]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/kern/kern_proc.c
Copy head to stable/8 as part of 8.0 Release cycle.
[FreeBSD/stable/8.git] / sys / kern / kern_proc.c
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/refcount.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysent.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/stack.h>
56 #include <sys/sysctl.h>
57 #include <sys/filedesc.h>
58 #include <sys/tty.h>
59 #include <sys/signalvar.h>
60 #include <sys/sdt.h>
61 #include <sys/sx.h>
62 #include <sys/user.h>
63 #include <sys/jail.h>
64 #include <sys/vnode.h>
65 #include <sys/eventhandler.h>
66 #ifdef KTRACE
67 #include <sys/uio.h>
68 #include <sys/ktrace.h>
69 #endif
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/uma.h>
81
82 SDT_PROVIDER_DEFINE(proc);
83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
88 SDT_PROBE_DEFINE(proc, kernel, ctor, return);
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
98 SDT_PROBE_DEFINE(proc, kernel, dtor, return);
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
102 SDT_PROBE_DEFINE(proc, kernel, init, entry);
103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
106 SDT_PROBE_DEFINE(proc, kernel, init, return);
107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
110
111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
112 MALLOC_DEFINE(M_SESSION, "session", "session header");
113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
115
116 static void doenterpgrp(struct proc *, struct pgrp *);
117 static void orphanpg(struct pgrp *pg);
118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
121     int preferthread);
122 static void pgadjustjobc(struct pgrp *pgrp, int entering);
123 static void pgdelete(struct pgrp *);
124 static int proc_ctor(void *mem, int size, void *arg, int flags);
125 static void proc_dtor(void *mem, int size, void *arg);
126 static int proc_init(void *mem, int size, int flags);
127 static void proc_fini(void *mem, int size);
128 static void pargs_free(struct pargs *pa);
129
130 /*
131  * Other process lists
132  */
133 struct pidhashhead *pidhashtbl;
134 u_long pidhash;
135 struct pgrphashhead *pgrphashtbl;
136 u_long pgrphash;
137 struct proclist allproc;
138 struct proclist zombproc;
139 struct sx allproc_lock;
140 struct sx proctree_lock;
141 struct mtx ppeers_lock;
142 uma_zone_t proc_zone;
143 uma_zone_t ithread_zone;
144
145 int kstack_pages = KSTACK_PAGES;
146 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
147
148 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
149
150 /*
151  * Initialize global process hashing structures.
152  */
153 void
154 procinit()
155 {
156
157         sx_init(&allproc_lock, "allproc");
158         sx_init(&proctree_lock, "proctree");
159         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
160         LIST_INIT(&allproc);
161         LIST_INIT(&zombproc);
162         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
163         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
164         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
165             proc_ctor, proc_dtor, proc_init, proc_fini,
166             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
167         uihashinit();
168 }
169
170 /*
171  * Prepare a proc for use.
172  */
173 static int
174 proc_ctor(void *mem, int size, void *arg, int flags)
175 {
176         struct proc *p;
177
178         p = (struct proc *)mem;
179         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
180         EVENTHANDLER_INVOKE(process_ctor, p);
181         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
182         return (0);
183 }
184
185 /*
186  * Reclaim a proc after use.
187  */
188 static void
189 proc_dtor(void *mem, int size, void *arg)
190 {
191         struct proc *p;
192         struct thread *td;
193
194         /* INVARIANTS checks go here */
195         p = (struct proc *)mem;
196         td = FIRST_THREAD_IN_PROC(p);
197         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
198         if (td != NULL) {
199 #ifdef INVARIANTS
200                 KASSERT((p->p_numthreads == 1),
201                     ("bad number of threads in exiting process"));
202                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
203 #endif
204                 /* Free all OSD associated to this thread. */
205                 osd_thread_exit(td);
206
207                 /* Dispose of an alternate kstack, if it exists.
208                  * XXX What if there are more than one thread in the proc?
209                  *     The first thread in the proc is special and not
210                  *     freed, so you gotta do this here.
211                  */
212                 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
213                         vm_thread_dispose_altkstack(td);
214         }
215         EVENTHANDLER_INVOKE(process_dtor, p);
216         if (p->p_ksi != NULL)
217                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
218         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
219 }
220
221 /*
222  * Initialize type-stable parts of a proc (when newly created).
223  */
224 static int
225 proc_init(void *mem, int size, int flags)
226 {
227         struct proc *p;
228
229         p = (struct proc *)mem;
230         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
231         p->p_sched = (struct p_sched *)&p[1];
232         bzero(&p->p_mtx, sizeof(struct mtx));
233         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
234         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
235         cv_init(&p->p_pwait, "ppwait");
236         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
237         EVENTHANDLER_INVOKE(process_init, p);
238         p->p_stats = pstats_alloc();
239         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
240         return (0);
241 }
242
243 /*
244  * UMA should ensure that this function is never called.
245  * Freeing a proc structure would violate type stability.
246  */
247 static void
248 proc_fini(void *mem, int size)
249 {
250 #ifdef notnow
251         struct proc *p;
252
253         p = (struct proc *)mem;
254         EVENTHANDLER_INVOKE(process_fini, p);
255         pstats_free(p->p_stats);
256         thread_free(FIRST_THREAD_IN_PROC(p));
257         mtx_destroy(&p->p_mtx);
258         if (p->p_ksi != NULL)
259                 ksiginfo_free(p->p_ksi);
260 #else
261         panic("proc reclaimed");
262 #endif
263 }
264
265 /*
266  * Is p an inferior of the current process?
267  */
268 int
269 inferior(p)
270         register struct proc *p;
271 {
272
273         sx_assert(&proctree_lock, SX_LOCKED);
274         for (; p != curproc; p = p->p_pptr)
275                 if (p->p_pid == 0)
276                         return (0);
277         return (1);
278 }
279
280 /*
281  * Locate a process by number; return only "live" processes -- i.e., neither
282  * zombies nor newly born but incompletely initialized processes.  By not
283  * returning processes in the PRS_NEW state, we allow callers to avoid
284  * testing for that condition to avoid dereferencing p_ucred, et al.
285  */
286 struct proc *
287 pfind(pid)
288         register pid_t pid;
289 {
290         register struct proc *p;
291
292         sx_slock(&allproc_lock);
293         LIST_FOREACH(p, PIDHASH(pid), p_hash)
294                 if (p->p_pid == pid) {
295                         if (p->p_state == PRS_NEW) {
296                                 p = NULL;
297                                 break;
298                         }
299                         PROC_LOCK(p);
300                         break;
301                 }
302         sx_sunlock(&allproc_lock);
303         return (p);
304 }
305
306 /*
307  * Locate a process group by number.
308  * The caller must hold proctree_lock.
309  */
310 struct pgrp *
311 pgfind(pgid)
312         register pid_t pgid;
313 {
314         register struct pgrp *pgrp;
315
316         sx_assert(&proctree_lock, SX_LOCKED);
317
318         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
319                 if (pgrp->pg_id == pgid) {
320                         PGRP_LOCK(pgrp);
321                         return (pgrp);
322                 }
323         }
324         return (NULL);
325 }
326
327 /*
328  * Create a new process group.
329  * pgid must be equal to the pid of p.
330  * Begin a new session if required.
331  */
332 int
333 enterpgrp(p, pgid, pgrp, sess)
334         register struct proc *p;
335         pid_t pgid;
336         struct pgrp *pgrp;
337         struct session *sess;
338 {
339         struct pgrp *pgrp2;
340
341         sx_assert(&proctree_lock, SX_XLOCKED);
342
343         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
344         KASSERT(p->p_pid == pgid,
345             ("enterpgrp: new pgrp and pid != pgid"));
346
347         pgrp2 = pgfind(pgid);
348
349         KASSERT(pgrp2 == NULL,
350             ("enterpgrp: pgrp with pgid exists"));
351         KASSERT(!SESS_LEADER(p),
352             ("enterpgrp: session leader attempted setpgrp"));
353
354         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
355
356         if (sess != NULL) {
357                 /*
358                  * new session
359                  */
360                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
361                 PROC_LOCK(p);
362                 p->p_flag &= ~P_CONTROLT;
363                 PROC_UNLOCK(p);
364                 PGRP_LOCK(pgrp);
365                 sess->s_leader = p;
366                 sess->s_sid = p->p_pid;
367                 refcount_init(&sess->s_count, 1);
368                 sess->s_ttyvp = NULL;
369                 sess->s_ttyp = NULL;
370                 bcopy(p->p_session->s_login, sess->s_login,
371                             sizeof(sess->s_login));
372                 pgrp->pg_session = sess;
373                 KASSERT(p == curproc,
374                     ("enterpgrp: mksession and p != curproc"));
375         } else {
376                 pgrp->pg_session = p->p_session;
377                 sess_hold(pgrp->pg_session);
378                 PGRP_LOCK(pgrp);
379         }
380         pgrp->pg_id = pgid;
381         LIST_INIT(&pgrp->pg_members);
382
383         /*
384          * As we have an exclusive lock of proctree_lock,
385          * this should not deadlock.
386          */
387         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
388         pgrp->pg_jobc = 0;
389         SLIST_INIT(&pgrp->pg_sigiolst);
390         PGRP_UNLOCK(pgrp);
391
392         doenterpgrp(p, pgrp);
393
394         return (0);
395 }
396
397 /*
398  * Move p to an existing process group
399  */
400 int
401 enterthispgrp(p, pgrp)
402         register struct proc *p;
403         struct pgrp *pgrp;
404 {
405
406         sx_assert(&proctree_lock, SX_XLOCKED);
407         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
408         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
409         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
410         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
411         KASSERT(pgrp->pg_session == p->p_session,
412                 ("%s: pgrp's session %p, p->p_session %p.\n",
413                 __func__,
414                 pgrp->pg_session,
415                 p->p_session));
416         KASSERT(pgrp != p->p_pgrp,
417                 ("%s: p belongs to pgrp.", __func__));
418
419         doenterpgrp(p, pgrp);
420
421         return (0);
422 }
423
424 /*
425  * Move p to a process group
426  */
427 static void
428 doenterpgrp(p, pgrp)
429         struct proc *p;
430         struct pgrp *pgrp;
431 {
432         struct pgrp *savepgrp;
433
434         sx_assert(&proctree_lock, SX_XLOCKED);
435         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
436         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
437         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
438         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
439
440         savepgrp = p->p_pgrp;
441
442         /*
443          * Adjust eligibility of affected pgrps to participate in job control.
444          * Increment eligibility counts before decrementing, otherwise we
445          * could reach 0 spuriously during the first call.
446          */
447         fixjobc(p, pgrp, 1);
448         fixjobc(p, p->p_pgrp, 0);
449
450         PGRP_LOCK(pgrp);
451         PGRP_LOCK(savepgrp);
452         PROC_LOCK(p);
453         LIST_REMOVE(p, p_pglist);
454         p->p_pgrp = pgrp;
455         PROC_UNLOCK(p);
456         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
457         PGRP_UNLOCK(savepgrp);
458         PGRP_UNLOCK(pgrp);
459         if (LIST_EMPTY(&savepgrp->pg_members))
460                 pgdelete(savepgrp);
461 }
462
463 /*
464  * remove process from process group
465  */
466 int
467 leavepgrp(p)
468         register struct proc *p;
469 {
470         struct pgrp *savepgrp;
471
472         sx_assert(&proctree_lock, SX_XLOCKED);
473         savepgrp = p->p_pgrp;
474         PGRP_LOCK(savepgrp);
475         PROC_LOCK(p);
476         LIST_REMOVE(p, p_pglist);
477         p->p_pgrp = NULL;
478         PROC_UNLOCK(p);
479         PGRP_UNLOCK(savepgrp);
480         if (LIST_EMPTY(&savepgrp->pg_members))
481                 pgdelete(savepgrp);
482         return (0);
483 }
484
485 /*
486  * delete a process group
487  */
488 static void
489 pgdelete(pgrp)
490         register struct pgrp *pgrp;
491 {
492         struct session *savesess;
493         struct tty *tp;
494
495         sx_assert(&proctree_lock, SX_XLOCKED);
496         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
497         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
498
499         /*
500          * Reset any sigio structures pointing to us as a result of
501          * F_SETOWN with our pgid.
502          */
503         funsetownlst(&pgrp->pg_sigiolst);
504
505         PGRP_LOCK(pgrp);
506         tp = pgrp->pg_session->s_ttyp;
507         LIST_REMOVE(pgrp, pg_hash);
508         savesess = pgrp->pg_session;
509         PGRP_UNLOCK(pgrp);
510
511         /* Remove the reference to the pgrp before deallocating it. */
512         if (tp != NULL) {
513                 tty_lock(tp);
514                 tty_rel_pgrp(tp, pgrp);
515         }
516
517         mtx_destroy(&pgrp->pg_mtx);
518         free(pgrp, M_PGRP);
519         sess_release(savesess);
520 }
521
522 static void
523 pgadjustjobc(pgrp, entering)
524         struct pgrp *pgrp;
525         int entering;
526 {
527
528         PGRP_LOCK(pgrp);
529         if (entering)
530                 pgrp->pg_jobc++;
531         else {
532                 --pgrp->pg_jobc;
533                 if (pgrp->pg_jobc == 0)
534                         orphanpg(pgrp);
535         }
536         PGRP_UNLOCK(pgrp);
537 }
538
539 /*
540  * Adjust pgrp jobc counters when specified process changes process group.
541  * We count the number of processes in each process group that "qualify"
542  * the group for terminal job control (those with a parent in a different
543  * process group of the same session).  If that count reaches zero, the
544  * process group becomes orphaned.  Check both the specified process'
545  * process group and that of its children.
546  * entering == 0 => p is leaving specified group.
547  * entering == 1 => p is entering specified group.
548  */
549 void
550 fixjobc(p, pgrp, entering)
551         register struct proc *p;
552         register struct pgrp *pgrp;
553         int entering;
554 {
555         register struct pgrp *hispgrp;
556         register struct session *mysession;
557
558         sx_assert(&proctree_lock, SX_LOCKED);
559         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
560         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
561         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
562
563         /*
564          * Check p's parent to see whether p qualifies its own process
565          * group; if so, adjust count for p's process group.
566          */
567         mysession = pgrp->pg_session;
568         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
569             hispgrp->pg_session == mysession)
570                 pgadjustjobc(pgrp, entering);
571
572         /*
573          * Check this process' children to see whether they qualify
574          * their process groups; if so, adjust counts for children's
575          * process groups.
576          */
577         LIST_FOREACH(p, &p->p_children, p_sibling) {
578                 hispgrp = p->p_pgrp;
579                 if (hispgrp == pgrp ||
580                     hispgrp->pg_session != mysession)
581                         continue;
582                 PROC_LOCK(p);
583                 if (p->p_state == PRS_ZOMBIE) {
584                         PROC_UNLOCK(p);
585                         continue;
586                 }
587                 PROC_UNLOCK(p);
588                 pgadjustjobc(hispgrp, entering);
589         }
590 }
591
592 /*
593  * A process group has become orphaned;
594  * if there are any stopped processes in the group,
595  * hang-up all process in that group.
596  */
597 static void
598 orphanpg(pg)
599         struct pgrp *pg;
600 {
601         register struct proc *p;
602
603         PGRP_LOCK_ASSERT(pg, MA_OWNED);
604
605         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
606                 PROC_LOCK(p);
607                 if (P_SHOULDSTOP(p)) {
608                         PROC_UNLOCK(p);
609                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
610                                 PROC_LOCK(p);
611                                 psignal(p, SIGHUP);
612                                 psignal(p, SIGCONT);
613                                 PROC_UNLOCK(p);
614                         }
615                         return;
616                 }
617                 PROC_UNLOCK(p);
618         }
619 }
620
621 void
622 sess_hold(struct session *s)
623 {
624
625         refcount_acquire(&s->s_count);
626 }
627
628 void
629 sess_release(struct session *s)
630 {
631
632         if (refcount_release(&s->s_count)) {
633                 if (s->s_ttyp != NULL) {
634                         tty_lock(s->s_ttyp);
635                         tty_rel_sess(s->s_ttyp, s);
636                 }
637                 mtx_destroy(&s->s_mtx);
638                 free(s, M_SESSION);
639         }
640 }
641
642 #include "opt_ddb.h"
643 #ifdef DDB
644 #include <ddb/ddb.h>
645
646 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
647 {
648         register struct pgrp *pgrp;
649         register struct proc *p;
650         register int i;
651
652         for (i = 0; i <= pgrphash; i++) {
653                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
654                         printf("\tindx %d\n", i);
655                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
656                                 printf(
657                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
658                                     (void *)pgrp, (long)pgrp->pg_id,
659                                     (void *)pgrp->pg_session,
660                                     pgrp->pg_session->s_count,
661                                     (void *)LIST_FIRST(&pgrp->pg_members));
662                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
663                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
664                                             (long)p->p_pid, (void *)p,
665                                             (void *)p->p_pgrp);
666                                 }
667                         }
668                 }
669         }
670 }
671 #endif /* DDB */
672
673 /*
674  * Calculate the kinfo_proc members which contain process-wide
675  * informations.
676  * Must be called with the target process locked.
677  */
678 static void
679 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
680 {
681         struct thread *td;
682
683         PROC_LOCK_ASSERT(p, MA_OWNED);
684
685         kp->ki_estcpu = 0;
686         kp->ki_pctcpu = 0;
687         kp->ki_runtime = 0;
688         FOREACH_THREAD_IN_PROC(p, td) {
689                 thread_lock(td);
690                 kp->ki_pctcpu += sched_pctcpu(td);
691                 kp->ki_runtime += cputick2usec(td->td_runtime);
692                 kp->ki_estcpu += td->td_estcpu;
693                 thread_unlock(td);
694         }
695 }
696
697 /*
698  * Clear kinfo_proc and fill in any information that is common
699  * to all threads in the process.
700  * Must be called with the target process locked.
701  */
702 static void
703 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
704 {
705         struct thread *td0;
706         struct tty *tp;
707         struct session *sp;
708         struct ucred *cred;
709         struct sigacts *ps;
710
711         PROC_LOCK_ASSERT(p, MA_OWNED);
712         bzero(kp, sizeof(*kp));
713
714         kp->ki_structsize = sizeof(*kp);
715         kp->ki_paddr = p;
716         kp->ki_addr =/* p->p_addr; */0; /* XXX */
717         kp->ki_args = p->p_args;
718         kp->ki_textvp = p->p_textvp;
719 #ifdef KTRACE
720         kp->ki_tracep = p->p_tracevp;
721         mtx_lock(&ktrace_mtx);
722         kp->ki_traceflag = p->p_traceflag;
723         mtx_unlock(&ktrace_mtx);
724 #endif
725         kp->ki_fd = p->p_fd;
726         kp->ki_vmspace = p->p_vmspace;
727         kp->ki_flag = p->p_flag;
728         cred = p->p_ucred;
729         if (cred) {
730                 kp->ki_uid = cred->cr_uid;
731                 kp->ki_ruid = cred->cr_ruid;
732                 kp->ki_svuid = cred->cr_svuid;
733                 kp->ki_cr_flags = cred->cr_flags;
734                 /* XXX bde doesn't like KI_NGROUPS */
735                 if (cred->cr_ngroups > KI_NGROUPS) {
736                         kp->ki_ngroups = KI_NGROUPS;
737                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
738                 } else
739                         kp->ki_ngroups = cred->cr_ngroups;
740                 bcopy(cred->cr_groups, kp->ki_groups,
741                     kp->ki_ngroups * sizeof(gid_t));
742                 kp->ki_rgid = cred->cr_rgid;
743                 kp->ki_svgid = cred->cr_svgid;
744                 /* If jailed(cred), emulate the old P_JAILED flag. */
745                 if (jailed(cred)) {
746                         kp->ki_flag |= P_JAILED;
747                         /* If inside the jail, use 0 as a jail ID. */
748                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
749                                 kp->ki_jid = cred->cr_prison->pr_id;
750                 }
751         }
752         ps = p->p_sigacts;
753         if (ps) {
754                 mtx_lock(&ps->ps_mtx);
755                 kp->ki_sigignore = ps->ps_sigignore;
756                 kp->ki_sigcatch = ps->ps_sigcatch;
757                 mtx_unlock(&ps->ps_mtx);
758         }
759         PROC_SLOCK(p);
760         if (p->p_state != PRS_NEW &&
761             p->p_state != PRS_ZOMBIE &&
762             p->p_vmspace != NULL) {
763                 struct vmspace *vm = p->p_vmspace;
764
765                 kp->ki_size = vm->vm_map.size;
766                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
767                 FOREACH_THREAD_IN_PROC(p, td0) {
768                         if (!TD_IS_SWAPPED(td0))
769                                 kp->ki_rssize += td0->td_kstack_pages;
770                         if (td0->td_altkstack_obj != NULL)
771                                 kp->ki_rssize += td0->td_altkstack_pages;
772                 }
773                 kp->ki_swrss = vm->vm_swrss;
774                 kp->ki_tsize = vm->vm_tsize;
775                 kp->ki_dsize = vm->vm_dsize;
776                 kp->ki_ssize = vm->vm_ssize;
777         } else if (p->p_state == PRS_ZOMBIE)
778                 kp->ki_stat = SZOMB;
779         if (kp->ki_flag & P_INMEM)
780                 kp->ki_sflag = PS_INMEM;
781         else
782                 kp->ki_sflag = 0;
783         /* Calculate legacy swtime as seconds since 'swtick'. */
784         kp->ki_swtime = (ticks - p->p_swtick) / hz;
785         kp->ki_pid = p->p_pid;
786         kp->ki_nice = p->p_nice;
787         rufetch(p, &kp->ki_rusage);
788         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
789         PROC_SUNLOCK(p);
790         if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
791                 kp->ki_start = p->p_stats->p_start;
792                 timevaladd(&kp->ki_start, &boottime);
793                 PROC_SLOCK(p);
794                 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
795                 PROC_SUNLOCK(p);
796                 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
797
798                 /* Some callers want child-times in a single value */
799                 kp->ki_childtime = kp->ki_childstime;
800                 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
801         }
802         tp = NULL;
803         if (p->p_pgrp) {
804                 kp->ki_pgid = p->p_pgrp->pg_id;
805                 kp->ki_jobc = p->p_pgrp->pg_jobc;
806                 sp = p->p_pgrp->pg_session;
807
808                 if (sp != NULL) {
809                         kp->ki_sid = sp->s_sid;
810                         SESS_LOCK(sp);
811                         strlcpy(kp->ki_login, sp->s_login,
812                             sizeof(kp->ki_login));
813                         if (sp->s_ttyvp)
814                                 kp->ki_kiflag |= KI_CTTY;
815                         if (SESS_LEADER(p))
816                                 kp->ki_kiflag |= KI_SLEADER;
817                         /* XXX proctree_lock */
818                         tp = sp->s_ttyp;
819                         SESS_UNLOCK(sp);
820                 }
821         }
822         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
823                 kp->ki_tdev = tty_udev(tp);
824                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
825                 if (tp->t_session)
826                         kp->ki_tsid = tp->t_session->s_sid;
827         } else
828                 kp->ki_tdev = NODEV;
829         if (p->p_comm[0] != '\0')
830                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
831         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
832             p->p_sysent->sv_name[0] != '\0')
833                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
834         kp->ki_siglist = p->p_siglist;
835         kp->ki_xstat = p->p_xstat;
836         kp->ki_acflag = p->p_acflag;
837         kp->ki_lock = p->p_lock;
838         if (p->p_pptr)
839                 kp->ki_ppid = p->p_pptr->p_pid;
840 }
841
842 /*
843  * Fill in information that is thread specific.  Must be called with p_slock
844  * locked.  If 'preferthread' is set, overwrite certain process-related
845  * fields that are maintained for both threads and processes.
846  */
847 static void
848 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
849 {
850         struct proc *p;
851
852         p = td->td_proc;
853         PROC_LOCK_ASSERT(p, MA_OWNED);
854
855         thread_lock(td);
856         if (td->td_wmesg != NULL)
857                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
858         else
859                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
860         if (td->td_name[0] != '\0')
861                 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
862         if (TD_ON_LOCK(td)) {
863                 kp->ki_kiflag |= KI_LOCKBLOCK;
864                 strlcpy(kp->ki_lockname, td->td_lockname,
865                     sizeof(kp->ki_lockname));
866         } else {
867                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
868                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
869         }
870
871         if (p->p_state == PRS_NORMAL) { /* approximate. */
872                 if (TD_ON_RUNQ(td) ||
873                     TD_CAN_RUN(td) ||
874                     TD_IS_RUNNING(td)) {
875                         kp->ki_stat = SRUN;
876                 } else if (P_SHOULDSTOP(p)) {
877                         kp->ki_stat = SSTOP;
878                 } else if (TD_IS_SLEEPING(td)) {
879                         kp->ki_stat = SSLEEP;
880                 } else if (TD_ON_LOCK(td)) {
881                         kp->ki_stat = SLOCK;
882                 } else {
883                         kp->ki_stat = SWAIT;
884                 }
885         } else if (p->p_state == PRS_ZOMBIE) {
886                 kp->ki_stat = SZOMB;
887         } else {
888                 kp->ki_stat = SIDL;
889         }
890
891         /* Things in the thread */
892         kp->ki_wchan = td->td_wchan;
893         kp->ki_pri.pri_level = td->td_priority;
894         kp->ki_pri.pri_native = td->td_base_pri;
895         kp->ki_lastcpu = td->td_lastcpu;
896         kp->ki_oncpu = td->td_oncpu;
897         kp->ki_tdflags = td->td_flags;
898         kp->ki_tid = td->td_tid;
899         kp->ki_numthreads = p->p_numthreads;
900         kp->ki_pcb = td->td_pcb;
901         kp->ki_kstack = (void *)td->td_kstack;
902         kp->ki_slptime = (ticks - td->td_slptick) / hz;
903         kp->ki_pri.pri_class = td->td_pri_class;
904         kp->ki_pri.pri_user = td->td_user_pri;
905
906         if (preferthread) {
907                 kp->ki_runtime = cputick2usec(td->td_runtime);
908                 kp->ki_pctcpu = sched_pctcpu(td);
909                 kp->ki_estcpu = td->td_estcpu;
910         }
911
912         /* We can't get this anymore but ps etc never used it anyway. */
913         kp->ki_rqindex = 0;
914
915         SIGSETOR(kp->ki_siglist, td->td_siglist);
916         kp->ki_sigmask = td->td_sigmask;
917         thread_unlock(td);
918 }
919
920 /*
921  * Fill in a kinfo_proc structure for the specified process.
922  * Must be called with the target process locked.
923  */
924 void
925 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
926 {
927
928         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
929
930         fill_kinfo_proc_only(p, kp);
931         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
932         fill_kinfo_aggregate(p, kp);
933 }
934
935 struct pstats *
936 pstats_alloc(void)
937 {
938
939         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
940 }
941
942 /*
943  * Copy parts of p_stats; zero the rest of p_stats (statistics).
944  */
945 void
946 pstats_fork(struct pstats *src, struct pstats *dst)
947 {
948
949         bzero(&dst->pstat_startzero,
950             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
951         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
952             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
953 }
954
955 void
956 pstats_free(struct pstats *ps)
957 {
958
959         free(ps, M_SUBPROC);
960 }
961
962 /*
963  * Locate a zombie process by number
964  */
965 struct proc *
966 zpfind(pid_t pid)
967 {
968         struct proc *p;
969
970         sx_slock(&allproc_lock);
971         LIST_FOREACH(p, &zombproc, p_list)
972                 if (p->p_pid == pid) {
973                         PROC_LOCK(p);
974                         break;
975                 }
976         sx_sunlock(&allproc_lock);
977         return (p);
978 }
979
980 #define KERN_PROC_ZOMBMASK      0x3
981 #define KERN_PROC_NOTHREADS     0x4
982
983 /*
984  * Must be called with the process locked and will return with it unlocked.
985  */
986 static int
987 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
988 {
989         struct thread *td;
990         struct kinfo_proc kinfo_proc;
991         int error = 0;
992         struct proc *np;
993         pid_t pid = p->p_pid;
994
995         PROC_LOCK_ASSERT(p, MA_OWNED);
996         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
997
998         fill_kinfo_proc(p, &kinfo_proc);
999         if (flags & KERN_PROC_NOTHREADS)
1000                 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
1001                     sizeof(kinfo_proc));
1002         else {
1003                 FOREACH_THREAD_IN_PROC(p, td) {
1004                         fill_kinfo_thread(td, &kinfo_proc, 1);
1005                         error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
1006                             sizeof(kinfo_proc));
1007                         if (error)
1008                                 break;
1009                 }
1010         }
1011         PROC_UNLOCK(p);
1012         if (error)
1013                 return (error);
1014         if (flags & KERN_PROC_ZOMBMASK)
1015                 np = zpfind(pid);
1016         else {
1017                 if (pid == 0)
1018                         return (0);
1019                 np = pfind(pid);
1020         }
1021         if (np == NULL)
1022                 return (ESRCH);
1023         if (np != p) {
1024                 PROC_UNLOCK(np);
1025                 return (ESRCH);
1026         }
1027         PROC_UNLOCK(np);
1028         return (0);
1029 }
1030
1031 static int
1032 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1033 {
1034         int *name = (int*) arg1;
1035         u_int namelen = arg2;
1036         struct proc *p;
1037         int flags, doingzomb, oid_number;
1038         int error = 0;
1039
1040         oid_number = oidp->oid_number;
1041         if (oid_number != KERN_PROC_ALL &&
1042             (oid_number & KERN_PROC_INC_THREAD) == 0)
1043                 flags = KERN_PROC_NOTHREADS;
1044         else {
1045                 flags = 0;
1046                 oid_number &= ~KERN_PROC_INC_THREAD;
1047         }
1048         if (oid_number == KERN_PROC_PID) {
1049                 if (namelen != 1) 
1050                         return (EINVAL);
1051                 error = sysctl_wire_old_buffer(req, 0);
1052                 if (error)
1053                         return (error);         
1054                 p = pfind((pid_t)name[0]);
1055                 if (!p)
1056                         return (ESRCH);
1057                 if ((error = p_cansee(curthread, p))) {
1058                         PROC_UNLOCK(p);
1059                         return (error);
1060                 }
1061                 error = sysctl_out_proc(p, req, flags);
1062                 return (error);
1063         }
1064
1065         switch (oid_number) {
1066         case KERN_PROC_ALL:
1067                 if (namelen != 0)
1068                         return (EINVAL);
1069                 break;
1070         case KERN_PROC_PROC:
1071                 if (namelen != 0 && namelen != 1)
1072                         return (EINVAL);
1073                 break;
1074         default:
1075                 if (namelen != 1)
1076                         return (EINVAL);
1077                 break;
1078         }
1079         
1080         if (!req->oldptr) {
1081                 /* overestimate by 5 procs */
1082                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1083                 if (error)
1084                         return (error);
1085         }
1086         error = sysctl_wire_old_buffer(req, 0);
1087         if (error != 0)
1088                 return (error);
1089         sx_slock(&allproc_lock);
1090         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1091                 if (!doingzomb)
1092                         p = LIST_FIRST(&allproc);
1093                 else
1094                         p = LIST_FIRST(&zombproc);
1095                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
1096                         /*
1097                          * Skip embryonic processes.
1098                          */
1099                         PROC_SLOCK(p);
1100                         if (p->p_state == PRS_NEW) {
1101                                 PROC_SUNLOCK(p);
1102                                 continue;
1103                         }
1104                         PROC_SUNLOCK(p);
1105                         PROC_LOCK(p);
1106                         KASSERT(p->p_ucred != NULL,
1107                             ("process credential is NULL for non-NEW proc"));
1108                         /*
1109                          * Show a user only appropriate processes.
1110                          */
1111                         if (p_cansee(curthread, p)) {
1112                                 PROC_UNLOCK(p);
1113                                 continue;
1114                         }
1115                         /*
1116                          * TODO - make more efficient (see notes below).
1117                          * do by session.
1118                          */
1119                         switch (oid_number) {
1120
1121                         case KERN_PROC_GID:
1122                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1123                                         PROC_UNLOCK(p);
1124                                         continue;
1125                                 }
1126                                 break;
1127
1128                         case KERN_PROC_PGRP:
1129                                 /* could do this by traversing pgrp */
1130                                 if (p->p_pgrp == NULL ||
1131                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
1132                                         PROC_UNLOCK(p);
1133                                         continue;
1134                                 }
1135                                 break;
1136
1137                         case KERN_PROC_RGID:
1138                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1139                                         PROC_UNLOCK(p);
1140                                         continue;
1141                                 }
1142                                 break;
1143
1144                         case KERN_PROC_SESSION:
1145                                 if (p->p_session == NULL ||
1146                                     p->p_session->s_sid != (pid_t)name[0]) {
1147                                         PROC_UNLOCK(p);
1148                                         continue;
1149                                 }
1150                                 break;
1151
1152                         case KERN_PROC_TTY:
1153                                 if ((p->p_flag & P_CONTROLT) == 0 ||
1154                                     p->p_session == NULL) {
1155                                         PROC_UNLOCK(p);
1156                                         continue;
1157                                 }
1158                                 /* XXX proctree_lock */
1159                                 SESS_LOCK(p->p_session);
1160                                 if (p->p_session->s_ttyp == NULL ||
1161                                     tty_udev(p->p_session->s_ttyp) != 
1162                                     (dev_t)name[0]) {
1163                                         SESS_UNLOCK(p->p_session);
1164                                         PROC_UNLOCK(p);
1165                                         continue;
1166                                 }
1167                                 SESS_UNLOCK(p->p_session);
1168                                 break;
1169
1170                         case KERN_PROC_UID:
1171                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1172                                         PROC_UNLOCK(p);
1173                                         continue;
1174                                 }
1175                                 break;
1176
1177                         case KERN_PROC_RUID:
1178                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1179                                         PROC_UNLOCK(p);
1180                                         continue;
1181                                 }
1182                                 break;
1183
1184                         case KERN_PROC_PROC:
1185                                 break;
1186
1187                         default:
1188                                 break;
1189
1190                         }
1191
1192                         error = sysctl_out_proc(p, req, flags | doingzomb);
1193                         if (error) {
1194                                 sx_sunlock(&allproc_lock);
1195                                 return (error);
1196                         }
1197                 }
1198         }
1199         sx_sunlock(&allproc_lock);
1200         return (0);
1201 }
1202
1203 struct pargs *
1204 pargs_alloc(int len)
1205 {
1206         struct pargs *pa;
1207
1208         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1209                 M_WAITOK);
1210         refcount_init(&pa->ar_ref, 1);
1211         pa->ar_length = len;
1212         return (pa);
1213 }
1214
1215 static void
1216 pargs_free(struct pargs *pa)
1217 {
1218
1219         free(pa, M_PARGS);
1220 }
1221
1222 void
1223 pargs_hold(struct pargs *pa)
1224 {
1225
1226         if (pa == NULL)
1227                 return;
1228         refcount_acquire(&pa->ar_ref);
1229 }
1230
1231 void
1232 pargs_drop(struct pargs *pa)
1233 {
1234
1235         if (pa == NULL)
1236                 return;
1237         if (refcount_release(&pa->ar_ref))
1238                 pargs_free(pa);
1239 }
1240
1241 /*
1242  * This sysctl allows a process to retrieve the argument list or process
1243  * title for another process without groping around in the address space
1244  * of the other process.  It also allow a process to set its own "process 
1245  * title to a string of its own choice.
1246  */
1247 static int
1248 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1249 {
1250         int *name = (int*) arg1;
1251         u_int namelen = arg2;
1252         struct pargs *newpa, *pa;
1253         struct proc *p;
1254         int error = 0;
1255
1256         if (namelen != 1) 
1257                 return (EINVAL);
1258
1259         p = pfind((pid_t)name[0]);
1260         if (!p)
1261                 return (ESRCH);
1262
1263         if ((error = p_cansee(curthread, p)) != 0) {
1264                 PROC_UNLOCK(p);
1265                 return (error);
1266         }
1267
1268         if (req->newptr && curproc != p) {
1269                 PROC_UNLOCK(p);
1270                 return (EPERM);
1271         }
1272
1273         pa = p->p_args;
1274         pargs_hold(pa);
1275         PROC_UNLOCK(p);
1276         if (req->oldptr != NULL && pa != NULL)
1277                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1278         pargs_drop(pa);
1279         if (error != 0 || req->newptr == NULL)
1280                 return (error);
1281
1282         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1283                 return (ENOMEM);
1284         newpa = pargs_alloc(req->newlen);
1285         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1286         if (error != 0) {
1287                 pargs_free(newpa);
1288                 return (error);
1289         }
1290         PROC_LOCK(p);
1291         pa = p->p_args;
1292         p->p_args = newpa;
1293         PROC_UNLOCK(p);
1294         pargs_drop(pa);
1295         return (0);
1296 }
1297
1298 /*
1299  * This sysctl allows a process to retrieve the path of the executable for
1300  * itself or another process.
1301  */
1302 static int
1303 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1304 {
1305         pid_t *pidp = (pid_t *)arg1;
1306         unsigned int arglen = arg2;
1307         struct proc *p;
1308         struct vnode *vp;
1309         char *retbuf, *freebuf;
1310         int error, vfslocked;
1311
1312         if (arglen != 1)
1313                 return (EINVAL);
1314         if (*pidp == -1) {      /* -1 means this process */
1315                 p = req->td->td_proc;
1316         } else {
1317                 p = pfind(*pidp);
1318                 if (p == NULL)
1319                         return (ESRCH);
1320                 if ((error = p_cansee(curthread, p)) != 0) {
1321                         PROC_UNLOCK(p);
1322                         return (error);
1323                 }
1324         }
1325
1326         vp = p->p_textvp;
1327         if (vp == NULL) {
1328                 if (*pidp != -1)
1329                         PROC_UNLOCK(p);
1330                 return (0);
1331         }
1332         vref(vp);
1333         if (*pidp != -1)
1334                 PROC_UNLOCK(p);
1335         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1336         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1337         vrele(vp);
1338         VFS_UNLOCK_GIANT(vfslocked);
1339         if (error)
1340                 return (error);
1341         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1342         free(freebuf, M_TEMP);
1343         return (error);
1344 }
1345
1346 static int
1347 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1348 {
1349         struct proc *p;
1350         char *sv_name;
1351         int *name;
1352         int namelen;
1353         int error;
1354
1355         namelen = arg2;
1356         if (namelen != 1) 
1357                 return (EINVAL);
1358
1359         name = (int *)arg1;
1360         if ((p = pfind((pid_t)name[0])) == NULL)
1361                 return (ESRCH);
1362         if ((error = p_cansee(curthread, p))) {
1363                 PROC_UNLOCK(p);
1364                 return (error);
1365         }
1366         sv_name = p->p_sysent->sv_name;
1367         PROC_UNLOCK(p);
1368         return (sysctl_handle_string(oidp, sv_name, 0, req));
1369 }
1370
1371 #ifdef KINFO_OVMENTRY_SIZE
1372 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1373 #endif
1374
1375 #ifdef COMPAT_FREEBSD7
1376 static int
1377 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1378 {
1379         vm_map_entry_t entry, tmp_entry;
1380         unsigned int last_timestamp;
1381         char *fullpath, *freepath;
1382         struct kinfo_ovmentry *kve;
1383         struct vattr va;
1384         struct ucred *cred;
1385         int error, *name;
1386         struct vnode *vp;
1387         struct proc *p;
1388         vm_map_t map;
1389         struct vmspace *vm;
1390
1391         name = (int *)arg1;
1392         if ((p = pfind((pid_t)name[0])) == NULL)
1393                 return (ESRCH);
1394         if (p->p_flag & P_WEXIT) {
1395                 PROC_UNLOCK(p);
1396                 return (ESRCH);
1397         }
1398         if ((error = p_candebug(curthread, p))) {
1399                 PROC_UNLOCK(p);
1400                 return (error);
1401         }
1402         _PHOLD(p);
1403         PROC_UNLOCK(p);
1404         vm = vmspace_acquire_ref(p);
1405         if (vm == NULL) {
1406                 PRELE(p);
1407                 return (ESRCH);
1408         }
1409         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1410
1411         map = &p->p_vmspace->vm_map;    /* XXXRW: More locking required? */
1412         vm_map_lock_read(map);
1413         for (entry = map->header.next; entry != &map->header;
1414             entry = entry->next) {
1415                 vm_object_t obj, tobj, lobj;
1416                 vm_offset_t addr;
1417                 int vfslocked;
1418
1419                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1420                         continue;
1421
1422                 bzero(kve, sizeof(*kve));
1423                 kve->kve_structsize = sizeof(*kve);
1424
1425                 kve->kve_private_resident = 0;
1426                 obj = entry->object.vm_object;
1427                 if (obj != NULL) {
1428                         VM_OBJECT_LOCK(obj);
1429                         if (obj->shadow_count == 1)
1430                                 kve->kve_private_resident =
1431                                     obj->resident_page_count;
1432                 }
1433                 kve->kve_resident = 0;
1434                 addr = entry->start;
1435                 while (addr < entry->end) {
1436                         if (pmap_extract(map->pmap, addr))
1437                                 kve->kve_resident++;
1438                         addr += PAGE_SIZE;
1439                 }
1440
1441                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1442                         if (tobj != obj)
1443                                 VM_OBJECT_LOCK(tobj);
1444                         if (lobj != obj)
1445                                 VM_OBJECT_UNLOCK(lobj);
1446                         lobj = tobj;
1447                 }
1448
1449                 kve->kve_start = (void*)entry->start;
1450                 kve->kve_end = (void*)entry->end;
1451                 kve->kve_offset = (off_t)entry->offset;
1452
1453                 if (entry->protection & VM_PROT_READ)
1454                         kve->kve_protection |= KVME_PROT_READ;
1455                 if (entry->protection & VM_PROT_WRITE)
1456                         kve->kve_protection |= KVME_PROT_WRITE;
1457                 if (entry->protection & VM_PROT_EXECUTE)
1458                         kve->kve_protection |= KVME_PROT_EXEC;
1459
1460                 if (entry->eflags & MAP_ENTRY_COW)
1461                         kve->kve_flags |= KVME_FLAG_COW;
1462                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1463                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1464
1465                 last_timestamp = map->timestamp;
1466                 vm_map_unlock_read(map);
1467
1468                 kve->kve_fileid = 0;
1469                 kve->kve_fsid = 0;
1470                 freepath = NULL;
1471                 fullpath = "";
1472                 if (lobj) {
1473                         vp = NULL;
1474                         switch (lobj->type) {
1475                         case OBJT_DEFAULT:
1476                                 kve->kve_type = KVME_TYPE_DEFAULT;
1477                                 break;
1478                         case OBJT_VNODE:
1479                                 kve->kve_type = KVME_TYPE_VNODE;
1480                                 vp = lobj->handle;
1481                                 vref(vp);
1482                                 break;
1483                         case OBJT_SWAP:
1484                                 kve->kve_type = KVME_TYPE_SWAP;
1485                                 break;
1486                         case OBJT_DEVICE:
1487                                 kve->kve_type = KVME_TYPE_DEVICE;
1488                                 break;
1489                         case OBJT_PHYS:
1490                                 kve->kve_type = KVME_TYPE_PHYS;
1491                                 break;
1492                         case OBJT_DEAD:
1493                                 kve->kve_type = KVME_TYPE_DEAD;
1494                                 break;
1495                         case OBJT_SG:
1496                                 kve->kve_type = KVME_TYPE_SG;
1497                                 break;
1498                         default:
1499                                 kve->kve_type = KVME_TYPE_UNKNOWN;
1500                                 break;
1501                         }
1502                         if (lobj != obj)
1503                                 VM_OBJECT_UNLOCK(lobj);
1504
1505                         kve->kve_ref_count = obj->ref_count;
1506                         kve->kve_shadow_count = obj->shadow_count;
1507                         VM_OBJECT_UNLOCK(obj);
1508                         if (vp != NULL) {
1509                                 vn_fullpath(curthread, vp, &fullpath,
1510                                     &freepath);
1511                                 cred = curthread->td_ucred;
1512                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1513                                 vn_lock(vp, LK_SHARED | LK_RETRY);
1514                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
1515                                         kve->kve_fileid = va.va_fileid;
1516                                         kve->kve_fsid = va.va_fsid;
1517                                 }
1518                                 vput(vp);
1519                                 VFS_UNLOCK_GIANT(vfslocked);
1520                         }
1521                 } else {
1522                         kve->kve_type = KVME_TYPE_NONE;
1523                         kve->kve_ref_count = 0;
1524                         kve->kve_shadow_count = 0;
1525                 }
1526
1527                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1528                 if (freepath != NULL)
1529                         free(freepath, M_TEMP);
1530
1531                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
1532                 vm_map_lock_read(map);
1533                 if (error)
1534                         break;
1535                 if (last_timestamp != map->timestamp) {
1536                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1537                         entry = tmp_entry;
1538                 }
1539         }
1540         vm_map_unlock_read(map);
1541         vmspace_free(vm);
1542         PRELE(p);
1543         free(kve, M_TEMP);
1544         return (error);
1545 }
1546 #endif  /* COMPAT_FREEBSD7 */
1547
1548 #ifdef KINFO_VMENTRY_SIZE
1549 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1550 #endif
1551
1552 static int
1553 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1554 {
1555         vm_map_entry_t entry, tmp_entry;
1556         unsigned int last_timestamp;
1557         char *fullpath, *freepath;
1558         struct kinfo_vmentry *kve;
1559         struct vattr va;
1560         struct ucred *cred;
1561         int error, *name;
1562         struct vnode *vp;
1563         struct proc *p;
1564         struct vmspace *vm;
1565         vm_map_t map;
1566
1567         name = (int *)arg1;
1568         if ((p = pfind((pid_t)name[0])) == NULL)
1569                 return (ESRCH);
1570         if (p->p_flag & P_WEXIT) {
1571                 PROC_UNLOCK(p);
1572                 return (ESRCH);
1573         }
1574         if ((error = p_candebug(curthread, p))) {
1575                 PROC_UNLOCK(p);
1576                 return (error);
1577         }
1578         _PHOLD(p);
1579         PROC_UNLOCK(p);
1580         vm = vmspace_acquire_ref(p);
1581         if (vm == NULL) {
1582                 PRELE(p);
1583                 return (ESRCH);
1584         }
1585         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1586
1587         map = &vm->vm_map;      /* XXXRW: More locking required? */
1588         vm_map_lock_read(map);
1589         for (entry = map->header.next; entry != &map->header;
1590             entry = entry->next) {
1591                 vm_object_t obj, tobj, lobj;
1592                 vm_offset_t addr;
1593                 int vfslocked;
1594
1595                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1596                         continue;
1597
1598                 bzero(kve, sizeof(*kve));
1599
1600                 kve->kve_private_resident = 0;
1601                 obj = entry->object.vm_object;
1602                 if (obj != NULL) {
1603                         VM_OBJECT_LOCK(obj);
1604                         if (obj->shadow_count == 1)
1605                                 kve->kve_private_resident =
1606                                     obj->resident_page_count;
1607                 }
1608                 kve->kve_resident = 0;
1609                 addr = entry->start;
1610                 while (addr < entry->end) {
1611                         if (pmap_extract(map->pmap, addr))
1612                                 kve->kve_resident++;
1613                         addr += PAGE_SIZE;
1614                 }
1615
1616                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1617                         if (tobj != obj)
1618                                 VM_OBJECT_LOCK(tobj);
1619                         if (lobj != obj)
1620                                 VM_OBJECT_UNLOCK(lobj);
1621                         lobj = tobj;
1622                 }
1623
1624                 kve->kve_start = entry->start;
1625                 kve->kve_end = entry->end;
1626                 kve->kve_offset = entry->offset;
1627
1628                 if (entry->protection & VM_PROT_READ)
1629                         kve->kve_protection |= KVME_PROT_READ;
1630                 if (entry->protection & VM_PROT_WRITE)
1631                         kve->kve_protection |= KVME_PROT_WRITE;
1632                 if (entry->protection & VM_PROT_EXECUTE)
1633                         kve->kve_protection |= KVME_PROT_EXEC;
1634
1635                 if (entry->eflags & MAP_ENTRY_COW)
1636                         kve->kve_flags |= KVME_FLAG_COW;
1637                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1638                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1639
1640                 last_timestamp = map->timestamp;
1641                 vm_map_unlock_read(map);
1642
1643                 kve->kve_fileid = 0;
1644                 kve->kve_fsid = 0;
1645                 freepath = NULL;
1646                 fullpath = "";
1647                 if (lobj) {
1648                         vp = NULL;
1649                         switch (lobj->type) {
1650                         case OBJT_DEFAULT:
1651                                 kve->kve_type = KVME_TYPE_DEFAULT;
1652                                 break;
1653                         case OBJT_VNODE:
1654                                 kve->kve_type = KVME_TYPE_VNODE;
1655                                 vp = lobj->handle;
1656                                 vref(vp);
1657                                 break;
1658                         case OBJT_SWAP:
1659                                 kve->kve_type = KVME_TYPE_SWAP;
1660                                 break;
1661                         case OBJT_DEVICE:
1662                                 kve->kve_type = KVME_TYPE_DEVICE;
1663                                 break;
1664                         case OBJT_PHYS:
1665                                 kve->kve_type = KVME_TYPE_PHYS;
1666                                 break;
1667                         case OBJT_DEAD:
1668                                 kve->kve_type = KVME_TYPE_DEAD;
1669                                 break;
1670                         case OBJT_SG:
1671                                 kve->kve_type = KVME_TYPE_SG;
1672                                 break;
1673                         default:
1674                                 kve->kve_type = KVME_TYPE_UNKNOWN;
1675                                 break;
1676                         }
1677                         if (lobj != obj)
1678                                 VM_OBJECT_UNLOCK(lobj);
1679
1680                         kve->kve_ref_count = obj->ref_count;
1681                         kve->kve_shadow_count = obj->shadow_count;
1682                         VM_OBJECT_UNLOCK(obj);
1683                         if (vp != NULL) {
1684                                 vn_fullpath(curthread, vp, &fullpath,
1685                                     &freepath);
1686                                 cred = curthread->td_ucred;
1687                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1688                                 vn_lock(vp, LK_SHARED | LK_RETRY);
1689                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
1690                                         kve->kve_fileid = va.va_fileid;
1691                                         kve->kve_fsid = va.va_fsid;
1692                                 }
1693                                 vput(vp);
1694                                 VFS_UNLOCK_GIANT(vfslocked);
1695                         }
1696                 } else {
1697                         kve->kve_type = KVME_TYPE_NONE;
1698                         kve->kve_ref_count = 0;
1699                         kve->kve_shadow_count = 0;
1700                 }
1701
1702                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1703                 if (freepath != NULL)
1704                         free(freepath, M_TEMP);
1705
1706                 /* Pack record size down */
1707                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1708                     strlen(kve->kve_path) + 1;
1709                 kve->kve_structsize = roundup(kve->kve_structsize,
1710                     sizeof(uint64_t));
1711                 error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1712                 vm_map_lock_read(map);
1713                 if (error)
1714                         break;
1715                 if (last_timestamp != map->timestamp) {
1716                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1717                         entry = tmp_entry;
1718                 }
1719         }
1720         vm_map_unlock_read(map);
1721         vmspace_free(vm);
1722         PRELE(p);
1723         free(kve, M_TEMP);
1724         return (error);
1725 }
1726
1727 #if defined(STACK) || defined(DDB)
1728 static int
1729 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1730 {
1731         struct kinfo_kstack *kkstp;
1732         int error, i, *name, numthreads;
1733         lwpid_t *lwpidarray;
1734         struct thread *td;
1735         struct stack *st;
1736         struct sbuf sb;
1737         struct proc *p;
1738
1739         name = (int *)arg1;
1740         if ((p = pfind((pid_t)name[0])) == NULL)
1741                 return (ESRCH);
1742         /* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1743         if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1744                 PROC_UNLOCK(p);
1745                 return (ESRCH);
1746         }
1747         if ((error = p_candebug(curthread, p))) {
1748                 PROC_UNLOCK(p);
1749                 return (error);
1750         }
1751         _PHOLD(p);
1752         PROC_UNLOCK(p);
1753
1754         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1755         st = stack_create();
1756
1757         lwpidarray = NULL;
1758         numthreads = 0;
1759         PROC_LOCK(p);
1760 repeat:
1761         if (numthreads < p->p_numthreads) {
1762                 if (lwpidarray != NULL) {
1763                         free(lwpidarray, M_TEMP);
1764                         lwpidarray = NULL;
1765                 }
1766                 numthreads = p->p_numthreads;
1767                 PROC_UNLOCK(p);
1768                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1769                     M_WAITOK | M_ZERO);
1770                 PROC_LOCK(p);
1771                 goto repeat;
1772         }
1773         i = 0;
1774
1775         /*
1776          * XXXRW: During the below loop, execve(2) and countless other sorts
1777          * of changes could have taken place.  Should we check to see if the
1778          * vmspace has been replaced, or the like, in order to prevent
1779          * giving a snapshot that spans, say, execve(2), with some threads
1780          * before and some after?  Among other things, the credentials could
1781          * have changed, in which case the right to extract debug info might
1782          * no longer be assured.
1783          */
1784         FOREACH_THREAD_IN_PROC(p, td) {
1785                 KASSERT(i < numthreads,
1786                     ("sysctl_kern_proc_kstack: numthreads"));
1787                 lwpidarray[i] = td->td_tid;
1788                 i++;
1789         }
1790         numthreads = i;
1791         for (i = 0; i < numthreads; i++) {
1792                 td = thread_find(p, lwpidarray[i]);
1793                 if (td == NULL) {
1794                         continue;
1795                 }
1796                 bzero(kkstp, sizeof(*kkstp));
1797                 (void)sbuf_new(&sb, kkstp->kkst_trace,
1798                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1799                 thread_lock(td);
1800                 kkstp->kkst_tid = td->td_tid;
1801                 if (TD_IS_SWAPPED(td))
1802                         kkstp->kkst_state = KKST_STATE_SWAPPED;
1803                 else if (TD_IS_RUNNING(td))
1804                         kkstp->kkst_state = KKST_STATE_RUNNING;
1805                 else {
1806                         kkstp->kkst_state = KKST_STATE_STACKOK;
1807                         stack_save_td(st, td);
1808                 }
1809                 thread_unlock(td);
1810                 PROC_UNLOCK(p);
1811                 stack_sbuf_print(&sb, st);
1812                 sbuf_finish(&sb);
1813                 sbuf_delete(&sb);
1814                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1815                 PROC_LOCK(p);
1816                 if (error)
1817                         break;
1818         }
1819         _PRELE(p);
1820         PROC_UNLOCK(p);
1821         if (lwpidarray != NULL)
1822                 free(lwpidarray, M_TEMP);
1823         stack_destroy(st);
1824         free(kkstp, M_TEMP);
1825         return (error);
1826 }
1827 #endif
1828
1829 /*
1830  * This sysctl allows a process to retrieve the full list of groups from
1831  * itself or another process.
1832  */
1833 static int
1834 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1835 {
1836         pid_t *pidp = (pid_t *)arg1;
1837         unsigned int arglen = arg2;
1838         struct proc *p;
1839         struct ucred *cred;
1840         int error;
1841
1842         if (arglen != 1)
1843                 return (EINVAL);
1844         if (*pidp == -1) {      /* -1 means this process */
1845                 p = req->td->td_proc;
1846         } else {
1847                 p = pfind(*pidp);
1848                 if (p == NULL)
1849                         return (ESRCH);
1850                 if ((error = p_cansee(curthread, p)) != 0) {
1851                         PROC_UNLOCK(p);
1852                         return (error);
1853                 }
1854         }
1855
1856         cred = crhold(p->p_ucred);
1857         if (*pidp != -1)
1858                 PROC_UNLOCK(p);
1859
1860         error = SYSCTL_OUT(req, cred->cr_groups,
1861             cred->cr_ngroups * sizeof(gid_t));
1862         crfree(cred);
1863         return (error);
1864 }
1865
1866 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1867
1868 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1869         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1870         "Return entire process table");
1871
1872 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1873         sysctl_kern_proc, "Process table");
1874
1875 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1876         sysctl_kern_proc, "Process table");
1877
1878 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1879         sysctl_kern_proc, "Process table");
1880
1881 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1882         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1883
1884 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 
1885         sysctl_kern_proc, "Process table");
1886
1887 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 
1888         sysctl_kern_proc, "Process table");
1889
1890 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1891         sysctl_kern_proc, "Process table");
1892
1893 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1894         sysctl_kern_proc, "Process table");
1895
1896 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
1897         sysctl_kern_proc, "Return process table, no threads");
1898
1899 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1900         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
1901         sysctl_kern_proc_args, "Process argument list");
1902
1903 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
1904         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
1905
1906 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
1907         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
1908         "Process syscall vector name (ABI type)");
1909
1910 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1911         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1912
1913 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1914         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1915
1916 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1917         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1918
1919 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
1920         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1921
1922 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1923         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1924
1925 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1926         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1927
1928 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1929         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1930
1931 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1932         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1933
1934 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1935         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
1936         "Return process table, no threads");
1937
1938 #ifdef COMPAT_FREEBSD7
1939 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
1940         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
1941 #endif
1942
1943 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
1944         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
1945
1946 #if defined(STACK) || defined(DDB)
1947 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
1948         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
1949 #endif
1950
1951 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
1952         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");