]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - contrib/llvm/utils/TableGen/CodeGenRegisters.cpp
MFC r234353:
[FreeBSD/stable/9.git] / contrib / llvm / utils / TableGen / CodeGenRegisters.cpp
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/TableGen/Error.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/Twine.h"
23
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 //                             CodeGenSubRegIndex
28 //===----------------------------------------------------------------------===//
29
30 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
31   : TheDef(R),
32     EnumValue(Enum)
33 {}
34
35 std::string CodeGenSubRegIndex::getNamespace() const {
36   if (TheDef->getValue("Namespace"))
37     return TheDef->getValueAsString("Namespace");
38   else
39     return "";
40 }
41
42 const std::string &CodeGenSubRegIndex::getName() const {
43   return TheDef->getName();
44 }
45
46 std::string CodeGenSubRegIndex::getQualifiedName() const {
47   std::string N = getNamespace();
48   if (!N.empty())
49     N += "::";
50   N += getName();
51   return N;
52 }
53
54 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
55   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
56   if (Comps.empty())
57     return;
58   if (Comps.size() != 2)
59     throw TGError(TheDef->getLoc(), "ComposedOf must have exactly two entries");
60   CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
61   CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
62   CodeGenSubRegIndex *X = A->addComposite(B, this);
63   if (X)
64     throw TGError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
65 }
66
67 void CodeGenSubRegIndex::cleanComposites() {
68   // Clean out redundant mappings of the form this+X -> X.
69   for (CompMap::iterator i = Composed.begin(), e = Composed.end(); i != e;) {
70     CompMap::iterator j = i;
71     ++i;
72     if (j->first == j->second)
73       Composed.erase(j);
74   }
75 }
76
77 //===----------------------------------------------------------------------===//
78 //                              CodeGenRegister
79 //===----------------------------------------------------------------------===//
80
81 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
82   : TheDef(R),
83     EnumValue(Enum),
84     CostPerUse(R->getValueAsInt("CostPerUse")),
85     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
86     SubRegsComplete(false)
87 {}
88
89 const std::string &CodeGenRegister::getName() const {
90   return TheDef->getName();
91 }
92
93 namespace {
94 // Iterate over all register units in a set of registers.
95 class RegUnitIterator {
96   CodeGenRegister::Set::const_iterator RegI, RegE;
97   CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
98
99 public:
100   RegUnitIterator(const CodeGenRegister::Set &Regs):
101     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
102
103     if (RegI != RegE) {
104       UnitI = (*RegI)->getRegUnits().begin();
105       UnitE = (*RegI)->getRegUnits().end();
106       advance();
107     }
108   }
109
110   bool isValid() const { return UnitI != UnitE; }
111
112   unsigned operator* () const { assert(isValid()); return *UnitI; };
113
114   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
115
116   /// Preincrement.  Move to the next unit.
117   void operator++() {
118     assert(isValid() && "Cannot advance beyond the last operand");
119     ++UnitI;
120     advance();
121   }
122
123 protected:
124   void advance() {
125     while (UnitI == UnitE) {
126       if (++RegI == RegE)
127         break;
128       UnitI = (*RegI)->getRegUnits().begin();
129       UnitE = (*RegI)->getRegUnits().end();
130     }
131   }
132 };
133 } // namespace
134
135 // Merge two RegUnitLists maintaining the order and removing duplicates.
136 // Overwrites MergedRU in the process.
137 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
138                           const CodeGenRegister::RegUnitList &RRU) {
139   CodeGenRegister::RegUnitList LRU = MergedRU;
140   MergedRU.clear();
141   std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
142                  std::back_inserter(MergedRU));
143 }
144
145 // Return true of this unit appears in RegUnits.
146 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
147   return std::count(RegUnits.begin(), RegUnits.end(), Unit);
148 }
149
150 // Inherit register units from subregisters.
151 // Return true if the RegUnits changed.
152 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
153   unsigned OldNumUnits = RegUnits.size();
154   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
155        I != E; ++I) {
156     // Strangely a register may have itself as a subreg (self-cycle) e.g. XMM.
157     // Only create a unit if no other subregs have units.
158     CodeGenRegister *SR = I->second;
159     if (SR == this) {
160       // RegUnits are only empty during getSubRegs, prior to computing weight.
161       if (RegUnits.empty())
162         RegUnits.push_back(RegBank.newRegUnit(0));
163       continue;
164     }
165     // Merge the subregister's units into this register's RegUnits.
166     mergeRegUnits(RegUnits, SR->RegUnits);
167   }
168   return OldNumUnits != RegUnits.size();
169 }
170
171 const CodeGenRegister::SubRegMap &
172 CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
173   // Only compute this map once.
174   if (SubRegsComplete)
175     return SubRegs;
176   SubRegsComplete = true;
177
178   std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs");
179   std::vector<Record*> IdxList = TheDef->getValueAsListOfDefs("SubRegIndices");
180   if (SubList.size() != IdxList.size())
181     throw TGError(TheDef->getLoc(), "Register " + getName() +
182                   " SubRegIndices doesn't match SubRegs");
183
184   // First insert the direct subregs and make sure they are fully indexed.
185   SmallVector<CodeGenSubRegIndex*, 8> Indices;
186   for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
187     CodeGenRegister *SR = RegBank.getReg(SubList[i]);
188     CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(IdxList[i]);
189     Indices.push_back(Idx);
190     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
191       throw TGError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
192                     " appears twice in Register " + getName());
193   }
194
195   // Keep track of inherited subregs and how they can be reached.
196   SmallPtrSet<CodeGenRegister*, 8> Orphans;
197
198   // Clone inherited subregs and place duplicate entries in Orphans.
199   // Here the order is important - earlier subregs take precedence.
200   for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
201     CodeGenRegister *SR = RegBank.getReg(SubList[i]);
202     const SubRegMap &Map = SR->getSubRegs(RegBank);
203
204     // Add this as a super-register of SR now all sub-registers are in the list.
205     // This creates a topological ordering, the exact order depends on the
206     // order getSubRegs is called on all registers.
207     SR->SuperRegs.push_back(this);
208
209     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
210          ++SI) {
211       if (!SubRegs.insert(*SI).second)
212         Orphans.insert(SI->second);
213
214       // Noop sub-register indexes are possible, so avoid duplicates.
215       if (SI->second != SR)
216         SI->second->SuperRegs.push_back(this);
217     }
218   }
219
220   // Expand any composed subreg indices.
221   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
222   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
223   // expanded subreg indices recursively.
224   for (unsigned i = 0; i != Indices.size(); ++i) {
225     CodeGenSubRegIndex *Idx = Indices[i];
226     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
227     CodeGenRegister *SR = SubRegs[Idx];
228     const SubRegMap &Map = SR->getSubRegs(RegBank);
229
230     // Look at the possible compositions of Idx.
231     // They may not all be supported by SR.
232     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
233            E = Comps.end(); I != E; ++I) {
234       SubRegMap::const_iterator SRI = Map.find(I->first);
235       if (SRI == Map.end())
236         continue; // Idx + I->first doesn't exist in SR.
237       // Add I->second as a name for the subreg SRI->second, assuming it is
238       // orphaned, and the name isn't already used for something else.
239       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
240         continue;
241       // We found a new name for the orphaned sub-register.
242       SubRegs.insert(std::make_pair(I->second, SRI->second));
243       Indices.push_back(I->second);
244     }
245   }
246
247   // Process the composites.
248   ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
249   for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
250     DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
251     if (!Pat)
252       throw TGError(TheDef->getLoc(), "Invalid dag '" +
253                     Comps->getElement(i)->getAsString() +
254                     "' in CompositeIndices");
255     DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
256     if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
257       throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
258                     Pat->getAsString());
259     CodeGenSubRegIndex *BaseIdx = RegBank.getSubRegIdx(BaseIdxInit->getDef());
260
261     // Resolve list of subreg indices into R2.
262     CodeGenRegister *R2 = this;
263     for (DagInit::const_arg_iterator di = Pat->arg_begin(),
264          de = Pat->arg_end(); di != de; ++di) {
265       DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
266       if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
267         throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
268                       Pat->getAsString());
269       CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(IdxInit->getDef());
270       const SubRegMap &R2Subs = R2->getSubRegs(RegBank);
271       SubRegMap::const_iterator ni = R2Subs.find(Idx);
272       if (ni == R2Subs.end())
273         throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
274                       " refers to bad index in " + R2->getName());
275       R2 = ni->second;
276     }
277
278     // Insert composite index. Allow overriding inherited indices etc.
279     SubRegs[BaseIdx] = R2;
280
281     // R2 is no longer an orphan.
282     Orphans.erase(R2);
283   }
284
285   // Now Orphans contains the inherited subregisters without a direct index.
286   // Create inferred indexes for all missing entries.
287   // Work backwards in the Indices vector in order to compose subregs bottom-up.
288   // Consider this subreg sequence:
289   //
290   //   qsub_1 -> dsub_0 -> ssub_0
291   //
292   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
293   // can be reached in two different ways:
294   //
295   //   qsub_1 -> ssub_0
296   //   dsub_2 -> ssub_0
297   //
298   // We pick the latter composition because another register may have [dsub_0,
299   // dsub_1, dsub_2] subregs without neccessarily having a qsub_1 subreg.  The
300   // dsub_2 -> ssub_0 composition can be shared.
301   while (!Indices.empty() && !Orphans.empty()) {
302     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
303     CodeGenRegister *SR = SubRegs[Idx];
304     const SubRegMap &Map = SR->getSubRegs(RegBank);
305     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
306          ++SI)
307       if (Orphans.erase(SI->second))
308         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
309   }
310
311   // Initialize RegUnitList. A register with no subregisters creates its own
312   // unit. Otherwise, it inherits all its subregister's units. Because
313   // getSubRegs is called recursively, this processes the register hierarchy in
314   // postorder.
315   //
316   // TODO: We currently assume all register units correspond to a named "leaf"
317   // register. We should also unify register units for ad-hoc register
318   // aliases. This can be done by iteratively merging units for aliasing
319   // registers using a worklist.
320   assert(RegUnits.empty() && "Should only initialize RegUnits once");
321   if (SubRegs.empty())
322     RegUnits.push_back(RegBank.newRegUnit(0));
323   else
324     inheritRegUnits(RegBank);
325   return SubRegs;
326 }
327
328 void
329 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
330                                     CodeGenRegBank &RegBank) const {
331   assert(SubRegsComplete && "Must precompute sub-registers");
332   std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
333   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
334     CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(Indices[i]);
335     CodeGenRegister *SR = SubRegs.find(Idx)->second;
336     if (OSet.insert(SR))
337       SR->addSubRegsPreOrder(OSet, RegBank);
338   }
339 }
340
341 // Get the sum of this register's unit weights.
342 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
343   unsigned Weight = 0;
344   for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
345        I != E; ++I) {
346     Weight += RegBank.getRegUnitWeight(*I);
347   }
348   return Weight;
349 }
350
351 //===----------------------------------------------------------------------===//
352 //                               RegisterTuples
353 //===----------------------------------------------------------------------===//
354
355 // A RegisterTuples def is used to generate pseudo-registers from lists of
356 // sub-registers. We provide a SetTheory expander class that returns the new
357 // registers.
358 namespace {
359 struct TupleExpander : SetTheory::Expander {
360   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
361     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
362     unsigned Dim = Indices.size();
363     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
364     if (Dim != SubRegs->getSize())
365       throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
366     if (Dim < 2)
367       throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
368
369     // Evaluate the sub-register lists to be zipped.
370     unsigned Length = ~0u;
371     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
372     for (unsigned i = 0; i != Dim; ++i) {
373       ST.evaluate(SubRegs->getElement(i), Lists[i]);
374       Length = std::min(Length, unsigned(Lists[i].size()));
375     }
376
377     if (Length == 0)
378       return;
379
380     // Precompute some types.
381     Record *RegisterCl = Def->getRecords().getClass("Register");
382     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
383     StringInit *BlankName = StringInit::get("");
384
385     // Zip them up.
386     for (unsigned n = 0; n != Length; ++n) {
387       std::string Name;
388       Record *Proto = Lists[0][n];
389       std::vector<Init*> Tuple;
390       unsigned CostPerUse = 0;
391       for (unsigned i = 0; i != Dim; ++i) {
392         Record *Reg = Lists[i][n];
393         if (i) Name += '_';
394         Name += Reg->getName();
395         Tuple.push_back(DefInit::get(Reg));
396         CostPerUse = std::max(CostPerUse,
397                               unsigned(Reg->getValueAsInt("CostPerUse")));
398       }
399
400       // Create a new Record representing the synthesized register. This record
401       // is only for consumption by CodeGenRegister, it is not added to the
402       // RecordKeeper.
403       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
404       Elts.insert(NewReg);
405
406       // Copy Proto super-classes.
407       for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
408         NewReg->addSuperClass(Proto->getSuperClasses()[i]);
409
410       // Copy Proto fields.
411       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
412         RecordVal RV = Proto->getValues()[i];
413
414         // Skip existing fields, like NAME.
415         if (NewReg->getValue(RV.getNameInit()))
416           continue;
417
418         StringRef Field = RV.getName();
419
420         // Replace the sub-register list with Tuple.
421         if (Field == "SubRegs")
422           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
423
424         // Provide a blank AsmName. MC hacks are required anyway.
425         if (Field == "AsmName")
426           RV.setValue(BlankName);
427
428         // CostPerUse is aggregated from all Tuple members.
429         if (Field == "CostPerUse")
430           RV.setValue(IntInit::get(CostPerUse));
431
432         // Composite registers are always covered by sub-registers.
433         if (Field == "CoveredBySubRegs")
434           RV.setValue(BitInit::get(true));
435
436         // Copy fields from the RegisterTuples def.
437         if (Field == "SubRegIndices" ||
438             Field == "CompositeIndices") {
439           NewReg->addValue(*Def->getValue(Field));
440           continue;
441         }
442
443         // Some fields get their default uninitialized value.
444         if (Field == "DwarfNumbers" ||
445             Field == "DwarfAlias" ||
446             Field == "Aliases") {
447           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
448             NewReg->addValue(*DefRV);
449           continue;
450         }
451
452         // Everything else is copied from Proto.
453         NewReg->addValue(RV);
454       }
455     }
456   }
457 };
458 }
459
460 //===----------------------------------------------------------------------===//
461 //                            CodeGenRegisterClass
462 //===----------------------------------------------------------------------===//
463
464 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
465   : TheDef(R), Name(R->getName()), EnumValue(-1) {
466   // Rename anonymous register classes.
467   if (R->getName().size() > 9 && R->getName()[9] == '.') {
468     static unsigned AnonCounter = 0;
469     R->setName("AnonRegClass_"+utostr(AnonCounter++));
470   }
471
472   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
473   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
474     Record *Type = TypeList[i];
475     if (!Type->isSubClassOf("ValueType"))
476       throw "RegTypes list member '" + Type->getName() +
477         "' does not derive from the ValueType class!";
478     VTs.push_back(getValueType(Type));
479   }
480   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
481
482   // Allocation order 0 is the full set. AltOrders provides others.
483   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
484   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
485   Orders.resize(1 + AltOrders->size());
486
487   // Default allocation order always contains all registers.
488   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
489     Orders[0].push_back((*Elements)[i]);
490     Members.insert(RegBank.getReg((*Elements)[i]));
491   }
492
493   // Alternative allocation orders may be subsets.
494   SetTheory::RecSet Order;
495   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
496     RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
497     Orders[1 + i].append(Order.begin(), Order.end());
498     // Verify that all altorder members are regclass members.
499     while (!Order.empty()) {
500       CodeGenRegister *Reg = RegBank.getReg(Order.back());
501       Order.pop_back();
502       if (!contains(Reg))
503         throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
504                       " is not a class member");
505     }
506   }
507
508   // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
509   ListInit *SRC = R->getValueAsListInit("SubRegClasses");
510   for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
511     DagInit *DAG = dynamic_cast<DagInit*>(*i);
512     if (!DAG) throw "SubRegClasses must contain DAGs";
513     DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
514     Record *RCRec;
515     if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
516       throw "Operator '" + DAG->getOperator()->getAsString() +
517         "' in SubRegClasses is not a RegisterClass";
518     // Iterate over args, all SubRegIndex instances.
519     for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
520          ai != ae; ++ai) {
521       DefInit *Idx = dynamic_cast<DefInit*>(*ai);
522       Record *IdxRec;
523       if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
524         throw "Argument '" + (*ai)->getAsString() +
525           "' in SubRegClasses is not a SubRegIndex";
526       if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
527         throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
528     }
529   }
530
531   // Allow targets to override the size in bits of the RegisterClass.
532   unsigned Size = R->getValueAsInt("Size");
533
534   Namespace = R->getValueAsString("Namespace");
535   SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
536   SpillAlignment = R->getValueAsInt("Alignment");
537   CopyCost = R->getValueAsInt("CopyCost");
538   Allocatable = R->getValueAsBit("isAllocatable");
539   AltOrderSelect = R->getValueAsString("AltOrderSelect");
540 }
541
542 // Create an inferred register class that was missing from the .td files.
543 // Most properties will be inherited from the closest super-class after the
544 // class structure has been computed.
545 CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props)
546   : Members(*Props.Members),
547     TheDef(0),
548     Name(Name),
549     EnumValue(-1),
550     SpillSize(Props.SpillSize),
551     SpillAlignment(Props.SpillAlignment),
552     CopyCost(0),
553     Allocatable(true) {
554 }
555
556 // Compute inherited propertied for a synthesized register class.
557 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
558   assert(!getDef() && "Only synthesized classes can inherit properties");
559   assert(!SuperClasses.empty() && "Synthesized class without super class");
560
561   // The last super-class is the smallest one.
562   CodeGenRegisterClass &Super = *SuperClasses.back();
563
564   // Most properties are copied directly.
565   // Exceptions are members, size, and alignment
566   Namespace = Super.Namespace;
567   VTs = Super.VTs;
568   CopyCost = Super.CopyCost;
569   Allocatable = Super.Allocatable;
570   AltOrderSelect = Super.AltOrderSelect;
571
572   // Copy all allocation orders, filter out foreign registers from the larger
573   // super-class.
574   Orders.resize(Super.Orders.size());
575   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
576     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
577       if (contains(RegBank.getReg(Super.Orders[i][j])))
578         Orders[i].push_back(Super.Orders[i][j]);
579 }
580
581 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
582   return Members.count(Reg);
583 }
584
585 namespace llvm {
586   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
587     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
588     for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
589          E = K.Members->end(); I != E; ++I)
590       OS << ", " << (*I)->getName();
591     return OS << " }";
592   }
593 }
594
595 // This is a simple lexicographical order that can be used to search for sets.
596 // It is not the same as the topological order provided by TopoOrderRC.
597 bool CodeGenRegisterClass::Key::
598 operator<(const CodeGenRegisterClass::Key &B) const {
599   assert(Members && B.Members);
600   if (*Members != *B.Members)
601     return *Members < *B.Members;
602   if (SpillSize != B.SpillSize)
603     return SpillSize < B.SpillSize;
604   return SpillAlignment < B.SpillAlignment;
605 }
606
607 // Returns true if RC is a strict subclass.
608 // RC is a sub-class of this class if it is a valid replacement for any
609 // instruction operand where a register of this classis required. It must
610 // satisfy these conditions:
611 //
612 // 1. All RC registers are also in this.
613 // 2. The RC spill size must not be smaller than our spill size.
614 // 3. RC spill alignment must be compatible with ours.
615 //
616 static bool testSubClass(const CodeGenRegisterClass *A,
617                          const CodeGenRegisterClass *B) {
618   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
619     A->SpillSize <= B->SpillSize &&
620     std::includes(A->getMembers().begin(), A->getMembers().end(),
621                   B->getMembers().begin(), B->getMembers().end(),
622                   CodeGenRegister::Less());
623 }
624
625 /// Sorting predicate for register classes.  This provides a topological
626 /// ordering that arranges all register classes before their sub-classes.
627 ///
628 /// Register classes with the same registers, spill size, and alignment form a
629 /// clique.  They will be ordered alphabetically.
630 ///
631 static int TopoOrderRC(const void *PA, const void *PB) {
632   const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
633   const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
634   if (A == B)
635     return 0;
636
637   // Order by descending set size.  Note that the classes' allocation order may
638   // not have been computed yet.  The Members set is always vaild.
639   if (A->getMembers().size() > B->getMembers().size())
640     return -1;
641   if (A->getMembers().size() < B->getMembers().size())
642     return 1;
643
644   // Order by ascending spill size.
645   if (A->SpillSize < B->SpillSize)
646     return -1;
647   if (A->SpillSize > B->SpillSize)
648     return 1;
649
650   // Order by ascending spill alignment.
651   if (A->SpillAlignment < B->SpillAlignment)
652     return -1;
653   if (A->SpillAlignment > B->SpillAlignment)
654     return 1;
655
656   // Finally order by name as a tie breaker.
657   return StringRef(A->getName()).compare(B->getName());
658 }
659
660 std::string CodeGenRegisterClass::getQualifiedName() const {
661   if (Namespace.empty())
662     return getName();
663   else
664     return Namespace + "::" + getName();
665 }
666
667 // Compute sub-classes of all register classes.
668 // Assume the classes are ordered topologically.
669 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
670   ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
671
672   // Visit backwards so sub-classes are seen first.
673   for (unsigned rci = RegClasses.size(); rci; --rci) {
674     CodeGenRegisterClass &RC = *RegClasses[rci - 1];
675     RC.SubClasses.resize(RegClasses.size());
676     RC.SubClasses.set(RC.EnumValue);
677
678     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
679     for (unsigned s = rci; s != RegClasses.size(); ++s) {
680       if (RC.SubClasses.test(s))
681         continue;
682       CodeGenRegisterClass *SubRC = RegClasses[s];
683       if (!testSubClass(&RC, SubRC))
684         continue;
685       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
686       // check them again.
687       RC.SubClasses |= SubRC->SubClasses;
688     }
689
690     // Sweep up missed clique members.  They will be immediately preceeding RC.
691     for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
692       RC.SubClasses.set(s - 1);
693   }
694
695   // Compute the SuperClasses lists from the SubClasses vectors.
696   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
697     const BitVector &SC = RegClasses[rci]->getSubClasses();
698     for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
699       if (unsigned(s) == rci)
700         continue;
701       RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
702     }
703   }
704
705   // With the class hierarchy in place, let synthesized register classes inherit
706   // properties from their closest super-class. The iteration order here can
707   // propagate properties down multiple levels.
708   for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
709     if (!RegClasses[rci]->getDef())
710       RegClasses[rci]->inheritProperties(RegBank);
711 }
712
713 void
714 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
715                                          BitVector &Out) const {
716   DenseMap<CodeGenSubRegIndex*,
717            SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
718     FindI = SuperRegClasses.find(SubIdx);
719   if (FindI == SuperRegClasses.end())
720     return;
721   for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
722        FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
723     Out.set((*I)->EnumValue);
724 }
725
726 // Populate a unique sorted list of units from a register set.
727 void CodeGenRegisterClass::buildRegUnitSet(
728   std::vector<unsigned> &RegUnits) const {
729   std::vector<unsigned> TmpUnits;
730   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
731     TmpUnits.push_back(*UnitI);
732   std::sort(TmpUnits.begin(), TmpUnits.end());
733   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
734                    std::back_inserter(RegUnits));
735 }
736
737 //===----------------------------------------------------------------------===//
738 //                               CodeGenRegBank
739 //===----------------------------------------------------------------------===//
740
741 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
742   // Configure register Sets to understand register classes and tuples.
743   Sets.addFieldExpander("RegisterClass", "MemberList");
744   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
745   Sets.addExpander("RegisterTuples", new TupleExpander());
746
747   // Read in the user-defined (named) sub-register indices.
748   // More indices will be synthesized later.
749   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
750   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
751   NumNamedIndices = SRIs.size();
752   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
753     getSubRegIdx(SRIs[i]);
754   // Build composite maps from ComposedOf fields.
755   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
756     SubRegIndices[i]->updateComponents(*this);
757
758   // Read in the register definitions.
759   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
760   std::sort(Regs.begin(), Regs.end(), LessRecord());
761   Registers.reserve(Regs.size());
762   // Assign the enumeration values.
763   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
764     getReg(Regs[i]);
765
766   // Expand tuples and number the new registers.
767   std::vector<Record*> Tups =
768     Records.getAllDerivedDefinitions("RegisterTuples");
769   for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
770     const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
771     for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
772       getReg((*TupRegs)[j]);
773   }
774
775   // Precompute all sub-register maps now all the registers are known.
776   // This will create Composite entries for all inferred sub-register indices.
777   NumRegUnits = 0;
778   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
779     Registers[i]->getSubRegs(*this);
780
781   // Native register units are associated with a leaf register. They've all been
782   // discovered now.
783   NumNativeRegUnits = NumRegUnits;
784
785   // Read in register class definitions.
786   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
787   if (RCs.empty())
788     throw std::string("No 'RegisterClass' subclasses defined!");
789
790   // Allocate user-defined register classes.
791   RegClasses.reserve(RCs.size());
792   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
793     addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
794
795   // Infer missing classes to create a full algebra.
796   computeInferredRegisterClasses();
797
798   // Order register classes topologically and assign enum values.
799   array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
800   for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
801     RegClasses[i]->EnumValue = i;
802   CodeGenRegisterClass::computeSubClasses(*this);
803 }
804
805 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
806   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
807   if (Idx)
808     return Idx;
809   Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
810   SubRegIndices.push_back(Idx);
811   return Idx;
812 }
813
814 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
815   CodeGenRegister *&Reg = Def2Reg[Def];
816   if (Reg)
817     return Reg;
818   Reg = new CodeGenRegister(Def, Registers.size() + 1);
819   Registers.push_back(Reg);
820   return Reg;
821 }
822
823 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
824   RegClasses.push_back(RC);
825
826   if (Record *Def = RC->getDef())
827     Def2RC.insert(std::make_pair(Def, RC));
828
829   // Duplicate classes are rejected by insert().
830   // That's OK, we only care about the properties handled by CGRC::Key.
831   CodeGenRegisterClass::Key K(*RC);
832   Key2RC.insert(std::make_pair(K, RC));
833 }
834
835 // Create a synthetic sub-class if it is missing.
836 CodeGenRegisterClass*
837 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
838                                     const CodeGenRegister::Set *Members,
839                                     StringRef Name) {
840   // Synthetic sub-class has the same size and alignment as RC.
841   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
842   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
843   if (FoundI != Key2RC.end())
844     return FoundI->second;
845
846   // Sub-class doesn't exist, create a new one.
847   CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(Name, K);
848   addToMaps(NewRC);
849   return NewRC;
850 }
851
852 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
853   if (CodeGenRegisterClass *RC = Def2RC[Def])
854     return RC;
855
856   throw TGError(Def->getLoc(), "Not a known RegisterClass!");
857 }
858
859 CodeGenSubRegIndex*
860 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
861                                         CodeGenSubRegIndex *B) {
862   // Look for an existing entry.
863   CodeGenSubRegIndex *Comp = A->compose(B);
864   if (Comp)
865     return Comp;
866
867   // None exists, synthesize one.
868   std::string Name = A->getName() + "_then_" + B->getName();
869   Comp = getSubRegIdx(new Record(Name, SMLoc(), Records));
870   A->addComposite(B, Comp);
871   return Comp;
872 }
873
874 void CodeGenRegBank::computeComposites() {
875   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
876     CodeGenRegister *Reg1 = Registers[i];
877     const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
878     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
879          e1 = SRM1.end(); i1 != e1; ++i1) {
880       CodeGenSubRegIndex *Idx1 = i1->first;
881       CodeGenRegister *Reg2 = i1->second;
882       // Ignore identity compositions.
883       if (Reg1 == Reg2)
884         continue;
885       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
886       // Try composing Idx1 with another SubRegIndex.
887       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
888            e2 = SRM2.end(); i2 != e2; ++i2) {
889       CodeGenSubRegIndex *Idx2 = i2->first;
890         CodeGenRegister *Reg3 = i2->second;
891         // Ignore identity compositions.
892         if (Reg2 == Reg3)
893           continue;
894         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
895         for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(),
896              e1d = SRM1.end(); i1d != e1d; ++i1d) {
897           if (i1d->second == Reg3) {
898             // Conflicting composition? Emit a warning but allow it.
899             if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, i1d->first))
900               PrintWarning(Twine("SubRegIndex") + Idx1->getQualifiedName() +
901                      " and " + Idx2->getQualifiedName() +
902                      " compose ambiguously as " + Prev->getQualifiedName() +
903                      " or " + i1d->first->getQualifiedName());
904           }
905         }
906       }
907     }
908   }
909
910   // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
911   // compositions, so remove any mappings of that form.
912   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
913     SubRegIndices[i]->cleanComposites();
914 }
915
916 namespace {
917 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
918 // the transitive closure of the union of overlapping register
919 // classes. Together, the UberRegSets form a partition of the registers. If we
920 // consider overlapping register classes to be connected, then each UberRegSet
921 // is a set of connected components.
922 //
923 // An UberRegSet will likely be a horizontal slice of register names of
924 // the same width. Nontrivial subregisters should then be in a separate
925 // UberRegSet. But this property isn't required for valid computation of
926 // register unit weights.
927 //
928 // A Weight field caches the max per-register unit weight in each UberRegSet.
929 //
930 // A set of SingularDeterminants flags single units of some register in this set
931 // for which the unit weight equals the set weight. These units should not have
932 // their weight increased.
933 struct UberRegSet {
934   CodeGenRegister::Set Regs;
935   unsigned Weight;
936   CodeGenRegister::RegUnitList SingularDeterminants;
937
938   UberRegSet(): Weight(0) {}
939 };
940 } // namespace
941
942 // Partition registers into UberRegSets, where each set is the transitive
943 // closure of the union of overlapping register classes.
944 //
945 // UberRegSets[0] is a special non-allocatable set.
946 static void computeUberSets(std::vector<UberRegSet> &UberSets,
947                             std::vector<UberRegSet*> &RegSets,
948                             CodeGenRegBank &RegBank) {
949
950   const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
951
952   // The Register EnumValue is one greater than its index into Registers.
953   assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
954          "register enum value mismatch");
955
956   // For simplicitly make the SetID the same as EnumValue.
957   IntEqClasses UberSetIDs(Registers.size()+1);
958   std::set<unsigned> AllocatableRegs;
959   for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
960
961     CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
962     if (!RegClass->Allocatable)
963       continue;
964
965     const CodeGenRegister::Set &Regs = RegClass->getMembers();
966     if (Regs.empty())
967       continue;
968
969     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
970     assert(USetID && "register number 0 is invalid");
971
972     AllocatableRegs.insert((*Regs.begin())->EnumValue);
973     for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
974            E = Regs.end(); I != E; ++I) {
975       AllocatableRegs.insert((*I)->EnumValue);
976       UberSetIDs.join(USetID, (*I)->EnumValue);
977     }
978   }
979   // Combine non-allocatable regs.
980   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
981     unsigned RegNum = Registers[i]->EnumValue;
982     if (AllocatableRegs.count(RegNum))
983       continue;
984
985     UberSetIDs.join(0, RegNum);
986   }
987   UberSetIDs.compress();
988
989   // Make the first UberSet a special unallocatable set.
990   unsigned ZeroID = UberSetIDs[0];
991
992   // Insert Registers into the UberSets formed by union-find.
993   // Do not resize after this.
994   UberSets.resize(UberSetIDs.getNumClasses());
995   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
996     const CodeGenRegister *Reg = Registers[i];
997     unsigned USetID = UberSetIDs[Reg->EnumValue];
998     if (!USetID)
999       USetID = ZeroID;
1000     else if (USetID == ZeroID)
1001       USetID = 0;
1002
1003     UberRegSet *USet = &UberSets[USetID];
1004     USet->Regs.insert(Reg);
1005     RegSets[i] = USet;
1006   }
1007 }
1008
1009 // Recompute each UberSet weight after changing unit weights.
1010 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1011                                CodeGenRegBank &RegBank) {
1012   // Skip the first unallocatable set.
1013   for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1014          E = UberSets.end(); I != E; ++I) {
1015
1016     // Initialize all unit weights in this set, and remember the max units/reg.
1017     const CodeGenRegister *Reg = 0;
1018     unsigned MaxWeight = 0, Weight = 0;
1019     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1020       if (Reg != UnitI.getReg()) {
1021         if (Weight > MaxWeight)
1022           MaxWeight = Weight;
1023         Reg = UnitI.getReg();
1024         Weight = 0;
1025       }
1026       unsigned UWeight = RegBank.getRegUnitWeight(*UnitI);
1027       if (!UWeight) {
1028         UWeight = 1;
1029         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1030       }
1031       Weight += UWeight;
1032     }
1033     if (Weight > MaxWeight)
1034       MaxWeight = Weight;
1035
1036     // Update the set weight.
1037     I->Weight = MaxWeight;
1038
1039     // Find singular determinants.
1040     for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1041            RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1042       if ((*RegI)->getRegUnits().size() == 1
1043           && (*RegI)->getWeight(RegBank) == I->Weight)
1044         mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1045     }
1046   }
1047 }
1048
1049 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1050 // a register and its subregisters so that they have the same weight as their
1051 // UberSet. Self-recursion processes the subregister tree in postorder so
1052 // subregisters are normalized first.
1053 //
1054 // Side effects:
1055 // - creates new adopted register units
1056 // - causes superregisters to inherit adopted units
1057 // - increases the weight of "singular" units
1058 // - induces recomputation of UberWeights.
1059 static bool normalizeWeight(CodeGenRegister *Reg,
1060                             std::vector<UberRegSet> &UberSets,
1061                             std::vector<UberRegSet*> &RegSets,
1062                             CodeGenRegister::RegUnitList &NormalUnits,
1063                             CodeGenRegBank &RegBank) {
1064   bool Changed = false;
1065   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1066   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1067          SRE = SRM.end(); SRI != SRE; ++SRI) {
1068     if (SRI->second == Reg)
1069       continue; // self-cycles happen
1070
1071     Changed |=
1072       normalizeWeight(SRI->second, UberSets, RegSets, NormalUnits, RegBank);
1073   }
1074   // Postorder register normalization.
1075
1076   // Inherit register units newly adopted by subregisters.
1077   if (Reg->inheritRegUnits(RegBank))
1078     computeUberWeights(UberSets, RegBank);
1079
1080   // Check if this register is too skinny for its UberRegSet.
1081   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1082
1083   unsigned RegWeight = Reg->getWeight(RegBank);
1084   if (UberSet->Weight > RegWeight) {
1085     // A register unit's weight can be adjusted only if it is the singular unit
1086     // for this register, has not been used to normalize a subregister's set,
1087     // and has not already been used to singularly determine this UberRegSet.
1088     unsigned AdjustUnit = Reg->getRegUnits().front();
1089     if (Reg->getRegUnits().size() != 1
1090         || hasRegUnit(NormalUnits, AdjustUnit)
1091         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1092       // We don't have an adjustable unit, so adopt a new one.
1093       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1094       Reg->adoptRegUnit(AdjustUnit);
1095       // Adopting a unit does not immediately require recomputing set weights.
1096     }
1097     else {
1098       // Adjust the existing single unit.
1099       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1100       // The unit may be shared among sets and registers within this set.
1101       computeUberWeights(UberSets, RegBank);
1102     }
1103     Changed = true;
1104   }
1105
1106   // Mark these units normalized so superregisters can't change their weights.
1107   mergeRegUnits(NormalUnits, Reg->getRegUnits());
1108
1109   return Changed;
1110 }
1111
1112 // Compute a weight for each register unit created during getSubRegs.
1113 //
1114 // The goal is that two registers in the same class will have the same weight,
1115 // where each register's weight is defined as sum of its units' weights.
1116 void CodeGenRegBank::computeRegUnitWeights() {
1117   assert(RegUnitWeights.empty() && "Only initialize RegUnitWeights once");
1118
1119   // Only allocatable units will be initialized to nonzero weight.
1120   RegUnitWeights.resize(NumRegUnits);
1121
1122   std::vector<UberRegSet> UberSets;
1123   std::vector<UberRegSet*> RegSets(Registers.size());
1124   computeUberSets(UberSets, RegSets, *this);
1125   // UberSets and RegSets are now immutable.
1126
1127   computeUberWeights(UberSets, *this);
1128
1129   // Iterate over each Register, normalizing the unit weights until reaching
1130   // a fix point.
1131   unsigned NumIters = 0;
1132   for (bool Changed = true; Changed; ++NumIters) {
1133     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1134     Changed = false;
1135     for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1136       CodeGenRegister::RegUnitList NormalUnits;
1137       Changed |=
1138         normalizeWeight(Registers[i], UberSets, RegSets, NormalUnits, *this);
1139     }
1140   }
1141 }
1142
1143 // Find a set in UniqueSets with the same elements as Set.
1144 // Return an iterator into UniqueSets.
1145 static std::vector<RegUnitSet>::const_iterator
1146 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1147                const RegUnitSet &Set) {
1148   std::vector<RegUnitSet>::const_iterator
1149     I = UniqueSets.begin(), E = UniqueSets.end();
1150   for(;I != E; ++I) {
1151     if (I->Units == Set.Units)
1152       break;
1153   }
1154   return I;
1155 }
1156
1157 // Return true if the RUSubSet is a subset of RUSuperSet.
1158 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1159                             const std::vector<unsigned> &RUSuperSet) {
1160   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1161                        RUSubSet.begin(), RUSubSet.end());
1162 }
1163
1164 // Iteratively prune unit sets.
1165 void CodeGenRegBank::pruneUnitSets() {
1166   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1167
1168   // Form an equivalence class of UnitSets with no significant difference.
1169   std::vector<unsigned> SuperSetIDs;
1170   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1171        SubIdx != EndIdx; ++SubIdx) {
1172     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1173     unsigned SuperIdx = 0;
1174     for (; SuperIdx != EndIdx; ++SuperIdx) {
1175       if (SuperIdx == SubIdx)
1176         continue;
1177
1178       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1179       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1180           && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
1181         break;
1182       }
1183     }
1184     if (SuperIdx == EndIdx)
1185       SuperSetIDs.push_back(SubIdx);
1186   }
1187   // Populate PrunedUnitSets with each equivalence class's superset.
1188   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1189   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1190     unsigned SuperIdx = SuperSetIDs[i];
1191     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1192     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1193   }
1194   RegUnitSets.swap(PrunedUnitSets);
1195 }
1196
1197 // Create a RegUnitSet for each RegClass that contains all units in the class
1198 // including adopted units that are necessary to model register pressure. Then
1199 // iteratively compute RegUnitSets such that the union of any two overlapping
1200 // RegUnitSets is repreresented.
1201 //
1202 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1203 // RegUnitSet that is a superset of that RegUnitClass.
1204 void CodeGenRegBank::computeRegUnitSets() {
1205
1206   // Compute a unique RegUnitSet for each RegClass.
1207   const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1208   unsigned NumRegClasses = RegClasses.size();
1209   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1210     if (!RegClasses[RCIdx]->Allocatable)
1211       continue;
1212
1213     // Speculatively grow the RegUnitSets to hold the new set.
1214     RegUnitSets.resize(RegUnitSets.size() + 1);
1215     RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1216
1217     // Compute a sorted list of units in this class.
1218     RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1219
1220     // Find an existing RegUnitSet.
1221     std::vector<RegUnitSet>::const_iterator SetI =
1222       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1223     if (SetI != llvm::prior(RegUnitSets.end()))
1224       RegUnitSets.pop_back();
1225   }
1226
1227   // Iteratively prune unit sets.
1228   pruneUnitSets();
1229
1230   // Iterate over all unit sets, including new ones added by this loop.
1231   unsigned NumRegUnitSubSets = RegUnitSets.size();
1232   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1233     // In theory, this is combinatorial. In practice, it needs to be bounded
1234     // by a small number of sets for regpressure to be efficient.
1235     // If the assert is hit, we need to implement pruning.
1236     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1237
1238     // Compare new sets with all original classes.
1239     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1240          SearchIdx != EndIdx; ++SearchIdx) {
1241       std::set<unsigned> Intersection;
1242       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1243                             RegUnitSets[Idx].Units.end(),
1244                             RegUnitSets[SearchIdx].Units.begin(),
1245                             RegUnitSets[SearchIdx].Units.end(),
1246                             std::inserter(Intersection, Intersection.begin()));
1247       if (Intersection.empty())
1248         continue;
1249
1250       // Speculatively grow the RegUnitSets to hold the new set.
1251       RegUnitSets.resize(RegUnitSets.size() + 1);
1252       RegUnitSets.back().Name =
1253         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1254
1255       std::set_union(RegUnitSets[Idx].Units.begin(),
1256                      RegUnitSets[Idx].Units.end(),
1257                      RegUnitSets[SearchIdx].Units.begin(),
1258                      RegUnitSets[SearchIdx].Units.end(),
1259                      std::inserter(RegUnitSets.back().Units,
1260                                    RegUnitSets.back().Units.begin()));
1261
1262       // Find an existing RegUnitSet, or add the union to the unique sets.
1263       std::vector<RegUnitSet>::const_iterator SetI =
1264         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1265       if (SetI != llvm::prior(RegUnitSets.end()))
1266         RegUnitSets.pop_back();
1267     }
1268   }
1269
1270   // Iteratively prune unit sets after inferring supersets.
1271   pruneUnitSets();
1272
1273   // For each register class, list the UnitSets that are supersets.
1274   RegClassUnitSets.resize(NumRegClasses);
1275   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1276     if (!RegClasses[RCIdx]->Allocatable)
1277       continue;
1278
1279     // Recompute the sorted list of units in this class.
1280     std::vector<unsigned> RegUnits;
1281     RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
1282
1283     // Don't increase pressure for unallocatable regclasses.
1284     if (RegUnits.empty())
1285       continue;
1286
1287     // Find all supersets.
1288     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1289          USIdx != USEnd; ++USIdx) {
1290       if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
1291         RegClassUnitSets[RCIdx].push_back(USIdx);
1292     }
1293     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1294   }
1295 }
1296
1297 // Compute sets of overlapping registers.
1298 //
1299 // The standard set is all super-registers and all sub-registers, but the
1300 // target description can add arbitrary overlapping registers via the 'Aliases'
1301 // field. This complicates things, but we can compute overlapping sets using
1302 // the following rules:
1303 //
1304 // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
1305 //
1306 // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
1307 //
1308 // Alternatively:
1309 //
1310 //    overlap(A, B) iff there exists:
1311 //    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
1312 //    A' = B' or A' in aliases(B') or B' in aliases(A').
1313 //
1314 // Here subregs(A) is the full flattened sub-register set returned by
1315 // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
1316 // description of register A.
1317 //
1318 // This also implies that registers with a common sub-register are considered
1319 // overlapping. This can happen when forming register pairs:
1320 //
1321 //    P0 = (R0, R1)
1322 //    P1 = (R1, R2)
1323 //    P2 = (R2, R3)
1324 //
1325 // In this case, we will infer an overlap between P0 and P1 because of the
1326 // shared sub-register R1. There is no overlap between P0 and P2.
1327 //
1328 void CodeGenRegBank::
1329 computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) {
1330   assert(Map.empty());
1331
1332   // Collect overlaps that don't follow from rule 2.
1333   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1334     CodeGenRegister *Reg = Registers[i];
1335     CodeGenRegister::Set &Overlaps = Map[Reg];
1336
1337     // Reg overlaps itself.
1338     Overlaps.insert(Reg);
1339
1340     // All super-registers overlap.
1341     const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs();
1342     Overlaps.insert(Supers.begin(), Supers.end());
1343
1344     // Form symmetrical relations from the special Aliases[] lists.
1345     std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases");
1346     for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) {
1347       CodeGenRegister *Reg2 = getReg(RegList[i2]);
1348       CodeGenRegister::Set &Overlaps2 = Map[Reg2];
1349       const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs();
1350       // Reg overlaps Reg2 which implies it overlaps supers(Reg2).
1351       Overlaps.insert(Reg2);
1352       Overlaps.insert(Supers2.begin(), Supers2.end());
1353       Overlaps2.insert(Reg);
1354       Overlaps2.insert(Supers.begin(), Supers.end());
1355     }
1356   }
1357
1358   // Apply rule 2. and inherit all sub-register overlaps.
1359   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1360     CodeGenRegister *Reg = Registers[i];
1361     CodeGenRegister::Set &Overlaps = Map[Reg];
1362     const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1363     for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(),
1364          e2 = SRM.end(); i2 != e2; ++i2) {
1365       CodeGenRegister::Set &Overlaps2 = Map[i2->second];
1366       Overlaps.insert(Overlaps2.begin(), Overlaps2.end());
1367     }
1368   }
1369 }
1370
1371 void CodeGenRegBank::computeDerivedInfo() {
1372   computeComposites();
1373
1374   // Compute a weight for each register unit created during getSubRegs.
1375   // This may create adopted register units (with unit # >= NumNativeRegUnits).
1376   computeRegUnitWeights();
1377
1378   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1379   // supersets for the union of overlapping sets.
1380   computeRegUnitSets();
1381 }
1382
1383 //
1384 // Synthesize missing register class intersections.
1385 //
1386 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1387 // returns a maximal register class for all X.
1388 //
1389 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1390   for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1391     CodeGenRegisterClass *RC1 = RC;
1392     CodeGenRegisterClass *RC2 = RegClasses[rci];
1393     if (RC1 == RC2)
1394       continue;
1395
1396     // Compute the set intersection of RC1 and RC2.
1397     const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1398     const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1399     CodeGenRegister::Set Intersection;
1400     std::set_intersection(Memb1.begin(), Memb1.end(),
1401                           Memb2.begin(), Memb2.end(),
1402                           std::inserter(Intersection, Intersection.begin()),
1403                           CodeGenRegister::Less());
1404
1405     // Skip disjoint class pairs.
1406     if (Intersection.empty())
1407       continue;
1408
1409     // If RC1 and RC2 have different spill sizes or alignments, use the
1410     // larger size for sub-classing.  If they are equal, prefer RC1.
1411     if (RC2->SpillSize > RC1->SpillSize ||
1412         (RC2->SpillSize == RC1->SpillSize &&
1413          RC2->SpillAlignment > RC1->SpillAlignment))
1414       std::swap(RC1, RC2);
1415
1416     getOrCreateSubClass(RC1, &Intersection,
1417                         RC1->getName() + "_and_" + RC2->getName());
1418   }
1419 }
1420
1421 //
1422 // Synthesize missing sub-classes for getSubClassWithSubReg().
1423 //
1424 // Make sure that the set of registers in RC with a given SubIdx sub-register
1425 // form a register class.  Update RC->SubClassWithSubReg.
1426 //
1427 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1428   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1429   typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1430                    CodeGenSubRegIndex::Less> SubReg2SetMap;
1431
1432   // Compute the set of registers supporting each SubRegIndex.
1433   SubReg2SetMap SRSets;
1434   for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1435        RE = RC->getMembers().end(); RI != RE; ++RI) {
1436     const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1437     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1438          E = SRM.end(); I != E; ++I)
1439       SRSets[I->first].insert(*RI);
1440   }
1441
1442   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1443   // numerical order to visit synthetic indices last.
1444   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1445     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1446     SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1447     // Unsupported SubRegIndex. Skip it.
1448     if (I == SRSets.end())
1449       continue;
1450     // In most cases, all RC registers support the SubRegIndex.
1451     if (I->second.size() == RC->getMembers().size()) {
1452       RC->setSubClassWithSubReg(SubIdx, RC);
1453       continue;
1454     }
1455     // This is a real subset.  See if we have a matching class.
1456     CodeGenRegisterClass *SubRC =
1457       getOrCreateSubClass(RC, &I->second,
1458                           RC->getName() + "_with_" + I->first->getName());
1459     RC->setSubClassWithSubReg(SubIdx, SubRC);
1460   }
1461 }
1462
1463 //
1464 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1465 //
1466 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1467 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1468 //
1469
1470 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1471                                                 unsigned FirstSubRegRC) {
1472   SmallVector<std::pair<const CodeGenRegister*,
1473                         const CodeGenRegister*>, 16> SSPairs;
1474
1475   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1476   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1477     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1478     // Skip indexes that aren't fully supported by RC's registers. This was
1479     // computed by inferSubClassWithSubReg() above which should have been
1480     // called first.
1481     if (RC->getSubClassWithSubReg(SubIdx) != RC)
1482       continue;
1483
1484     // Build list of (Super, Sub) pairs for this SubIdx.
1485     SSPairs.clear();
1486     for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1487          RE = RC->getMembers().end(); RI != RE; ++RI) {
1488       const CodeGenRegister *Super = *RI;
1489       const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1490       assert(Sub && "Missing sub-register");
1491       SSPairs.push_back(std::make_pair(Super, Sub));
1492     }
1493
1494     // Iterate over sub-register class candidates.  Ignore classes created by
1495     // this loop. They will never be useful.
1496     for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1497          ++rci) {
1498       CodeGenRegisterClass *SubRC = RegClasses[rci];
1499       // Compute the subset of RC that maps into SubRC.
1500       CodeGenRegister::Set SubSet;
1501       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1502         if (SubRC->contains(SSPairs[i].second))
1503           SubSet.insert(SSPairs[i].first);
1504       if (SubSet.empty())
1505         continue;
1506       // RC injects completely into SubRC.
1507       if (SubSet.size() == SSPairs.size()) {
1508         SubRC->addSuperRegClass(SubIdx, RC);
1509         continue;
1510       }
1511       // Only a subset of RC maps into SubRC. Make sure it is represented by a
1512       // class.
1513       getOrCreateSubClass(RC, &SubSet, RC->getName() +
1514                           "_with_" + SubIdx->getName() +
1515                           "_in_" + SubRC->getName());
1516     }
1517   }
1518 }
1519
1520
1521 //
1522 // Infer missing register classes.
1523 //
1524 void CodeGenRegBank::computeInferredRegisterClasses() {
1525   // When this function is called, the register classes have not been sorted
1526   // and assigned EnumValues yet.  That means getSubClasses(),
1527   // getSuperClasses(), and hasSubClass() functions are defunct.
1528   unsigned FirstNewRC = RegClasses.size();
1529
1530   // Visit all register classes, including the ones being added by the loop.
1531   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1532     CodeGenRegisterClass *RC = RegClasses[rci];
1533
1534     // Synthesize answers for getSubClassWithSubReg().
1535     inferSubClassWithSubReg(RC);
1536
1537     // Synthesize answers for getCommonSubClass().
1538     inferCommonSubClass(RC);
1539
1540     // Synthesize answers for getMatchingSuperRegClass().
1541     inferMatchingSuperRegClass(RC);
1542
1543     // New register classes are created while this loop is running, and we need
1544     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
1545     // to match old super-register classes with sub-register classes created
1546     // after inferMatchingSuperRegClass was called.  At this point,
1547     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1548     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
1549     if (rci + 1 == FirstNewRC) {
1550       unsigned NextNewRC = RegClasses.size();
1551       for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1552         inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1553       FirstNewRC = NextNewRC;
1554     }
1555   }
1556 }
1557
1558 /// getRegisterClassForRegister - Find the register class that contains the
1559 /// specified physical register.  If the register is not in a register class,
1560 /// return null. If the register is in multiple classes, and the classes have a
1561 /// superset-subset relationship and the same set of types, return the
1562 /// superclass.  Otherwise return null.
1563 const CodeGenRegisterClass*
1564 CodeGenRegBank::getRegClassForRegister(Record *R) {
1565   const CodeGenRegister *Reg = getReg(R);
1566   ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1567   const CodeGenRegisterClass *FoundRC = 0;
1568   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1569     const CodeGenRegisterClass &RC = *RCs[i];
1570     if (!RC.contains(Reg))
1571       continue;
1572
1573     // If this is the first class that contains the register,
1574     // make a note of it and go on to the next class.
1575     if (!FoundRC) {
1576       FoundRC = &RC;
1577       continue;
1578     }
1579
1580     // If a register's classes have different types, return null.
1581     if (RC.getValueTypes() != FoundRC->getValueTypes())
1582       return 0;
1583
1584     // Check to see if the previously found class that contains
1585     // the register is a subclass of the current class. If so,
1586     // prefer the superclass.
1587     if (RC.hasSubClass(FoundRC)) {
1588       FoundRC = &RC;
1589       continue;
1590     }
1591
1592     // Check to see if the previously found class that contains
1593     // the register is a superclass of the current class. If so,
1594     // prefer the superclass.
1595     if (FoundRC->hasSubClass(&RC))
1596       continue;
1597
1598     // Multiple classes, and neither is a superclass of the other.
1599     // Return null.
1600     return 0;
1601   }
1602   return FoundRC;
1603 }
1604
1605 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1606   SetVector<const CodeGenRegister*> Set;
1607
1608   // First add Regs with all sub-registers.
1609   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1610     CodeGenRegister *Reg = getReg(Regs[i]);
1611     if (Set.insert(Reg))
1612       // Reg is new, add all sub-registers.
1613       // The pre-ordering is not important here.
1614       Reg->addSubRegsPreOrder(Set, *this);
1615   }
1616
1617   // Second, find all super-registers that are completely covered by the set.
1618   for (unsigned i = 0; i != Set.size(); ++i) {
1619     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1620     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1621       const CodeGenRegister *Super = SR[j];
1622       if (!Super->CoveredBySubRegs || Set.count(Super))
1623         continue;
1624       // This new super-register is covered by its sub-registers.
1625       bool AllSubsInSet = true;
1626       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1627       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1628              E = SRM.end(); I != E; ++I)
1629         if (!Set.count(I->second)) {
1630           AllSubsInSet = false;
1631           break;
1632         }
1633       // All sub-registers in Set, add Super as well.
1634       // We will visit Super later to recheck its super-registers.
1635       if (AllSubsInSet)
1636         Set.insert(Super);
1637     }
1638   }
1639
1640   // Convert to BitVector.
1641   BitVector BV(Registers.size() + 1);
1642   for (unsigned i = 0, e = Set.size(); i != e; ++i)
1643     BV.set(Set[i]->EnumValue);
1644   return BV;
1645 }