quals));
3384
3385       if (T1Quals != T2Quals)
3386         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3387       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3388         (Initializer->getBitField() || Initializer->refersToVectorElement());
3389       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3390       return;
3391     }
3392
3393     //     - has a class type (i.e., T2 is a class type), where T1 is not
3394     //       reference-related to T2, and can be implicitly converted to an
3395     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3396     //       with "cv3 T3" (this conversion is selected by enumerating the
3397     //       applicable conversion functions (13.3.1.6) and choosing the best
3398     //       one through overload resolution (13.3)),
3399     // If we have an rvalue ref to function type here, the rhs must be
3400     // an rvalue.
3401     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3402         (isLValueRef || InitCategory.isRValue())) {
3403       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3404                                                        Initializer,
3405                                                    /*AllowRValues=*/isRValueRef,
3406                                                        Sequence);
3407       if (ConvOvlResult == OR_Success)
3408         return;
3409       if (ConvOvlResult != OR_No_Viable_Function) {
3410         Sequence.SetOverloadFailure(
3411                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3412                                     ConvOvlResult);
3413       }
3414     }
3415   }
3416
3417   //     - Otherwise, the reference shall be an lvalue reference to a
3418   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3419   //       shall be an rvalue reference.
3420   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3421     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3422       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3423     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3424       Sequence.SetOverloadFailure(
3425                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3426                                   ConvOvlResult);
3427     else
3428       Sequence.SetFailed(InitCategory.isLValue()
3429         ? (RefRelationship == Sema::Ref_Related
3430              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3431              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3432         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3433
3434     return;
3435   }
3436
3437   //    - If the initializer expression
3438   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3439   //        "cv1 T1" is reference-compatible with "cv2 T2"
3440   // Note: functions are handled below.
3441   if (!T1Function &&
3442       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3443        (Kind.isCStyleOrFunctionalCast() &&
3444         RefRelationship == Sema::Ref_Related)) &&
3445       (InitCategory.isXValue() ||
3446        (InitCategory.isPRValue() && T2->isRecordType()) ||
3447        (InitCategory.isPRValue() && T2->isArrayType()))) {
3448     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3449     if (InitCategory.isPRValue() && T2->isRecordType()) {
3450       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3451       // compiler the freedom to perform a copy here or bind to the
3452       // object, while C++0x requires that we bind directly to the
3453       // object. Hence, we always bind to the object without making an
3454       // extra copy. However, in C++03 requires that we check for the
3455       // presence of a suitable copy constructor:
3456       //
3457       //   The constructor that would be used to make the copy shall
3458       //   be callable whether or not the copy is actually done.
3459       if (!S.getLangOpts().CPlusPlus0x && !S.getLangOpts().MicrosoftExt)
3460         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3461       else if (S.getLangOpts().CPlusPlus0x)
3462         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3463     }
3464
3465     if (DerivedToBase)
3466       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3467                                         ValueKind);
3468     else if (ObjCConversion)
3469       Sequence.AddObjCObjectConversionStep(
3470                                        S.Context.getQualifiedType(T1, T2Quals));
3471
3472     if (T1Quals != T2Quals)
3473       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3474     Sequence.AddReferenceBindingStep(cv1T1,
3475                                  /*bindingTemporary=*/InitCategory.isPRValue());
3476     return;
3477   }
3478
3479   //       - has a class type (i.e., T2 is a class type), where T1 is not
3480   //         reference-related to T2, and can be implicitly converted to an
3481   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3482   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3483   if (T2->isRecordType()) {
3484     if (RefRelationship == Sema::Ref_Incompatible) {
3485       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3486                                                        Kind, Initializer,
3487                                                        /*AllowRValues=*/true,
3488                                                        Sequence);
3489       if (ConvOvlResult)
3490         Sequence.SetOverloadFailure(
3491                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3492                                     ConvOvlResult);
3493
3494       return;
3495     }
3496
3497     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3498     return;
3499   }
3500
3501   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3502   //        from the initializer expression using the rules for a non-reference
3503   //        copy initialization (8.5). The reference is then bound to the
3504   //        temporary. [...]
3505
3506   // Determine whether we are allowed to call explicit constructors or
3507   // explicit conversion operators.
3508   bool AllowExplicit = Kind.AllowExplicit();
3509
3510   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3511
3512   ImplicitConversionSequence ICS
3513     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3514                               /*SuppressUserConversions*/ false,
3515                               AllowExplicit,
3516                               /*FIXME:InOverloadResolution=*/false,
3517                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3518                               /*AllowObjCWritebackConversion=*/false);
3519   
3520   if (ICS.isBad()) {
3521     // FIXME: Use the conversion function set stored in ICS to turn
3522     // this into an overloading ambiguity diagnostic. However, we need
3523     // to keep that set as an OverloadCandidateSet rather than as some
3524     // other kind of set.
3525     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3526       Sequence.SetOverloadFailure(
3527                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3528                                   ConvOvlResult);
3529     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3530       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3531     else
3532       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3533     return;
3534   } else {
3535     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3536   }
3537
3538   //        [...] If T1 is reference-related to T2, cv1 must be the
3539   //        same cv-qualification as, or greater cv-qualification
3540   //        than, cv2; otherwise, the program is ill-formed.
3541   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3542   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3543   if (RefRelationship == Sema::Ref_Related &&
3544       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3545     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3546     return;
3547   }
3548
3549   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3550   //   reference, the initializer expression shall not be an lvalue.
3551   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3552       InitCategory.isLValue()) {
3553     Sequence.SetFailed(
3554                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3555     return;
3556   }
3557
3558   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3559   return;
3560 }
3561
3562 /// \brief Attempt character array initialization from a string literal
3563 /// (C++ [dcl.init.string], C99 6.7.8).
3564 static void TryStringLiteralInitialization(Sema &S,
3565                                            const InitializedEntity &Entity,
3566                                            const InitializationKind &Kind,
3567                                            Expr *Initializer,
3568                                        InitializationSequence &Sequence) {
3569   Sequence.AddStringInitStep(Entity.getType());
3570 }
3571
3572 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3573 static void TryValueInitialization(Sema &S,
3574                                    const InitializedEntity &Entity,
3575                                    const InitializationKind &Kind,
3576                                    InitializationSequence &Sequence,
3577                                    InitListExpr *InitList) {
3578   assert((!InitList || InitList->getNumInits() == 0) &&
3579          "Shouldn't use value-init for non-empty init lists");
3580
3581   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3582   //
3583   //   To value-initialize an object of type T means:
3584   QualType T = Entity.getType();
3585
3586   //     -- if T is an array type, then each element is value-initialized;
3587   T = S.Context.getBaseElementType(T);
3588
3589   if (const RecordType *RT = T->getAs<RecordType>()) {
3590     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3591       bool NeedZeroInitialization = true;
3592       if (!S.getLangOpts().CPlusPlus0x) {
3593         // C++98:
3594         // -- if T is a class type (clause 9) with a user-declared constructor
3595         //    (12.1), then the default constructor for T is called (and the
3596         //    initialization is ill-formed if T has no accessible default
3597         //    constructor);
3598         if (ClassDecl->hasUserDeclaredConstructor())
3599           NeedZeroInitialization = false;
3600       } else {
3601         // C++11:
3602         // -- if T is a class type (clause 9) with either no default constructor
3603         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3604         //    or deleted, then the object is default-initialized;
3605         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3606         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3607           NeedZeroInitialization = false;
3608       }
3609
3610       // -- if T is a (possibly cv-qualified) non-union class type without a
3611       //    user-provided or deleted default constructor, then the object is
3612       //    zero-initialized and, if T has a non-trivial default constructor,
3613       //    default-initialized;
3614       // The 'non-union' here was removed by DR1502. The 'non-trivial default
3615       // constructor' part was removed by DR1507.
3616       if (NeedZeroInitialization)
3617         Sequence.AddZeroInitializationStep(Entity.getType());
3618
3619       // If this is list-value-initialization, pass the empty init list on when
3620       // building the constructor call. This affects the semantics of a few
3621       // things (such as whether an explicit default constructor can be called).
3622       Expr *InitListAsExpr = InitList;
3623       Expr **Args = InitList ? &InitListAsExpr : 0;
3624       unsigned NumArgs = InitList ? 1 : 0;
3625       bool InitListSyntax = InitList;
3626
3627       return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3628                                           Sequence, InitListSyntax);
3629     }
3630   }
3631
3632   Sequence.AddZeroInitializationStep(Entity.getType());
3633 }
3634
3635 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3636 static void TryDefaultInitialization(Sema &S,
3637                                      const InitializedEntity &Entity,
3638                                      const InitializationKind &Kind,
3639                                      InitializationSequence &Sequence) {
3640   assert(Kind.getKind() == InitializationKind::IK_Default);
3641
3642   // C++ [dcl.init]p6:
3643   //   To default-initialize an object of type T means:
3644   //     - if T is an array type, each element is default-initialized;
3645   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3646          
3647   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3648   //       constructor for T is called (and the initialization is ill-formed if
3649   //       T has no accessible default constructor);
3650   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3651     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3652     return;
3653   }
3654
3655   //     - otherwise, no initialization is performed.
3656
3657   //   If a program calls for the default initialization of an object of
3658   //   a const-qualified type T, T shall be a class type with a user-provided
3659   //   default constructor.
3660   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3661     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3662     return;
3663   }
3664
3665   // If the destination type has a lifetime property, zero-initialize it.
3666   if (DestType.getQualifiers().hasObjCLifetime()) {
3667     Sequence.AddZeroInitializationStep(Entity.getType());
3668     return;
3669   }
3670 }
3671
3672 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3673 /// which enumerates all conversion functions and performs overload resolution
3674 /// to select the best.
3675 static void TryUserDefinedConversion(Sema &S,
3676                                      const InitializedEntity &Entity,
3677                                      const InitializationKind &Kind,
3678                                      Expr *Initializer,
3679                                      InitializationSequence &Sequence) {
3680   QualType DestType = Entity.getType();
3681   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3682   QualType SourceType = Initializer->getType();
3683   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3684          "Must have a class type to perform a user-defined conversion");
3685
3686   // Build the candidate set directly in the initialization sequence
3687   // structure, so that it will persist if we fail.
3688   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3689   CandidateSet.clear();
3690
3691   // Determine whether we are allowed to call explicit constructors or
3692   // explicit conversion operators.
3693   bool AllowExplicit = Kind.AllowExplicit();
3694
3695   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3696     // The type we're converting to is a class type. Enumerate its constructors
3697     // to see if there is a suitable conversion.
3698     CXXRecordDecl *DestRecordDecl
3699       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3700
3701     // Try to complete the type we're converting to.
3702     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3703       DeclContext::lookup_iterator ConOrig, ConEndOrig;
3704       llvm::tie(ConOrig, ConEndOrig) = S.LookupConstructors(DestRecordDecl);
3705       // The container holding the constructors can under certain conditions
3706       // be changed while iterating. To be safe we copy the lookup results
3707       // to a new container.
3708       SmallVector<NamedDecl*, 8> CopyOfCon(ConOrig, ConEndOrig);
3709       for (SmallVector<NamedDecl*, 8>::iterator
3710              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
3711            Con != ConEnd; ++Con) {
3712         NamedDecl *D = *Con;
3713         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3714
3715         // Find the constructor (which may be a template).
3716         CXXConstructorDecl *Constructor = 0;
3717         FunctionTemplateDecl *ConstructorTmpl
3718           = dyn_cast<FunctionTemplateDecl>(D);
3719         if (ConstructorTmpl)
3720           Constructor = cast<CXXConstructorDecl>(
3721                                            ConstructorTmpl->getTemplatedDecl());
3722         else
3723           Constructor = cast<CXXConstructorDecl>(D);
3724
3725         if (!Constructor->isInvalidDecl() &&
3726             Constructor->isConvertingConstructor(AllowExplicit)) {
3727           if (ConstructorTmpl)
3728             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3729                                            /*ExplicitArgs*/ 0,
3730                                            Initializer, CandidateSet,
3731                                            /*SuppressUserConversions=*/true);
3732           else
3733             S.AddOverloadCandidate(Constructor, FoundDecl,
3734                                    Initializer, CandidateSet,
3735                                    /*SuppressUserConversions=*/true);
3736         }
3737       }
3738     }
3739   }
3740
3741   SourceLocation DeclLoc = Initializer->getLocStart();
3742
3743   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3744     // The type we're converting from is a class type, enumerate its conversion
3745     // functions.
3746
3747     // We can only enumerate the conversion functions for a complete type; if
3748     // the type isn't complete, simply skip this step.
3749     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3750       CXXRecordDecl *SourceRecordDecl
3751         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3752
3753       const UnresolvedSetImpl *Conversions
3754         = SourceRecordDecl->getVisibleConversionFunctions();
3755       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3756            E = Conversions->end();
3757            I != E; ++I) {
3758         NamedDecl *D = *I;
3759         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3760         if (isa<UsingShadowDecl>(D))
3761           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3762
3763         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3764         CXXConversionDecl *Conv;
3765         if (ConvTemplate)
3766           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3767         else
3768           Conv = cast<CXXConversionDecl>(D);
3769
3770         if (AllowExplicit || !Conv->isExplicit()) {
3771           if (ConvTemplate)
3772             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3773                                              ActingDC, Initializer, DestType,
3774                                              CandidateSet);
3775           else
3776             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3777                                      Initializer, DestType, CandidateSet);
3778         }
3779       }
3780     }
3781   }
3782
3783   // Perform overload resolution. If it fails, return the failed result.
3784   OverloadCandidateSet::iterator Best;
3785   if (OverloadingResult Result
3786         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3787     Sequence.SetOverloadFailure(
3788                         InitializationSequence::FK_UserConversionOverloadFailed,
3789                                 Result);
3790     return;
3791   }
3792
3793   FunctionDecl *Function = Best->Function;
3794   S.MarkFunctionReferenced(DeclLoc, Function);
3795   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3796
3797   if (isa<CXXConstructorDecl>(Function)) {
3798     // Add the user-defined conversion step. Any cv-qualification conversion is
3799     // subsumed by the initialization. Per DR5, the created temporary is of the
3800     // cv-unqualified type of the destination.
3801     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3802                                    DestType.getUnqualifiedType(),
3803                                    HadMultipleCandidates);
3804     return;
3805   }
3806
3807   // Add the user-defined conversion step that calls the conversion function.
3808   QualType ConvType = Function->getCallResultType();
3809   if (ConvType->getAs<RecordType>()) {
3810     // If we're converting to a class type, there may be an copy of
3811     // the resulting temporary object (possible to create an object of
3812     // a base class type). That copy is not a separate conversion, so
3813     // we just make a note of the actual destination type (possibly a
3814     // base class of the type returned by the conversion function) and
3815     // let the user-defined conversion step handle the conversion.
3816     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3817                                    HadMultipleCandidates);
3818     return;
3819   }
3820
3821   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3822                                  HadMultipleCandidates);
3823
3824   // If the conversion following the call to the conversion function
3825   // is interesting, add it as a separate step.
3826   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3827       Best->FinalConversion.Third) {
3828     ImplicitConversionSequence ICS;
3829     ICS.setStandard();
3830     ICS.Standard = Best->FinalConversion;
3831     Sequence.AddConversionSequenceStep(ICS, DestType);
3832   }
3833 }
3834
3835 /// The non-zero enum values here are indexes into diagnostic alternatives.
3836 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3837
3838 /// Determines whether this expression is an acceptable ICR source.
3839 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3840                                          bool isAddressOf) {
3841   // Skip parens.
3842   e = e->IgnoreParens();
3843
3844   // Skip address-of nodes.
3845   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3846     if (op->getOpcode() == UO_AddrOf)
3847       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3848
3849   // Skip certain casts.
3850   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3851     switch (ce->getCastKind()) {
3852     case CK_Dependent:
3853     case CK_BitCast:
3854     case CK_LValueBitCast:
3855     case CK_NoOp:
3856       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3857
3858     case CK_ArrayToPointerDecay:
3859       return IIK_nonscalar;
3860
3861     case CK_NullToPointer:
3862       return IIK_okay;
3863
3864     default:
3865       break;
3866     }
3867
3868   // If we have a declaration reference, it had better be a local variable.
3869   } else if (isa<DeclRefExpr>(e)) {
3870     if (!isAddressOf) return IIK_nonlocal;
3871
3872     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3873     if (!var) return IIK_nonlocal;
3874
3875     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3876
3877   // If we have a conditional operator, check both sides.
3878   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3879     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3880       return iik;
3881
3882     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3883
3884   // These are never scalar.
3885   } else if (isa<ArraySubscriptExpr>(e)) {
3886     return IIK_nonscalar;
3887
3888   // Otherwise, it needs to be a null pointer constant.
3889   } else {
3890     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3891             ? IIK_okay : IIK_nonlocal);
3892   }
3893
3894   return IIK_nonlocal;
3895 }
3896
3897 /// Check whether the given expression is a valid operand for an
3898 /// indirect copy/restore.
3899 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3900   assert(src->isRValue());
3901
3902   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3903   if (iik == IIK_okay) return;
3904
3905   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3906     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3907     << src->getSourceRange();
3908 }
3909
3910 /// \brief Determine whether we have compatible array types for the
3911 /// purposes of GNU by-copy array initialization.
3912 static bool hasCompatibleArrayTypes(ASTContext &Context,
3913                                     const ArrayType *Dest, 
3914                                     const ArrayType *Source) {
3915   // If the source and destination array types are equivalent, we're
3916   // done.
3917   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3918     return true;
3919
3920   // Make sure that the element types are the same.
3921   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3922     return false;
3923
3924   // The only mismatch we allow is when the destination is an
3925   // incomplete array type and the source is a constant array type.
3926   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3927 }
3928
3929 static bool tryObjCWritebackConversion(Sema &S,
3930                                        InitializationSequence &Sequence,
3931                                        const InitializedEntity &Entity,
3932                                        Expr *Initializer) {
3933   bool ArrayDecay = false;
3934   QualType ArgType = Initializer->getType();
3935   QualType ArgPointee;
3936   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3937     ArrayDecay = true;
3938     ArgPointee = ArgArrayType->getElementType();
3939     ArgType = S.Context.getPointerType(ArgPointee);
3940   }
3941       
3942   // Handle write-back conversion.
3943   QualType ConvertedArgType;
3944   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3945                                    ConvertedArgType))
3946     return false;
3947
3948   // We should copy unless we're passing to an argument explicitly
3949   // marked 'out'.
3950   bool ShouldCopy = true;
3951   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3952     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3953
3954   // Do we need an lvalue conversion?
3955   if (ArrayDecay || Initializer->isGLValue()) {
3956     ImplicitConversionSequence ICS;
3957     ICS.setStandard();
3958     ICS.Standard.setAsIdentityConversion();
3959
3960     QualType ResultType;
3961     if (ArrayDecay) {
3962       ICS.Standard.First = ICK_Array_To_Pointer;
3963       ResultType = S.Context.getPointerType(ArgPointee);
3964     } else {
3965       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3966       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3967     }
3968           
3969     Sequence.AddConversionSequenceStep(ICS, ResultType);
3970   }
3971         
3972   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3973   return true;
3974 }
3975
3976 InitializationSequence::InitializationSequence(Sema &S,
3977                                                const InitializedEntity &Entity,
3978                                                const InitializationKind &Kind,
3979                                                Expr **Args,
3980                                                unsigned NumArgs)
3981     : FailedCandidateSet(Kind.getLocation()) {
3982   ASTContext &Context = S.Context;
3983
3984   // C++0x [dcl.init]p16:
3985   //   The semantics of initializers are as follows. The destination type is
3986   //   the type of the object or reference being initialized and the source
3987   //   type is the type of the initializer expression. The source type is not
3988   //   defined when the initializer is a braced-init-list or when it is a
3989   //   parenthesized list of expressions.
3990   QualType DestType = Entity.getType();
3991
3992   if (DestType->isDependentType() ||
3993       Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
3994     SequenceKind = DependentSequence;
3995     return;
3996   }
3997
3998   // Almost everything is a normal sequence.
3999   setSequenceKind(NormalSequence);
4000
4001   for (unsigned I = 0; I != NumArgs; ++I)
4002     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4003       // FIXME: should we be doing this here?
4004       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4005       if (result.isInvalid()) {
4006         SetFailed(FK_PlaceholderType);
4007         return;
4008       }
4009       Args[I] = result.take();
4010     }
4011
4012
4013   QualType SourceType;
4014   Expr *Initializer = 0;
4015   if (NumArgs == 1) {
4016     Initializer = Args[0];
4017     if (!isa<InitListExpr>(Initializer))
4018       SourceType = Initializer->getType();
4019   }
4020
4021   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4022   //       object is list-initialized (8.5.4).
4023   if (Kind.getKind() != InitializationKind::IK_Direct) {
4024     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4025       TryListInitialization(S, Entity, Kind, InitList, *this);
4026       return;
4027     }
4028   }
4029
4030   //     - If the destination type is a reference type, see 8.5.3.
4031   if (DestType->isReferenceType()) {
4032     // C++0x [dcl.init.ref]p1:
4033     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4034     //   (8.3.2), shall be initialized by an object, or function, of type T or
4035     //   by an object that can be converted into a T.
4036     // (Therefore, multiple arguments are not permitted.)
4037     if (NumArgs != 1)
4038       SetFailed(FK_TooManyInitsForReference);
4039     else
4040       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4041     return;
4042   }
4043
4044   //     - If the initializer is (), the object is value-initialized.
4045   if (Kind.getKind() == InitializationKind::IK_Value ||
4046       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4047     TryValueInitialization(S, Entity, Kind, *this);
4048     return;
4049   }
4050
4051   // Handle default initialization.
4052   if (Kind.getKind() == InitializationKind::IK_Default) {
4053     TryDefaultInitialization(S, Entity, Kind, *this);
4054     return;
4055   }
4056
4057   //     - If the destination type is an array of characters, an array of
4058   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4059   //       initializer is a string literal, see 8.5.2.
4060   //     - Otherwise, if the destination type is an array, the program is
4061   //       ill-formed.
4062   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4063     if (Initializer && isa<VariableArrayType>(DestAT)) {
4064       SetFailed(FK_VariableLengthArrayHasInitializer);
4065       return;
4066     }
4067
4068     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4069       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4070       return;
4071     }
4072
4073     // Note: as an GNU C extension, we allow initialization of an
4074     // array from a compound literal that creates an array of the same
4075     // type, so long as the initializer has no side effects.
4076     if (!S.getLangOpts().CPlusPlus && Initializer &&
4077         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4078         Initializer->getType()->isArrayType()) {
4079       const ArrayType *SourceAT
4080         = Context.getAsArrayType(Initializer->getType());
4081       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4082         SetFailed(FK_ArrayTypeMismatch);
4083       else if (Initializer->HasSideEffects(S.Context))
4084         SetFailed(FK_NonConstantArrayInit);
4085       else {
4086         AddArrayInitStep(DestType);
4087       }
4088     }
4089     // Note: as a GNU C++ extension, we allow list-initialization of a
4090     // class member of array type from a parenthesized initializer list.
4091     else if (S.getLangOpts().CPlusPlus &&
4092              Entity.getKind() == InitializedEntity::EK_Member &&
4093              Initializer && isa<InitListExpr>(Initializer)) {
4094       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4095                             *this);
4096       AddParenthesizedArrayInitStep(DestType);
4097     } else if (DestAT->getElementType()->isAnyCharacterType())
4098       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4099     else
4100       SetFailed(FK_ArrayNeedsInitList);
4101
4102     return;
4103   }
4104
4105   // Determine whether we should consider writeback conversions for 
4106   // Objective-C ARC.
4107   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4108     Entity.getKind() == InitializedEntity::EK_Parameter;
4109
4110   // We're at the end of the line for C: it's either a write-back conversion
4111   // or it's a C assignment. There's no need to check anything else.
4112   if (!S.getLangOpts().CPlusPlus) {
4113     // If allowed, check whether this is an Objective-C writeback conversion.
4114     if (allowObjCWritebackConversion &&
4115         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4116       return;
4117     }
4118     
4119     // Handle initialization in C
4120     AddCAssignmentStep(DestType);
4121     MaybeProduceObjCObject(S, *this, Entity);
4122     return;
4123   }
4124
4125   assert(S.getLangOpts().CPlusPlus);
4126       
4127   //     - If the destination type is a (possibly cv-qualified) class type:
4128   if (DestType->isRecordType()) {
4129     //     - If the initialization is direct-initialization, or if it is
4130     //       copy-initialization where the cv-unqualified version of the
4131     //       source type is the same class as, or a derived class of, the
4132     //       class of the destination, constructors are considered. [...]
4133     if (Kind.getKind() == InitializationKind::IK_Direct ||
4134         (Kind.getKind() == InitializationKind::IK_Copy &&
4135          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4136           S.IsDerivedFrom(SourceType, DestType))))
4137       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4138                                    Entity.getType(), *this);
4139     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4140     //       user-defined conversion sequences that can convert from the source
4141     //       type to the destination type or (when a conversion function is
4142     //       used) to a derived class thereof are enumerated as described in
4143     //       13.3.1.4, and the best one is chosen through overload resolution
4144     //       (13.3).
4145     else
4146       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4147     return;
4148   }
4149
4150   if (NumArgs > 1) {
4151     SetFailed(FK_TooManyInitsForScalar);
4152     return;
4153   }
4154   assert(NumArgs == 1 && "Zero-argument case handled above");
4155
4156   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4157   //      type, conversion functions are considered.
4158   if (!SourceType.isNull() && SourceType->isRecordType()) {
4159     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4160     MaybeProduceObjCObject(S, *this, Entity);
4161     return;
4162   }
4163
4164   //    - Otherwise, the initial value of the object being initialized is the
4165   //      (possibly converted) value of the initializer expression. Standard
4166   //      conversions (Clause 4) will be used, if necessary, to convert the
4167   //      initializer expression to the cv-unqualified version of the
4168   //      destination type; no user-defined conversions are considered.
4169       
4170   ImplicitConversionSequence ICS
4171     = S.TryImplicitConversion(Initializer, Entity.getType(),
4172                               /*SuppressUserConversions*/true,
4173                               /*AllowExplicitConversions*/ false,
4174                               /*InOverloadResolution*/ false,
4175                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4176                               allowObjCWritebackConversion);
4177       
4178   if (ICS.isStandard() && 
4179       ICS.Standard.Second == ICK_Writeback_Conversion) {
4180     // Objective-C ARC writeback conversion.
4181     
4182     // We should copy unless we're passing to an argument explicitly
4183     // marked 'out'.
4184     bool ShouldCopy = true;
4185     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4186       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4187     
4188     // If there was an lvalue adjustment, add it as a separate conversion.
4189     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4190         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4191       ImplicitConversionSequence LvalueICS;
4192       LvalueICS.setStandard();
4193       LvalueICS.Standard.setAsIdentityConversion();
4194       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4195       LvalueICS.Standard.First = ICS.Standard.First;
4196       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4197     }
4198     
4199     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4200   } else if (ICS.isBad()) {
4201     DeclAccessPair dap;
4202     if (Initializer->getType() == Context.OverloadTy && 
4203           !S.ResolveAddressOfOverloadedFunction(Initializer
4204                       , DestType, false, dap))
4205       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4206     else
4207       SetFailed(InitializationSequence::FK_ConversionFailed);
4208   } else {
4209     AddConversionSequenceStep(ICS, Entity.getType());
4210
4211     MaybeProduceObjCObject(S, *this, Entity);
4212   }
4213 }
4214
4215 InitializationSequence::~InitializationSequence() {
4216   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4217                                           StepEnd = Steps.end();
4218        Step != StepEnd; ++Step)
4219     Step->Destroy();
4220 }
4221
4222 //===----------------------------------------------------------------------===//
4223 // Perform initialization
4224 //===----------------------------------------------------------------------===//
4225 static Sema::AssignmentAction
4226 getAssignmentAction(const InitializedEntity &Entity) {
4227   switch(Entity.getKind()) {
4228   case InitializedEntity::EK_Variable:
4229   case InitializedEntity::EK_New:
4230   case InitializedEntity::EK_Exception:
4231   case InitializedEntity::EK_Base:
4232   case InitializedEntity::EK_Delegating:
4233     return Sema::AA_Initializing;
4234
4235   case InitializedEntity::EK_Parameter:
4236     if (Entity.getDecl() &&
4237         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4238       return Sema::AA_Sending;
4239
4240     return Sema::AA_Passing;
4241
4242   case InitializedEntity::EK_Result:
4243     return Sema::AA_Returning;
4244
4245   case InitializedEntity::EK_Temporary:
4246     // FIXME: Can we tell apart casting vs. converting?
4247     return Sema::AA_Casting;
4248
4249   case InitializedEntity::EK_Member:
4250   case InitializedEntity::EK_ArrayElement:
4251   case InitializedEntity::EK_VectorElement:
4252   case InitializedEntity::EK_ComplexElement:
4253   case InitializedEntity::EK_BlockElement:
4254   case InitializedEntity::EK_LambdaCapture:
4255     return Sema::AA_Initializing;
4256   }
4257
4258   llvm_unreachable("Invalid EntityKind!");
4259 }
4260
4261 /// \brief Whether we should binding a created object as a temporary when
4262 /// initializing the given entity.
4263 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4264   switch (Entity.getKind()) {
4265   case InitializedEntity::EK_ArrayElement:
4266   case InitializedEntity::EK_Member:
4267   case InitializedEntity::EK_Result:
4268   case InitializedEntity::EK_New:
4269   case InitializedEntity::EK_Variable:
4270   case InitializedEntity::EK_Base:
4271   case InitializedEntity::EK_Delegating:
4272   case InitializedEntity::EK_VectorElement:
4273   case InitializedEntity::EK_ComplexElement:
4274   case InitializedEntity::EK_Exception:
4275   case InitializedEntity::EK_BlockElement:
4276   case InitializedEntity::EK_LambdaCapture:
4277     return false;
4278
4279   case InitializedEntity::EK_Parameter:
4280   case InitializedEntity::EK_Temporary:
4281     return true;
4282   }
4283
4284   llvm_unreachable("missed an InitializedEntity kind?");
4285 }
4286
4287 /// \brief Whether the given entity, when initialized with an object
4288 /// created for that initialization, requires destruction.
4289 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4290   switch (Entity.getKind()) {
4291     case InitializedEntity::EK_Member:
4292     case InitializedEntity::EK_Result:
4293     case InitializedEntity::EK_New:
4294     case InitializedEntity::EK_Base:
4295     case InitializedEntity::EK_Delegating:
4296     case InitializedEntity::EK_VectorElement:
4297     case InitializedEntity::EK_ComplexElement:
4298     case InitializedEntity::EK_BlockElement:
4299     case InitializedEntity::EK_LambdaCapture:
4300       return false;
4301
4302     case InitializedEntity::EK_Variable:
4303     case InitializedEntity::EK_Parameter:
4304     case InitializedEntity::EK_Temporary:
4305     case InitializedEntity::EK_ArrayElement:
4306     case InitializedEntity::EK_Exception:
4307       return true;
4308   }
4309
4310   llvm_unreachable("missed an InitializedEntity kind?");
4311 }
4312
4313 /// \brief Look for copy and move constructors and constructor templates, for
4314 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4315 static void LookupCopyAndMoveConstructors(Sema &S,
4316                                           OverloadCandidateSet &CandidateSet,
4317                                           CXXRecordDecl *Class,
4318                                           Expr *CurInitExpr) {
4319   DeclContext::lookup_iterator Con, ConEnd;
4320   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4321        Con != ConEnd; ++Con) {
4322     CXXConstructorDecl *Constructor = 0;
4323
4324     if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4325       // Handle copy/moveconstructors, only.
4326       if (!Constructor || Constructor->isInvalidDecl() ||
4327           !Constructor->isCopyOrMoveConstructor() ||
4328           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4329         continue;
4330
4331       DeclAccessPair FoundDecl
4332         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4333       S.AddOverloadCandidate(Constructor, FoundDecl,
4334                              CurInitExpr, CandidateSet);
4335       continue;
4336     }
4337
4338     // Handle constructor templates.
4339     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4340     if (ConstructorTmpl->isInvalidDecl())
4341       continue;
4342
4343     Constructor = cast<CXXConstructorDecl>(
4344                                          ConstructorTmpl->getTemplatedDecl());
4345     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4346       continue;
4347
4348     // FIXME: Do we need to limit this to copy-constructor-like
4349     // candidates?
4350     DeclAccessPair FoundDecl
4351       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4352     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4353                                    CurInitExpr, CandidateSet, true);
4354   }
4355 }
4356
4357 /// \brief Get the location at which initialization diagnostics should appear.
4358 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4359                                            Expr *Initializer) {
4360   switch (Entity.getKind()) {
4361   case InitializedEntity::EK_Result:
4362     return Entity.getReturnLoc();
4363
4364   case InitializedEntity::EK_Exception:
4365     return Entity.getThrowLoc();
4366
4367   case InitializedEntity::EK_Variable:
4368     return Entity.getDecl()->getLocation();
4369
4370   case InitializedEntity::EK_LambdaCapture:
4371     return Entity.getCaptureLoc();
4372       
4373   case InitializedEntity::EK_ArrayElement:
4374   case InitializedEntity::EK_Member:
4375   case InitializedEntity::EK_Parameter:
4376   case InitializedEntity::EK_Temporary:
4377   case InitializedEntity::EK_New:
4378   case InitializedEntity::EK_Base:
4379   case InitializedEntity::EK_Delegating:
4380   case InitializedEntity::EK_VectorElement:
4381   case InitializedEntity::EK_ComplexElement:
4382   case InitializedEntity::EK_BlockElement:
4383     return Initializer->getLocStart();
4384   }
4385   llvm_unreachable("missed an InitializedEntity kind?");
4386 }
4387
4388 /// \brief Make a (potentially elidable) temporary copy of the object
4389 /// provided by the given initializer by calling the appropriate copy
4390 /// constructor.
4391 ///
4392 /// \param S The Sema object used for type-checking.
4393 ///
4394 /// \param T The type of the temporary object, which must either be
4395 /// the type of the initializer expression or a superclass thereof.
4396 ///
4397 /// \param Entity The entity being initialized.
4398 ///
4399 /// \param CurInit The initializer expression.
4400 ///
4401 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4402 /// is permitted in C++03 (but not C++0x) when binding a reference to
4403 /// an rvalue.
4404 ///
4405 /// \returns An expression that copies the initializer expression into
4406 /// a temporary object, or an error expression if a copy could not be
4407 /// created.
4408 static ExprResult CopyObject(Sema &S,
4409                              QualType T,
4410                              const InitializedEntity &Entity,
4411                              ExprResult CurInit,
4412                              bool IsExtraneousCopy) {
4413   // Determine which class type we're copying to.
4414   Expr *CurInitExpr = (Expr *)CurInit.get();
4415   CXXRecordDecl *Class = 0;
4416   if (const RecordType *Record = T->getAs<RecordType>())
4417     Class = cast<CXXRecordDecl>(Record->getDecl());
4418   if (!Class)
4419     return CurInit;
4420
4421   // C++0x [class.copy]p32:
4422   //   When certain criteria are met, an implementation is allowed to
4423   //   omit the copy/move construction of a class object, even if the
4424   //   copy/move constructor and/or destructor for the object have
4425   //   side effects. [...]
4426   //     - when a temporary class object that has not been bound to a
4427   //       reference (12.2) would be copied/moved to a class object
4428   //       with the same cv-unqualified type, the copy/move operation
4429   //       can be omitted by constructing the temporary object
4430   //       directly into the target of the omitted copy/move
4431   //
4432   // Note that the other three bullets are handled elsewhere. Copy
4433   // elision for return statements and throw expressions are handled as part
4434   // of constructor initialization, while copy elision for exception handlers
4435   // is handled by the run-time.
4436   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4437   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4438
4439   // Make sure that the type we are copying is complete.
4440   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4441     return CurInit;
4442
4443   // Perform overload resolution using the class's copy/move constructors.
4444   // Only consider constructors and constructor templates. Per
4445   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4446   // is direct-initialization.
4447   OverloadCandidateSet CandidateSet(Loc);
4448   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4449
4450   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4451
4452   OverloadCandidateSet::iterator Best;
4453   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4454   case OR_Success:
4455     break;
4456
4457   case OR_No_Viable_Function:
4458     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4459            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4460            : diag::err_temp_copy_no_viable)
4461       << (int)Entity.getKind() << CurInitExpr->getType()
4462       << CurInitExpr->getSourceRange();
4463     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4464     if (!IsExtraneousCopy || S.isSFINAEContext())
4465       return ExprError();
4466     return CurInit;
4467
4468   case OR_Ambiguous:
4469     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4470       << (int)Entity.getKind() << CurInitExpr->getType()
4471       << CurInitExpr->getSourceRange();
4472     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4473     return ExprError();
4474
4475   case OR_Deleted:
4476     S.Diag(Loc, diag::err_temp_copy_deleted)
4477       << (int)Entity.getKind() << CurInitExpr->getType()
4478       << CurInitExpr->getSourceRange();
4479     S.NoteDeletedFunction(Best->Function);
4480     return ExprError();
4481   }
4482
4483   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4484   SmallVector<Expr*, 8> ConstructorArgs;
4485   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4486
4487   S.CheckConstructorAccess(Loc, Constructor, Entity,
4488                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4489
4490   if (IsExtraneousCopy) {
4491     // If this is a totally extraneous copy for C++03 reference
4492     // binding purposes, just return the original initialization
4493     // expression. We don't generate an (elided) copy operation here
4494     // because doing so would require us to pass down a flag to avoid
4495     // infinite recursion, where each step adds another extraneous,
4496     // elidable copy.
4497
4498     // Instantiate the default arguments of any extra parameters in
4499     // the selected copy constructor, as if we were going to create a
4500     // proper call to the copy constructor.
4501     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4502       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4503       if (S.RequireCompleteType(Loc, Parm->getType(),
4504                                 diag::err_call_incomplete_argument))
4505         break;
4506
4507       // Build the default argument expression; we don't actually care
4508       // if this succeeds or not, because this routine will complain
4509       // if there was a problem.
4510       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4511     }
4512
4513     return S.Owned(CurInitExpr);
4514   }
4515
4516   S.MarkFunctionReferenced(Loc, Constructor);
4517
4518   // Determine the arguments required to actually perform the
4519   // constructor call (we might have derived-to-base conversions, or
4520   // the copy constructor may have default arguments).
4521   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4522                                 Loc, ConstructorArgs))
4523     return ExprError();
4524
4525   // Actually perform the constructor call.
4526   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4527                                     ConstructorArgs,
4528                                     HadMultipleCandidates,
4529                                     /*ZeroInit*/ false,
4530                                     CXXConstructExpr::CK_Complete,
4531                                     SourceRange());
4532
4533   // If we're supposed to bind temporaries, do so.
4534   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4535     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4536   return CurInit;
4537 }
4538
4539 /// \brief Check whether elidable copy construction for binding a reference to
4540 /// a temporary would have succeeded if we were building in C++98 mode, for
4541 /// -Wc++98-compat.
4542 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4543                                            const InitializedEntity &Entity,
4544                                            Expr *CurInitExpr) {
4545   assert(S.getLangOpts().CPlusPlus0x);
4546
4547   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4548   if (!Record)
4549     return;
4550
4551   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4552   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4553         == DiagnosticsEngine::Ignored)
4554     return;
4555
4556   // Find constructors which would have been considered.
4557   OverloadCandidateSet CandidateSet(Loc);
4558   LookupCopyAndMoveConstructors(
4559       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4560
4561   // Perform overload resolution.
4562   OverloadCandidateSet::iterator Best;
4563   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4564
4565   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4566     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4567     << CurInitExpr->getSourceRange();
4568
4569   switch (OR) {
4570   case OR_Success:
4571     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4572                              Entity, Best->FoundDecl.getAccess(), Diag);
4573     // FIXME: Check default arguments as far as that's possible.
4574     break;
4575
4576   case OR_No_Viable_Function:
4577     S.Diag(Loc, Diag);
4578     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4579     break;
4580
4581   case OR_Ambiguous:
4582     S.Diag(Loc, Diag);
4583     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4584     break;
4585
4586   case OR_Deleted:
4587     S.Diag(Loc, Diag);
4588     S.NoteDeletedFunction(Best->Function);
4589     break;
4590   }
4591 }
4592
4593 void InitializationSequence::PrintInitLocationNote(Sema &S,
4594                                               const InitializedEntity &Entity) {
4595   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4596     if (Entity.getDecl()->getLocation().isInvalid())
4597       return;
4598
4599     if (Entity.getDecl()->getDeclName())
4600       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4601         << Entity.getDecl()->getDeclName();
4602     else
4603       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4604   }
4605 }
4606
4607 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4608   return s.Kind == InitializationSequence::SK_BindReference ||
4609          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4610 }
4611
4612 static ExprResult
4613 PerformConstructorInitialization(Sema &S,
4614                                  const InitializedEntity &Entity,
4615                                  const InitializationKind &Kind,
4616                                  MultiExprArg Args,
4617                                  const InitializationSequence::Step& Step,
4618                                  bool &ConstructorInitRequiresZeroInit) {
4619   unsigned NumArgs = Args.size();
4620   CXXConstructorDecl *Constructor
4621     = cast<CXXConstructorDecl>(Step.Function.Function);
4622   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4623
4624   // Build a call to the selected constructor.
4625   SmallVector<Expr*, 8> ConstructorArgs;
4626   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4627                          ? Kind.getEqualLoc()
4628                          : Kind.getLocation();
4629
4630   if (Kind.getKind() == InitializationKind::IK_Default) {
4631     // Force even a trivial, implicit default constructor to be
4632     // semantically checked. We do this explicitly because we don't build
4633     // the definition for completely trivial constructors.
4634     assert(Constructor->getParent() && "No parent class for constructor.");
4635     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4636         Constructor->isTrivial() && !Constructor->isUsed(false))
4637       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4638   }
4639
4640   ExprResult CurInit = S.Owned((Expr *)0);
4641
4642   // C++ [over.match.copy]p1:
4643   //   - When initializing a temporary to be bound to the first parameter 
4644   //     of a constructor that takes a reference to possibly cv-qualified 
4645   //     T as its first argument, called with a single argument in the 
4646   //     context of direct-initialization, explicit conversion functions
4647   //     are also considered.
4648   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4649                            Args.size() == 1 && 
4650                            Constructor->isCopyOrMoveConstructor();
4651
4652   // Determine the arguments required to actually perform the constructor
4653   // call.
4654   if (S.CompleteConstructorCall(Constructor, Args,
4655                                 Loc, ConstructorArgs,
4656                                 AllowExplicitConv))
4657     return ExprError();
4658
4659
4660   if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4661       (Kind.getKind() == InitializationKind::IK_DirectList ||
4662        (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4663         (Kind.getKind() == InitializationKind::IK_Direct ||
4664          Kind.getKind() == InitializationKind::IK_Value)))) {
4665     // An explicitly-constructed temporary, e.g., X(1, 2).
4666     S.MarkFunctionReferenced(Loc, Constructor);
4667     S.DiagnoseUseOfDecl(Constructor, Loc);
4668
4669     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4670     if (!TSInfo)
4671       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4672     SourceRange ParenRange;
4673     if (Kind.getKind() != InitializationKind::IK_DirectList)
4674       ParenRange = Kind.getParenRange();
4675
4676     CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4677                                                              Constructor,
4678                                                              TSInfo,
4679                                                              ConstructorArgs,
4680                                                              ParenRange,
4681                                                      HadMultipleCandidates,
4682                                          ConstructorInitRequiresZeroInit));
4683   } else {
4684     CXXConstructExpr::ConstructionKind ConstructKind =
4685       CXXConstructExpr::CK_Complete;
4686
4687     if (Entity.getKind() == InitializedEntity::EK_Base) {
4688       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4689         CXXConstructExpr::CK_VirtualBase :
4690         CXXConstructExpr::CK_NonVirtualBase;
4691     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4692       ConstructKind = CXXConstructExpr::CK_Delegating;
4693     }
4694
4695     // Only get the parenthesis range if it is a direct construction.
4696     SourceRange parenRange =
4697         Kind.getKind() == InitializationKind::IK_Direct ?
4698         Kind.getParenRange() : SourceRange();
4699
4700     // If the entity allows NRVO, mark the construction as elidable
4701     // unconditionally.
4702     if (Entity.allowsNRVO())
4703       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4704                                         Constructor, /*Elidable=*/true,
4705                                         ConstructorArgs,
4706                                         HadMultipleCandidates,
4707                                         ConstructorInitRequiresZeroInit,
4708                                         ConstructKind,
4709                                         parenRange);
4710     else
4711       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4712                                         Constructor,
4713                                         ConstructorArgs,
4714                                         HadMultipleCandidates,
4715                                         ConstructorInitRequiresZeroInit,
4716                                         ConstructKind,
4717                                         parenRange);
4718   }
4719   if (CurInit.isInvalid())
4720     return ExprError();
4721
4722   // Only check access if all of that succeeded.
4723   S.CheckConstructorAccess(Loc, Constructor, Entity,
4724                            Step.Function.FoundDecl.getAccess());
4725   S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4726
4727   if (shouldBindAsTemporary(Entity))
4728     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4729
4730   return CurInit;
4731 }
4732
4733 /// Determine whether the specified InitializedEntity definitely has a lifetime
4734 /// longer than the current full-expression. Conservatively returns false if
4735 /// it's unclear.
4736 static bool
4737 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4738   const InitializedEntity *Top = &Entity;
4739   while (Top->getParent())
4740     Top = Top->getParent();
4741
4742   switch (Top->getKind()) {
4743   case InitializedEntity::EK_Variable:
4744   case InitializedEntity::EK_Result:
4745   case InitializedEntity::EK_Exception:
4746   case InitializedEntity::EK_Member:
4747   case InitializedEntity::EK_New:
4748   case InitializedEntity::EK_Base:
4749   case InitializedEntity::EK_Delegating:
4750     return true;
4751
4752   case InitializedEntity::EK_ArrayElement:
4753   case InitializedEntity::EK_VectorElement:
4754   case InitializedEntity::EK_BlockElement:
4755   case InitializedEntity::EK_ComplexElement:
4756     // Could not determine what the full initialization is. Assume it might not
4757     // outlive the full-expression.
4758     return false;
4759
4760   case InitializedEntity::EK_Parameter:
4761   case InitializedEntity::EK_Temporary:
4762   case InitializedEntity::EK_LambdaCapture:
4763     // The entity being initialized might not outlive the full-expression.
4764     return false;
4765   }
4766
4767   llvm_unreachable("unknown entity kind");
4768 }
4769
4770 ExprResult
4771 InitializationSequence::Perform(Sema &S,
4772                                 const InitializedEntity &Entity,
4773                                 const InitializationKind &Kind,
4774                                 MultiExprArg Args,
4775                                 QualType *ResultType) {
4776   if (Failed()) {
4777     unsigned NumArgs = Args.size();
4778     Diagnose(S, Entity, Kind, Args.data(), NumArgs);
4779     return ExprError();
4780   }
4781
4782   if (getKind() == DependentSequence) {
4783     // If the declaration is a non-dependent, incomplete array type
4784     // that has an initializer, then its type will be completed once
4785     // the initializer is instantiated.
4786     if (ResultType && !Entity.getType()->isDependentType() &&
4787         Args.size() == 1) {
4788       QualType DeclType = Entity.getType();
4789       if (const IncompleteArrayType *ArrayT
4790                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4791         // FIXME: We don't currently have the ability to accurately
4792         // compute the length of an initializer list without
4793         // performing full type-checking of the initializer list
4794         // (since we have to determine where braces are implicitly
4795         // introduced and such).  So, we fall back to making the array
4796         // type a dependently-sized array type with no specified
4797         // bound.
4798         if (isa<InitListExpr>((Expr *)Args[0])) {
4799           SourceRange Brackets;
4800
4801           // Scavange the location of the brackets from the entity, if we can.
4802           if (DeclaratorDecl *DD = Entity.getDecl()) {
4803             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4804               TypeLoc TL = TInfo->getTypeLoc();
4805               if (IncompleteArrayTypeLoc *ArrayLoc
4806                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4807               Brackets = ArrayLoc->getBracketsRange();
4808             }
4809           }
4810
4811           *ResultType
4812             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4813                                                    /*NumElts=*/0,
4814                                                    ArrayT->getSizeModifier(),
4815                                        ArrayT->getIndexTypeCVRQualifiers(),
4816                                                    Brackets);
4817         }
4818
4819       }
4820     }
4821     if (Kind.getKind() == InitializationKind::IK_Direct &&
4822         !Kind.isExplicitCast()) {
4823       // Rebuild the ParenListExpr.
4824       SourceRange ParenRange = Kind.getParenRange();
4825       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4826                                   Args);
4827     }
4828     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4829            Kind.isExplicitCast() || 
4830            Kind.getKind() == InitializationKind::IK_DirectList);
4831     return ExprResult(Args[0]);
4832   }
4833
4834   // No steps means no initialization.
4835   if (Steps.empty())
4836     return S.Owned((Expr *)0);
4837
4838   if (S.getLangOpts().CPlusPlus0x && Entity.getType()->isReferenceType() &&
4839       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4840       Entity.getKind() != InitializedEntity::EK_Parameter) {
4841     // Produce a C++98 compatibility warning if we are initializing a reference
4842     // from an initializer list. For parameters, we produce a better warning
4843     // elsewhere.
4844     Expr *Init = Args[0];
4845     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4846       << Init->getSourceRange();
4847   }
4848
4849   // Diagnose cases where we initialize a pointer to an array temporary, and the
4850   // pointer obviously outlives the temporary.
4851   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
4852       Entity.getType()->isPointerType() &&
4853       InitializedEntityOutlivesFullExpression(Entity)) {
4854     Expr *Init = Args[0];
4855     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4856     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4857       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4858         << Init->getSourceRange();
4859   }
4860
4861   QualType DestType = Entity.getType().getNonReferenceType();
4862   // FIXME: Ugly hack around the fact that Entity.getType() is not
4863   // the same as Entity.getDecl()->getType() in cases involving type merging,
4864   //  and we want latter when it makes sense.
4865   if (ResultType)
4866     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4867                                      Entity.getType();
4868
4869   ExprResult CurInit = S.Owned((Expr *)0);
4870
4871   // For initialization steps that start with a single initializer,
4872   // grab the only argument out the Args and place it into the "current"
4873   // initializer.
4874   switch (Steps.front().Kind) {
4875   case SK_ResolveAddressOfOverloadedFunction:
4876   case SK_CastDerivedToBaseRValue:
4877   case SK_CastDerivedToBaseXValue:
4878   case SK_CastDerivedToBaseLValue:
4879   case SK_BindReference:
4880   case SK_BindReferenceToTemporary:
4881   case SK_ExtraneousCopyToTemporary:
4882   case SK_UserConversion:
4883   case SK_QualificationConversionLValue:
4884   case SK_QualificationConversionXValue:
4885   case SK_QualificationConversionRValue:
4886   case SK_ConversionSequence:
4887   case SK_ListInitialization:
4888   case SK_UnwrapInitList:
4889   case SK_RewrapInitList:
4890   case SK_CAssignment:
4891   case SK_StringInit:
4892   case SK_ObjCObjectConversion:
4893   case SK_ArrayInit:
4894   case SK_ParenthesizedArrayInit:
4895   case SK_PassByIndirectCopyRestore:
4896   case SK_PassByIndirectRestore:
4897   case SK_ProduceObjCObject:
4898   case SK_StdInitializerList: {
4899     assert(Args.size() == 1);
4900     CurInit = Args[0];
4901     if (!CurInit.get()) return ExprError();
4902     break;
4903   }
4904
4905   case SK_ConstructorInitialization:
4906   case SK_ListConstructorCall:
4907   case SK_ZeroInitialization:
4908     break;
4909   }
4910
4911   // Walk through the computed steps for the initialization sequence,
4912   // performing the specified conversions along the way.
4913   bool ConstructorInitRequiresZeroInit = false;
4914   for (step_iterator Step = step_begin(), StepEnd = step_end();
4915        Step != StepEnd; ++Step) {
4916     if (CurInit.isInvalid())
4917       return ExprError();
4918
4919     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4920
4921     switch (Step->Kind) {
4922     case SK_ResolveAddressOfOverloadedFunction:
4923       // Overload resolution determined which function invoke; update the
4924       // initializer to reflect that choice.
4925       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4926       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4927       CurInit = S.FixOverloadedFunctionReference(CurInit,
4928                                                  Step->Function.FoundDecl,
4929                                                  Step->Function.Function);
4930       break;
4931
4932     case SK_CastDerivedToBaseRValue:
4933     case SK_CastDerivedToBaseXValue:
4934     case SK_CastDerivedToBaseLValue: {
4935       // We have a derived-to-base cast that produces either an rvalue or an
4936       // lvalue. Perform that cast.
4937
4938       CXXCastPath BasePath;
4939
4940       // Casts to inaccessible base classes are allowed with C-style casts.
4941       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4942       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4943                                          CurInit.get()->getLocStart(),
4944                                          CurInit.get()->getSourceRange(),
4945                                          &BasePath, IgnoreBaseAccess))
4946         return ExprError();
4947
4948       if (S.BasePathInvolvesVirtualBase(BasePath)) {
4949         QualType T = SourceType;
4950         if (const PointerType *Pointer = T->getAs<PointerType>())
4951           T = Pointer->getPointeeType();
4952         if (const RecordType *RecordTy = T->getAs<RecordType>())
4953           S.MarkVTableUsed(CurInit.get()->getLocStart(),
4954                            cast<CXXRecordDecl>(RecordTy->getDecl()));
4955       }
4956
4957       ExprValueKind VK =
4958           Step->Kind == SK_CastDerivedToBaseLValue ?
4959               VK_LValue :
4960               (Step->Kind == SK_CastDerivedToBaseXValue ?
4961                    VK_XValue :
4962                    VK_RValue);
4963       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4964                                                  Step->Type,
4965                                                  CK_DerivedToBase,
4966                                                  CurInit.get(),
4967                                                  &BasePath, VK));
4968       break;
4969     }
4970
4971     case SK_BindReference:
4972       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4973         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4974         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4975           << Entity.getType().isVolatileQualified()
4976           << BitField->getDeclName()
4977           << CurInit.get()->getSourceRange();
4978         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4979         return ExprError();
4980       }
4981
4982       if (CurInit.get()->refersToVectorElement()) {
4983         // References cannot bind to vector elements.
4984         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4985           << Entity.getType().isVolatileQualified()
4986           << CurInit.get()->getSourceRange();
4987         PrintInitLocationNote(S, Entity);
4988         return ExprError();
4989       }
4990
4991       // Reference binding does not have any corresponding ASTs.
4992
4993       // Check exception specifications
4994       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4995         return ExprError();
4996
4997       break;
4998
4999     case SK_BindReferenceToTemporary:
5000       // Check exception specifications
5001       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5002         return ExprError();
5003
5004       // Materialize the temporary into memory.
5005       CurInit = new (S.Context) MaterializeTemporaryExpr(
5006                                          Entity.getType().getNonReferenceType(),
5007                                                          CurInit.get(),
5008                                      Entity.getType()->isLValueReferenceType());
5009
5010       // If we're binding to an Objective-C object that has lifetime, we
5011       // need cleanups.
5012       if (S.getLangOpts().ObjCAutoRefCount &&
5013           CurInit.get()->getType()->isObjCLifetimeType())
5014         S.ExprNeedsCleanups = true;
5015             
5016       break;
5017
5018     case SK_ExtraneousCopyToTemporary:
5019       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5020                            /*IsExtraneousCopy=*/true);
5021       break;
5022
5023     case SK_UserConversion: {
5024       // We have a user-defined conversion that invokes either a constructor
5025       // or a conversion function.
5026       CastKind CastKind;
5027       bool IsCopy = false;
5028       FunctionDecl *Fn = Step->Function.Function;
5029       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5030       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5031       bool CreatedObject = false;
5032       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5033         // Build a call to the selected constructor.
5034         SmallVector<Expr*, 8> ConstructorArgs;
5035         SourceLocation Loc = CurInit.get()->getLocStart();
5036         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5037
5038         // Determine the arguments required to actually perform the constructor
5039         // call.
5040         Expr *Arg = CurInit.get();
5041         if (S.CompleteConstructorCall(Constructor,
5042                                       MultiExprArg(&Arg, 1),
5043                                       Loc, ConstructorArgs))
5044           return ExprError();
5045
5046         // Build an expression that constructs a temporary.
5047         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5048                                           ConstructorArgs,
5049                                           HadMultipleCandidates,
5050                                           /*ZeroInit*/ false,
5051                                           CXXConstructExpr::CK_Complete,
5052                                           SourceRange());
5053         if (CurInit.isInvalid())
5054           return ExprError();
5055
5056         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5057                                  FoundFn.getAccess());
5058         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5059
5060         CastKind = CK_ConstructorConversion;
5061         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5062         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5063             S.IsDerivedFrom(SourceType, Class))
5064           IsCopy = true;
5065
5066         CreatedObject = true;
5067       } else {
5068         // Build a call to the conversion function.
5069         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5070         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5071                                     FoundFn);
5072         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5073
5074         // FIXME: Should we move this initialization into a separate
5075         // derived-to-base conversion? I believe the answer is "no", because
5076         // we don't want to turn off access control here for c-style casts.
5077         ExprResult CurInitExprRes =
5078           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5079                                                 FoundFn, Conversion);
5080         if(CurInitExprRes.isInvalid())
5081           return ExprError();
5082         CurInit = CurInitExprRes;
5083
5084         // Build the actual call to the conversion function.
5085         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5086                                            HadMultipleCandidates);
5087         if (CurInit.isInvalid() || !CurInit.get())
5088           return ExprError();
5089
5090         CastKind = CK_UserDefinedConversion;
5091
5092         CreatedObject = Conversion->getResultType()->isRecordType();
5093       }
5094
5095       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5096       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5097
5098       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5099         QualType T = CurInit.get()->getType();
5100         if (const RecordType *Record = T->getAs<RecordType>()) {
5101           CXXDestructorDecl *Destructor
5102             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5103           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5104                                   S.PDiag(diag::err_access_dtor_temp) << T);
5105           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5106           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5107         }
5108       }
5109
5110       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5111                                                  CurInit.get()->getType(),
5112                                                  CastKind, CurInit.get(), 0,
5113                                                 CurInit.get()->getValueKind()));
5114       if (MaybeBindToTemp)
5115         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5116       if (RequiresCopy)
5117         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5118                              CurInit, /*IsExtraneousCopy=*/false);
5119       break;
5120     }
5121
5122     case SK_QualificationConversionLValue:
5123     case SK_QualificationConversionXValue:
5124     case SK_QualificationConversionRValue: {
5125       // Perform a qualification conversion; these can never go wrong.
5126       ExprValueKind VK =
5127           Step->Kind == SK_QualificationConversionLValue ?
5128               VK_LValue :
5129               (Step->Kind == SK_QualificationConversionXValue ?
5130                    VK_XValue :
5131                    VK_RValue);
5132       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5133       break;
5134     }
5135
5136     case SK_ConversionSequence: {
5137       Sema::CheckedConversionKind CCK 
5138         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5139         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5140         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5141         : Sema::CCK_ImplicitConversion;
5142       ExprResult CurInitExprRes =
5143         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5144                                     getAssignmentAction(Entity), CCK);
5145       if (CurInitExprRes.isInvalid())
5146         return ExprError();
5147       CurInit = CurInitExprRes;
5148       break;
5149     }
5150
5151     case SK_ListInitialization: {
5152       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5153       // Hack: We must pass *ResultType if available in order to set the type
5154       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5155       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5156       // temporary, not a reference, so we should pass Ty.
5157       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5158       // Since this step is never used for a reference directly, we explicitly
5159       // unwrap references here and rewrap them afterwards.
5160       // We also need to create a InitializeTemporary entity for this.
5161       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5162       bool IsTemporary = Entity.getType()->isReferenceType();
5163       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5164       InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5165           InitList, Ty, /*VerifyOnly=*/false,
5166           Kind.getKind() != InitializationKind::IK_DirectList ||
5167             !S.getLangOpts().CPlusPlus0x);
5168       if (PerformInitList.HadError())
5169         return ExprError();
5170
5171       if (ResultType) {
5172         if ((*ResultType)->isRValueReferenceType())
5173           Ty = S.Context.getRValueReferenceType(Ty);
5174         else if ((*ResultType)->isLValueReferenceType())
5175           Ty = S.Context.getLValueReferenceType(Ty,
5176             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5177         *ResultType = Ty;
5178       }
5179
5180       InitListExpr *StructuredInitList =
5181           PerformInitList.getFullyStructuredList();
5182       CurInit.release();
5183       CurInit = S.Owned(StructuredInitList);
5184       break;
5185     }
5186
5187     case SK_ListConstructorCall: {
5188       // When an initializer list is passed for a parameter of type "reference
5189       // to object", we don't get an EK_Temporary entity, but instead an
5190       // EK_Parameter entity with reference type.
5191       // FIXME: This is a hack. What we really should do is create a user
5192       // conversion step for this case, but this makes it considerably more
5193       // complicated. For now, this will do.
5194       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5195                                         Entity.getType().getNonReferenceType());
5196       bool UseTemporary = Entity.getType()->isReferenceType();
5197       assert(Args.size() == 1 && "expected a single argument for list init");
5198       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5199       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5200         << InitList->getSourceRange();
5201       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5202       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5203                                                                    Entity,
5204                                                  Kind, Arg, *Step,
5205                                                ConstructorInitRequiresZeroInit);
5206       break;
5207     }
5208
5209     case SK_UnwrapInitList:
5210       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5211       break;
5212
5213     case SK_RewrapInitList: {
5214       Expr *E = CurInit.take();
5215       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5216       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5217           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5218       ILE->setSyntacticForm(Syntactic);
5219       ILE->setType(E->getType());
5220       ILE->setValueKind(E->getValueKind());
5221       CurInit = S.Owned(ILE);
5222       break;
5223     }
5224
5225     case SK_ConstructorInitialization: {
5226       // When an initializer list is passed for a parameter of type "reference
5227       // to object", we don't get an EK_Temporary entity, but instead an
5228       // EK_Parameter entity with reference type.
5229       // FIXME: This is a hack. What we really should do is create a user
5230       // conversion step for this case, but this makes it considerably more
5231       // complicated. For now, this will do.
5232       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5233                                         Entity.getType().getNonReferenceType());
5234       bool UseTemporary = Entity.getType()->isReferenceType();
5235       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5236                                                                  : Entity,
5237                                                  Kind, Args, *Step,
5238                                                ConstructorInitRequiresZeroInit);
5239       break;
5240     }
5241
5242     case SK_ZeroInitialization: {
5243       step_iterator NextStep = Step;
5244       ++NextStep;
5245       if (NextStep != StepEnd &&
5246           (NextStep->Kind == SK_ConstructorInitialization ||
5247            NextStep->Kind == SK_ListConstructorCall)) {
5248         // The need for zero-initialization is recorded directly into
5249         // the call to the object's constructor within the next step.
5250         ConstructorInitRequiresZeroInit = true;
5251       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5252                  S.getLangOpts().CPlusPlus &&
5253                  !Kind.isImplicitValueInit()) {
5254         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5255         if (!TSInfo)
5256           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5257                                                     Kind.getRange().getBegin());
5258
5259         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5260                               TSInfo->getType().getNonLValueExprType(S.Context),
5261                                                                  TSInfo,
5262                                                     Kind.getRange().getEnd()));
5263       } else {
5264         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5265       }
5266       break;
5267     }
5268
5269     case SK_CAssignment: {
5270       QualType SourceType = CurInit.get()->getType();
5271       ExprResult Result = CurInit;
5272       Sema::AssignConvertType ConvTy =
5273         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5274       if (Result.isInvalid())
5275         return ExprError();
5276       CurInit = Result;
5277
5278       // If this is a call, allow conversion to a transparent union.
5279       ExprResult CurInitExprRes = CurInit;
5280       if (ConvTy != Sema::Compatible &&
5281           Entity.getKind() == InitializedEntity::EK_Parameter &&
5282           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5283             == Sema::Compatible)
5284         ConvTy = Sema::Compatible;
5285       if (CurInitExprRes.isInvalid())
5286         return ExprError();
5287       CurInit = CurInitExprRes;
5288
5289       bool Complained;
5290       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5291                                      Step->Type, SourceType,
5292                                      CurInit.get(),
5293                                      getAssignmentAction(Entity),
5294                                      &Complained)) {
5295         PrintInitLocationNote(S, Entity);
5296         return ExprError();
5297       } else if (Complained)
5298         PrintInitLocationNote(S, Entity);
5299       break;
5300     }
5301
5302     case SK_StringInit: {
5303       QualType Ty = Step->Type;
5304       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5305                       S.Context.getAsArrayType(Ty), S);
5306       break;
5307     }
5308
5309     case SK_ObjCObjectConversion:
5310       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5311                           CK_ObjCObjectLValueCast,
5312                           CurInit.get()->getValueKind());
5313       break;
5314
5315     case SK_ArrayInit:
5316       // Okay: we checked everything before creating this step. Note that
5317       // this is a GNU extension.
5318       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5319         << Step->Type << CurInit.get()->getType()
5320         << CurInit.get()->getSourceRange();
5321
5322       // If the destination type is an incomplete array type, update the
5323       // type accordingly.
5324       if (ResultType) {
5325         if (const IncompleteArrayType *IncompleteDest
5326                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5327           if (const ConstantArrayType *ConstantSource
5328                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5329             *ResultType = S.Context.getConstantArrayType(
5330                                              IncompleteDest->getElementType(),
5331                                              ConstantSource->getSize(),
5332                                              ArrayType::Normal, 0);
5333           }
5334         }
5335       }
5336       break;
5337
5338     case SK_ParenthesizedArrayInit:
5339       // Okay: we checked everything before creating this step. Note that
5340       // this is a GNU extension.
5341       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5342         << CurInit.get()->getSourceRange();
5343       break;
5344
5345     case SK_PassByIndirectCopyRestore:
5346     case SK_PassByIndirectRestore:
5347       checkIndirectCopyRestoreSource(S, CurInit.get());
5348       CurInit = S.Owned(new (S.Context)
5349                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5350                                 Step->Kind == SK_PassByIndirectCopyRestore));
5351       break;
5352
5353     case SK_ProduceObjCObject:
5354       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5355                                                  CK_ARCProduceObject,
5356                                                  CurInit.take(), 0, VK_RValue));
5357       break;
5358
5359     case SK_StdInitializerList: {
5360       QualType Dest = Step->Type;
5361       QualType E;
5362       bool Success = S.isStdInitializerList(Dest, &E);
5363       (void)Success;
5364       assert(Success && "Destination type changed?");
5365
5366       // If the element type has a destructor, check it.
5367       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5368         if (!RD->hasIrrelevantDestructor()) {
5369           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5370             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5371             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5372                                     S.PDiag(diag::err_access_dtor_temp) << E);
5373             S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5374           }
5375         }
5376       }
5377
5378       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5379       S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5380         << ILE->getSourceRange();
5381       unsigned NumInits = ILE->getNumInits();
5382       SmallVector<Expr*, 16> Converted(NumInits);
5383       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5384           S.Context.getConstantArrayType(E,
5385               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5386                           NumInits),
5387               ArrayType::Normal, 0));
5388       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5389           0, HiddenArray);
5390       for (unsigned i = 0; i < NumInits; ++i) {
5391         Element.setElementIndex(i);
5392         ExprResult Init = S.Owned(ILE->getInit(i));
5393         ExprResult Res = S.PerformCopyInitialization(Element,
5394                                                      Init.get()->getExprLoc(),
5395                                                      Init);
5396         assert(!Res.isInvalid() && "Result changed since try phase.");
5397         Converted[i] = Res.take();
5398       }
5399       InitListExpr *Semantic = new (S.Context)
5400           InitListExpr(S.Context, ILE->getLBraceLoc(),
5401                        Converted, ILE->getRBraceLoc());
5402       Semantic->setSyntacticForm(ILE);
5403       Semantic->setType(Dest);
5404       Semantic->setInitializesStdInitializerList();
5405       CurInit = S.Owned(Semantic);
5406       break;
5407     }
5408     }
5409   }
5410
5411   // Diagnose non-fatal problems with the completed initialization.
5412   if (Entity.getKind() == InitializedEntity::EK_Member &&
5413       cast<FieldDecl>(Entity.getDecl())->isBitField())
5414     S.CheckBitFieldInitialization(Kind.getLocation(),
5415                                   cast<FieldDecl>(Entity.getDecl()),
5416                                   CurInit.get());
5417
5418   return CurInit;
5419 }
5420
5421 //===----------------------------------------------------------------------===//
5422 // Diagnose initialization failures
5423 //===----------------------------------------------------------------------===//
5424 bool InitializationSequence::Diagnose(Sema &S,
5425                                       const InitializedEntity &Entity,
5426                                       const InitializationKind &Kind,
5427                                       Expr **Args, unsigned NumArgs) {
5428   if (!Failed())
5429     return false;
5430
5431   QualType DestType = Entity.getType();
5432   switch (Failure) {
5433   case FK_TooManyInitsForReference:
5434     // FIXME: Customize for the initialized entity?
5435     if (NumArgs == 0)
5436       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5437         << DestType.getNonReferenceType();
5438     else  // FIXME: diagnostic below could be better!
5439       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5440         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5441     break;
5442
5443   case FK_ArrayNeedsInitList:
5444   case FK_ArrayNeedsInitListOrStringLiteral:
5445     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5446       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5447     break;
5448
5449   case FK_ArrayTypeMismatch:
5450   case FK_NonConstantArrayInit:
5451     S.Diag(Kind.getLocation(), 
5452            (Failure == FK_ArrayTypeMismatch
5453               ? diag::err_array_init_different_type
5454               : diag::err_array_init_non_constant_array))
5455       << DestType.getNonReferenceType()
5456       << Args[0]->getType()
5457       << Args[0]->getSourceRange();
5458     break;
5459
5460   case FK_VariableLengthArrayHasInitializer:
5461     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5462       << Args[0]->getSourceRange();
5463     break;
5464
5465   case FK_AddressOfOverloadFailed: {
5466     DeclAccessPair Found;
5467     S.ResolveAddressOfOverloadedFunction(Args[0],
5468                                          DestType.getNonReferenceType(),
5469                                          true,
5470                                          Found);
5471     break;
5472   }
5473
5474   case FK_ReferenceInitOverloadFailed:
5475   case FK_UserConversionOverloadFailed:
5476     switch (FailedOverloadResult) {
5477     case OR_Ambiguous:
5478       if (Failure == FK_UserConversionOverloadFailed)
5479         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5480           << Args[0]->getType() << DestType
5481           << Args[0]->getSourceRange();
5482       else
5483         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5484           << DestType << Args[0]->getType()
5485           << Args[0]->getSourceRange();
5486
5487       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5488                                         llvm::makeArrayRef(Args, NumArgs));
5489       break;
5490
5491     case OR_No_Viable_Function:
5492       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5493         << Args[0]->getType() << DestType.getNonReferenceType()
5494         << Args[0]->getSourceRange();
5495       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5496                                         llvm::makeArrayRef(Args, NumArgs));
5497       break;
5498
5499     case OR_Deleted: {
5500       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5501         << Args[0]->getType() << DestType.getNonReferenceType()
5502         << Args[0]->getSourceRange();
5503       OverloadCandidateSet::iterator Best;
5504       OverloadingResult Ovl
5505         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5506                                                 true);
5507       if (Ovl == OR_Deleted) {
5508         S.NoteDeletedFunction(Best->Function);
5509       } else {
5510         llvm_unreachable("Inconsistent overload resolution?");
5511       }
5512       break;
5513     }
5514
5515     case OR_Success:
5516       llvm_unreachable("Conversion did not fail!");
5517     }
5518     break;
5519
5520   case FK_NonConstLValueReferenceBindingToTemporary:
5521     if (isa<InitListExpr>(Args[0])) {
5522       S.Diag(Kind.getLocation(),
5523              diag::err_lvalue_reference_bind_to_initlist)
5524       << DestType.getNonReferenceType().isVolatileQualified()
5525       << DestType.getNonReferenceType()
5526       << Args[0]->getSourceRange();
5527       break;
5528     }
5529     // Intentional fallthrough
5530
5531   case FK_NonConstLValueReferenceBindingToUnrelated:
5532     S.Diag(Kind.getLocation(),
5533            Failure == FK_NonConstLValueReferenceBindingToTemporary
5534              ? diag::err_lvalue_reference_bind_to_temporary
5535              : diag::err_lvalue_reference_bind_to_unrelated)
5536       << DestType.getNonReferenceType().isVolatileQualified()
5537       << DestType.getNonReferenceType()
5538       << Args[0]->getType()
5539       << Args[0]->getSourceRange();
5540     break;
5541
5542   case FK_RValueReferenceBindingToLValue:
5543     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5544       << DestType.getNonReferenceType() << Args[0]->getType()
5545       << Args[0]->getSourceRange();
5546     break;
5547
5548   case FK_ReferenceInitDropsQualifiers:
5549     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5550       << DestType.getNonReferenceType()
5551       << Args[0]->getType()
5552       << Args[0]->getSourceRange();
5553     break;
5554
5555   case FK_ReferenceInitFailed:
5556     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5557       << DestType.getNonReferenceType()
5558       << Args[0]->isLValue()
5559       << Args[0]->getType()
5560       << Args[0]->getSourceRange();
5561     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5562         Args[0]->getType()->isObjCObjectPointerType())
5563       S.EmitRelatedResultTypeNote(Args[0]);
5564     break;
5565
5566   case FK_ConversionFailed: {
5567     QualType FromType = Args[0]->getType();
5568     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5569       << (int)Entity.getKind()
5570       << DestType
5571       << Args[0]->isLValue()
5572       << FromType
5573       << Args[0]->getSourceRange();
5574     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5575     S.Diag(Kind.getLocation(), PDiag);
5576     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5577         Args[0]->getType()->isObjCObjectPointerType())
5578       S.EmitRelatedResultTypeNote(Args[0]);
5579     break;
5580   }
5581
5582   case FK_ConversionFromPropertyFailed:
5583     // No-op. This error has already been reported.
5584     break;
5585
5586   case FK_TooManyInitsForScalar: {
5587     SourceRange R;
5588
5589     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5590       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5591                       InitList->getLocEnd());
5592     else
5593       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5594
5595     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5596     if (Kind.isCStyleOrFunctionalCast())
5597       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5598         << R;
5599     else
5600       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5601         << /*scalar=*/2 << R;
5602     break;
5603   }
5604
5605   case FK_ReferenceBindingToInitList:
5606     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5607       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5608     break;
5609
5610   case FK_InitListBadDestinationType:
5611     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5612       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5613     break;
5614
5615   case FK_ListConstructorOverloadFailed:
5616   case FK_ConstructorOverloadFailed: {
5617     SourceRange ArgsRange;
5618     if (NumArgs)
5619       ArgsRange = SourceRange(Args[0]->getLocStart(),
5620                               Args[NumArgs - 1]->getLocEnd());
5621
5622     if (Failure == FK_ListConstructorOverloadFailed) {
5623       assert(NumArgs == 1 && "List construction from other than 1 argument.");
5624       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5625       Args = InitList->getInits();
5626       NumArgs = InitList->getNumInits();
5627     }
5628
5629     // FIXME: Using "DestType" for the entity we're printing is probably
5630     // bad.
5631     switch (FailedOverloadResult) {
5632       case OR_Ambiguous:
5633         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5634           << DestType << ArgsRange;
5635         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5636                                           llvm::makeArrayRef(Args, NumArgs));
5637         break;
5638
5639       case OR_No_Viable_Function:
5640         if (Kind.getKind() == InitializationKind::IK_Default &&
5641             (Entity.getKind() == InitializedEntity::EK_Base ||
5642              Entity.getKind() == InitializedEntity::EK_Member) &&
5643             isa<CXXConstructorDecl>(S.CurContext)) {
5644           // This is implicit default initialization of a member or
5645           // base within a constructor. If no viable function was
5646           // found, notify the user that she needs to explicitly
5647           // initialize this base/member.
5648           CXXConstructorDecl *Constructor
5649             = cast<CXXConstructorDecl>(S.CurContext);
5650           if (Entity.getKind() == InitializedEntity::EK_Base) {
5651             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5652               << Constructor->isImplicit()
5653               << S.Context.getTypeDeclType(Constructor->getParent())
5654               << /*base=*/0
5655               << Entity.getType();
5656
5657             RecordDecl *BaseDecl
5658               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5659                                                                   ->getDecl();
5660             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5661               << S.Context.getTagDeclType(BaseDecl);
5662           } else {
5663             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5664               << Constructor->isImplicit()
5665               << S.Context.getTypeDeclType(Constructor->getParent())
5666               << /*member=*/1
5667               << Entity.getName();
5668             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5669
5670             if (const RecordType *Record
5671                                  = Entity.getType()->getAs<RecordType>())
5672               S.Diag(Record->getDecl()->getLocation(),
5673                      diag::note_previous_decl)
5674                 << S.Context.getTagDeclType(Record->getDecl());
5675           }
5676           break;
5677         }
5678
5679         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5680           << DestType << ArgsRange;
5681         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5682                                           llvm::makeArrayRef(Args, NumArgs));
5683         break;
5684
5685       case OR_Deleted: {
5686         OverloadCandidateSet::iterator Best;
5687         OverloadingResult Ovl
5688           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5689         if (Ovl != OR_Deleted) {
5690           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5691             << true << DestType << ArgsRange;
5692           llvm_unreachable("Inconsistent overload resolution?");
5693           break;
5694         }
5695        
5696         // If this is a defaulted or implicitly-declared function, then
5697         // it was implicitly deleted. Make it clear that the deletion was
5698         // implicit.
5699         if (S.isImplicitlyDeleted(Best->Function))
5700           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5701             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5702             << DestType << ArgsRange;
5703         else
5704           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5705             << true << DestType << ArgsRange;
5706
5707         S.NoteDeletedFunction(Best->Function);
5708         break;
5709       }
5710
5711       case OR_Success:
5712         llvm_unreachable("Conversion did not fail!");
5713     }
5714   }
5715   break;
5716
5717   case FK_DefaultInitOfConst:
5718     if (Entity.getKind() == InitializedEntity::EK_Member &&
5719         isa<CXXConstructorDecl>(S.CurContext)) {
5720       // This is implicit default-initialization of a const member in
5721       // a constructor. Complain that it needs to be explicitly
5722       // initialized.
5723       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5724       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5725         << Constructor->isImplicit()
5726         << S.Context.getTypeDeclType(Constructor->getParent())
5727         << /*const=*/1
5728         << Entity.getName();
5729       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5730         << Entity.getName();
5731     } else {
5732       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5733         << DestType << (bool)DestType->getAs<RecordType>();
5734     }
5735     break;
5736
5737   case FK_Incomplete:
5738     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5739                           diag::err_init_incomplete_type);
5740     break;
5741
5742   case FK_ListInitializationFailed: {
5743     // Run the init list checker again to emit diagnostics.
5744     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5745     QualType DestType = Entity.getType();
5746     InitListChecker DiagnoseInitList(S, Entity, InitList,
5747             DestType, /*VerifyOnly=*/false,
5748             Kind.getKind() != InitializationKind::IK_DirectList ||
5749               !S.getLangOpts().CPlusPlus0x);
5750     assert(DiagnoseInitList.HadError() &&
5751            "Inconsistent init list check result.");
5752     break;
5753   }
5754
5755   case FK_PlaceholderType: {
5756     // FIXME: Already diagnosed!
5757     break;
5758   }
5759
5760   case FK_InitListElementCopyFailure: {
5761     // Try to perform all copies again.
5762     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5763     unsigned NumInits = InitList->getNumInits();
5764     QualType DestType = Entity.getType();
5765     QualType E;
5766     bool Success = S.isStdInitializerList(DestType, &E);
5767     (void)Success;
5768     assert(Success && "Where did the std::initializer_list go?");
5769     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5770         S.Context.getConstantArrayType(E,
5771             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5772                         NumInits),
5773             ArrayType::Normal, 0));
5774     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5775         0, HiddenArray);
5776     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5777     // where the init list type is wrong, e.g.
5778     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5779     // FIXME: Emit a note if we hit the limit?
5780     int ErrorCount = 0;
5781     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5782       Element.setElementIndex(i);
5783       ExprResult Init = S.Owned(InitList->getInit(i));
5784       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5785            .isInvalid())
5786         ++ErrorCount;
5787     }
5788     break;
5789   }
5790
5791   case FK_ExplicitConstructor: {
5792     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5793       << Args[0]->getSourceRange();
5794     OverloadCandidateSet::iterator Best;
5795     OverloadingResult Ovl
5796       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5797     (void)Ovl;
5798     assert(Ovl == OR_Success && "Inconsistent overload resolution");
5799     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5800     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5801     break;
5802   }
5803   }
5804
5805   PrintInitLocationNote(S, Entity);
5806   return true;
5807 }
5808
5809 void InitializationSequence::dump(raw_ostream &OS) const {
5810   switch (SequenceKind) {
5811   case FailedSequence: {
5812     OS << "Failed sequence: ";
5813     switch (Failure) {
5814     case FK_TooManyInitsForReference:
5815       OS << "too many initializers for reference";
5816       break;
5817
5818     case FK_ArrayNeedsInitList:
5819       OS << "array requires initializer list";
5820       break;
5821
5822     case FK_ArrayNeedsInitListOrStringLiteral:
5823       OS << "array requires initializer list or string literal";
5824       break;
5825
5826     case FK_ArrayTypeMismatch:
5827       OS << "array type mismatch";
5828       break;
5829
5830     case FK_NonConstantArrayInit:
5831       OS << "non-constant array initializer";
5832       break;
5833
5834     case FK_AddressOfOverloadFailed:
5835       OS << "address of overloaded function failed";
5836       break;
5837
5838     case FK_ReferenceInitOverloadFailed:
5839       OS << "overload resolution for reference initialization failed";
5840       break;
5841
5842     case FK_NonConstLValueReferenceBindingToTemporary:
5843       OS << "non-const lvalue reference bound to temporary";
5844       break;
5845
5846     case FK_NonConstLValueReferenceBindingToUnrelated:
5847       OS << "non-const lvalue reference bound to unrelated type";
5848       break;
5849
5850     case FK_RValueReferenceBindingToLValue:
5851       OS << "rvalue reference bound to an lvalue";
5852       break;
5853
5854     case FK_ReferenceInitDropsQualifiers:
5855       OS << "reference initialization drops qualifiers";
5856       break;
5857
5858     case FK_ReferenceInitFailed:
5859       OS << "reference initialization failed";
5860       break;
5861
5862     case FK_ConversionFailed:
5863       OS << "conversion failed";
5864       break;
5865
5866     case FK_ConversionFromPropertyFailed:
5867       OS << "conversion from property failed";
5868       break;
5869
5870     case FK_TooManyInitsForScalar:
5871       OS << "too many initializers for scalar";
5872       break;
5873
5874     case FK_ReferenceBindingToInitList:
5875       OS << "referencing binding to initializer list";
5876       break;
5877
5878     case FK_InitListBadDestinationType:
5879       OS << "initializer list for non-aggregate, non-scalar type";
5880       break;
5881
5882     case FK_UserConversionOverloadFailed:
5883       OS << "overloading failed for user-defined conversion";
5884       break;
5885
5886     case FK_ConstructorOverloadFailed:
5887       OS << "constructor overloading failed";
5888       break;
5889
5890     case FK_DefaultInitOfConst:
5891       OS << "default initialization of a const variable";
5892       break;
5893
5894     case FK_Incomplete:
5895       OS << "initialization of incomplete type";
5896       break;
5897
5898     case FK_ListInitializationFailed:
5899       OS << "list initialization checker failure";
5900       break;
5901
5902     case FK_VariableLengthArrayHasInitializer:
5903       OS << "variable length array has an initializer";
5904       break;
5905
5906     case FK_PlaceholderType:
5907       OS << "initializer expression isn't contextually valid";
5908       break;
5909
5910     case FK_ListConstructorOverloadFailed:
5911       OS << "list constructor overloading failed";
5912       break;
5913
5914     case FK_InitListElementCopyFailure:
5915       OS << "copy construction of initializer list element failed";
5916       break;
5917
5918     case FK_ExplicitConstructor:
5919       OS << "list copy initialization chose explicit constructor";
5920       break;
5921     }
5922     OS << '\n';
5923     return;
5924   }
5925
5926   case DependentSequence:
5927     OS << "Dependent sequence\n";
5928     return;
5929
5930   case NormalSequence:
5931     OS << "Normal sequence: ";
5932     break;
5933   }
5934
5935   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5936     if (S != step_begin()) {
5937       OS << " -> ";
5938     }
5939
5940     switch (S->Kind) {
5941     case SK_ResolveAddressOfOverloadedFunction:
5942       OS << "resolve address of overloaded function";
5943       break;
5944
5945     case SK_CastDerivedToBaseRValue:
5946       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5947       break;
5948
5949     case SK_CastDerivedToBaseXValue:
5950       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5951       break;
5952
5953     case SK_CastDerivedToBaseLValue:
5954       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5955       break;
5956
5957     case SK_BindReference:
5958       OS << "bind reference to lvalue";
5959       break;
5960
5961     case SK_BindReferenceToTemporary:
5962       OS << "bind reference to a temporary";
5963       break;
5964
5965     case SK_ExtraneousCopyToTemporary:
5966       OS << "extraneous C++03 copy to temporary";
5967       break;
5968
5969     case SK_UserConversion:
5970       OS << "user-defined conversion via " << *S->Function.Function;
5971       break;
5972
5973     case SK_QualificationConversionRValue:
5974       OS << "qualification conversion (rvalue)";
5975       break;
5976
5977     case SK_QualificationConversionXValue:
5978       OS << "qualification conversion (xvalue)";
5979       break;
5980
5981     case SK_QualificationConversionLValue:
5982       OS << "qualification conversion (lvalue)";
5983       break;
5984
5985     case SK_ConversionSequence:
5986       OS << "implicit conversion sequence (";
5987       S->ICS->DebugPrint(); // FIXME: use OS
5988       OS << ")";
5989       break;
5990
5991     case SK_ListInitialization:
5992       OS << "list aggregate initialization";
5993       break;
5994
5995     case SK_ListConstructorCall:
5996       OS << "list initialization via constructor";
5997       break;
5998
5999     case SK_UnwrapInitList:
6000       OS << "unwrap reference initializer list";
6001       break;
6002
6003     case SK_RewrapInitList:
6004       OS << "rewrap reference initializer list";
6005       break;
6006
6007     case SK_ConstructorInitialization:
6008       OS << "constructor initialization";
6009       break;
6010
6011     case SK_ZeroInitialization:
6012       OS << "zero initialization";
6013       break;
6014
6015     case SK_CAssignment:
6016       OS << "C assignment";
6017       break;
6018
6019     case SK_StringInit:
6020       OS << "string initialization";
6021       break;
6022
6023     case SK_ObjCObjectConversion:
6024       OS << "Objective-C object conversion";
6025       break;
6026
6027     case SK_ArrayInit:
6028       OS << "array initialization";
6029       break;
6030
6031     case SK_ParenthesizedArrayInit:
6032       OS << "parenthesized array initialization";
6033       break;
6034
6035     case SK_PassByIndirectCopyRestore:
6036       OS << "pass by indirect copy and restore";
6037       break;
6038
6039     case SK_PassByIndirectRestore:
6040       OS << "pass by indirect restore";
6041       break;
6042
6043     case SK_ProduceObjCObject:
6044       OS << "Objective-C object retension";
6045       break;
6046
6047     case SK_StdInitializerList:
6048       OS << "std::initializer_list from initializer list";
6049       break;
6050     }
6051   }
6052 }
6053
6054 void InitializationSequence::dump() const {
6055   dump(llvm::errs());
6056 }
6057
6058 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6059                                         QualType EntityType,
6060                                         const Expr *PreInit,
6061                                         const Expr *PostInit) {
6062   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6063     return;
6064
6065   // A narrowing conversion can only appear as the final implicit conversion in
6066   // an initialization sequence.
6067   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6068   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6069     return;
6070
6071   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6072   const StandardConversionSequence *SCS = 0;
6073   switch (ICS.getKind()) {
6074   case ImplicitConversionSequence::StandardConversion:
6075     SCS = &ICS.Standard;
6076     break;
6077   case ImplicitConversionSequence::UserDefinedConversion:
6078     SCS = &ICS.UserDefined.After;
6079     break;
6080   case ImplicitConversionSequence::AmbiguousConversion:
6081   case ImplicitConversionSequence::EllipsisConversion:
6082   case ImplicitConversionSequence::BadConversion:
6083     return;
6084   }
6085
6086   // Determine the type prior to the narrowing conversion. If a conversion
6087   // operator was used, this may be different from both the type of the entity
6088   // and of the pre-initialization expression.
6089   QualType PreNarrowingType = PreInit->getType();
6090   if (Seq.step_begin() + 1 != Seq.step_end())
6091     PreNarrowingType = Seq.step_end()[-2].Type;
6092
6093   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6094   APValue ConstantValue;
6095   QualType ConstantType;
6096   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6097                                 ConstantType)) {
6098   case NK_Not_Narrowing:
6099     // No narrowing occurred.
6100     return;
6101
6102   case NK_Type_Narrowing:
6103     // This was a floating-to-integer conversion, which is always considered a
6104     // narrowing conversion even if the value is a constant and can be
6105     // represented exactly as an integer.
6106     S.Diag(PostInit->getLocStart(),
6107            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x? 
6108              diag::warn_init_list_type_narrowing
6109            : S.isSFINAEContext()?
6110              diag::err_init_list_type_narrowing_sfinae
6111            : diag::err_init_list_type_narrowing)
6112       << PostInit->getSourceRange()
6113       << PreNarrowingType.getLocalUnqualifiedType()
6114       << EntityType.getLocalUnqualifiedType();
6115     break;
6116
6117   case NK_Constant_Narrowing:
6118     // A constant value was narrowed.
6119     S.Diag(PostInit->getLocStart(),
6120            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x? 
6121              diag::warn_init_list_constant_narrowing
6122            : S.isSFINAEContext()?
6123              diag::err_init_list_constant_narrowing_sfinae
6124            : diag::err_init_list_constant_narrowing)
6125       << PostInit->getSourceRange()
6126       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6127       << EntityType.getLocalUnqualifiedType();
6128     break;
6129
6130   case NK_Variable_Narrowing:
6131     // A variable's value may have been narrowed.
6132     S.Diag(PostInit->getLocStart(),
6133            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x? 
6134              diag::warn_init_list_variable_narrowing
6135            : S.isSFINAEContext()?
6136              diag::err_init_list_variable_narrowing_sfinae
6137            : diag::err_init_list_variable_narrowing)
6138       << PostInit->getSourceRange()
6139       << PreNarrowingType.getLocalUnqualifiedType()
6140       << EntityType.getLocalUnqualifiedType();
6141     break;
6142   }
6143
6144   SmallString<128> StaticCast;
6145   llvm::raw_svector_ostream OS(StaticCast);
6146   OS << "static_cast<";
6147   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6148     // It's important to use the typedef's name if there is one so that the
6149     // fixit doesn't break code using types like int64_t.
6150     //
6151     // FIXME: This will break if the typedef requires qualification.  But
6152     // getQualifiedNameAsString() includes non-machine-parsable components.
6153     OS << *TT->getDecl();
6154   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6155     OS << BT->getName(S.getLangOpts());
6156   else {
6157     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6158     // with a broken cast.
6159     return;
6160   }
6161   OS << ">(";
6162   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6163     << PostInit->getSourceRange()
6164     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6165     << FixItHint::CreateInsertion(
6166       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6167 }
6168
6169 //===----------------------------------------------------------------------===//
6170 // Initialization helper functions
6171 //===----------------------------------------------------------------------===//
6172 bool
6173 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6174                                    ExprResult Init) {
6175   if (Init.isInvalid())
6176     return false;
6177
6178   Expr *InitE = Init.get();
6179   assert(InitE && "No initialization expression");
6180
6181   InitializationKind Kind
6182     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6183   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6184   return !Seq.Failed();
6185 }
6186
6187 ExprResult
6188 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6189                                 SourceLocation EqualLoc,
6190                                 ExprResult Init,
6191                                 bool TopLevelOfInitList,
6192                                 bool AllowExplicit) {
6193   if (Init.isInvalid())
6194     return ExprError();
6195
6196   Expr *InitE = Init.get();
6197   assert(InitE && "No initialization expression?");
6198
6199   if (EqualLoc.isInvalid())
6200     EqualLoc = InitE->getLocStart();
6201
6202   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6203                                                            EqualLoc,
6204                                                            AllowExplicit);
6205   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6206   Init.release();
6207
6208   ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6209
6210   if (!Result.isInvalid() && TopLevelOfInitList)
6211     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6212                                 InitE, Result.get());
6213
6214   return Result;
6215 }