]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC 248571,248976,249004,249042,249188,249195-249196,249206,249207,249319,
[FreeBSD/stable/9.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46
47 SYSCTL_DECL(_vfs_zfs);
48 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
49
50 /*
51  * Virtual device management.
52  */
53
54 static vdev_ops_t *vdev_ops_table[] = {
55         &vdev_root_ops,
56         &vdev_raidz_ops,
57         &vdev_mirror_ops,
58         &vdev_replacing_ops,
59         &vdev_spare_ops,
60 #ifdef _KERNEL
61         &vdev_geom_ops,
62 #else
63         &vdev_disk_ops,
64 #endif
65         &vdev_file_ops,
66         &vdev_missing_ops,
67         &vdev_hole_ops,
68         NULL
69 };
70
71
72 /*
73  * Given a vdev type, return the appropriate ops vector.
74  */
75 static vdev_ops_t *
76 vdev_getops(const char *type)
77 {
78         vdev_ops_t *ops, **opspp;
79
80         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
81                 if (strcmp(ops->vdev_op_type, type) == 0)
82                         break;
83
84         return (ops);
85 }
86
87 /*
88  * Default asize function: return the MAX of psize with the asize of
89  * all children.  This is what's used by anything other than RAID-Z.
90  */
91 uint64_t
92 vdev_default_asize(vdev_t *vd, uint64_t psize)
93 {
94         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
95         uint64_t csize;
96
97         for (int c = 0; c < vd->vdev_children; c++) {
98                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99                 asize = MAX(asize, csize);
100         }
101
102         return (asize);
103 }
104
105 /*
106  * Get the minimum allocatable size. We define the allocatable size as
107  * the vdev's asize rounded to the nearest metaslab. This allows us to
108  * replace or attach devices which don't have the same physical size but
109  * can still satisfy the same number of allocations.
110  */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114         vdev_t *pvd = vd->vdev_parent;
115
116         /*
117          * If our parent is NULL (inactive spare or cache) or is the root,
118          * just return our own asize.
119          */
120         if (pvd == NULL)
121                 return (vd->vdev_asize);
122
123         /*
124          * The top-level vdev just returns the allocatable size rounded
125          * to the nearest metaslab.
126          */
127         if (vd == vd->vdev_top)
128                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130         /*
131          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132          * so each child must provide at least 1/Nth of its asize.
133          */
134         if (pvd->vdev_ops == &vdev_raidz_ops)
135                 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137         return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143         vd->vdev_min_asize = vdev_get_min_asize(vd);
144
145         for (int c = 0; c < vd->vdev_children; c++)
146                 vdev_set_min_asize(vd->vdev_child[c]);
147 }
148
149 vdev_t *
150 vdev_lookup_top(spa_t *spa, uint64_t vdev)
151 {
152         vdev_t *rvd = spa->spa_root_vdev;
153
154         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
155
156         if (vdev < rvd->vdev_children) {
157                 ASSERT(rvd->vdev_child[vdev] != NULL);
158                 return (rvd->vdev_child[vdev]);
159         }
160
161         return (NULL);
162 }
163
164 vdev_t *
165 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
166 {
167         vdev_t *mvd;
168
169         if (vd->vdev_guid == guid)
170                 return (vd);
171
172         for (int c = 0; c < vd->vdev_children; c++)
173                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
174                     NULL)
175                         return (mvd);
176
177         return (NULL);
178 }
179
180 void
181 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
182 {
183         size_t oldsize, newsize;
184         uint64_t id = cvd->vdev_id;
185         vdev_t **newchild;
186
187         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
188         ASSERT(cvd->vdev_parent == NULL);
189
190         cvd->vdev_parent = pvd;
191
192         if (pvd == NULL)
193                 return;
194
195         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
196
197         oldsize = pvd->vdev_children * sizeof (vdev_t *);
198         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
199         newsize = pvd->vdev_children * sizeof (vdev_t *);
200
201         newchild = kmem_zalloc(newsize, KM_SLEEP);
202         if (pvd->vdev_child != NULL) {
203                 bcopy(pvd->vdev_child, newchild, oldsize);
204                 kmem_free(pvd->vdev_child, oldsize);
205         }
206
207         pvd->vdev_child = newchild;
208         pvd->vdev_child[id] = cvd;
209
210         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
211         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
212
213         /*
214          * Walk up all ancestors to update guid sum.
215          */
216         for (; pvd != NULL; pvd = pvd->vdev_parent)
217                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
218 }
219
220 void
221 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
222 {
223         int c;
224         uint_t id = cvd->vdev_id;
225
226         ASSERT(cvd->vdev_parent == pvd);
227
228         if (pvd == NULL)
229                 return;
230
231         ASSERT(id < pvd->vdev_children);
232         ASSERT(pvd->vdev_child[id] == cvd);
233
234         pvd->vdev_child[id] = NULL;
235         cvd->vdev_parent = NULL;
236
237         for (c = 0; c < pvd->vdev_children; c++)
238                 if (pvd->vdev_child[c])
239                         break;
240
241         if (c == pvd->vdev_children) {
242                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
243                 pvd->vdev_child = NULL;
244                 pvd->vdev_children = 0;
245         }
246
247         /*
248          * Walk up all ancestors to update guid sum.
249          */
250         for (; pvd != NULL; pvd = pvd->vdev_parent)
251                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
252 }
253
254 /*
255  * Remove any holes in the child array.
256  */
257 void
258 vdev_compact_children(vdev_t *pvd)
259 {
260         vdev_t **newchild, *cvd;
261         int oldc = pvd->vdev_children;
262         int newc;
263
264         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
265
266         for (int c = newc = 0; c < oldc; c++)
267                 if (pvd->vdev_child[c])
268                         newc++;
269
270         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
271
272         for (int c = newc = 0; c < oldc; c++) {
273                 if ((cvd = pvd->vdev_child[c]) != NULL) {
274                         newchild[newc] = cvd;
275                         cvd->vdev_id = newc++;
276                 }
277         }
278
279         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
280         pvd->vdev_child = newchild;
281         pvd->vdev_children = newc;
282 }
283
284 /*
285  * Allocate and minimally initialize a vdev_t.
286  */
287 vdev_t *
288 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
289 {
290         vdev_t *vd;
291
292         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
293
294         if (spa->spa_root_vdev == NULL) {
295                 ASSERT(ops == &vdev_root_ops);
296                 spa->spa_root_vdev = vd;
297                 spa->spa_load_guid = spa_generate_guid(NULL);
298         }
299
300         if (guid == 0 && ops != &vdev_hole_ops) {
301                 if (spa->spa_root_vdev == vd) {
302                         /*
303                          * The root vdev's guid will also be the pool guid,
304                          * which must be unique among all pools.
305                          */
306                         guid = spa_generate_guid(NULL);
307                 } else {
308                         /*
309                          * Any other vdev's guid must be unique within the pool.
310                          */
311                         guid = spa_generate_guid(spa);
312                 }
313                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
314         }
315
316         vd->vdev_spa = spa;
317         vd->vdev_id = id;
318         vd->vdev_guid = guid;
319         vd->vdev_guid_sum = guid;
320         vd->vdev_ops = ops;
321         vd->vdev_state = VDEV_STATE_CLOSED;
322         vd->vdev_ishole = (ops == &vdev_hole_ops);
323
324         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
325         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
327         for (int t = 0; t < DTL_TYPES; t++) {
328                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
329                     &vd->vdev_dtl_lock);
330         }
331         txg_list_create(&vd->vdev_ms_list,
332             offsetof(struct metaslab, ms_txg_node));
333         txg_list_create(&vd->vdev_dtl_list,
334             offsetof(struct vdev, vdev_dtl_node));
335         vd->vdev_stat.vs_timestamp = gethrtime();
336         vdev_queue_init(vd);
337         vdev_cache_init(vd);
338
339         return (vd);
340 }
341
342 /*
343  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
344  * creating a new vdev or loading an existing one - the behavior is slightly
345  * different for each case.
346  */
347 int
348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
349     int alloctype)
350 {
351         vdev_ops_t *ops;
352         char *type;
353         uint64_t guid = 0, islog, nparity;
354         vdev_t *vd;
355
356         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
357
358         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359                 return (SET_ERROR(EINVAL));
360
361         if ((ops = vdev_getops(type)) == NULL)
362                 return (SET_ERROR(EINVAL));
363
364         /*
365          * If this is a load, get the vdev guid from the nvlist.
366          * Otherwise, vdev_alloc_common() will generate one for us.
367          */
368         if (alloctype == VDEV_ALLOC_LOAD) {
369                 uint64_t label_id;
370
371                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372                     label_id != id)
373                         return (SET_ERROR(EINVAL));
374
375                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376                         return (SET_ERROR(EINVAL));
377         } else if (alloctype == VDEV_ALLOC_SPARE) {
378                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379                         return (SET_ERROR(EINVAL));
380         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
381                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382                         return (SET_ERROR(EINVAL));
383         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
384                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385                         return (SET_ERROR(EINVAL));
386         }
387
388         /*
389          * The first allocated vdev must be of type 'root'.
390          */
391         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
392                 return (SET_ERROR(EINVAL));
393
394         /*
395          * Determine whether we're a log vdev.
396          */
397         islog = 0;
398         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
399         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
400                 return (SET_ERROR(ENOTSUP));
401
402         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
403                 return (SET_ERROR(ENOTSUP));
404
405         /*
406          * Set the nparity property for RAID-Z vdevs.
407          */
408         nparity = -1ULL;
409         if (ops == &vdev_raidz_ops) {
410                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
411                     &nparity) == 0) {
412                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
413                                 return (SET_ERROR(EINVAL));
414                         /*
415                          * Previous versions could only support 1 or 2 parity
416                          * device.
417                          */
418                         if (nparity > 1 &&
419                             spa_version(spa) < SPA_VERSION_RAIDZ2)
420                                 return (SET_ERROR(ENOTSUP));
421                         if (nparity > 2 &&
422                             spa_version(spa) < SPA_VERSION_RAIDZ3)
423                                 return (SET_ERROR(ENOTSUP));
424                 } else {
425                         /*
426                          * We require the parity to be specified for SPAs that
427                          * support multiple parity levels.
428                          */
429                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
430                                 return (SET_ERROR(EINVAL));
431                         /*
432                          * Otherwise, we default to 1 parity device for RAID-Z.
433                          */
434                         nparity = 1;
435                 }
436         } else {
437                 nparity = 0;
438         }
439         ASSERT(nparity != -1ULL);
440
441         vd = vdev_alloc_common(spa, id, guid, ops);
442
443         vd->vdev_islog = islog;
444         vd->vdev_nparity = nparity;
445
446         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
447                 vd->vdev_path = spa_strdup(vd->vdev_path);
448         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
449                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
450         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
451             &vd->vdev_physpath) == 0)
452                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
453         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
454                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
455
456         /*
457          * Set the whole_disk property.  If it's not specified, leave the value
458          * as -1.
459          */
460         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
461             &vd->vdev_wholedisk) != 0)
462                 vd->vdev_wholedisk = -1ULL;
463
464         /*
465          * Look for the 'not present' flag.  This will only be set if the device
466          * was not present at the time of import.
467          */
468         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
469             &vd->vdev_not_present);
470
471         /*
472          * Get the alignment requirement.
473          */
474         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
475
476         /*
477          * Retrieve the vdev creation time.
478          */
479         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
480             &vd->vdev_crtxg);
481
482         /*
483          * If we're a top-level vdev, try to load the allocation parameters.
484          */
485         if (parent && !parent->vdev_parent &&
486             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
487                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
488                     &vd->vdev_ms_array);
489                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
490                     &vd->vdev_ms_shift);
491                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
492                     &vd->vdev_asize);
493                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
494                     &vd->vdev_removing);
495         }
496
497         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
498                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
499                     alloctype == VDEV_ALLOC_ADD ||
500                     alloctype == VDEV_ALLOC_SPLIT ||
501                     alloctype == VDEV_ALLOC_ROOTPOOL);
502                 vd->vdev_mg = metaslab_group_create(islog ?
503                     spa_log_class(spa) : spa_normal_class(spa), vd);
504         }
505
506         /*
507          * If we're a leaf vdev, try to load the DTL object and other state.
508          */
509         if (vd->vdev_ops->vdev_op_leaf &&
510             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
511             alloctype == VDEV_ALLOC_ROOTPOOL)) {
512                 if (alloctype == VDEV_ALLOC_LOAD) {
513                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
514                             &vd->vdev_dtl_smo.smo_object);
515                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
516                             &vd->vdev_unspare);
517                 }
518
519                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
520                         uint64_t spare = 0;
521
522                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
523                             &spare) == 0 && spare)
524                                 spa_spare_add(vd);
525                 }
526
527                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
528                     &vd->vdev_offline);
529
530                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
531                     &vd->vdev_resilvering);
532
533                 /*
534                  * When importing a pool, we want to ignore the persistent fault
535                  * state, as the diagnosis made on another system may not be
536                  * valid in the current context.  Local vdevs will
537                  * remain in the faulted state.
538                  */
539                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
540                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
541                             &vd->vdev_faulted);
542                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
543                             &vd->vdev_degraded);
544                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
545                             &vd->vdev_removed);
546
547                         if (vd->vdev_faulted || vd->vdev_degraded) {
548                                 char *aux;
549
550                                 vd->vdev_label_aux =
551                                     VDEV_AUX_ERR_EXCEEDED;
552                                 if (nvlist_lookup_string(nv,
553                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
554                                     strcmp(aux, "external") == 0)
555                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
556                         }
557                 }
558         }
559
560         /*
561          * Add ourselves to the parent's list of children.
562          */
563         vdev_add_child(parent, vd);
564
565         *vdp = vd;
566
567         return (0);
568 }
569
570 void
571 vdev_free(vdev_t *vd)
572 {
573         spa_t *spa = vd->vdev_spa;
574
575         /*
576          * vdev_free() implies closing the vdev first.  This is simpler than
577          * trying to ensure complicated semantics for all callers.
578          */
579         vdev_close(vd);
580
581         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
582         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
583
584         /*
585          * Free all children.
586          */
587         for (int c = 0; c < vd->vdev_children; c++)
588                 vdev_free(vd->vdev_child[c]);
589
590         ASSERT(vd->vdev_child == NULL);
591         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
592
593         /*
594          * Discard allocation state.
595          */
596         if (vd->vdev_mg != NULL) {
597                 vdev_metaslab_fini(vd);
598                 metaslab_group_destroy(vd->vdev_mg);
599         }
600
601         ASSERT0(vd->vdev_stat.vs_space);
602         ASSERT0(vd->vdev_stat.vs_dspace);
603         ASSERT0(vd->vdev_stat.vs_alloc);
604
605         /*
606          * Remove this vdev from its parent's child list.
607          */
608         vdev_remove_child(vd->vdev_parent, vd);
609
610         ASSERT(vd->vdev_parent == NULL);
611
612         /*
613          * Clean up vdev structure.
614          */
615         vdev_queue_fini(vd);
616         vdev_cache_fini(vd);
617
618         if (vd->vdev_path)
619                 spa_strfree(vd->vdev_path);
620         if (vd->vdev_devid)
621                 spa_strfree(vd->vdev_devid);
622         if (vd->vdev_physpath)
623                 spa_strfree(vd->vdev_physpath);
624         if (vd->vdev_fru)
625                 spa_strfree(vd->vdev_fru);
626
627         if (vd->vdev_isspare)
628                 spa_spare_remove(vd);
629         if (vd->vdev_isl2cache)
630                 spa_l2cache_remove(vd);
631
632         txg_list_destroy(&vd->vdev_ms_list);
633         txg_list_destroy(&vd->vdev_dtl_list);
634
635         mutex_enter(&vd->vdev_dtl_lock);
636         for (int t = 0; t < DTL_TYPES; t++) {
637                 space_map_unload(&vd->vdev_dtl[t]);
638                 space_map_destroy(&vd->vdev_dtl[t]);
639         }
640         mutex_exit(&vd->vdev_dtl_lock);
641
642         mutex_destroy(&vd->vdev_dtl_lock);
643         mutex_destroy(&vd->vdev_stat_lock);
644         mutex_destroy(&vd->vdev_probe_lock);
645
646         if (vd == spa->spa_root_vdev)
647                 spa->spa_root_vdev = NULL;
648
649         kmem_free(vd, sizeof (vdev_t));
650 }
651
652 /*
653  * Transfer top-level vdev state from svd to tvd.
654  */
655 static void
656 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
657 {
658         spa_t *spa = svd->vdev_spa;
659         metaslab_t *msp;
660         vdev_t *vd;
661         int t;
662
663         ASSERT(tvd == tvd->vdev_top);
664
665         tvd->vdev_ms_array = svd->vdev_ms_array;
666         tvd->vdev_ms_shift = svd->vdev_ms_shift;
667         tvd->vdev_ms_count = svd->vdev_ms_count;
668
669         svd->vdev_ms_array = 0;
670         svd->vdev_ms_shift = 0;
671         svd->vdev_ms_count = 0;
672
673         if (tvd->vdev_mg)
674                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
675         tvd->vdev_mg = svd->vdev_mg;
676         tvd->vdev_ms = svd->vdev_ms;
677
678         svd->vdev_mg = NULL;
679         svd->vdev_ms = NULL;
680
681         if (tvd->vdev_mg != NULL)
682                 tvd->vdev_mg->mg_vd = tvd;
683
684         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687
688         svd->vdev_stat.vs_alloc = 0;
689         svd->vdev_stat.vs_space = 0;
690         svd->vdev_stat.vs_dspace = 0;
691
692         for (t = 0; t < TXG_SIZE; t++) {
693                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699         }
700
701         if (list_link_active(&svd->vdev_config_dirty_node)) {
702                 vdev_config_clean(svd);
703                 vdev_config_dirty(tvd);
704         }
705
706         if (list_link_active(&svd->vdev_state_dirty_node)) {
707                 vdev_state_clean(svd);
708                 vdev_state_dirty(tvd);
709         }
710
711         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712         svd->vdev_deflate_ratio = 0;
713
714         tvd->vdev_islog = svd->vdev_islog;
715         svd->vdev_islog = 0;
716 }
717
718 static void
719 vdev_top_update(vdev_t *tvd, vdev_t *vd)
720 {
721         if (vd == NULL)
722                 return;
723
724         vd->vdev_top = tvd;
725
726         for (int c = 0; c < vd->vdev_children; c++)
727                 vdev_top_update(tvd, vd->vdev_child[c]);
728 }
729
730 /*
731  * Add a mirror/replacing vdev above an existing vdev.
732  */
733 vdev_t *
734 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
735 {
736         spa_t *spa = cvd->vdev_spa;
737         vdev_t *pvd = cvd->vdev_parent;
738         vdev_t *mvd;
739
740         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
741
742         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
743
744         mvd->vdev_asize = cvd->vdev_asize;
745         mvd->vdev_min_asize = cvd->vdev_min_asize;
746         mvd->vdev_max_asize = cvd->vdev_max_asize;
747         mvd->vdev_ashift = cvd->vdev_ashift;
748         mvd->vdev_state = cvd->vdev_state;
749         mvd->vdev_crtxg = cvd->vdev_crtxg;
750
751         vdev_remove_child(pvd, cvd);
752         vdev_add_child(pvd, mvd);
753         cvd->vdev_id = mvd->vdev_children;
754         vdev_add_child(mvd, cvd);
755         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
756
757         if (mvd == mvd->vdev_top)
758                 vdev_top_transfer(cvd, mvd);
759
760         return (mvd);
761 }
762
763 /*
764  * Remove a 1-way mirror/replacing vdev from the tree.
765  */
766 void
767 vdev_remove_parent(vdev_t *cvd)
768 {
769         vdev_t *mvd = cvd->vdev_parent;
770         vdev_t *pvd = mvd->vdev_parent;
771
772         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
773
774         ASSERT(mvd->vdev_children == 1);
775         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
776             mvd->vdev_ops == &vdev_replacing_ops ||
777             mvd->vdev_ops == &vdev_spare_ops);
778         cvd->vdev_ashift = mvd->vdev_ashift;
779
780         vdev_remove_child(mvd, cvd);
781         vdev_remove_child(pvd, mvd);
782
783         /*
784          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
785          * Otherwise, we could have detached an offline device, and when we
786          * go to import the pool we'll think we have two top-level vdevs,
787          * instead of a different version of the same top-level vdev.
788          */
789         if (mvd->vdev_top == mvd) {
790                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
791                 cvd->vdev_orig_guid = cvd->vdev_guid;
792                 cvd->vdev_guid += guid_delta;
793                 cvd->vdev_guid_sum += guid_delta;
794         }
795         cvd->vdev_id = mvd->vdev_id;
796         vdev_add_child(pvd, cvd);
797         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
798
799         if (cvd == cvd->vdev_top)
800                 vdev_top_transfer(mvd, cvd);
801
802         ASSERT(mvd->vdev_children == 0);
803         vdev_free(mvd);
804 }
805
806 int
807 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
808 {
809         spa_t *spa = vd->vdev_spa;
810         objset_t *mos = spa->spa_meta_objset;
811         uint64_t m;
812         uint64_t oldc = vd->vdev_ms_count;
813         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
814         metaslab_t **mspp;
815         int error;
816
817         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
818
819         /*
820          * This vdev is not being allocated from yet or is a hole.
821          */
822         if (vd->vdev_ms_shift == 0)
823                 return (0);
824
825         ASSERT(!vd->vdev_ishole);
826
827         /*
828          * Compute the raidz-deflation ratio.  Note, we hard-code
829          * in 128k (1 << 17) because it is the current "typical" blocksize.
830          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
831          * or we will inconsistently account for existing bp's.
832          */
833         vd->vdev_deflate_ratio = (1 << 17) /
834             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
835
836         ASSERT(oldc <= newc);
837
838         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
839
840         if (oldc != 0) {
841                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
842                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
843         }
844
845         vd->vdev_ms = mspp;
846         vd->vdev_ms_count = newc;
847
848         for (m = oldc; m < newc; m++) {
849                 space_map_obj_t smo = { 0, 0, 0 };
850                 if (txg == 0) {
851                         uint64_t object = 0;
852                         error = dmu_read(mos, vd->vdev_ms_array,
853                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
854                             DMU_READ_PREFETCH);
855                         if (error)
856                                 return (error);
857                         if (object != 0) {
858                                 dmu_buf_t *db;
859                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
860                                 if (error)
861                                         return (error);
862                                 ASSERT3U(db->db_size, >=, sizeof (smo));
863                                 bcopy(db->db_data, &smo, sizeof (smo));
864                                 ASSERT3U(smo.smo_object, ==, object);
865                                 dmu_buf_rele(db, FTAG);
866                         }
867                 }
868                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
869                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
870         }
871
872         if (txg == 0)
873                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
874
875         /*
876          * If the vdev is being removed we don't activate
877          * the metaslabs since we want to ensure that no new
878          * allocations are performed on this device.
879          */
880         if (oldc == 0 && !vd->vdev_removing)
881                 metaslab_group_activate(vd->vdev_mg);
882
883         if (txg == 0)
884                 spa_config_exit(spa, SCL_ALLOC, FTAG);
885
886         return (0);
887 }
888
889 void
890 vdev_metaslab_fini(vdev_t *vd)
891 {
892         uint64_t m;
893         uint64_t count = vd->vdev_ms_count;
894
895         if (vd->vdev_ms != NULL) {
896                 metaslab_group_passivate(vd->vdev_mg);
897                 for (m = 0; m < count; m++)
898                         if (vd->vdev_ms[m] != NULL)
899                                 metaslab_fini(vd->vdev_ms[m]);
900                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
901                 vd->vdev_ms = NULL;
902         }
903 }
904
905 typedef struct vdev_probe_stats {
906         boolean_t       vps_readable;
907         boolean_t       vps_writeable;
908         int             vps_flags;
909 } vdev_probe_stats_t;
910
911 static void
912 vdev_probe_done(zio_t *zio)
913 {
914         spa_t *spa = zio->io_spa;
915         vdev_t *vd = zio->io_vd;
916         vdev_probe_stats_t *vps = zio->io_private;
917
918         ASSERT(vd->vdev_probe_zio != NULL);
919
920         if (zio->io_type == ZIO_TYPE_READ) {
921                 if (zio->io_error == 0)
922                         vps->vps_readable = 1;
923                 if (zio->io_error == 0 && spa_writeable(spa)) {
924                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
925                             zio->io_offset, zio->io_size, zio->io_data,
926                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
927                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
928                 } else {
929                         zio_buf_free(zio->io_data, zio->io_size);
930                 }
931         } else if (zio->io_type == ZIO_TYPE_WRITE) {
932                 if (zio->io_error == 0)
933                         vps->vps_writeable = 1;
934                 zio_buf_free(zio->io_data, zio->io_size);
935         } else if (zio->io_type == ZIO_TYPE_NULL) {
936                 zio_t *pio;
937
938                 vd->vdev_cant_read |= !vps->vps_readable;
939                 vd->vdev_cant_write |= !vps->vps_writeable;
940
941                 if (vdev_readable(vd) &&
942                     (vdev_writeable(vd) || !spa_writeable(spa))) {
943                         zio->io_error = 0;
944                 } else {
945                         ASSERT(zio->io_error != 0);
946                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
947                             spa, vd, NULL, 0, 0);
948                         zio->io_error = SET_ERROR(ENXIO);
949                 }
950
951                 mutex_enter(&vd->vdev_probe_lock);
952                 ASSERT(vd->vdev_probe_zio == zio);
953                 vd->vdev_probe_zio = NULL;
954                 mutex_exit(&vd->vdev_probe_lock);
955
956                 while ((pio = zio_walk_parents(zio)) != NULL)
957                         if (!vdev_accessible(vd, pio))
958                                 pio->io_error = SET_ERROR(ENXIO);
959
960                 kmem_free(vps, sizeof (*vps));
961         }
962 }
963
964 /*
965  * Determine whether this device is accessible by reading and writing
966  * to several known locations: the pad regions of each vdev label
967  * but the first (which we leave alone in case it contains a VTOC).
968  */
969 zio_t *
970 vdev_probe(vdev_t *vd, zio_t *zio)
971 {
972         spa_t *spa = vd->vdev_spa;
973         vdev_probe_stats_t *vps = NULL;
974         zio_t *pio;
975
976         ASSERT(vd->vdev_ops->vdev_op_leaf);
977
978         /*
979          * Don't probe the probe.
980          */
981         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
982                 return (NULL);
983
984         /*
985          * To prevent 'probe storms' when a device fails, we create
986          * just one probe i/o at a time.  All zios that want to probe
987          * this vdev will become parents of the probe io.
988          */
989         mutex_enter(&vd->vdev_probe_lock);
990
991         if ((pio = vd->vdev_probe_zio) == NULL) {
992                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
993
994                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
995                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
996                     ZIO_FLAG_TRYHARD;
997
998                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
999                         /*
1000                          * vdev_cant_read and vdev_cant_write can only
1001                          * transition from TRUE to FALSE when we have the
1002                          * SCL_ZIO lock as writer; otherwise they can only
1003                          * transition from FALSE to TRUE.  This ensures that
1004                          * any zio looking at these values can assume that
1005                          * failures persist for the life of the I/O.  That's
1006                          * important because when a device has intermittent
1007                          * connectivity problems, we want to ensure that
1008                          * they're ascribed to the device (ENXIO) and not
1009                          * the zio (EIO).
1010                          *
1011                          * Since we hold SCL_ZIO as writer here, clear both
1012                          * values so the probe can reevaluate from first
1013                          * principles.
1014                          */
1015                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1016                         vd->vdev_cant_read = B_FALSE;
1017                         vd->vdev_cant_write = B_FALSE;
1018                 }
1019
1020                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1021                     vdev_probe_done, vps,
1022                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1023
1024                 /*
1025                  * We can't change the vdev state in this context, so we
1026                  * kick off an async task to do it on our behalf.
1027                  */
1028                 if (zio != NULL) {
1029                         vd->vdev_probe_wanted = B_TRUE;
1030                         spa_async_request(spa, SPA_ASYNC_PROBE);
1031                 }
1032         }
1033
1034         if (zio != NULL)
1035                 zio_add_child(zio, pio);
1036
1037         mutex_exit(&vd->vdev_probe_lock);
1038
1039         if (vps == NULL) {
1040                 ASSERT(zio != NULL);
1041                 return (NULL);
1042         }
1043
1044         for (int l = 1; l < VDEV_LABELS; l++) {
1045                 zio_nowait(zio_read_phys(pio, vd,
1046                     vdev_label_offset(vd->vdev_psize, l,
1047                     offsetof(vdev_label_t, vl_pad2)),
1048                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1049                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1050                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1051         }
1052
1053         if (zio == NULL)
1054                 return (pio);
1055
1056         zio_nowait(pio);
1057         return (NULL);
1058 }
1059
1060 static void
1061 vdev_open_child(void *arg)
1062 {
1063         vdev_t *vd = arg;
1064
1065         vd->vdev_open_thread = curthread;
1066         vd->vdev_open_error = vdev_open(vd);
1067         vd->vdev_open_thread = NULL;
1068 }
1069
1070 boolean_t
1071 vdev_uses_zvols(vdev_t *vd)
1072 {
1073         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1074             strlen(ZVOL_DIR)) == 0)
1075                 return (B_TRUE);
1076         for (int c = 0; c < vd->vdev_children; c++)
1077                 if (vdev_uses_zvols(vd->vdev_child[c]))
1078                         return (B_TRUE);
1079         return (B_FALSE);
1080 }
1081
1082 void
1083 vdev_open_children(vdev_t *vd)
1084 {
1085         taskq_t *tq;
1086         int children = vd->vdev_children;
1087
1088         /*
1089          * in order to handle pools on top of zvols, do the opens
1090          * in a single thread so that the same thread holds the
1091          * spa_namespace_lock
1092          */
1093         if (B_TRUE || vdev_uses_zvols(vd)) {
1094                 for (int c = 0; c < children; c++)
1095                         vd->vdev_child[c]->vdev_open_error =
1096                             vdev_open(vd->vdev_child[c]);
1097                 return;
1098         }
1099         tq = taskq_create("vdev_open", children, minclsyspri,
1100             children, children, TASKQ_PREPOPULATE);
1101
1102         for (int c = 0; c < children; c++)
1103                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1104                     TQ_SLEEP) != 0);
1105
1106         taskq_destroy(tq);
1107 }
1108
1109 /*
1110  * Prepare a virtual device for access.
1111  */
1112 int
1113 vdev_open(vdev_t *vd)
1114 {
1115         spa_t *spa = vd->vdev_spa;
1116         int error;
1117         uint64_t osize = 0;
1118         uint64_t max_osize = 0;
1119         uint64_t asize, max_asize, psize;
1120         uint64_t ashift = 0;
1121
1122         ASSERT(vd->vdev_open_thread == curthread ||
1123             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1124         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1125             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1126             vd->vdev_state == VDEV_STATE_OFFLINE);
1127
1128         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1129         vd->vdev_cant_read = B_FALSE;
1130         vd->vdev_cant_write = B_FALSE;
1131         vd->vdev_min_asize = vdev_get_min_asize(vd);
1132
1133         /*
1134          * If this vdev is not removed, check its fault status.  If it's
1135          * faulted, bail out of the open.
1136          */
1137         if (!vd->vdev_removed && vd->vdev_faulted) {
1138                 ASSERT(vd->vdev_children == 0);
1139                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1140                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1141                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1142                     vd->vdev_label_aux);
1143                 return (SET_ERROR(ENXIO));
1144         } else if (vd->vdev_offline) {
1145                 ASSERT(vd->vdev_children == 0);
1146                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1147                 return (SET_ERROR(ENXIO));
1148         }
1149
1150         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1151
1152         /*
1153          * Reset the vdev_reopening flag so that we actually close
1154          * the vdev on error.
1155          */
1156         vd->vdev_reopening = B_FALSE;
1157         if (zio_injection_enabled && error == 0)
1158                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1159
1160         if (error) {
1161                 if (vd->vdev_removed &&
1162                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1163                         vd->vdev_removed = B_FALSE;
1164
1165                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1166                     vd->vdev_stat.vs_aux);
1167                 return (error);
1168         }
1169
1170         vd->vdev_removed = B_FALSE;
1171
1172         /*
1173          * Recheck the faulted flag now that we have confirmed that
1174          * the vdev is accessible.  If we're faulted, bail.
1175          */
1176         if (vd->vdev_faulted) {
1177                 ASSERT(vd->vdev_children == 0);
1178                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1179                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1180                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1181                     vd->vdev_label_aux);
1182                 return (SET_ERROR(ENXIO));
1183         }
1184
1185         if (vd->vdev_degraded) {
1186                 ASSERT(vd->vdev_children == 0);
1187                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1188                     VDEV_AUX_ERR_EXCEEDED);
1189         } else {
1190                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1191         }
1192
1193         /*
1194          * For hole or missing vdevs we just return success.
1195          */
1196         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1197                 return (0);
1198
1199         for (int c = 0; c < vd->vdev_children; c++) {
1200                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1201                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202                             VDEV_AUX_NONE);
1203                         break;
1204                 }
1205         }
1206
1207         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1208         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1209
1210         if (vd->vdev_children == 0) {
1211                 if (osize < SPA_MINDEVSIZE) {
1212                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1213                             VDEV_AUX_TOO_SMALL);
1214                         return (SET_ERROR(EOVERFLOW));
1215                 }
1216                 psize = osize;
1217                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1218                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1219                     VDEV_LABEL_END_SIZE);
1220         } else {
1221                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1222                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1223                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224                             VDEV_AUX_TOO_SMALL);
1225                         return (SET_ERROR(EOVERFLOW));
1226                 }
1227                 psize = 0;
1228                 asize = osize;
1229                 max_asize = max_osize;
1230         }
1231
1232         vd->vdev_psize = psize;
1233
1234         /*
1235          * Make sure the allocatable size hasn't shrunk.
1236          */
1237         if (asize < vd->vdev_min_asize) {
1238                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239                     VDEV_AUX_BAD_LABEL);
1240                 return (SET_ERROR(EINVAL));
1241         }
1242
1243         if (vd->vdev_asize == 0) {
1244                 /*
1245                  * This is the first-ever open, so use the computed values.
1246                  * For testing purposes, a higher ashift can be requested.
1247                  */
1248                 vd->vdev_asize = asize;
1249                 vd->vdev_max_asize = max_asize;
1250                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1251         } else {
1252                 /*
1253                  * Make sure the alignment requirement hasn't increased.
1254                  */
1255                 if (ashift > vd->vdev_top->vdev_ashift) {
1256                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1257                             VDEV_AUX_BAD_LABEL);
1258                         return (EINVAL);
1259                 }
1260                 vd->vdev_max_asize = max_asize;
1261         }
1262
1263         /*
1264          * If all children are healthy and the asize has increased,
1265          * then we've experienced dynamic LUN growth.  If automatic
1266          * expansion is enabled then use the additional space.
1267          */
1268         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1269             (vd->vdev_expanding || spa->spa_autoexpand))
1270                 vd->vdev_asize = asize;
1271
1272         vdev_set_min_asize(vd);
1273
1274         /*
1275          * Ensure we can issue some IO before declaring the
1276          * vdev open for business.
1277          */
1278         if (vd->vdev_ops->vdev_op_leaf &&
1279             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1280                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1281                     VDEV_AUX_ERR_EXCEEDED);
1282                 return (error);
1283         }
1284
1285         /*
1286          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1287          * resilver.  But don't do this if we are doing a reopen for a scrub,
1288          * since this would just restart the scrub we are already doing.
1289          */
1290         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1291             vdev_resilver_needed(vd, NULL, NULL))
1292                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1293
1294         return (0);
1295 }
1296
1297 /*
1298  * Called once the vdevs are all opened, this routine validates the label
1299  * contents.  This needs to be done before vdev_load() so that we don't
1300  * inadvertently do repair I/Os to the wrong device.
1301  *
1302  * If 'strict' is false ignore the spa guid check. This is necessary because
1303  * if the machine crashed during a re-guid the new guid might have been written
1304  * to all of the vdev labels, but not the cached config. The strict check
1305  * will be performed when the pool is opened again using the mos config.
1306  *
1307  * This function will only return failure if one of the vdevs indicates that it
1308  * has since been destroyed or exported.  This is only possible if
1309  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1310  * will be updated but the function will return 0.
1311  */
1312 int
1313 vdev_validate(vdev_t *vd, boolean_t strict)
1314 {
1315         spa_t *spa = vd->vdev_spa;
1316         nvlist_t *label;
1317         uint64_t guid = 0, top_guid;
1318         uint64_t state;
1319
1320         for (int c = 0; c < vd->vdev_children; c++)
1321                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1322                         return (SET_ERROR(EBADF));
1323
1324         /*
1325          * If the device has already failed, or was marked offline, don't do
1326          * any further validation.  Otherwise, label I/O will fail and we will
1327          * overwrite the previous state.
1328          */
1329         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1330                 uint64_t aux_guid = 0;
1331                 nvlist_t *nvl;
1332                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1333                     spa_last_synced_txg(spa) : -1ULL;
1334
1335                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1336                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337                             VDEV_AUX_BAD_LABEL);
1338                         return (0);
1339                 }
1340
1341                 /*
1342                  * Determine if this vdev has been split off into another
1343                  * pool.  If so, then refuse to open it.
1344                  */
1345                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1346                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1347                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1348                             VDEV_AUX_SPLIT_POOL);
1349                         nvlist_free(label);
1350                         return (0);
1351                 }
1352
1353                 if (strict && (nvlist_lookup_uint64(label,
1354                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1355                     guid != spa_guid(spa))) {
1356                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1357                             VDEV_AUX_CORRUPT_DATA);
1358                         nvlist_free(label);
1359                         return (0);
1360                 }
1361
1362                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1363                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1364                     &aux_guid) != 0)
1365                         aux_guid = 0;
1366
1367                 /*
1368                  * If this vdev just became a top-level vdev because its
1369                  * sibling was detached, it will have adopted the parent's
1370                  * vdev guid -- but the label may or may not be on disk yet.
1371                  * Fortunately, either version of the label will have the
1372                  * same top guid, so if we're a top-level vdev, we can
1373                  * safely compare to that instead.
1374                  *
1375                  * If we split this vdev off instead, then we also check the
1376                  * original pool's guid.  We don't want to consider the vdev
1377                  * corrupt if it is partway through a split operation.
1378                  */
1379                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1380                     &guid) != 0 ||
1381                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1382                     &top_guid) != 0 ||
1383                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1384                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1385                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386                             VDEV_AUX_CORRUPT_DATA);
1387                         nvlist_free(label);
1388                         return (0);
1389                 }
1390
1391                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1392                     &state) != 0) {
1393                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1394                             VDEV_AUX_CORRUPT_DATA);
1395                         nvlist_free(label);
1396                         return (0);
1397                 }
1398
1399                 nvlist_free(label);
1400
1401                 /*
1402                  * If this is a verbatim import, no need to check the
1403                  * state of the pool.
1404                  */
1405                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1406                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1407                     state != POOL_STATE_ACTIVE)
1408                         return (SET_ERROR(EBADF));
1409
1410                 /*
1411                  * If we were able to open and validate a vdev that was
1412                  * previously marked permanently unavailable, clear that state
1413                  * now.
1414                  */
1415                 if (vd->vdev_not_present)
1416                         vd->vdev_not_present = 0;
1417         }
1418
1419         return (0);
1420 }
1421
1422 /*
1423  * Close a virtual device.
1424  */
1425 void
1426 vdev_close(vdev_t *vd)
1427 {
1428         spa_t *spa = vd->vdev_spa;
1429         vdev_t *pvd = vd->vdev_parent;
1430
1431         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1432
1433         /*
1434          * If our parent is reopening, then we are as well, unless we are
1435          * going offline.
1436          */
1437         if (pvd != NULL && pvd->vdev_reopening)
1438                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1439
1440         vd->vdev_ops->vdev_op_close(vd);
1441
1442         vdev_cache_purge(vd);
1443
1444         /*
1445          * We record the previous state before we close it, so that if we are
1446          * doing a reopen(), we don't generate FMA ereports if we notice that
1447          * it's still faulted.
1448          */
1449         vd->vdev_prevstate = vd->vdev_state;
1450
1451         if (vd->vdev_offline)
1452                 vd->vdev_state = VDEV_STATE_OFFLINE;
1453         else
1454                 vd->vdev_state = VDEV_STATE_CLOSED;
1455         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1456 }
1457
1458 void
1459 vdev_hold(vdev_t *vd)
1460 {
1461         spa_t *spa = vd->vdev_spa;
1462
1463         ASSERT(spa_is_root(spa));
1464         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1465                 return;
1466
1467         for (int c = 0; c < vd->vdev_children; c++)
1468                 vdev_hold(vd->vdev_child[c]);
1469
1470         if (vd->vdev_ops->vdev_op_leaf)
1471                 vd->vdev_ops->vdev_op_hold(vd);
1472 }
1473
1474 void
1475 vdev_rele(vdev_t *vd)
1476 {
1477         spa_t *spa = vd->vdev_spa;
1478
1479         ASSERT(spa_is_root(spa));
1480         for (int c = 0; c < vd->vdev_children; c++)
1481                 vdev_rele(vd->vdev_child[c]);
1482
1483         if (vd->vdev_ops->vdev_op_leaf)
1484                 vd->vdev_ops->vdev_op_rele(vd);
1485 }
1486
1487 /*
1488  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1489  * reopen leaf vdevs which had previously been opened as they might deadlock
1490  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1491  * If the leaf has never been opened then open it, as usual.
1492  */
1493 void
1494 vdev_reopen(vdev_t *vd)
1495 {
1496         spa_t *spa = vd->vdev_spa;
1497
1498         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499
1500         /* set the reopening flag unless we're taking the vdev offline */
1501         vd->vdev_reopening = !vd->vdev_offline;
1502         vdev_close(vd);
1503         (void) vdev_open(vd);
1504
1505         /*
1506          * Call vdev_validate() here to make sure we have the same device.
1507          * Otherwise, a device with an invalid label could be successfully
1508          * opened in response to vdev_reopen().
1509          */
1510         if (vd->vdev_aux) {
1511                 (void) vdev_validate_aux(vd);
1512                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1513                     vd->vdev_aux == &spa->spa_l2cache &&
1514                     !l2arc_vdev_present(vd))
1515                         l2arc_add_vdev(spa, vd);
1516         } else {
1517                 (void) vdev_validate(vd, B_TRUE);
1518         }
1519
1520         /*
1521          * Reassess parent vdev's health.
1522          */
1523         vdev_propagate_state(vd);
1524 }
1525
1526 int
1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1528 {
1529         int error;
1530
1531         /*
1532          * Normally, partial opens (e.g. of a mirror) are allowed.
1533          * For a create, however, we want to fail the request if
1534          * there are any components we can't open.
1535          */
1536         error = vdev_open(vd);
1537
1538         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1539                 vdev_close(vd);
1540                 return (error ? error : ENXIO);
1541         }
1542
1543         /*
1544          * Recursively initialize all labels.
1545          */
1546         if ((error = vdev_label_init(vd, txg, isreplacing ?
1547             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1548                 vdev_close(vd);
1549                 return (error);
1550         }
1551
1552         return (0);
1553 }
1554
1555 void
1556 vdev_metaslab_set_size(vdev_t *vd)
1557 {
1558         /*
1559          * Aim for roughly 200 metaslabs per vdev.
1560          */
1561         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1562         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1563 }
1564
1565 void
1566 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1567 {
1568         ASSERT(vd == vd->vdev_top);
1569         ASSERT(!vd->vdev_ishole);
1570         ASSERT(ISP2(flags));
1571         ASSERT(spa_writeable(vd->vdev_spa));
1572
1573         if (flags & VDD_METASLAB)
1574                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1575
1576         if (flags & VDD_DTL)
1577                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1578
1579         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1580 }
1581
1582 /*
1583  * DTLs.
1584  *
1585  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1586  * the vdev has less than perfect replication.  There are four kinds of DTL:
1587  *
1588  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1589  *
1590  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1591  *
1592  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1593  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1594  *      txgs that was scrubbed.
1595  *
1596  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1597  *      persistent errors or just some device being offline.
1598  *      Unlike the other three, the DTL_OUTAGE map is not generally
1599  *      maintained; it's only computed when needed, typically to
1600  *      determine whether a device can be detached.
1601  *
1602  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1603  * either has the data or it doesn't.
1604  *
1605  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1606  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1607  * if any child is less than fully replicated, then so is its parent.
1608  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1609  * comprising only those txgs which appear in 'maxfaults' or more children;
1610  * those are the txgs we don't have enough replication to read.  For example,
1611  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1612  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1613  * two child DTL_MISSING maps.
1614  *
1615  * It should be clear from the above that to compute the DTLs and outage maps
1616  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1617  * Therefore, that is all we keep on disk.  When loading the pool, or after
1618  * a configuration change, we generate all other DTLs from first principles.
1619  */
1620 void
1621 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1622 {
1623         space_map_t *sm = &vd->vdev_dtl[t];
1624
1625         ASSERT(t < DTL_TYPES);
1626         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627         ASSERT(spa_writeable(vd->vdev_spa));
1628
1629         mutex_enter(sm->sm_lock);
1630         if (!space_map_contains(sm, txg, size))
1631                 space_map_add(sm, txg, size);
1632         mutex_exit(sm->sm_lock);
1633 }
1634
1635 boolean_t
1636 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 {
1638         space_map_t *sm = &vd->vdev_dtl[t];
1639         boolean_t dirty = B_FALSE;
1640
1641         ASSERT(t < DTL_TYPES);
1642         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1643
1644         mutex_enter(sm->sm_lock);
1645         if (sm->sm_space != 0)
1646                 dirty = space_map_contains(sm, txg, size);
1647         mutex_exit(sm->sm_lock);
1648
1649         return (dirty);
1650 }
1651
1652 boolean_t
1653 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1654 {
1655         space_map_t *sm = &vd->vdev_dtl[t];
1656         boolean_t empty;
1657
1658         mutex_enter(sm->sm_lock);
1659         empty = (sm->sm_space == 0);
1660         mutex_exit(sm->sm_lock);
1661
1662         return (empty);
1663 }
1664
1665 /*
1666  * Reassess DTLs after a config change or scrub completion.
1667  */
1668 void
1669 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1670 {
1671         spa_t *spa = vd->vdev_spa;
1672         avl_tree_t reftree;
1673         int minref;
1674
1675         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1676
1677         for (int c = 0; c < vd->vdev_children; c++)
1678                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1679                     scrub_txg, scrub_done);
1680
1681         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1682                 return;
1683
1684         if (vd->vdev_ops->vdev_op_leaf) {
1685                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1686
1687                 mutex_enter(&vd->vdev_dtl_lock);
1688                 if (scrub_txg != 0 &&
1689                     (spa->spa_scrub_started ||
1690                     (scn && scn->scn_phys.scn_errors == 0))) {
1691                         /*
1692                          * We completed a scrub up to scrub_txg.  If we
1693                          * did it without rebooting, then the scrub dtl
1694                          * will be valid, so excise the old region and
1695                          * fold in the scrub dtl.  Otherwise, leave the
1696                          * dtl as-is if there was an error.
1697                          *
1698                          * There's little trick here: to excise the beginning
1699                          * of the DTL_MISSING map, we put it into a reference
1700                          * tree and then add a segment with refcnt -1 that
1701                          * covers the range [0, scrub_txg).  This means
1702                          * that each txg in that range has refcnt -1 or 0.
1703                          * We then add DTL_SCRUB with a refcnt of 2, so that
1704                          * entries in the range [0, scrub_txg) will have a
1705                          * positive refcnt -- either 1 or 2.  We then convert
1706                          * the reference tree into the new DTL_MISSING map.
1707                          */
1708                         space_map_ref_create(&reftree);
1709                         space_map_ref_add_map(&reftree,
1710                             &vd->vdev_dtl[DTL_MISSING], 1);
1711                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1712                         space_map_ref_add_map(&reftree,
1713                             &vd->vdev_dtl[DTL_SCRUB], 2);
1714                         space_map_ref_generate_map(&reftree,
1715                             &vd->vdev_dtl[DTL_MISSING], 1);
1716                         space_map_ref_destroy(&reftree);
1717                 }
1718                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1719                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1720                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1721                 if (scrub_done)
1722                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1723                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1724                 if (!vdev_readable(vd))
1725                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1726                 else
1727                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1728                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1729                 mutex_exit(&vd->vdev_dtl_lock);
1730
1731                 if (txg != 0)
1732                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1733                 return;
1734         }
1735
1736         mutex_enter(&vd->vdev_dtl_lock);
1737         for (int t = 0; t < DTL_TYPES; t++) {
1738                 /* account for child's outage in parent's missing map */
1739                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1740                 if (t == DTL_SCRUB)
1741                         continue;                       /* leaf vdevs only */
1742                 if (t == DTL_PARTIAL)
1743                         minref = 1;                     /* i.e. non-zero */
1744                 else if (vd->vdev_nparity != 0)
1745                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1746                 else
1747                         minref = vd->vdev_children;     /* any kind of mirror */
1748                 space_map_ref_create(&reftree);
1749                 for (int c = 0; c < vd->vdev_children; c++) {
1750                         vdev_t *cvd = vd->vdev_child[c];
1751                         mutex_enter(&cvd->vdev_dtl_lock);
1752                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1753                         mutex_exit(&cvd->vdev_dtl_lock);
1754                 }
1755                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1756                 space_map_ref_destroy(&reftree);
1757         }
1758         mutex_exit(&vd->vdev_dtl_lock);
1759 }
1760
1761 static int
1762 vdev_dtl_load(vdev_t *vd)
1763 {
1764         spa_t *spa = vd->vdev_spa;
1765         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1766         objset_t *mos = spa->spa_meta_objset;
1767         dmu_buf_t *db;
1768         int error;
1769
1770         ASSERT(vd->vdev_children == 0);
1771
1772         if (smo->smo_object == 0)
1773                 return (0);
1774
1775         ASSERT(!vd->vdev_ishole);
1776
1777         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1778                 return (error);
1779
1780         ASSERT3U(db->db_size, >=, sizeof (*smo));
1781         bcopy(db->db_data, smo, sizeof (*smo));
1782         dmu_buf_rele(db, FTAG);
1783
1784         mutex_enter(&vd->vdev_dtl_lock);
1785         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1786             NULL, SM_ALLOC, smo, mos);
1787         mutex_exit(&vd->vdev_dtl_lock);
1788
1789         return (error);
1790 }
1791
1792 void
1793 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1794 {
1795         spa_t *spa = vd->vdev_spa;
1796         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1797         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1798         objset_t *mos = spa->spa_meta_objset;
1799         space_map_t smsync;
1800         kmutex_t smlock;
1801         dmu_buf_t *db;
1802         dmu_tx_t *tx;
1803
1804         ASSERT(!vd->vdev_ishole);
1805
1806         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1807
1808         if (vd->vdev_detached) {
1809                 if (smo->smo_object != 0) {
1810                         int err = dmu_object_free(mos, smo->smo_object, tx);
1811                         ASSERT0(err);
1812                         smo->smo_object = 0;
1813                 }
1814                 dmu_tx_commit(tx);
1815                 return;
1816         }
1817
1818         if (smo->smo_object == 0) {
1819                 ASSERT(smo->smo_objsize == 0);
1820                 ASSERT(smo->smo_alloc == 0);
1821                 smo->smo_object = dmu_object_alloc(mos,
1822                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1823                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1824                 ASSERT(smo->smo_object != 0);
1825                 vdev_config_dirty(vd->vdev_top);
1826         }
1827
1828         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1829
1830         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1831             &smlock);
1832
1833         mutex_enter(&smlock);
1834
1835         mutex_enter(&vd->vdev_dtl_lock);
1836         space_map_walk(sm, space_map_add, &smsync);
1837         mutex_exit(&vd->vdev_dtl_lock);
1838
1839         space_map_truncate(smo, mos, tx);
1840         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1841         space_map_vacate(&smsync, NULL, NULL);
1842
1843         space_map_destroy(&smsync);
1844
1845         mutex_exit(&smlock);
1846         mutex_destroy(&smlock);
1847
1848         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1849         dmu_buf_will_dirty(db, tx);
1850         ASSERT3U(db->db_size, >=, sizeof (*smo));
1851         bcopy(smo, db->db_data, sizeof (*smo));
1852         dmu_buf_rele(db, FTAG);
1853
1854         dmu_tx_commit(tx);
1855 }
1856
1857 /*
1858  * Determine whether the specified vdev can be offlined/detached/removed
1859  * without losing data.
1860  */
1861 boolean_t
1862 vdev_dtl_required(vdev_t *vd)
1863 {
1864         spa_t *spa = vd->vdev_spa;
1865         vdev_t *tvd = vd->vdev_top;
1866         uint8_t cant_read = vd->vdev_cant_read;
1867         boolean_t required;
1868
1869         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1870
1871         if (vd == spa->spa_root_vdev || vd == tvd)
1872                 return (B_TRUE);
1873
1874         /*
1875          * Temporarily mark the device as unreadable, and then determine
1876          * whether this results in any DTL outages in the top-level vdev.
1877          * If not, we can safely offline/detach/remove the device.
1878          */
1879         vd->vdev_cant_read = B_TRUE;
1880         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1881         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1882         vd->vdev_cant_read = cant_read;
1883         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1884
1885         if (!required && zio_injection_enabled)
1886                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1887
1888         return (required);
1889 }
1890
1891 /*
1892  * Determine if resilver is needed, and if so the txg range.
1893  */
1894 boolean_t
1895 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1896 {
1897         boolean_t needed = B_FALSE;
1898         uint64_t thismin = UINT64_MAX;
1899         uint64_t thismax = 0;
1900
1901         if (vd->vdev_children == 0) {
1902                 mutex_enter(&vd->vdev_dtl_lock);
1903                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1904                     vdev_writeable(vd)) {
1905                         space_seg_t *ss;
1906
1907                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1908                         thismin = ss->ss_start - 1;
1909                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1910                         thismax = ss->ss_end;
1911                         needed = B_TRUE;
1912                 }
1913                 mutex_exit(&vd->vdev_dtl_lock);
1914         } else {
1915                 for (int c = 0; c < vd->vdev_children; c++) {
1916                         vdev_t *cvd = vd->vdev_child[c];
1917                         uint64_t cmin, cmax;
1918
1919                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1920                                 thismin = MIN(thismin, cmin);
1921                                 thismax = MAX(thismax, cmax);
1922                                 needed = B_TRUE;
1923                         }
1924                 }
1925         }
1926
1927         if (needed && minp) {
1928                 *minp = thismin;
1929                 *maxp = thismax;
1930         }
1931         return (needed);
1932 }
1933
1934 void
1935 vdev_load(vdev_t *vd)
1936 {
1937         /*
1938          * Recursively load all children.
1939          */
1940         for (int c = 0; c < vd->vdev_children; c++)
1941                 vdev_load(vd->vdev_child[c]);
1942
1943         /*
1944          * If this is a top-level vdev, initialize its metaslabs.
1945          */
1946         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1947             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1948             vdev_metaslab_init(vd, 0) != 0))
1949                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1950                     VDEV_AUX_CORRUPT_DATA);
1951
1952         /*
1953          * If this is a leaf vdev, load its DTL.
1954          */
1955         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1956                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1957                     VDEV_AUX_CORRUPT_DATA);
1958 }
1959
1960 /*
1961  * The special vdev case is used for hot spares and l2cache devices.  Its
1962  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1963  * we make sure that we can open the underlying device, then try to read the
1964  * label, and make sure that the label is sane and that it hasn't been
1965  * repurposed to another pool.
1966  */
1967 int
1968 vdev_validate_aux(vdev_t *vd)
1969 {
1970         nvlist_t *label;
1971         uint64_t guid, version;
1972         uint64_t state;
1973
1974         if (!vdev_readable(vd))
1975                 return (0);
1976
1977         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1978                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1979                     VDEV_AUX_CORRUPT_DATA);
1980                 return (-1);
1981         }
1982
1983         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1984             !SPA_VERSION_IS_SUPPORTED(version) ||
1985             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1986             guid != vd->vdev_guid ||
1987             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1988                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1989                     VDEV_AUX_CORRUPT_DATA);
1990                 nvlist_free(label);
1991                 return (-1);
1992         }
1993
1994         /*
1995          * We don't actually check the pool state here.  If it's in fact in
1996          * use by another pool, we update this fact on the fly when requested.
1997          */
1998         nvlist_free(label);
1999         return (0);
2000 }
2001
2002 void
2003 vdev_remove(vdev_t *vd, uint64_t txg)
2004 {
2005         spa_t *spa = vd->vdev_spa;
2006         objset_t *mos = spa->spa_meta_objset;
2007         dmu_tx_t *tx;
2008
2009         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2010
2011         if (vd->vdev_dtl_smo.smo_object) {
2012                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2013                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2014                 vd->vdev_dtl_smo.smo_object = 0;
2015         }
2016
2017         if (vd->vdev_ms != NULL) {
2018                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2019                         metaslab_t *msp = vd->vdev_ms[m];
2020
2021                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2022                                 continue;
2023
2024                         ASSERT0(msp->ms_smo.smo_alloc);
2025                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2026                         msp->ms_smo.smo_object = 0;
2027                 }
2028         }
2029
2030         if (vd->vdev_ms_array) {
2031                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2032                 vd->vdev_ms_array = 0;
2033                 vd->vdev_ms_shift = 0;
2034         }
2035         dmu_tx_commit(tx);
2036 }
2037
2038 void
2039 vdev_sync_done(vdev_t *vd, uint64_t txg)
2040 {
2041         metaslab_t *msp;
2042         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2043
2044         ASSERT(!vd->vdev_ishole);
2045
2046         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2047                 metaslab_sync_done(msp, txg);
2048
2049         if (reassess)
2050                 metaslab_sync_reassess(vd->vdev_mg);
2051 }
2052
2053 void
2054 vdev_sync(vdev_t *vd, uint64_t txg)
2055 {
2056         spa_t *spa = vd->vdev_spa;
2057         vdev_t *lvd;
2058         metaslab_t *msp;
2059         dmu_tx_t *tx;
2060
2061         ASSERT(!vd->vdev_ishole);
2062
2063         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2064                 ASSERT(vd == vd->vdev_top);
2065                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2066                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2067                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2068                 ASSERT(vd->vdev_ms_array != 0);
2069                 vdev_config_dirty(vd);
2070                 dmu_tx_commit(tx);
2071         }
2072
2073         /*
2074          * Remove the metadata associated with this vdev once it's empty.
2075          */
2076         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2077                 vdev_remove(vd, txg);
2078
2079         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2080                 metaslab_sync(msp, txg);
2081                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2082         }
2083
2084         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2085                 vdev_dtl_sync(lvd, txg);
2086
2087         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2088 }
2089
2090 uint64_t
2091 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2092 {
2093         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2094 }
2095
2096 /*
2097  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2098  * not be opened, and no I/O is attempted.
2099  */
2100 int
2101 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2102 {
2103         vdev_t *vd, *tvd;
2104
2105         spa_vdev_state_enter(spa, SCL_NONE);
2106
2107         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2108                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2109
2110         if (!vd->vdev_ops->vdev_op_leaf)
2111                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2112
2113         tvd = vd->vdev_top;
2114
2115         /*
2116          * We don't directly use the aux state here, but if we do a
2117          * vdev_reopen(), we need this value to be present to remember why we
2118          * were faulted.
2119          */
2120         vd->vdev_label_aux = aux;
2121
2122         /*
2123          * Faulted state takes precedence over degraded.
2124          */
2125         vd->vdev_delayed_close = B_FALSE;
2126         vd->vdev_faulted = 1ULL;
2127         vd->vdev_degraded = 0ULL;
2128         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2129
2130         /*
2131          * If this device has the only valid copy of the data, then
2132          * back off and simply mark the vdev as degraded instead.
2133          */
2134         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2135                 vd->vdev_degraded = 1ULL;
2136                 vd->vdev_faulted = 0ULL;
2137
2138                 /*
2139                  * If we reopen the device and it's not dead, only then do we
2140                  * mark it degraded.
2141                  */
2142                 vdev_reopen(tvd);
2143
2144                 if (vdev_readable(vd))
2145                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2146         }
2147
2148         return (spa_vdev_state_exit(spa, vd, 0));
2149 }
2150
2151 /*
2152  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2153  * user that something is wrong.  The vdev continues to operate as normal as far
2154  * as I/O is concerned.
2155  */
2156 int
2157 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2158 {
2159         vdev_t *vd;
2160
2161         spa_vdev_state_enter(spa, SCL_NONE);
2162
2163         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2164                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2165
2166         if (!vd->vdev_ops->vdev_op_leaf)
2167                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2168
2169         /*
2170          * If the vdev is already faulted, then don't do anything.
2171          */
2172         if (vd->vdev_faulted || vd->vdev_degraded)
2173                 return (spa_vdev_state_exit(spa, NULL, 0));
2174
2175         vd->vdev_degraded = 1ULL;
2176         if (!vdev_is_dead(vd))
2177                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2178                     aux);
2179
2180         return (spa_vdev_state_exit(spa, vd, 0));
2181 }
2182
2183 /*
2184  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2185  * any attached spare device should be detached when the device finishes
2186  * resilvering.  Second, the online should be treated like a 'test' online case,
2187  * so no FMA events are generated if the device fails to open.
2188  */
2189 int
2190 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2191 {
2192         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2193
2194         spa_vdev_state_enter(spa, SCL_NONE);
2195
2196         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2197                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2198
2199         if (!vd->vdev_ops->vdev_op_leaf)
2200                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2201
2202         tvd = vd->vdev_top;
2203         vd->vdev_offline = B_FALSE;
2204         vd->vdev_tmpoffline = B_FALSE;
2205         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2206         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2207
2208         /* XXX - L2ARC 1.0 does not support expansion */
2209         if (!vd->vdev_aux) {
2210                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2211                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2212         }
2213
2214         vdev_reopen(tvd);
2215         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2216
2217         if (!vd->vdev_aux) {
2218                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2219                         pvd->vdev_expanding = B_FALSE;
2220         }
2221
2222         if (newstate)
2223                 *newstate = vd->vdev_state;
2224         if ((flags & ZFS_ONLINE_UNSPARE) &&
2225             !vdev_is_dead(vd) && vd->vdev_parent &&
2226             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2227             vd->vdev_parent->vdev_child[0] == vd)
2228                 vd->vdev_unspare = B_TRUE;
2229
2230         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2231
2232                 /* XXX - L2ARC 1.0 does not support expansion */
2233                 if (vd->vdev_aux)
2234                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2235                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2236         }
2237         return (spa_vdev_state_exit(spa, vd, 0));
2238 }
2239
2240 static int
2241 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2242 {
2243         vdev_t *vd, *tvd;
2244         int error = 0;
2245         uint64_t generation;
2246         metaslab_group_t *mg;
2247
2248 top:
2249         spa_vdev_state_enter(spa, SCL_ALLOC);
2250
2251         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2252                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2253
2254         if (!vd->vdev_ops->vdev_op_leaf)
2255                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2256
2257         tvd = vd->vdev_top;
2258         mg = tvd->vdev_mg;
2259         generation = spa->spa_config_generation + 1;
2260
2261         /*
2262          * If the device isn't already offline, try to offline it.
2263          */
2264         if (!vd->vdev_offline) {
2265                 /*
2266                  * If this device has the only valid copy of some data,
2267                  * don't allow it to be offlined. Log devices are always
2268                  * expendable.
2269                  */
2270                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2271                     vdev_dtl_required(vd))
2272                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2273
2274                 /*
2275                  * If the top-level is a slog and it has had allocations
2276                  * then proceed.  We check that the vdev's metaslab group
2277                  * is not NULL since it's possible that we may have just
2278                  * added this vdev but not yet initialized its metaslabs.
2279                  */
2280                 if (tvd->vdev_islog && mg != NULL) {
2281                         /*
2282                          * Prevent any future allocations.
2283                          */
2284                         metaslab_group_passivate(mg);
2285                         (void) spa_vdev_state_exit(spa, vd, 0);
2286
2287                         error = spa_offline_log(spa);
2288
2289                         spa_vdev_state_enter(spa, SCL_ALLOC);
2290
2291                         /*
2292                          * Check to see if the config has changed.
2293                          */
2294                         if (error || generation != spa->spa_config_generation) {
2295                                 metaslab_group_activate(mg);
2296                                 if (error)
2297                                         return (spa_vdev_state_exit(spa,
2298                                             vd, error));
2299                                 (void) spa_vdev_state_exit(spa, vd, 0);
2300                                 goto top;
2301                         }
2302                         ASSERT0(tvd->vdev_stat.vs_alloc);
2303                 }
2304
2305                 /*
2306                  * Offline this device and reopen its top-level vdev.
2307                  * If the top-level vdev is a log device then just offline
2308                  * it. Otherwise, if this action results in the top-level
2309                  * vdev becoming unusable, undo it and fail the request.
2310                  */
2311                 vd->vdev_offline = B_TRUE;
2312                 vdev_reopen(tvd);
2313
2314                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2315                     vdev_is_dead(tvd)) {
2316                         vd->vdev_offline = B_FALSE;
2317                         vdev_reopen(tvd);
2318                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2319                 }
2320
2321                 /*
2322                  * Add the device back into the metaslab rotor so that
2323                  * once we online the device it's open for business.
2324                  */
2325                 if (tvd->vdev_islog && mg != NULL)
2326                         metaslab_group_activate(mg);
2327         }
2328
2329         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2330
2331         return (spa_vdev_state_exit(spa, vd, 0));
2332 }
2333
2334 int
2335 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2336 {
2337         int error;
2338
2339         mutex_enter(&spa->spa_vdev_top_lock);
2340         error = vdev_offline_locked(spa, guid, flags);
2341         mutex_exit(&spa->spa_vdev_top_lock);
2342
2343         return (error);
2344 }
2345
2346 /*
2347  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2348  * vdev_offline(), we assume the spa config is locked.  We also clear all
2349  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2350  */
2351 void
2352 vdev_clear(spa_t *spa, vdev_t *vd)
2353 {
2354         vdev_t *rvd = spa->spa_root_vdev;
2355
2356         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2357
2358         if (vd == NULL)
2359                 vd = rvd;
2360
2361         vd->vdev_stat.vs_read_errors = 0;
2362         vd->vdev_stat.vs_write_errors = 0;
2363         vd->vdev_stat.vs_checksum_errors = 0;
2364
2365         for (int c = 0; c < vd->vdev_children; c++)
2366                 vdev_clear(spa, vd->vdev_child[c]);
2367
2368         /*
2369          * If we're in the FAULTED state or have experienced failed I/O, then
2370          * clear the persistent state and attempt to reopen the device.  We
2371          * also mark the vdev config dirty, so that the new faulted state is
2372          * written out to disk.
2373          */
2374         if (vd->vdev_faulted || vd->vdev_degraded ||
2375             !vdev_readable(vd) || !vdev_writeable(vd)) {
2376
2377                 /*
2378                  * When reopening in reponse to a clear event, it may be due to
2379                  * a fmadm repair request.  In this case, if the device is
2380                  * still broken, we want to still post the ereport again.
2381                  */
2382                 vd->vdev_forcefault = B_TRUE;
2383
2384                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2385                 vd->vdev_cant_read = B_FALSE;
2386                 vd->vdev_cant_write = B_FALSE;
2387
2388                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2389
2390                 vd->vdev_forcefault = B_FALSE;
2391
2392                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2393                         vdev_state_dirty(vd->vdev_top);
2394
2395                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2396                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2397
2398                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2399         }
2400
2401         /*
2402          * When clearing a FMA-diagnosed fault, we always want to
2403          * unspare the device, as we assume that the original spare was
2404          * done in response to the FMA fault.
2405          */
2406         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2407             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2408             vd->vdev_parent->vdev_child[0] == vd)
2409                 vd->vdev_unspare = B_TRUE;
2410 }
2411
2412 boolean_t
2413 vdev_is_dead(vdev_t *vd)
2414 {
2415         /*
2416          * Holes and missing devices are always considered "dead".
2417          * This simplifies the code since we don't have to check for
2418          * these types of devices in the various code paths.
2419          * Instead we rely on the fact that we skip over dead devices
2420          * before issuing I/O to them.
2421          */
2422         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2423             vd->vdev_ops == &vdev_missing_ops);
2424 }
2425
2426 boolean_t
2427 vdev_readable(vdev_t *vd)
2428 {
2429         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2430 }
2431
2432 boolean_t
2433 vdev_writeable(vdev_t *vd)
2434 {
2435         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2436 }
2437
2438 boolean_t
2439 vdev_allocatable(vdev_t *vd)
2440 {
2441         uint64_t state = vd->vdev_state;
2442
2443         /*
2444          * We currently allow allocations from vdevs which may be in the
2445          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2446          * fails to reopen then we'll catch it later when we're holding
2447          * the proper locks.  Note that we have to get the vdev state
2448          * in a local variable because although it changes atomically,
2449          * we're asking two separate questions about it.
2450          */
2451         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2452             !vd->vdev_cant_write && !vd->vdev_ishole);
2453 }
2454
2455 boolean_t
2456 vdev_accessible(vdev_t *vd, zio_t *zio)
2457 {
2458         ASSERT(zio->io_vd == vd);
2459
2460         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2461                 return (B_FALSE);
2462
2463         if (zio->io_type == ZIO_TYPE_READ)
2464                 return (!vd->vdev_cant_read);
2465
2466         if (zio->io_type == ZIO_TYPE_WRITE)
2467                 return (!vd->vdev_cant_write);
2468
2469         return (B_TRUE);
2470 }
2471
2472 /*
2473  * Get statistics for the given vdev.
2474  */
2475 void
2476 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2477 {
2478         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2479
2480         mutex_enter(&vd->vdev_stat_lock);
2481         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2482         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2483         vs->vs_state = vd->vdev_state;
2484         vs->vs_rsize = vdev_get_min_asize(vd);
2485         if (vd->vdev_ops->vdev_op_leaf)
2486                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2487         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2488         mutex_exit(&vd->vdev_stat_lock);
2489
2490         /*
2491          * If we're getting stats on the root vdev, aggregate the I/O counts
2492          * over all top-level vdevs (i.e. the direct children of the root).
2493          */
2494         if (vd == rvd) {
2495                 for (int c = 0; c < rvd->vdev_children; c++) {
2496                         vdev_t *cvd = rvd->vdev_child[c];
2497                         vdev_stat_t *cvs = &cvd->vdev_stat;
2498
2499                         mutex_enter(&vd->vdev_stat_lock);
2500                         for (int t = 0; t < ZIO_TYPES; t++) {
2501                                 vs->vs_ops[t] += cvs->vs_ops[t];
2502                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2503                         }
2504                         cvs->vs_scan_removing = cvd->vdev_removing;
2505                         mutex_exit(&vd->vdev_stat_lock);
2506                 }
2507         }
2508 }
2509
2510 void
2511 vdev_clear_stats(vdev_t *vd)
2512 {
2513         mutex_enter(&vd->vdev_stat_lock);
2514         vd->vdev_stat.vs_space = 0;
2515         vd->vdev_stat.vs_dspace = 0;
2516         vd->vdev_stat.vs_alloc = 0;
2517         mutex_exit(&vd->vdev_stat_lock);
2518 }
2519
2520 void
2521 vdev_scan_stat_init(vdev_t *vd)
2522 {
2523         vdev_stat_t *vs = &vd->vdev_stat;
2524
2525         for (int c = 0; c < vd->vdev_children; c++)
2526                 vdev_scan_stat_init(vd->vdev_child[c]);
2527
2528         mutex_enter(&vd->vdev_stat_lock);
2529         vs->vs_scan_processed = 0;
2530         mutex_exit(&vd->vdev_stat_lock);
2531 }
2532
2533 void
2534 vdev_stat_update(zio_t *zio, uint64_t psize)
2535 {
2536         spa_t *spa = zio->io_spa;
2537         vdev_t *rvd = spa->spa_root_vdev;
2538         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2539         vdev_t *pvd;
2540         uint64_t txg = zio->io_txg;
2541         vdev_stat_t *vs = &vd->vdev_stat;
2542         zio_type_t type = zio->io_type;
2543         int flags = zio->io_flags;
2544
2545         /*
2546          * If this i/o is a gang leader, it didn't do any actual work.
2547          */
2548         if (zio->io_gang_tree)
2549                 return;
2550
2551         if (zio->io_error == 0) {
2552                 /*
2553                  * If this is a root i/o, don't count it -- we've already
2554                  * counted the top-level vdevs, and vdev_get_stats() will
2555                  * aggregate them when asked.  This reduces contention on
2556                  * the root vdev_stat_lock and implicitly handles blocks
2557                  * that compress away to holes, for which there is no i/o.
2558                  * (Holes never create vdev children, so all the counters
2559                  * remain zero, which is what we want.)
2560                  *
2561                  * Note: this only applies to successful i/o (io_error == 0)
2562                  * because unlike i/o counts, errors are not additive.
2563                  * When reading a ditto block, for example, failure of
2564                  * one top-level vdev does not imply a root-level error.
2565                  */
2566                 if (vd == rvd)
2567                         return;
2568
2569                 ASSERT(vd == zio->io_vd);
2570
2571                 if (flags & ZIO_FLAG_IO_BYPASS)
2572                         return;
2573
2574                 mutex_enter(&vd->vdev_stat_lock);
2575
2576                 if (flags & ZIO_FLAG_IO_REPAIR) {
2577                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2578                                 dsl_scan_phys_t *scn_phys =
2579                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2580                                 uint64_t *processed = &scn_phys->scn_processed;
2581
2582                                 /* XXX cleanup? */
2583                                 if (vd->vdev_ops->vdev_op_leaf)
2584                                         atomic_add_64(processed, psize);
2585                                 vs->vs_scan_processed += psize;
2586                         }
2587
2588                         if (flags & ZIO_FLAG_SELF_HEAL)
2589                                 vs->vs_self_healed += psize;
2590                 }
2591
2592                 vs->vs_ops[type]++;
2593                 vs->vs_bytes[type] += psize;
2594
2595                 mutex_exit(&vd->vdev_stat_lock);
2596                 return;
2597         }
2598
2599         if (flags & ZIO_FLAG_SPECULATIVE)
2600                 return;
2601
2602         /*
2603          * If this is an I/O error that is going to be retried, then ignore the
2604          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2605          * hard errors, when in reality they can happen for any number of
2606          * innocuous reasons (bus resets, MPxIO link failure, etc).
2607          */
2608         if (zio->io_error == EIO &&
2609             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2610                 return;
2611
2612         /*
2613          * Intent logs writes won't propagate their error to the root
2614          * I/O so don't mark these types of failures as pool-level
2615          * errors.
2616          */
2617         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2618                 return;
2619
2620         mutex_enter(&vd->vdev_stat_lock);
2621         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2622                 if (zio->io_error == ECKSUM)
2623                         vs->vs_checksum_errors++;
2624                 else
2625                         vs->vs_read_errors++;
2626         }
2627         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2628                 vs->vs_write_errors++;
2629         mutex_exit(&vd->vdev_stat_lock);
2630
2631         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2632             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2633             (flags & ZIO_FLAG_SCAN_THREAD) ||
2634             spa->spa_claiming)) {
2635                 /*
2636                  * This is either a normal write (not a repair), or it's
2637                  * a repair induced by the scrub thread, or it's a repair
2638                  * made by zil_claim() during spa_load() in the first txg.
2639                  * In the normal case, we commit the DTL change in the same
2640                  * txg as the block was born.  In the scrub-induced repair
2641                  * case, we know that scrubs run in first-pass syncing context,
2642                  * so we commit the DTL change in spa_syncing_txg(spa).
2643                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2644                  *
2645                  * We currently do not make DTL entries for failed spontaneous
2646                  * self-healing writes triggered by normal (non-scrubbing)
2647                  * reads, because we have no transactional context in which to
2648                  * do so -- and it's not clear that it'd be desirable anyway.
2649                  */
2650                 if (vd->vdev_ops->vdev_op_leaf) {
2651                         uint64_t commit_txg = txg;
2652                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2653                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2654                                 ASSERT(spa_sync_pass(spa) == 1);
2655                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2656                                 commit_txg = spa_syncing_txg(spa);
2657                         } else if (spa->spa_claiming) {
2658                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2659                                 commit_txg = spa_first_txg(spa);
2660                         }
2661                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2662                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2663                                 return;
2664                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2665                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2666                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2667                 }
2668                 if (vd != rvd)
2669                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2670         }
2671 }
2672
2673 /*
2674  * Update the in-core space usage stats for this vdev, its metaslab class,
2675  * and the root vdev.
2676  */
2677 void
2678 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2679     int64_t space_delta)
2680 {
2681         int64_t dspace_delta = space_delta;
2682         spa_t *spa = vd->vdev_spa;
2683         vdev_t *rvd = spa->spa_root_vdev;
2684         metaslab_group_t *mg = vd->vdev_mg;
2685         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2686
2687         ASSERT(vd == vd->vdev_top);
2688
2689         /*
2690          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2691          * factor.  We must calculate this here and not at the root vdev
2692          * because the root vdev's psize-to-asize is simply the max of its
2693          * childrens', thus not accurate enough for us.
2694          */
2695         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2696         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2697         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2698             vd->vdev_deflate_ratio;
2699
2700         mutex_enter(&vd->vdev_stat_lock);
2701         vd->vdev_stat.vs_alloc += alloc_delta;
2702         vd->vdev_stat.vs_space += space_delta;
2703         vd->vdev_stat.vs_dspace += dspace_delta;
2704         mutex_exit(&vd->vdev_stat_lock);
2705
2706         if (mc == spa_normal_class(spa)) {
2707                 mutex_enter(&rvd->vdev_stat_lock);
2708                 rvd->vdev_stat.vs_alloc += alloc_delta;
2709                 rvd->vdev_stat.vs_space += space_delta;
2710                 rvd->vdev_stat.vs_dspace += dspace_delta;
2711                 mutex_exit(&rvd->vdev_stat_lock);
2712         }
2713
2714         if (mc != NULL) {
2715                 ASSERT(rvd == vd->vdev_parent);
2716                 ASSERT(vd->vdev_ms_count != 0);
2717
2718                 metaslab_class_space_update(mc,
2719                     alloc_delta, defer_delta, space_delta, dspace_delta);
2720         }
2721 }
2722
2723 /*
2724  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2725  * so that it will be written out next time the vdev configuration is synced.
2726  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2727  */
2728 void
2729 vdev_config_dirty(vdev_t *vd)
2730 {
2731         spa_t *spa = vd->vdev_spa;
2732         vdev_t *rvd = spa->spa_root_vdev;
2733         int c;
2734
2735         ASSERT(spa_writeable(spa));
2736
2737         /*
2738          * If this is an aux vdev (as with l2cache and spare devices), then we
2739          * update the vdev config manually and set the sync flag.
2740          */
2741         if (vd->vdev_aux != NULL) {
2742                 spa_aux_vdev_t *sav = vd->vdev_aux;
2743                 nvlist_t **aux;
2744                 uint_t naux;
2745
2746                 for (c = 0; c < sav->sav_count; c++) {
2747                         if (sav->sav_vdevs[c] == vd)
2748                                 break;
2749                 }
2750
2751                 if (c == sav->sav_count) {
2752                         /*
2753                          * We're being removed.  There's nothing more to do.
2754                          */
2755                         ASSERT(sav->sav_sync == B_TRUE);
2756                         return;
2757                 }
2758
2759                 sav->sav_sync = B_TRUE;
2760
2761                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2762                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2763                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2764                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2765                 }
2766
2767                 ASSERT(c < naux);
2768
2769                 /*
2770                  * Setting the nvlist in the middle if the array is a little
2771                  * sketchy, but it will work.
2772                  */
2773                 nvlist_free(aux[c]);
2774                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2775
2776                 return;
2777         }
2778
2779         /*
2780          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2781          * must either hold SCL_CONFIG as writer, or must be the sync thread
2782          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2783          * so this is sufficient to ensure mutual exclusion.
2784          */
2785         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2786             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2787             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2788
2789         if (vd == rvd) {
2790                 for (c = 0; c < rvd->vdev_children; c++)
2791                         vdev_config_dirty(rvd->vdev_child[c]);
2792         } else {
2793                 ASSERT(vd == vd->vdev_top);
2794
2795                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2796                     !vd->vdev_ishole)
2797                         list_insert_head(&spa->spa_config_dirty_list, vd);
2798         }
2799 }
2800
2801 void
2802 vdev_config_clean(vdev_t *vd)
2803 {
2804         spa_t *spa = vd->vdev_spa;
2805
2806         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2807             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2808             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2809
2810         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2811         list_remove(&spa->spa_config_dirty_list, vd);
2812 }
2813
2814 /*
2815  * Mark a top-level vdev's state as dirty, so that the next pass of
2816  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2817  * the state changes from larger config changes because they require
2818  * much less locking, and are often needed for administrative actions.
2819  */
2820 void
2821 vdev_state_dirty(vdev_t *vd)
2822 {
2823         spa_t *spa = vd->vdev_spa;
2824
2825         ASSERT(spa_writeable(spa));
2826         ASSERT(vd == vd->vdev_top);
2827
2828         /*
2829          * The state list is protected by the SCL_STATE lock.  The caller
2830          * must either hold SCL_STATE as writer, or must be the sync thread
2831          * (which holds SCL_STATE as reader).  There's only one sync thread,
2832          * so this is sufficient to ensure mutual exclusion.
2833          */
2834         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2835             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2836             spa_config_held(spa, SCL_STATE, RW_READER)));
2837
2838         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2839                 list_insert_head(&spa->spa_state_dirty_list, vd);
2840 }
2841
2842 void
2843 vdev_state_clean(vdev_t *vd)
2844 {
2845         spa_t *spa = vd->vdev_spa;
2846
2847         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2848             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2849             spa_config_held(spa, SCL_STATE, RW_READER)));
2850
2851         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2852         list_remove(&spa->spa_state_dirty_list, vd);
2853 }
2854
2855 /*
2856  * Propagate vdev state up from children to parent.
2857  */
2858 void
2859 vdev_propagate_state(vdev_t *vd)
2860 {
2861         spa_t *spa = vd->vdev_spa;
2862         vdev_t *rvd = spa->spa_root_vdev;
2863         int degraded = 0, faulted = 0;
2864         int corrupted = 0;
2865         vdev_t *child;
2866
2867         if (vd->vdev_children > 0) {
2868                 for (int c = 0; c < vd->vdev_children; c++) {
2869                         child = vd->vdev_child[c];
2870
2871                         /*
2872                          * Don't factor holes into the decision.
2873                          */
2874                         if (child->vdev_ishole)
2875                                 continue;
2876
2877                         if (!vdev_readable(child) ||
2878                             (!vdev_writeable(child) && spa_writeable(spa))) {
2879                                 /*
2880                                  * Root special: if there is a top-level log
2881                                  * device, treat the root vdev as if it were
2882                                  * degraded.
2883                                  */
2884                                 if (child->vdev_islog && vd == rvd)
2885                                         degraded++;
2886                                 else
2887                                         faulted++;
2888                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2889                                 degraded++;
2890                         }
2891
2892                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2893                                 corrupted++;
2894                 }
2895
2896                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2897
2898                 /*
2899                  * Root special: if there is a top-level vdev that cannot be
2900                  * opened due to corrupted metadata, then propagate the root
2901                  * vdev's aux state as 'corrupt' rather than 'insufficient
2902                  * replicas'.
2903                  */
2904                 if (corrupted && vd == rvd &&
2905                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2906                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2907                             VDEV_AUX_CORRUPT_DATA);
2908         }
2909
2910         if (vd->vdev_parent)
2911                 vdev_propagate_state(vd->vdev_parent);
2912 }
2913
2914 /*
2915  * Set a vdev's state.  If this is during an open, we don't update the parent
2916  * state, because we're in the process of opening children depth-first.
2917  * Otherwise, we propagate the change to the parent.
2918  *
2919  * If this routine places a device in a faulted state, an appropriate ereport is
2920  * generated.
2921  */
2922 void
2923 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2924 {
2925         uint64_t save_state;
2926         spa_t *spa = vd->vdev_spa;
2927
2928         if (state == vd->vdev_state) {
2929                 vd->vdev_stat.vs_aux = aux;
2930                 return;
2931         }
2932
2933         save_state = vd->vdev_state;
2934
2935         vd->vdev_state = state;
2936         vd->vdev_stat.vs_aux = aux;
2937
2938         /*
2939          * If we are setting the vdev state to anything but an open state, then
2940          * always close the underlying device unless the device has requested
2941          * a delayed close (i.e. we're about to remove or fault the device).
2942          * Otherwise, we keep accessible but invalid devices open forever.
2943          * We don't call vdev_close() itself, because that implies some extra
2944          * checks (offline, etc) that we don't want here.  This is limited to
2945          * leaf devices, because otherwise closing the device will affect other
2946          * children.
2947          */
2948         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2949             vd->vdev_ops->vdev_op_leaf)
2950                 vd->vdev_ops->vdev_op_close(vd);
2951
2952         /*
2953          * If we have brought this vdev back into service, we need
2954          * to notify fmd so that it can gracefully repair any outstanding
2955          * cases due to a missing device.  We do this in all cases, even those
2956          * that probably don't correlate to a repaired fault.  This is sure to
2957          * catch all cases, and we let the zfs-retire agent sort it out.  If
2958          * this is a transient state it's OK, as the retire agent will
2959          * double-check the state of the vdev before repairing it.
2960          */
2961         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2962             vd->vdev_prevstate != state)
2963                 zfs_post_state_change(spa, vd);
2964
2965         if (vd->vdev_removed &&
2966             state == VDEV_STATE_CANT_OPEN &&
2967             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2968                 /*
2969                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2970                  * device was previously marked removed and someone attempted to
2971                  * reopen it.  If this failed due to a nonexistent device, then
2972                  * keep the device in the REMOVED state.  We also let this be if
2973                  * it is one of our special test online cases, which is only
2974                  * attempting to online the device and shouldn't generate an FMA
2975                  * fault.
2976                  */
2977                 vd->vdev_state = VDEV_STATE_REMOVED;
2978                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2979         } else if (state == VDEV_STATE_REMOVED) {
2980                 vd->vdev_removed = B_TRUE;
2981         } else if (state == VDEV_STATE_CANT_OPEN) {
2982                 /*
2983                  * If we fail to open a vdev during an import or recovery, we
2984                  * mark it as "not available", which signifies that it was
2985                  * never there to begin with.  Failure to open such a device
2986                  * is not considered an error.
2987                  */
2988                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2989                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2990                     vd->vdev_ops->vdev_op_leaf)
2991                         vd->vdev_not_present = 1;
2992
2993                 /*
2994                  * Post the appropriate ereport.  If the 'prevstate' field is
2995                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2996                  * that this is part of a vdev_reopen().  In this case, we don't
2997                  * want to post the ereport if the device was already in the
2998                  * CANT_OPEN state beforehand.
2999                  *
3000                  * If the 'checkremove' flag is set, then this is an attempt to
3001                  * online the device in response to an insertion event.  If we
3002                  * hit this case, then we have detected an insertion event for a
3003                  * faulted or offline device that wasn't in the removed state.
3004                  * In this scenario, we don't post an ereport because we are
3005                  * about to replace the device, or attempt an online with
3006                  * vdev_forcefault, which will generate the fault for us.
3007                  */
3008                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3009                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3010                     vd != spa->spa_root_vdev) {
3011                         const char *class;
3012
3013                         switch (aux) {
3014                         case VDEV_AUX_OPEN_FAILED:
3015                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3016                                 break;
3017                         case VDEV_AUX_CORRUPT_DATA:
3018                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3019                                 break;
3020                         case VDEV_AUX_NO_REPLICAS:
3021                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3022                                 break;
3023                         case VDEV_AUX_BAD_GUID_SUM:
3024                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3025                                 break;
3026                         case VDEV_AUX_TOO_SMALL:
3027                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3028                                 break;
3029                         case VDEV_AUX_BAD_LABEL:
3030                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3031                                 break;
3032                         default:
3033                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3034                         }
3035
3036                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3037                 }
3038
3039                 /* Erase any notion of persistent removed state */
3040                 vd->vdev_removed = B_FALSE;
3041         } else {
3042                 vd->vdev_removed = B_FALSE;
3043         }
3044
3045         if (!isopen && vd->vdev_parent)
3046                 vdev_propagate_state(vd->vdev_parent);
3047 }
3048
3049 /*
3050  * Check the vdev configuration to ensure that it's capable of supporting
3051  * a root pool.
3052  *
3053  * On Solaris, we do not support RAID-Z or partial configuration.  In
3054  * addition, only a single top-level vdev is allowed and none of the
3055  * leaves can be wholedisks.
3056  *
3057  * For FreeBSD, we can boot from any configuration. There is a
3058  * limitation that the boot filesystem must be either uncompressed or
3059  * compresses with lzjb compression but I'm not sure how to enforce
3060  * that here.
3061  */
3062 boolean_t
3063 vdev_is_bootable(vdev_t *vd)
3064 {
3065 #ifdef sun
3066         if (!vd->vdev_ops->vdev_op_leaf) {
3067                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3068
3069                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3070                     vd->vdev_children > 1) {
3071                         return (B_FALSE);
3072                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3073                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3074                         return (B_FALSE);
3075                 }
3076         } else if (vd->vdev_wholedisk == 1) {
3077                 return (B_FALSE);
3078         }
3079
3080         for (int c = 0; c < vd->vdev_children; c++) {
3081                 if (!vdev_is_bootable(vd->vdev_child[c]))
3082                         return (B_FALSE);
3083         }
3084 #endif  /* sun */
3085         return (B_TRUE);
3086 }
3087
3088 /*
3089  * Load the state from the original vdev tree (ovd) which
3090  * we've retrieved from the MOS config object. If the original
3091  * vdev was offline or faulted then we transfer that state to the
3092  * device in the current vdev tree (nvd).
3093  */
3094 void
3095 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3096 {
3097         spa_t *spa = nvd->vdev_spa;
3098
3099         ASSERT(nvd->vdev_top->vdev_islog);
3100         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3101         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3102
3103         for (int c = 0; c < nvd->vdev_children; c++)
3104                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3105
3106         if (nvd->vdev_ops->vdev_op_leaf) {
3107                 /*
3108                  * Restore the persistent vdev state
3109                  */
3110                 nvd->vdev_offline = ovd->vdev_offline;
3111                 nvd->vdev_faulted = ovd->vdev_faulted;
3112                 nvd->vdev_degraded = ovd->vdev_degraded;
3113                 nvd->vdev_removed = ovd->vdev_removed;
3114         }
3115 }
3116
3117 /*
3118  * Determine if a log device has valid content.  If the vdev was
3119  * removed or faulted in the MOS config then we know that
3120  * the content on the log device has already been written to the pool.
3121  */
3122 boolean_t
3123 vdev_log_state_valid(vdev_t *vd)
3124 {
3125         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3126             !vd->vdev_removed)
3127                 return (B_TRUE);
3128
3129         for (int c = 0; c < vd->vdev_children; c++)
3130                 if (vdev_log_state_valid(vd->vdev_child[c]))
3131                         return (B_TRUE);
3132
3133         return (B_FALSE);
3134 }
3135
3136 /*
3137  * Expand a vdev if possible.
3138  */
3139 void
3140 vdev_expand(vdev_t *vd, uint64_t txg)
3141 {
3142         ASSERT(vd->vdev_top == vd);
3143         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3144
3145         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3146                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3147                 vdev_config_dirty(vd);
3148         }
3149 }
3150
3151 /*
3152  * Split a vdev.
3153  */
3154 void
3155 vdev_split(vdev_t *vd)
3156 {
3157         vdev_t *cvd, *pvd = vd->vdev_parent;
3158
3159         vdev_remove_child(pvd, vd);
3160         vdev_compact_children(pvd);
3161
3162         cvd = pvd->vdev_child[0];
3163         if (pvd->vdev_children == 1) {
3164                 vdev_remove_parent(cvd);
3165                 cvd->vdev_splitting = B_TRUE;
3166         }
3167         vdev_propagate_state(cvd);
3168 }
3169
3170 void
3171 vdev_deadman(vdev_t *vd)
3172 {
3173         for (int c = 0; c < vd->vdev_children; c++) {
3174                 vdev_t *cvd = vd->vdev_child[c];
3175
3176                 vdev_deadman(cvd);
3177         }
3178
3179         if (vd->vdev_ops->vdev_op_leaf) {
3180                 vdev_queue_t *vq = &vd->vdev_queue;
3181
3182                 mutex_enter(&vq->vq_lock);
3183                 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3184                         spa_t *spa = vd->vdev_spa;
3185                         zio_t *fio;
3186                         uint64_t delta;
3187
3188                         /*
3189                          * Look at the head of all the pending queues,
3190                          * if any I/O has been outstanding for longer than
3191                          * the spa_deadman_synctime we panic the system.
3192                          */
3193                         fio = avl_first(&vq->vq_pending_tree);
3194                         delta = gethrtime() - fio->io_timestamp;
3195                         if (delta > spa_deadman_synctime(spa)) {
3196                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3197                                     "delta %lluns, last io %lluns",
3198                                     fio->io_timestamp, delta,
3199                                     vq->vq_io_complete_ts);
3200                                 fm_panic("I/O to pool '%s' appears to be "
3201                                     "hung on vdev guid %llu at '%s'.",
3202                                     spa_name(spa),
3203                                     (long long unsigned int) vd->vdev_guid,
3204                                     vd->vdev_path);
3205                         }
3206                 }
3207                 mutex_exit(&vq->vq_lock);
3208         }
3209 }