]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/net/rtsock.c
Merge ^/vendor/lld/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / net / rtsock.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      @(#)rtsock.c    8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #include <ddb/db_lex.h>
60 #endif
61
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/if_llatbl.h>
66 #include <net/if_types.h>
67 #include <net/netisr.h>
68 #include <net/raw_cb.h>
69 #include <net/route.h>
70 #include <net/route_var.h>
71 #include <net/vnet.h>
72
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #include <netinet/ip_carp.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/scope6_var.h>
79 #endif
80
81 #ifdef COMPAT_FREEBSD32
82 #include <sys/mount.h>
83 #include <compat/freebsd32/freebsd32.h>
84
85 struct if_msghdr32 {
86         uint16_t ifm_msglen;
87         uint8_t ifm_version;
88         uint8_t ifm_type;
89         int32_t ifm_addrs;
90         int32_t ifm_flags;
91         uint16_t ifm_index;
92         uint16_t _ifm_spare1;
93         struct  if_data ifm_data;
94 };
95
96 struct if_msghdrl32 {
97         uint16_t ifm_msglen;
98         uint8_t ifm_version;
99         uint8_t ifm_type;
100         int32_t ifm_addrs;
101         int32_t ifm_flags;
102         uint16_t ifm_index;
103         uint16_t _ifm_spare1;
104         uint16_t ifm_len;
105         uint16_t ifm_data_off;
106         uint32_t _ifm_spare2;
107         struct  if_data ifm_data;
108 };
109
110 struct ifa_msghdrl32 {
111         uint16_t ifam_msglen;
112         uint8_t ifam_version;
113         uint8_t ifam_type;
114         int32_t ifam_addrs;
115         int32_t ifam_flags;
116         uint16_t ifam_index;
117         uint16_t _ifam_spare1;
118         uint16_t ifam_len;
119         uint16_t ifam_data_off;
120         int32_t ifam_metric;
121         struct  if_data ifam_data;
122 };
123
124 #define SA_SIZE32(sa)                                           \
125     (  (((struct sockaddr *)(sa))->sa_len == 0) ?               \
126         sizeof(int)             :                               \
127         1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
128
129 #endif /* COMPAT_FREEBSD32 */
130
131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
132
133 /* NB: these are not modified */
134 static struct   sockaddr route_src = { 2, PF_ROUTE, };
135 static struct   sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
136
137 /* These are external hooks for CARP. */
138 int     (*carp_get_vhid_p)(struct ifaddr *);
139
140 /*
141  * Used by rtsock/raw_input callback code to decide whether to filter the update
142  * notification to a socket bound to a particular FIB.
143  */
144 #define RTS_FILTER_FIB  M_PROTO8
145
146 typedef struct {
147         int     ip_count;       /* attached w/ AF_INET */
148         int     ip6_count;      /* attached w/ AF_INET6 */
149         int     any_count;      /* total attached */
150 } route_cb_t;
151 VNET_DEFINE_STATIC(route_cb_t, route_cb);
152 #define V_route_cb VNET(route_cb)
153
154 struct mtx rtsock_mtx;
155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
156
157 #define RTSOCK_LOCK()   mtx_lock(&rtsock_mtx)
158 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
159 #define RTSOCK_LOCK_ASSERT()    mtx_assert(&rtsock_mtx, MA_OWNED)
160
161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
162
163 struct walkarg {
164         int     w_tmemsize;
165         int     w_op, w_arg;
166         caddr_t w_tmem;
167         struct sysctl_req *w_req;
168 };
169
170 static void     rts_input(struct mbuf *m);
171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
172 static int      rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
173                         struct walkarg *w, int *plen);
174 static int      rt_xaddrs(caddr_t cp, caddr_t cplim,
175                         struct rt_addrinfo *rtinfo);
176 static int      sysctl_dumpentry(struct radix_node *rn, void *vw);
177 static int      sysctl_iflist(int af, struct walkarg *w);
178 static int      sysctl_ifmalist(int af, struct walkarg *w);
179 static int      route_output(struct mbuf *m, struct socket *so, ...);
180 static void     rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
181 static void     rt_dispatch(struct mbuf *, sa_family_t);
182 static struct sockaddr  *rtsock_fix_netmask(struct sockaddr *dst,
183                         struct sockaddr *smask, struct sockaddr_storage *dmask);
184 static int      handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
185                         struct rt_msghdr *rtm, struct rtentry **ret_nrt);
186 static int      update_rtm_from_rte(struct rt_addrinfo *info,
187                         struct rt_msghdr **prtm, int alloc_len,
188                         struct rtentry *rt);
189 static void     send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
190                         struct mbuf *m, sa_family_t saf, u_int fibnum,
191                         int rtm_errno);
192 static int      can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
193
194 static struct netisr_handler rtsock_nh = {
195         .nh_name = "rtsock",
196         .nh_handler = rts_input,
197         .nh_proto = NETISR_ROUTE,
198         .nh_policy = NETISR_POLICY_SOURCE,
199 };
200
201 static int
202 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
203 {
204         int error, qlimit;
205
206         netisr_getqlimit(&rtsock_nh, &qlimit);
207         error = sysctl_handle_int(oidp, &qlimit, 0, req);
208         if (error || !req->newptr)
209                 return (error);
210         if (qlimit < 1)
211                 return (EINVAL);
212         return (netisr_setqlimit(&rtsock_nh, qlimit));
213 }
214 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
215     0, 0, sysctl_route_netisr_maxqlen, "I",
216     "maximum routing socket dispatch queue length");
217
218 static void
219 vnet_rts_init(void)
220 {
221         int tmp;
222
223         if (IS_DEFAULT_VNET(curvnet)) {
224                 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
225                         rtsock_nh.nh_qlimit = tmp;
226                 netisr_register(&rtsock_nh);
227         }
228 #ifdef VIMAGE
229          else
230                 netisr_register_vnet(&rtsock_nh);
231 #endif
232 }
233 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
234     vnet_rts_init, 0);
235
236 #ifdef VIMAGE
237 static void
238 vnet_rts_uninit(void)
239 {
240
241         netisr_unregister_vnet(&rtsock_nh);
242 }
243 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
244     vnet_rts_uninit, 0);
245 #endif
246
247 static int
248 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
249     struct rawcb *rp)
250 {
251         int fibnum;
252
253         KASSERT(m != NULL, ("%s: m is NULL", __func__));
254         KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
255         KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
256
257         /* No filtering requested. */
258         if ((m->m_flags & RTS_FILTER_FIB) == 0)
259                 return (0);
260
261         /* Check if it is a rts and the fib matches the one of the socket. */
262         fibnum = M_GETFIB(m);
263         if (proto->sp_family != PF_ROUTE ||
264             rp->rcb_socket == NULL ||
265             rp->rcb_socket->so_fibnum == fibnum)
266                 return (0);
267
268         /* Filtering requested and no match, the socket shall be skipped. */
269         return (1);
270 }
271
272 static void
273 rts_input(struct mbuf *m)
274 {
275         struct sockproto route_proto;
276         unsigned short *family;
277         struct m_tag *tag;
278
279         route_proto.sp_family = PF_ROUTE;
280         tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
281         if (tag != NULL) {
282                 family = (unsigned short *)(tag + 1);
283                 route_proto.sp_protocol = *family;
284                 m_tag_delete(m, tag);
285         } else
286                 route_proto.sp_protocol = 0;
287
288         raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
289 }
290
291 /*
292  * It really doesn't make any sense at all for this code to share much
293  * with raw_usrreq.c, since its functionality is so restricted.  XXX
294  */
295 static void
296 rts_abort(struct socket *so)
297 {
298
299         raw_usrreqs.pru_abort(so);
300 }
301
302 static void
303 rts_close(struct socket *so)
304 {
305
306         raw_usrreqs.pru_close(so);
307 }
308
309 /* pru_accept is EOPNOTSUPP */
310
311 static int
312 rts_attach(struct socket *so, int proto, struct thread *td)
313 {
314         struct rawcb *rp;
315         int error;
316
317         KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
318
319         /* XXX */
320         rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
321
322         so->so_pcb = (caddr_t)rp;
323         so->so_fibnum = td->td_proc->p_fibnum;
324         error = raw_attach(so, proto);
325         rp = sotorawcb(so);
326         if (error) {
327                 so->so_pcb = NULL;
328                 free(rp, M_PCB);
329                 return error;
330         }
331         RTSOCK_LOCK();
332         switch(rp->rcb_proto.sp_protocol) {
333         case AF_INET:
334                 V_route_cb.ip_count++;
335                 break;
336         case AF_INET6:
337                 V_route_cb.ip6_count++;
338                 break;
339         }
340         V_route_cb.any_count++;
341         RTSOCK_UNLOCK();
342         soisconnected(so);
343         so->so_options |= SO_USELOOPBACK;
344         return 0;
345 }
346
347 static int
348 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
349 {
350
351         return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
352 }
353
354 static int
355 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
356 {
357
358         return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
359 }
360
361 /* pru_connect2 is EOPNOTSUPP */
362 /* pru_control is EOPNOTSUPP */
363
364 static void
365 rts_detach(struct socket *so)
366 {
367         struct rawcb *rp = sotorawcb(so);
368
369         KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
370
371         RTSOCK_LOCK();
372         switch(rp->rcb_proto.sp_protocol) {
373         case AF_INET:
374                 V_route_cb.ip_count--;
375                 break;
376         case AF_INET6:
377                 V_route_cb.ip6_count--;
378                 break;
379         }
380         V_route_cb.any_count--;
381         RTSOCK_UNLOCK();
382         raw_usrreqs.pru_detach(so);
383 }
384
385 static int
386 rts_disconnect(struct socket *so)
387 {
388
389         return (raw_usrreqs.pru_disconnect(so));
390 }
391
392 /* pru_listen is EOPNOTSUPP */
393
394 static int
395 rts_peeraddr(struct socket *so, struct sockaddr **nam)
396 {
397
398         return (raw_usrreqs.pru_peeraddr(so, nam));
399 }
400
401 /* pru_rcvd is EOPNOTSUPP */
402 /* pru_rcvoob is EOPNOTSUPP */
403
404 static int
405 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
406          struct mbuf *control, struct thread *td)
407 {
408
409         return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
410 }
411
412 /* pru_sense is null */
413
414 static int
415 rts_shutdown(struct socket *so)
416 {
417
418         return (raw_usrreqs.pru_shutdown(so));
419 }
420
421 static int
422 rts_sockaddr(struct socket *so, struct sockaddr **nam)
423 {
424
425         return (raw_usrreqs.pru_sockaddr(so, nam));
426 }
427
428 static struct pr_usrreqs route_usrreqs = {
429         .pru_abort =            rts_abort,
430         .pru_attach =           rts_attach,
431         .pru_bind =             rts_bind,
432         .pru_connect =          rts_connect,
433         .pru_detach =           rts_detach,
434         .pru_disconnect =       rts_disconnect,
435         .pru_peeraddr =         rts_peeraddr,
436         .pru_send =             rts_send,
437         .pru_shutdown =         rts_shutdown,
438         .pru_sockaddr =         rts_sockaddr,
439         .pru_close =            rts_close,
440 };
441
442 #ifndef _SOCKADDR_UNION_DEFINED
443 #define _SOCKADDR_UNION_DEFINED
444 /*
445  * The union of all possible address formats we handle.
446  */
447 union sockaddr_union {
448         struct sockaddr         sa;
449         struct sockaddr_in      sin;
450         struct sockaddr_in6     sin6;
451 };
452 #endif /* _SOCKADDR_UNION_DEFINED */
453
454 static int
455 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
456     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
457 {
458 #if defined(INET) || defined(INET6)
459         struct epoch_tracker et;
460 #endif
461
462         /* First, see if the returned address is part of the jail. */
463         if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
464                 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
465                 return (0);
466         }
467
468         switch (info->rti_info[RTAX_DST]->sa_family) {
469 #ifdef INET
470         case AF_INET:
471         {
472                 struct in_addr ia;
473                 struct ifaddr *ifa;
474                 int found;
475
476                 found = 0;
477                 /*
478                  * Try to find an address on the given outgoing interface
479                  * that belongs to the jail.
480                  */
481                 NET_EPOCH_ENTER(et);
482                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
483                         struct sockaddr *sa;
484                         sa = ifa->ifa_addr;
485                         if (sa->sa_family != AF_INET)
486                                 continue;
487                         ia = ((struct sockaddr_in *)sa)->sin_addr;
488                         if (prison_check_ip4(cred, &ia) == 0) {
489                                 found = 1;
490                                 break;
491                         }
492                 }
493                 NET_EPOCH_EXIT(et);
494                 if (!found) {
495                         /*
496                          * As a last resort return the 'default' jail address.
497                          */
498                         ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
499                             sin_addr;
500                         if (prison_get_ip4(cred, &ia) != 0)
501                                 return (ESRCH);
502                 }
503                 bzero(&saun->sin, sizeof(struct sockaddr_in));
504                 saun->sin.sin_len = sizeof(struct sockaddr_in);
505                 saun->sin.sin_family = AF_INET;
506                 saun->sin.sin_addr.s_addr = ia.s_addr;
507                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
508                 break;
509         }
510 #endif
511 #ifdef INET6
512         case AF_INET6:
513         {
514                 struct in6_addr ia6;
515                 struct ifaddr *ifa;
516                 int found;
517
518                 found = 0;
519                 /*
520                  * Try to find an address on the given outgoing interface
521                  * that belongs to the jail.
522                  */
523                 NET_EPOCH_ENTER(et);
524                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
525                         struct sockaddr *sa;
526                         sa = ifa->ifa_addr;
527                         if (sa->sa_family != AF_INET6)
528                                 continue;
529                         bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
530                             &ia6, sizeof(struct in6_addr));
531                         if (prison_check_ip6(cred, &ia6) == 0) {
532                                 found = 1;
533                                 break;
534                         }
535                 }
536                 NET_EPOCH_EXIT(et);
537                 if (!found) {
538                         /*
539                          * As a last resort return the 'default' jail address.
540                          */
541                         ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
542                             sin6_addr;
543                         if (prison_get_ip6(cred, &ia6) != 0)
544                                 return (ESRCH);
545                 }
546                 bzero(&saun->sin6, sizeof(struct sockaddr_in6));
547                 saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
548                 saun->sin6.sin6_family = AF_INET6;
549                 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
550                 if (sa6_recoverscope(&saun->sin6) != 0)
551                         return (ESRCH);
552                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
553                 break;
554         }
555 #endif
556         default:
557                 return (ESRCH);
558         }
559         return (0);
560 }
561
562 /*
563  * Fills in @info based on userland-provided @rtm message.
564  *
565  * Returns 0 on success.
566  */
567 static int
568 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
569 {
570         int error;
571         sa_family_t saf;
572
573         rtm->rtm_pid = curproc->p_pid;
574         info->rti_addrs = rtm->rtm_addrs;
575
576         info->rti_mflags = rtm->rtm_inits;
577         info->rti_rmx = &rtm->rtm_rmx;
578
579         /*
580          * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
581          * link-local address because rtrequest requires addresses with
582          * embedded scope id.
583          */
584         if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
585                 return (EINVAL);
586
587         if (rtm->rtm_flags & RTF_RNH_LOCKED)
588                 return (EINVAL);
589         info->rti_flags = rtm->rtm_flags;
590         if (info->rti_info[RTAX_DST] == NULL ||
591             info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
592             (info->rti_info[RTAX_GATEWAY] != NULL &&
593              info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
594                 return (EINVAL);
595         saf = info->rti_info[RTAX_DST]->sa_family;
596         /*
597          * Verify that the caller has the appropriate privilege; RTM_GET
598          * is the only operation the non-superuser is allowed.
599          */
600         if (rtm->rtm_type != RTM_GET) {
601                 error = priv_check(curthread, PRIV_NET_ROUTE);
602                 if (error != 0)
603                         return (error);
604         }
605
606         /*
607          * The given gateway address may be an interface address.
608          * For example, issuing a "route change" command on a route
609          * entry that was created from a tunnel, and the gateway
610          * address given is the local end point. In this case the 
611          * RTF_GATEWAY flag must be cleared or the destination will
612          * not be reachable even though there is no error message.
613          */
614         if (info->rti_info[RTAX_GATEWAY] != NULL &&
615             info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
616                 struct rt_addrinfo ginfo;
617                 struct sockaddr *gdst;
618                 struct sockaddr_storage ss;
619
620                 bzero(&ginfo, sizeof(ginfo));
621                 bzero(&ss, sizeof(ss));
622                 ss.ss_len = sizeof(ss);
623
624                 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
625                 gdst = info->rti_info[RTAX_GATEWAY];
626
627                 /* 
628                  * A host route through the loopback interface is 
629                  * installed for each interface adddress. In pre 8.0
630                  * releases the interface address of a PPP link type
631                  * is not reachable locally. This behavior is fixed as 
632                  * part of the new L2/L3 redesign and rewrite work. The
633                  * signature of this interface address route is the
634                  * AF_LINK sa_family type of the rt_gateway, and the
635                  * rt_ifp has the IFF_LOOPBACK flag set.
636                  */
637                 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
638                         if (ss.ss_family == AF_LINK &&
639                             ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
640                                 info->rti_flags &= ~RTF_GATEWAY;
641                                 info->rti_flags |= RTF_GWFLAG_COMPAT;
642                         }
643                         rib_free_info(&ginfo);
644                 }
645         }
646
647         return (0);
648 }
649
650 /*
651  * Handles RTM_GET message from routing socket, returning matching rt.
652  *
653  * Returns:
654  * 0 on success, with locked and referenced matching rt in @rt_nrt
655  * errno of failure
656  */
657 static int
658 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
659     struct rt_msghdr *rtm, struct rtentry **ret_nrt)
660 {
661         RIB_RLOCK_TRACKER;
662         struct rtentry *rt;
663         struct rib_head *rnh;
664         sa_family_t saf;
665
666         saf = info->rti_info[RTAX_DST]->sa_family;
667
668         rnh = rt_tables_get_rnh(fibnum, saf);
669         if (rnh == NULL)
670                 return (EAFNOSUPPORT);
671
672         RIB_RLOCK(rnh);
673
674         if (info->rti_info[RTAX_NETMASK] == NULL) {
675                 /*
676                  * Provide longest prefix match for
677                  * address lookup (no mask).
678                  * 'route -n get addr'
679                  */
680                 rt = (struct rtentry *) rnh->rnh_matchaddr(
681                     info->rti_info[RTAX_DST], &rnh->head);
682         } else
683                 rt = (struct rtentry *) rnh->rnh_lookup(
684                     info->rti_info[RTAX_DST],
685                     info->rti_info[RTAX_NETMASK], &rnh->head);
686
687         if (rt == NULL) {
688                 RIB_RUNLOCK(rnh);
689                 return (ESRCH);
690         }
691 #ifdef RADIX_MPATH
692         /*
693          * for RTM_GET, gate is optional even with multipath.
694          * if gate == NULL the first match is returned.
695          * (no need to call rt_mpath_matchgate if gate == NULL)
696          */
697         if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
698                 rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]);
699                 if (!rt) {
700                         RIB_RUNLOCK(rnh);
701                         return (ESRCH);
702                 }
703         }
704 #endif
705         /*
706          * If performing proxied L2 entry insertion, and
707          * the actual PPP host entry is found, perform
708          * another search to retrieve the prefix route of
709          * the local end point of the PPP link.
710          */
711         if (rtm->rtm_flags & RTF_ANNOUNCE) {
712                 struct sockaddr laddr;
713
714                 if (rt->rt_ifp != NULL && 
715                     rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
716                         struct epoch_tracker et;
717                         struct ifaddr *ifa;
718
719                         NET_EPOCH_ENTER(et);
720                         ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
721                                         RT_ALL_FIBS);
722                         NET_EPOCH_EXIT(et);
723                         if (ifa != NULL)
724                                 rt_maskedcopy(ifa->ifa_addr,
725                                               &laddr,
726                                               ifa->ifa_netmask);
727                 } else
728                         rt_maskedcopy(rt->rt_ifa->ifa_addr,
729                                       &laddr,
730                                       rt->rt_ifa->ifa_netmask);
731                 /* 
732                  * refactor rt and no lock operation necessary
733                  */
734                 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
735                     &rnh->head);
736                 if (rt == NULL) {
737                         RIB_RUNLOCK(rnh);
738                         return (ESRCH);
739                 }
740         } 
741         RT_LOCK(rt);
742         RT_ADDREF(rt);
743         RIB_RUNLOCK(rnh);
744
745         *ret_nrt = rt;
746
747         return (0);
748 }
749
750 /*
751  * Update sockaddrs, flags, etc in @prtm based on @rt data.
752  * Assumes @rt is locked.
753  * rtm can be reallocated.
754  *
755  * Returns 0 on success, along with pointer to (potentially reallocated)
756  *  rtm.
757  *
758  */
759 static int
760 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm,
761     int alloc_len, struct rtentry *rt)
762 {
763         struct sockaddr_storage netmask_ss;
764         struct walkarg w;
765         union sockaddr_union saun;
766         struct rt_msghdr *rtm, *orig_rtm = NULL;
767         struct ifnet *ifp;
768         int error, len;
769
770         RT_LOCK_ASSERT(rt);
771
772         rtm = *prtm;
773
774         info->rti_info[RTAX_DST] = rt_key(rt);
775         info->rti_info[RTAX_GATEWAY] = rt->rt_gateway;
776         info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
777             rt_mask(rt), &netmask_ss);
778         info->rti_info[RTAX_GENMASK] = 0;
779         ifp = rt->rt_ifp;
780         if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
781                 if (ifp) {
782                         info->rti_info[RTAX_IFP] =
783                             ifp->if_addr->ifa_addr;
784                         error = rtm_get_jailed(info, ifp, rt,
785                             &saun, curthread->td_ucred);
786                         if (error != 0)
787                                 return (error);
788                         if (ifp->if_flags & IFF_POINTOPOINT)
789                                 info->rti_info[RTAX_BRD] =
790                                     rt->rt_ifa->ifa_dstaddr;
791                         rtm->rtm_index = ifp->if_index;
792                 } else {
793                         info->rti_info[RTAX_IFP] = NULL;
794                         info->rti_info[RTAX_IFA] = NULL;
795                 }
796         } else if (ifp != NULL)
797                 rtm->rtm_index = ifp->if_index;
798
799         /* Check if we need to realloc storage */
800         rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
801         if (len > alloc_len) {
802                 struct rt_msghdr *tmp_rtm;
803
804                 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
805                 if (tmp_rtm == NULL)
806                         return (ENOBUFS);
807                 bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
808                 orig_rtm = rtm;
809                 rtm = tmp_rtm;
810                 alloc_len = len;
811
812                 /*
813                  * Delay freeing original rtm as info contains
814                  * data referencing it.
815                  */
816         }
817
818         w.w_tmem = (caddr_t)rtm;
819         w.w_tmemsize = alloc_len;
820         rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
821
822         if (rt->rt_flags & RTF_GWFLAG_COMPAT)
823                 rtm->rtm_flags = RTF_GATEWAY | 
824                         (rt->rt_flags & ~RTF_GWFLAG_COMPAT);
825         else
826                 rtm->rtm_flags = rt->rt_flags;
827         rt_getmetrics(rt, &rtm->rtm_rmx);
828         rtm->rtm_addrs = info->rti_addrs;
829
830         if (orig_rtm != NULL)
831                 free(orig_rtm, M_TEMP);
832         *prtm = rtm;
833
834         return (0);
835 }
836
837 /*ARGSUSED*/
838 static int
839 route_output(struct mbuf *m, struct socket *so, ...)
840 {
841         struct rt_msghdr *rtm = NULL;
842         struct rtentry *rt = NULL;
843         struct rt_addrinfo info;
844         struct epoch_tracker et;
845 #ifdef INET6
846         struct sockaddr_storage ss;
847         struct sockaddr_in6 *sin6;
848         int i, rti_need_deembed = 0;
849 #endif
850         int alloc_len = 0, len, error = 0, fibnum;
851         sa_family_t saf = AF_UNSPEC;
852         struct walkarg w;
853
854         fibnum = so->so_fibnum;
855
856 #define senderr(e) { error = e; goto flush;}
857         if (m == NULL || ((m->m_len < sizeof(long)) &&
858                        (m = m_pullup(m, sizeof(long))) == NULL))
859                 return (ENOBUFS);
860         if ((m->m_flags & M_PKTHDR) == 0)
861                 panic("route_output");
862         NET_EPOCH_ENTER(et);
863         len = m->m_pkthdr.len;
864         if (len < sizeof(*rtm) ||
865             len != mtod(m, struct rt_msghdr *)->rtm_msglen)
866                 senderr(EINVAL);
867
868         /*
869          * Most of current messages are in range 200-240 bytes,
870          * minimize possible re-allocation on reply using larger size
871          * buffer aligned on 1k boundaty.
872          */
873         alloc_len = roundup2(len, 1024);
874         if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
875                 senderr(ENOBUFS);
876
877         m_copydata(m, 0, len, (caddr_t)rtm);
878         bzero(&info, sizeof(info));
879         bzero(&w, sizeof(w));
880
881         if (rtm->rtm_version != RTM_VERSION) {
882                 /* Do not touch message since format is unknown */
883                 free(rtm, M_TEMP);
884                 rtm = NULL;
885                 senderr(EPROTONOSUPPORT);
886         }
887
888         /*
889          * Starting from here, it is possible
890          * to alter original message and insert
891          * caller PID and error value.
892          */
893
894         if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
895                 senderr(error);
896         }
897
898         saf = info.rti_info[RTAX_DST]->sa_family;
899
900         /* support for new ARP code */
901         if (rtm->rtm_flags & RTF_LLDATA) {
902                 error = lla_rt_output(rtm, &info);
903 #ifdef INET6
904                 if (error == 0)
905                         rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
906 #endif
907                 goto flush;
908         }
909
910         switch (rtm->rtm_type) {
911                 struct rtentry *saved_nrt;
912
913         case RTM_ADD:
914         case RTM_CHANGE:
915                 if (rtm->rtm_type == RTM_ADD) {
916                         if (info.rti_info[RTAX_GATEWAY] == NULL)
917                                 senderr(EINVAL);
918                 }
919                 saved_nrt = NULL;
920                 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
921                     fibnum);
922                 if (error == 0 && saved_nrt != NULL) {
923 #ifdef INET6
924                         rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
925 #endif
926                         RT_LOCK(saved_nrt);
927                         rtm->rtm_index = saved_nrt->rt_ifp->if_index;
928                         RT_REMREF(saved_nrt);
929                         RT_UNLOCK(saved_nrt);
930                 }
931                 break;
932
933         case RTM_DELETE:
934                 saved_nrt = NULL;
935                 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
936                 if (error == 0) {
937                         RT_LOCK(saved_nrt);
938                         rt = saved_nrt;
939                         goto report;
940                 }
941 #ifdef INET6
942                 /* rt_msg2() will not be used when RTM_DELETE fails. */
943                 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
944 #endif
945                 break;
946
947         case RTM_GET:
948                 error = handle_rtm_get(&info, fibnum, rtm, &rt);
949                 if (error != 0)
950                         senderr(error);
951
952 report:
953                 RT_LOCK_ASSERT(rt);
954                 if (!can_export_rte(curthread->td_ucred, rt)) {
955                         RT_UNLOCK(rt);
956                         senderr(ESRCH);
957                 }
958                 error = update_rtm_from_rte(&info, &rtm, alloc_len, rt);
959                 /*
960                  * Note that some sockaddr pointers may have changed to
961                  * point to memory outsize @rtm. Some may be pointing
962                  * to the on-stack variables.
963                  * Given that, any pointer in @info CANNOT BE USED.
964                  */
965
966                 /*
967                  * scopeid deembedding has been performed while
968                  * writing updated rtm in rtsock_msg_buffer().
969                  * With that in mind, skip deembedding procedure below.
970                  */
971 #ifdef INET6
972                 rti_need_deembed = 0;
973 #endif
974                 RT_UNLOCK(rt);
975                 if (error != 0)
976                         senderr(error);
977                 break;
978
979         default:
980                 senderr(EOPNOTSUPP);
981         }
982
983 flush:
984         NET_EPOCH_EXIT(et);
985         if (rt != NULL)
986                 RTFREE(rt);
987
988 #ifdef INET6
989         if (rtm != NULL) {
990                 if (rti_need_deembed) {
991                         /* sin6_scope_id is recovered before sending rtm. */
992                         sin6 = (struct sockaddr_in6 *)&ss;
993                         for (i = 0; i < RTAX_MAX; i++) {
994                                 if (info.rti_info[i] == NULL)
995                                         continue;
996                                 if (info.rti_info[i]->sa_family != AF_INET6)
997                                         continue;
998                                 bcopy(info.rti_info[i], sin6, sizeof(*sin6));
999                                 if (sa6_recoverscope(sin6) == 0)
1000                                         bcopy(sin6, info.rti_info[i],
1001                                                     sizeof(*sin6));
1002                         }
1003                 }
1004         }
1005 #endif
1006         send_rtm_reply(so, rtm, m, saf, fibnum, error);
1007
1008         return (error);
1009 }
1010
1011 /*
1012  * Sends the prepared reply message in @rtm to all rtsock clients.
1013  * Frees @m and @rtm.
1014  *
1015  */
1016 static void
1017 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1018     sa_family_t saf, u_int fibnum, int rtm_errno)
1019 {
1020         struct rawcb *rp = NULL;
1021
1022         /*
1023          * Check to see if we don't want our own messages.
1024          */
1025         if ((so->so_options & SO_USELOOPBACK) == 0) {
1026                 if (V_route_cb.any_count <= 1) {
1027                         if (rtm != NULL)
1028                                 free(rtm, M_TEMP);
1029                         m_freem(m);
1030                         return;
1031                 }
1032                 /* There is another listener, so construct message */
1033                 rp = sotorawcb(so);
1034         }
1035
1036         if (rtm != NULL) {
1037                 if (rtm_errno!= 0)
1038                         rtm->rtm_errno = rtm_errno;
1039                 else
1040                         rtm->rtm_flags |= RTF_DONE;
1041
1042                 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1043                 if (m->m_pkthdr.len < rtm->rtm_msglen) {
1044                         m_freem(m);
1045                         m = NULL;
1046                 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
1047                         m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1048
1049                 free(rtm, M_TEMP);
1050         }
1051         if (m != NULL) {
1052                 M_SETFIB(m, fibnum);
1053                 m->m_flags |= RTS_FILTER_FIB;
1054                 if (rp) {
1055                         /*
1056                          * XXX insure we don't get a copy by
1057                          * invalidating our protocol
1058                          */
1059                         unsigned short family = rp->rcb_proto.sp_family;
1060                         rp->rcb_proto.sp_family = 0;
1061                         rt_dispatch(m, saf);
1062                         rp->rcb_proto.sp_family = family;
1063                 } else
1064                         rt_dispatch(m, saf);
1065         }
1066 }
1067
1068
1069 static void
1070 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1071 {
1072
1073         bzero(out, sizeof(*out));
1074         out->rmx_mtu = rt->rt_mtu;
1075         out->rmx_weight = rt->rt_weight;
1076         out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1077         /* Kernel -> userland timebase conversion. */
1078         out->rmx_expire = rt->rt_expire ?
1079             rt->rt_expire - time_uptime + time_second : 0;
1080 }
1081
1082 /*
1083  * Extract the addresses of the passed sockaddrs.
1084  * Do a little sanity checking so as to avoid bad memory references.
1085  * This data is derived straight from userland.
1086  */
1087 static int
1088 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1089 {
1090         struct sockaddr *sa;
1091         int i;
1092
1093         for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1094                 if ((rtinfo->rti_addrs & (1 << i)) == 0)
1095                         continue;
1096                 sa = (struct sockaddr *)cp;
1097                 /*
1098                  * It won't fit.
1099                  */
1100                 if (cp + sa->sa_len > cplim)
1101                         return (EINVAL);
1102                 /*
1103                  * there are no more.. quit now
1104                  * If there are more bits, they are in error.
1105                  * I've seen this. route(1) can evidently generate these. 
1106                  * This causes kernel to core dump.
1107                  * for compatibility, If we see this, point to a safe address.
1108                  */
1109                 if (sa->sa_len == 0) {
1110                         rtinfo->rti_info[i] = &sa_zero;
1111                         return (0); /* should be EINVAL but for compat */
1112                 }
1113                 /* accept it */
1114 #ifdef INET6
1115                 if (sa->sa_family == AF_INET6)
1116                         sa6_embedscope((struct sockaddr_in6 *)sa,
1117                             V_ip6_use_defzone);
1118 #endif
1119                 rtinfo->rti_info[i] = sa;
1120                 cp += SA_SIZE(sa);
1121         }
1122         return (0);
1123 }
1124
1125 /*
1126  * Fill in @dmask with valid netmask leaving original @smask
1127  * intact. Mostly used with radix netmasks.
1128  */
1129 static struct sockaddr *
1130 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1131     struct sockaddr_storage *dmask)
1132 {
1133         if (dst == NULL || smask == NULL)
1134                 return (NULL);
1135
1136         memset(dmask, 0, dst->sa_len);
1137         memcpy(dmask, smask, smask->sa_len);
1138         dmask->ss_len = dst->sa_len;
1139         dmask->ss_family = dst->sa_family;
1140
1141         return ((struct sockaddr *)dmask);
1142 }
1143
1144 /*
1145  * Writes information related to @rtinfo object to newly-allocated mbuf.
1146  * Assumes MCLBYTES is enough to construct any message.
1147  * Used for OS notifications of vaious events (if/ifa announces,etc)
1148  *
1149  * Returns allocated mbuf or NULL on failure.
1150  */
1151 static struct mbuf *
1152 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1153 {
1154         struct rt_msghdr *rtm;
1155         struct mbuf *m;
1156         int i;
1157         struct sockaddr *sa;
1158 #ifdef INET6
1159         struct sockaddr_storage ss;
1160         struct sockaddr_in6 *sin6;
1161 #endif
1162         int len, dlen;
1163
1164         switch (type) {
1165
1166         case RTM_DELADDR:
1167         case RTM_NEWADDR:
1168                 len = sizeof(struct ifa_msghdr);
1169                 break;
1170
1171         case RTM_DELMADDR:
1172         case RTM_NEWMADDR:
1173                 len = sizeof(struct ifma_msghdr);
1174                 break;
1175
1176         case RTM_IFINFO:
1177                 len = sizeof(struct if_msghdr);
1178                 break;
1179
1180         case RTM_IFANNOUNCE:
1181         case RTM_IEEE80211:
1182                 len = sizeof(struct if_announcemsghdr);
1183                 break;
1184
1185         default:
1186                 len = sizeof(struct rt_msghdr);
1187         }
1188
1189         /* XXXGL: can we use MJUMPAGESIZE cluster here? */
1190         KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1191         if (len > MHLEN)
1192                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1193         else
1194                 m = m_gethdr(M_NOWAIT, MT_DATA);
1195         if (m == NULL)
1196                 return (m);
1197
1198         m->m_pkthdr.len = m->m_len = len;
1199         rtm = mtod(m, struct rt_msghdr *);
1200         bzero((caddr_t)rtm, len);
1201         for (i = 0; i < RTAX_MAX; i++) {
1202                 if ((sa = rtinfo->rti_info[i]) == NULL)
1203                         continue;
1204                 rtinfo->rti_addrs |= (1 << i);
1205                 dlen = SA_SIZE(sa);
1206 #ifdef INET6
1207                 if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1208                         sin6 = (struct sockaddr_in6 *)&ss;
1209                         bcopy(sa, sin6, sizeof(*sin6));
1210                         if (sa6_recoverscope(sin6) == 0)
1211                                 sa = (struct sockaddr *)sin6;
1212                 }
1213 #endif
1214                 m_copyback(m, len, dlen, (caddr_t)sa);
1215                 len += dlen;
1216         }
1217         if (m->m_pkthdr.len != len) {
1218                 m_freem(m);
1219                 return (NULL);
1220         }
1221         rtm->rtm_msglen = len;
1222         rtm->rtm_version = RTM_VERSION;
1223         rtm->rtm_type = type;
1224         return (m);
1225 }
1226
1227 /*
1228  * Writes information related to @rtinfo object to preallocated buffer.
1229  * Stores needed size in @plen. If @w is NULL, calculates size without
1230  * writing.
1231  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1232  *
1233  * Returns 0 on success.
1234  *
1235  */
1236 static int
1237 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1238 {
1239         int i;
1240         int len, buflen = 0, dlen;
1241         caddr_t cp = NULL;
1242         struct rt_msghdr *rtm = NULL;
1243 #ifdef INET6
1244         struct sockaddr_storage ss;
1245         struct sockaddr_in6 *sin6;
1246 #endif
1247 #ifdef COMPAT_FREEBSD32
1248         bool compat32 = false;
1249 #endif
1250
1251         switch (type) {
1252
1253         case RTM_DELADDR:
1254         case RTM_NEWADDR:
1255                 if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1256 #ifdef COMPAT_FREEBSD32
1257                         if (w->w_req->flags & SCTL_MASK32) {
1258                                 len = sizeof(struct ifa_msghdrl32);
1259                                 compat32 = true;
1260                         } else
1261 #endif
1262                                 len = sizeof(struct ifa_msghdrl);
1263                 } else
1264                         len = sizeof(struct ifa_msghdr);
1265                 break;
1266
1267         case RTM_IFINFO:
1268 #ifdef COMPAT_FREEBSD32
1269                 if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1270                         if (w->w_op == NET_RT_IFLISTL)
1271                                 len = sizeof(struct if_msghdrl32);
1272                         else
1273                                 len = sizeof(struct if_msghdr32);
1274                         compat32 = true;
1275                         break;
1276                 }
1277 #endif
1278                 if (w != NULL && w->w_op == NET_RT_IFLISTL)
1279                         len = sizeof(struct if_msghdrl);
1280                 else
1281                         len = sizeof(struct if_msghdr);
1282                 break;
1283
1284         case RTM_NEWMADDR:
1285                 len = sizeof(struct ifma_msghdr);
1286                 break;
1287
1288         default:
1289                 len = sizeof(struct rt_msghdr);
1290         }
1291
1292         if (w != NULL) {
1293                 rtm = (struct rt_msghdr *)w->w_tmem;
1294                 buflen = w->w_tmemsize - len;
1295                 cp = (caddr_t)w->w_tmem + len;
1296         }
1297
1298         rtinfo->rti_addrs = 0;
1299         for (i = 0; i < RTAX_MAX; i++) {
1300                 struct sockaddr *sa;
1301
1302                 if ((sa = rtinfo->rti_info[i]) == NULL)
1303                         continue;
1304                 rtinfo->rti_addrs |= (1 << i);
1305 #ifdef COMPAT_FREEBSD32
1306                 if (compat32)
1307                         dlen = SA_SIZE32(sa);
1308                 else
1309 #endif
1310                         dlen = SA_SIZE(sa);
1311                 if (cp != NULL && buflen >= dlen) {
1312 #ifdef INET6
1313                         if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1314                                 sin6 = (struct sockaddr_in6 *)&ss;
1315                                 bcopy(sa, sin6, sizeof(*sin6));
1316                                 if (sa6_recoverscope(sin6) == 0)
1317                                         sa = (struct sockaddr *)sin6;
1318                         }
1319 #endif
1320                         bcopy((caddr_t)sa, cp, (unsigned)dlen);
1321                         cp += dlen;
1322                         buflen -= dlen;
1323                 } else if (cp != NULL) {
1324                         /*
1325                          * Buffer too small. Count needed size
1326                          * and return with error.
1327                          */
1328                         cp = NULL;
1329                 }
1330
1331                 len += dlen;
1332         }
1333
1334         if (cp != NULL) {
1335                 dlen = ALIGN(len) - len;
1336                 if (buflen < dlen)
1337                         cp = NULL;
1338                 else {
1339                         bzero(cp, dlen);
1340                         cp += dlen;
1341                         buflen -= dlen;
1342                 }
1343         }
1344         len = ALIGN(len);
1345
1346         if (cp != NULL) {
1347                 /* fill header iff buffer is large enough */
1348                 rtm->rtm_version = RTM_VERSION;
1349                 rtm->rtm_type = type;
1350                 rtm->rtm_msglen = len;
1351         }
1352
1353         *plen = len;
1354
1355         if (w != NULL && cp == NULL)
1356                 return (ENOBUFS);
1357
1358         return (0);
1359 }
1360
1361 /*
1362  * This routine is called to generate a message from the routing
1363  * socket indicating that a redirect has occurred, a routing lookup
1364  * has failed, or that a protocol has detected timeouts to a particular
1365  * destination.
1366  */
1367 void
1368 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1369     int fibnum)
1370 {
1371         struct rt_msghdr *rtm;
1372         struct mbuf *m;
1373         struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1374
1375         if (V_route_cb.any_count == 0)
1376                 return;
1377         m = rtsock_msg_mbuf(type, rtinfo);
1378         if (m == NULL)
1379                 return;
1380
1381         if (fibnum != RT_ALL_FIBS) {
1382                 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1383                     "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1384                 M_SETFIB(m, fibnum);
1385                 m->m_flags |= RTS_FILTER_FIB;
1386         }
1387
1388         rtm = mtod(m, struct rt_msghdr *);
1389         rtm->rtm_flags = RTF_DONE | flags;
1390         rtm->rtm_errno = error;
1391         rtm->rtm_addrs = rtinfo->rti_addrs;
1392         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1393 }
1394
1395 void
1396 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1397 {
1398
1399         rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1400 }
1401
1402 /*
1403  * This routine is called to generate a message from the routing
1404  * socket indicating that the status of a network interface has changed.
1405  */
1406 void
1407 rt_ifmsg(struct ifnet *ifp)
1408 {
1409         struct if_msghdr *ifm;
1410         struct mbuf *m;
1411         struct rt_addrinfo info;
1412
1413         if (V_route_cb.any_count == 0)
1414                 return;
1415         bzero((caddr_t)&info, sizeof(info));
1416         m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1417         if (m == NULL)
1418                 return;
1419         ifm = mtod(m, struct if_msghdr *);
1420         ifm->ifm_index = ifp->if_index;
1421         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1422         if_data_copy(ifp, &ifm->ifm_data);
1423         ifm->ifm_addrs = 0;
1424         rt_dispatch(m, AF_UNSPEC);
1425 }
1426
1427 /*
1428  * Announce interface address arrival/withdraw.
1429  * Please do not call directly, use rt_addrmsg().
1430  * Assume input data to be valid.
1431  * Returns 0 on success.
1432  */
1433 int
1434 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1435 {
1436         struct rt_addrinfo info;
1437         struct sockaddr *sa;
1438         int ncmd;
1439         struct mbuf *m;
1440         struct ifa_msghdr *ifam;
1441         struct ifnet *ifp = ifa->ifa_ifp;
1442         struct sockaddr_storage ss;
1443
1444         if (V_route_cb.any_count == 0)
1445                 return (0);
1446
1447         ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1448
1449         bzero((caddr_t)&info, sizeof(info));
1450         info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1451         info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1452         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1453             info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1454         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1455         if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1456                 return (ENOBUFS);
1457         ifam = mtod(m, struct ifa_msghdr *);
1458         ifam->ifam_index = ifp->if_index;
1459         ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1460         ifam->ifam_flags = ifa->ifa_flags;
1461         ifam->ifam_addrs = info.rti_addrs;
1462
1463         if (fibnum != RT_ALL_FIBS) {
1464                 M_SETFIB(m, fibnum);
1465                 m->m_flags |= RTS_FILTER_FIB;
1466         }
1467
1468         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1469
1470         return (0);
1471 }
1472
1473 /*
1474  * Announce route addition/removal to rtsock based on @rt data.
1475  * Callers are advives to use rt_routemsg() instead of using this
1476  *  function directly.
1477  * Assume @rt data is consistent.
1478  *
1479  * Returns 0 on success.
1480  */
1481 int
1482 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1483     int fibnum)
1484 {
1485         struct sockaddr_storage ss;
1486         struct rt_addrinfo info;
1487
1488         if (V_route_cb.any_count == 0)
1489                 return (0);
1490
1491         bzero((caddr_t)&info, sizeof(info));
1492         info.rti_info[RTAX_DST] = rt_key(rt);
1493         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1494         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1495         info.rti_flags = rt->rt_flags;
1496         info.rti_ifp = ifp;
1497
1498         return (rtsock_routemsg_info(cmd, &info, fibnum));
1499 }
1500
1501 int
1502 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1503 {
1504         struct rt_msghdr *rtm;
1505         struct sockaddr *sa;
1506         struct mbuf *m;
1507
1508         if (V_route_cb.any_count == 0)
1509                 return (0);
1510
1511         if (info->rti_flags & RTF_HOST)
1512                 info->rti_info[RTAX_NETMASK] = NULL;
1513
1514         m = rtsock_msg_mbuf(cmd, info);
1515         if (m == NULL)
1516                 return (ENOBUFS);
1517
1518         if (fibnum != RT_ALL_FIBS) {
1519                 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1520                     "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1521                 M_SETFIB(m, fibnum);
1522                 m->m_flags |= RTS_FILTER_FIB;
1523         }
1524
1525         rtm = mtod(m, struct rt_msghdr *);
1526         rtm->rtm_addrs = info->rti_addrs;
1527         if (info->rti_ifp != NULL)
1528                 rtm->rtm_index = info->rti_ifp->if_index;
1529         /* Add RTF_DONE to indicate command 'completion' required by API */
1530         info->rti_flags |= RTF_DONE;
1531         /* Reported routes has to be up */
1532         if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1533                 info->rti_flags |= RTF_UP;
1534         rtm->rtm_flags = info->rti_flags;
1535
1536         sa = info->rti_info[RTAX_DST];
1537         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1538
1539         return (0);
1540 }
1541
1542 /*
1543  * This is the analogue to the rt_newaddrmsg which performs the same
1544  * function but for multicast group memberhips.  This is easier since
1545  * there is no route state to worry about.
1546  */
1547 void
1548 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1549 {
1550         struct rt_addrinfo info;
1551         struct mbuf *m = NULL;
1552         struct ifnet *ifp = ifma->ifma_ifp;
1553         struct ifma_msghdr *ifmam;
1554
1555         if (V_route_cb.any_count == 0)
1556                 return;
1557
1558         bzero((caddr_t)&info, sizeof(info));
1559         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1560         if (ifp && ifp->if_addr)
1561                 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1562         else
1563                 info.rti_info[RTAX_IFP] = NULL;
1564         /*
1565          * If a link-layer address is present, present it as a ``gateway''
1566          * (similarly to how ARP entries, e.g., are presented).
1567          */
1568         info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1569         m = rtsock_msg_mbuf(cmd, &info);
1570         if (m == NULL)
1571                 return;
1572         ifmam = mtod(m, struct ifma_msghdr *);
1573         KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1574             __func__));
1575         ifmam->ifmam_index = ifp->if_index;
1576         ifmam->ifmam_addrs = info.rti_addrs;
1577         rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1578 }
1579
1580 static struct mbuf *
1581 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1582         struct rt_addrinfo *info)
1583 {
1584         struct if_announcemsghdr *ifan;
1585         struct mbuf *m;
1586
1587         if (V_route_cb.any_count == 0)
1588                 return NULL;
1589         bzero((caddr_t)info, sizeof(*info));
1590         m = rtsock_msg_mbuf(type, info);
1591         if (m != NULL) {
1592                 ifan = mtod(m, struct if_announcemsghdr *);
1593                 ifan->ifan_index = ifp->if_index;
1594                 strlcpy(ifan->ifan_name, ifp->if_xname,
1595                         sizeof(ifan->ifan_name));
1596                 ifan->ifan_what = what;
1597         }
1598         return m;
1599 }
1600
1601 /*
1602  * This is called to generate routing socket messages indicating
1603  * IEEE80211 wireless events.
1604  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1605  */
1606 void
1607 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1608 {
1609         struct mbuf *m;
1610         struct rt_addrinfo info;
1611
1612         m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1613         if (m != NULL) {
1614                 /*
1615                  * Append the ieee80211 data.  Try to stick it in the
1616                  * mbuf containing the ifannounce msg; otherwise allocate
1617                  * a new mbuf and append.
1618                  *
1619                  * NB: we assume m is a single mbuf.
1620                  */
1621                 if (data_len > M_TRAILINGSPACE(m)) {
1622                         struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1623                         if (n == NULL) {
1624                                 m_freem(m);
1625                                 return;
1626                         }
1627                         bcopy(data, mtod(n, void *), data_len);
1628                         n->m_len = data_len;
1629                         m->m_next = n;
1630                 } else if (data_len > 0) {
1631                         bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1632                         m->m_len += data_len;
1633                 }
1634                 if (m->m_flags & M_PKTHDR)
1635                         m->m_pkthdr.len += data_len;
1636                 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1637                 rt_dispatch(m, AF_UNSPEC);
1638         }
1639 }
1640
1641 /*
1642  * This is called to generate routing socket messages indicating
1643  * network interface arrival and departure.
1644  */
1645 void
1646 rt_ifannouncemsg(struct ifnet *ifp, int what)
1647 {
1648         struct mbuf *m;
1649         struct rt_addrinfo info;
1650
1651         m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1652         if (m != NULL)
1653                 rt_dispatch(m, AF_UNSPEC);
1654 }
1655
1656 static void
1657 rt_dispatch(struct mbuf *m, sa_family_t saf)
1658 {
1659         struct m_tag *tag;
1660
1661         /*
1662          * Preserve the family from the sockaddr, if any, in an m_tag for
1663          * use when injecting the mbuf into the routing socket buffer from
1664          * the netisr.
1665          */
1666         if (saf != AF_UNSPEC) {
1667                 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1668                     M_NOWAIT);
1669                 if (tag == NULL) {
1670                         m_freem(m);
1671                         return;
1672                 }
1673                 *(unsigned short *)(tag + 1) = saf;
1674                 m_tag_prepend(m, tag);
1675         }
1676 #ifdef VIMAGE
1677         if (V_loif)
1678                 m->m_pkthdr.rcvif = V_loif;
1679         else {
1680                 m_freem(m);
1681                 return;
1682         }
1683 #endif
1684         netisr_queue(NETISR_ROUTE, m);  /* mbuf is free'd on failure. */
1685 }
1686
1687 /*
1688  * Checks if rte can be exported v.r.t jails/vnets.
1689  *
1690  * Returns 1 if it can, 0 otherwise.
1691  */
1692 static int
1693 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1694 {
1695
1696         if ((rt->rt_flags & RTF_HOST) == 0
1697             ? jailed_without_vnet(td_ucred)
1698             : prison_if(td_ucred, rt_key_const(rt)) != 0)
1699                 return (0);
1700         return (1);
1701 }
1702
1703 /*
1704  * This is used in dumping the kernel table via sysctl().
1705  */
1706 static int
1707 sysctl_dumpentry(struct radix_node *rn, void *vw)
1708 {
1709         struct walkarg *w = vw;
1710         struct rtentry *rt = (struct rtentry *)rn;
1711         int error = 0, size;
1712         struct rt_addrinfo info;
1713         struct sockaddr_storage ss;
1714
1715         NET_EPOCH_ASSERT();
1716
1717         if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1718                 return 0;
1719         if (!can_export_rte(w->w_req->td->td_ucred, rt))
1720                 return (0);
1721         bzero((caddr_t)&info, sizeof(info));
1722         info.rti_info[RTAX_DST] = rt_key(rt);
1723         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1724         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1725             rt_mask(rt), &ss);
1726         info.rti_info[RTAX_GENMASK] = 0;
1727         if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) {
1728                 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1729                 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1730                 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1731                         info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1732         }
1733         if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1734                 return (error);
1735         if (w->w_req && w->w_tmem) {
1736                 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1737
1738                 bzero(&rtm->rtm_index,
1739                     sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1740                 if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1741                         rtm->rtm_flags = RTF_GATEWAY | 
1742                                 (rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1743                 else
1744                         rtm->rtm_flags = rt->rt_flags;
1745                 rt_getmetrics(rt, &rtm->rtm_rmx);
1746                 rtm->rtm_index = rt->rt_ifp->if_index;
1747                 rtm->rtm_addrs = info.rti_addrs;
1748                 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1749                 return (error);
1750         }
1751         return (error);
1752 }
1753
1754 static int
1755 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1756     struct rt_addrinfo *info, struct walkarg *w, int len)
1757 {
1758         struct if_msghdrl *ifm;
1759         struct if_data *ifd;
1760
1761         ifm = (struct if_msghdrl *)w->w_tmem;
1762
1763 #ifdef COMPAT_FREEBSD32
1764         if (w->w_req->flags & SCTL_MASK32) {
1765                 struct if_msghdrl32 *ifm32;
1766
1767                 ifm32 = (struct if_msghdrl32 *)ifm;
1768                 ifm32->ifm_addrs = info->rti_addrs;
1769                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1770                 ifm32->ifm_index = ifp->if_index;
1771                 ifm32->_ifm_spare1 = 0;
1772                 ifm32->ifm_len = sizeof(*ifm32);
1773                 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1774                 ifm32->_ifm_spare2 = 0;
1775                 ifd = &ifm32->ifm_data;
1776         } else
1777 #endif
1778         {
1779                 ifm->ifm_addrs = info->rti_addrs;
1780                 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1781                 ifm->ifm_index = ifp->if_index;
1782                 ifm->_ifm_spare1 = 0;
1783                 ifm->ifm_len = sizeof(*ifm);
1784                 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1785                 ifm->_ifm_spare2 = 0;
1786                 ifd = &ifm->ifm_data;
1787         }
1788
1789         memcpy(ifd, src_ifd, sizeof(*ifd));
1790
1791         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1792 }
1793
1794 static int
1795 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1796     struct rt_addrinfo *info, struct walkarg *w, int len)
1797 {
1798         struct if_msghdr *ifm;
1799         struct if_data *ifd;
1800
1801         ifm = (struct if_msghdr *)w->w_tmem;
1802
1803 #ifdef COMPAT_FREEBSD32
1804         if (w->w_req->flags & SCTL_MASK32) {
1805                 struct if_msghdr32 *ifm32;
1806
1807                 ifm32 = (struct if_msghdr32 *)ifm;
1808                 ifm32->ifm_addrs = info->rti_addrs;
1809                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1810                 ifm32->ifm_index = ifp->if_index;
1811                 ifm32->_ifm_spare1 = 0;
1812                 ifd = &ifm32->ifm_data;
1813         } else
1814 #endif
1815         {
1816                 ifm->ifm_addrs = info->rti_addrs;
1817                 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1818                 ifm->ifm_index = ifp->if_index;
1819                 ifm->_ifm_spare1 = 0;
1820                 ifd = &ifm->ifm_data;
1821         }
1822
1823         memcpy(ifd, src_ifd, sizeof(*ifd));
1824
1825         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1826 }
1827
1828 static int
1829 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1830     struct walkarg *w, int len)
1831 {
1832         struct ifa_msghdrl *ifam;
1833         struct if_data *ifd;
1834
1835         ifam = (struct ifa_msghdrl *)w->w_tmem;
1836
1837 #ifdef COMPAT_FREEBSD32
1838         if (w->w_req->flags & SCTL_MASK32) {
1839                 struct ifa_msghdrl32 *ifam32;
1840
1841                 ifam32 = (struct ifa_msghdrl32 *)ifam;
1842                 ifam32->ifam_addrs = info->rti_addrs;
1843                 ifam32->ifam_flags = ifa->ifa_flags;
1844                 ifam32->ifam_index = ifa->ifa_ifp->if_index;
1845                 ifam32->_ifam_spare1 = 0;
1846                 ifam32->ifam_len = sizeof(*ifam32);
1847                 ifam32->ifam_data_off =
1848                     offsetof(struct ifa_msghdrl32, ifam_data);
1849                 ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1850                 ifd = &ifam32->ifam_data;
1851         } else
1852 #endif
1853         {
1854                 ifam->ifam_addrs = info->rti_addrs;
1855                 ifam->ifam_flags = ifa->ifa_flags;
1856                 ifam->ifam_index = ifa->ifa_ifp->if_index;
1857                 ifam->_ifam_spare1 = 0;
1858                 ifam->ifam_len = sizeof(*ifam);
1859                 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1860                 ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1861                 ifd = &ifam->ifam_data;
1862         }
1863
1864         bzero(ifd, sizeof(*ifd));
1865         ifd->ifi_datalen = sizeof(struct if_data);
1866         ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1867         ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1868         ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1869         ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1870
1871         /* Fixup if_data carp(4) vhid. */
1872         if (carp_get_vhid_p != NULL)
1873                 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1874
1875         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1876 }
1877
1878 static int
1879 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1880     struct walkarg *w, int len)
1881 {
1882         struct ifa_msghdr *ifam;
1883
1884         ifam = (struct ifa_msghdr *)w->w_tmem;
1885         ifam->ifam_addrs = info->rti_addrs;
1886         ifam->ifam_flags = ifa->ifa_flags;
1887         ifam->ifam_index = ifa->ifa_ifp->if_index;
1888         ifam->_ifam_spare1 = 0;
1889         ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1890
1891         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1892 }
1893
1894 static int
1895 sysctl_iflist(int af, struct walkarg *w)
1896 {
1897         struct ifnet *ifp;
1898         struct ifaddr *ifa;
1899         struct if_data ifd;
1900         struct rt_addrinfo info;
1901         int len, error = 0;
1902         struct sockaddr_storage ss;
1903
1904         bzero((caddr_t)&info, sizeof(info));
1905         bzero(&ifd, sizeof(ifd));
1906         CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1907                 if (w->w_arg && w->w_arg != ifp->if_index)
1908                         continue;
1909                 if_data_copy(ifp, &ifd);
1910                 ifa = ifp->if_addr;
1911                 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1912                 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1913                 if (error != 0)
1914                         goto done;
1915                 info.rti_info[RTAX_IFP] = NULL;
1916                 if (w->w_req && w->w_tmem) {
1917                         if (w->w_op == NET_RT_IFLISTL)
1918                                 error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1919                                     len);
1920                         else
1921                                 error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1922                                     len);
1923                         if (error)
1924                                 goto done;
1925                 }
1926                 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1927                         if (af && af != ifa->ifa_addr->sa_family)
1928                                 continue;
1929                         if (prison_if(w->w_req->td->td_ucred,
1930                             ifa->ifa_addr) != 0)
1931                                 continue;
1932                         info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1933                         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1934                             ifa->ifa_addr, ifa->ifa_netmask, &ss);
1935                         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1936                         error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1937                         if (error != 0)
1938                                 goto done;
1939                         if (w->w_req && w->w_tmem) {
1940                                 if (w->w_op == NET_RT_IFLISTL)
1941                                         error = sysctl_iflist_ifaml(ifa, &info,
1942                                             w, len);
1943                                 else
1944                                         error = sysctl_iflist_ifam(ifa, &info,
1945                                             w, len);
1946                                 if (error)
1947                                         goto done;
1948                         }
1949                 }
1950                 info.rti_info[RTAX_IFA] = NULL;
1951                 info.rti_info[RTAX_NETMASK] = NULL;
1952                 info.rti_info[RTAX_BRD] = NULL;
1953         }
1954 done:
1955         return (error);
1956 }
1957
1958 static int
1959 sysctl_ifmalist(int af, struct walkarg *w)
1960 {
1961         struct rt_addrinfo info;
1962         struct ifaddr *ifa;
1963         struct ifmultiaddr *ifma;
1964         struct ifnet *ifp;
1965         int error, len;
1966
1967         NET_EPOCH_ASSERT();
1968
1969         error = 0;
1970         bzero((caddr_t)&info, sizeof(info));
1971
1972         CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1973                 if (w->w_arg && w->w_arg != ifp->if_index)
1974                         continue;
1975                 ifa = ifp->if_addr;
1976                 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1977                 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1978                         if (af && af != ifma->ifma_addr->sa_family)
1979                                 continue;
1980                         if (prison_if(w->w_req->td->td_ucred,
1981                             ifma->ifma_addr) != 0)
1982                                 continue;
1983                         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1984                         info.rti_info[RTAX_GATEWAY] =
1985                             (ifma->ifma_addr->sa_family != AF_LINK) ?
1986                             ifma->ifma_lladdr : NULL;
1987                         error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1988                         if (error != 0)
1989                                 break;
1990                         if (w->w_req && w->w_tmem) {
1991                                 struct ifma_msghdr *ifmam;
1992
1993                                 ifmam = (struct ifma_msghdr *)w->w_tmem;
1994                                 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1995                                 ifmam->ifmam_flags = 0;
1996                                 ifmam->ifmam_addrs = info.rti_addrs;
1997                                 ifmam->_ifmam_spare1 = 0;
1998                                 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1999                                 if (error != 0)
2000                                         break;
2001                         }
2002                 }
2003                 if (error != 0)
2004                         break;
2005         }
2006         return (error);
2007 }
2008
2009 static int
2010 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2011 {
2012         RIB_RLOCK_TRACKER;
2013         struct epoch_tracker et;
2014         int     *name = (int *)arg1;
2015         u_int   namelen = arg2;
2016         struct rib_head *rnh = NULL; /* silence compiler. */
2017         int     i, lim, error = EINVAL;
2018         int     fib = 0;
2019         u_char  af;
2020         struct  walkarg w;
2021
2022         name ++;
2023         namelen--;
2024         if (req->newptr)
2025                 return (EPERM);
2026         if (name[1] == NET_RT_DUMP) {
2027                 if (namelen == 3)
2028                         fib = req->td->td_proc->p_fibnum;
2029                 else if (namelen == 4)
2030                         fib = (name[3] == RT_ALL_FIBS) ?
2031                             req->td->td_proc->p_fibnum : name[3];
2032                 else
2033                         return ((namelen < 3) ? EISDIR : ENOTDIR);
2034                 if (fib < 0 || fib >= rt_numfibs)
2035                         return (EINVAL);
2036         } else if (namelen != 3)
2037                 return ((namelen < 3) ? EISDIR : ENOTDIR);
2038         af = name[0];
2039         if (af > AF_MAX)
2040                 return (EINVAL);
2041         bzero(&w, sizeof(w));
2042         w.w_op = name[1];
2043         w.w_arg = name[2];
2044         w.w_req = req;
2045
2046         error = sysctl_wire_old_buffer(req, 0);
2047         if (error)
2048                 return (error);
2049         
2050         /*
2051          * Allocate reply buffer in advance.
2052          * All rtsock messages has maximum length of u_short.
2053          */
2054         w.w_tmemsize = 65536;
2055         w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2056
2057         NET_EPOCH_ENTER(et);
2058         switch (w.w_op) {
2059         case NET_RT_DUMP:
2060         case NET_RT_FLAGS:
2061                 if (af == 0) {                  /* dump all tables */
2062                         i = 1;
2063                         lim = AF_MAX;
2064                 } else                          /* dump only one table */
2065                         i = lim = af;
2066
2067                 /*
2068                  * take care of llinfo entries, the caller must
2069                  * specify an AF
2070                  */
2071                 if (w.w_op == NET_RT_FLAGS &&
2072                     (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2073                         if (af != 0)
2074                                 error = lltable_sysctl_dumparp(af, w.w_req);
2075                         else
2076                                 error = EINVAL;
2077                         break;
2078                 }
2079                 /*
2080                  * take care of routing entries
2081                  */
2082                 for (error = 0; error == 0 && i <= lim; i++) {
2083                         rnh = rt_tables_get_rnh(fib, i);
2084                         if (rnh != NULL) {
2085                                 RIB_RLOCK(rnh); 
2086                                 error = rnh->rnh_walktree(&rnh->head,
2087                                     sysctl_dumpentry, &w);
2088                                 RIB_RUNLOCK(rnh);
2089                         } else if (af != 0)
2090                                 error = EAFNOSUPPORT;
2091                 }
2092                 break;
2093
2094         case NET_RT_IFLIST:
2095         case NET_RT_IFLISTL:
2096                 error = sysctl_iflist(af, &w);
2097                 break;
2098
2099         case NET_RT_IFMALIST:
2100                 error = sysctl_ifmalist(af, &w);
2101                 break;
2102         }
2103         NET_EPOCH_EXIT(et);
2104
2105         free(w.w_tmem, M_TEMP);
2106         return (error);
2107 }
2108
2109 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2110     sysctl_rtsock, "Return route tables and interface/address lists");
2111
2112 /*
2113  * Definitions of protocols supported in the ROUTE domain.
2114  */
2115
2116 static struct domain routedomain;               /* or at least forward */
2117
2118 static struct protosw routesw[] = {
2119 {
2120         .pr_type =              SOCK_RAW,
2121         .pr_domain =            &routedomain,
2122         .pr_flags =             PR_ATOMIC|PR_ADDR,
2123         .pr_output =            route_output,
2124         .pr_ctlinput =          raw_ctlinput,
2125         .pr_init =              raw_init,
2126         .pr_usrreqs =           &route_usrreqs
2127 }
2128 };
2129
2130 static struct domain routedomain = {
2131         .dom_family =           PF_ROUTE,
2132         .dom_name =              "route",
2133         .dom_protosw =          routesw,
2134         .dom_protoswNPROTOSW =  &routesw[nitems(routesw)]
2135 };
2136
2137 VNET_DOMAIN_SET(route);
2138
2139 #ifdef DDB
2140 /*
2141  * Unfortunately, RTF_ values are expressed as raw masks rather than powers of
2142  * 2, so we cannot use them as nice C99 initializer indices below.
2143  */
2144 static const char * const rtf_flag_strings[] = {
2145         "UP",
2146         "GATEWAY",
2147         "HOST",
2148         "REJECT",
2149         "DYNAMIC",
2150         "MODIFIED",
2151         "DONE",
2152         "UNUSED_0x80",
2153         "UNUSED_0x100",
2154         "XRESOLVE",
2155         "LLDATA",
2156         "STATIC",
2157         "BLACKHOLE",
2158         "UNUSED_0x2000",
2159         "PROTO2",
2160         "PROTO1",
2161         "UNUSED_0x10000",
2162         "UNUSED_0x20000",
2163         "PROTO3",
2164         "FIXEDMTU",
2165         "PINNED",
2166         "LOCAL",
2167         "BROADCAST",
2168         "MULTICAST",
2169         /* Big gap. */
2170         [28] = "STICKY",
2171         [30] = "RNH_LOCKED",
2172         [31] = "GWFLAG_COMPAT",
2173 };
2174
2175 static const char * __pure
2176 rt_flag_name(unsigned idx)
2177 {
2178         if (idx >= nitems(rtf_flag_strings))
2179                 return ("INVALID_FLAG");
2180         if (rtf_flag_strings[idx] == NULL)
2181                 return ("UNKNOWN");
2182         return (rtf_flag_strings[idx]);
2183 }
2184
2185 static void
2186 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa)
2187 {
2188         char buf[INET6_ADDRSTRLEN], *res;
2189
2190         res = NULL;
2191         if (sa == NULL)
2192                 res = "NULL";
2193         else if (sa->sa_family == AF_INET) {
2194                 res = inet_ntop(AF_INET,
2195                     &((const struct sockaddr_in *)sa)->sin_addr,
2196                     buf, sizeof(buf));
2197         } else if (sa->sa_family == AF_INET6) {
2198                 res = inet_ntop(AF_INET6,
2199                     &((const struct sockaddr_in6 *)sa)->sin6_addr,
2200                     buf, sizeof(buf));
2201         } else if (sa->sa_family == AF_LINK) {
2202                 res = "on link";
2203         }
2204
2205         if (res != NULL) {
2206                 db_printf("%s <%s> ", name, res);
2207                 return;
2208         }
2209
2210         db_printf("%s <af:%d> ", name, sa->sa_family);
2211 }
2212
2213 static int
2214 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused)
2215 {
2216         struct sockaddr_storage ss;
2217         struct rtentry *rt;
2218         int flags, idx;
2219
2220         /* If RNTORT is important, put it in a header. */
2221         rt = (void *)rn;
2222
2223         rt_dumpaddr_ddb("dst", rt_key(rt));
2224         rt_dumpaddr_ddb("gateway", rt->rt_gateway);
2225         rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt),
2226             &ss));
2227         if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) {
2228                 rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr);
2229                 rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr);
2230         }
2231
2232         db_printf("flags ");
2233         flags = rt->rt_flags;
2234         if (flags == 0)
2235                 db_printf("none");
2236
2237         while ((idx = ffs(flags)) > 0) {
2238                 idx--;
2239
2240                 if (flags != rt->rt_flags)
2241                         db_printf(",");
2242                 db_printf("%s", rt_flag_name(idx));
2243
2244                 flags &= ~(1ul << idx);
2245         }
2246
2247         db_printf("\n");
2248         return (0);
2249 }
2250
2251 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd)
2252 {
2253         struct rib_head *rnh;
2254         int error, i, lim;
2255
2256         if (have_addr)
2257                 i = lim = addr;
2258         else {
2259                 i = 1;
2260                 lim = AF_MAX;
2261         }
2262
2263         for (; i <= lim; i++) {
2264                 rnh = rt_tables_get_rnh(0, i);
2265                 if (rnh == NULL) {
2266                         if (have_addr) {
2267                                 db_printf("%s: AF %d not supported?\n",
2268                                     __func__, i);
2269                                 break;
2270                         }
2271                         continue;
2272                 }
2273
2274                 if (!have_addr && i > 1)
2275                         db_printf("\n");
2276
2277                 db_printf("Route table for AF %d%s%s%s:\n", i,
2278                     (i == AF_INET || i == AF_INET6) ? " (" : "",
2279                     (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "",
2280                     (i == AF_INET || i == AF_INET6) ? ")" : "");
2281
2282                 error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL);
2283                 if (error != 0)
2284                         db_printf("%s: walktree(%d): %d\n", __func__, i,
2285                             error);
2286         }
2287 }
2288
2289 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL)
2290 {
2291         char buf[INET6_ADDRSTRLEN], *bp;
2292         const void *dst_addrp;
2293         struct sockaddr *dstp;
2294         struct rtentry *rt;
2295         union {
2296                 struct sockaddr_in dest_sin;
2297                 struct sockaddr_in6 dest_sin6;
2298         } u;
2299         uint16_t hextets[8];
2300         unsigned i, tets;
2301         int t, af, exp, tokflags;
2302
2303         /*
2304          * Undecoded address family.  No double-colon expansion seen yet.
2305          */
2306         af = -1;
2307         exp = -1;
2308         /* Assume INET6 to start; we can work back if guess was wrong. */
2309         tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL;
2310
2311         /*
2312          * db_command has lexed 'show route' for us.
2313          */
2314         t = db_read_token_flags(tokflags);
2315         if (t == tWSPACE)
2316                 t = db_read_token_flags(tokflags);
2317
2318         /*
2319          * tEOL: Just 'show route' isn't a valid mode.
2320          * tMINUS: It's either '-h' or some invalid option.  Regardless, usage.
2321          */
2322         if (t == tEOL || t == tMINUS)
2323                 goto usage;
2324
2325         db_unread_token(t);
2326
2327         tets = nitems(hextets);
2328
2329         /*
2330          * Each loop iteration, we expect to read one octet (v4) or hextet
2331          * (v6), followed by an appropriate field separator ('.' or ':' or
2332          * '::').
2333          *
2334          * At the start of each loop, we're looking for a number (octet or
2335          * hextet).
2336          *
2337          * INET6 addresses have a special case where they may begin with '::'.
2338          */
2339         for (i = 0; i < tets; i++) {
2340                 t = db_read_token_flags(tokflags);
2341
2342                 if (t == tCOLONCOLON) {
2343                         /* INET6 with leading '::' or invalid. */
2344                         if (i != 0) {
2345                                 db_printf("Parse error: unexpected extra "
2346                                     "colons.\n");
2347                                 goto exit;
2348                         }
2349
2350                         af = AF_INET6;
2351                         exp = i;
2352                         hextets[i] = 0;
2353                         continue;
2354                 } else if (t == tNUMBER) {
2355                         /*
2356                          * Lexer separates out '-' as tMINUS, but make the
2357                          * assumption explicit here.
2358                          */
2359                         MPASS(db_tok_number >= 0);
2360
2361                         if (af == AF_INET && db_tok_number > UINT8_MAX) {
2362                                 db_printf("Not a valid v4 octet: %ld\n",
2363                                     (long)db_tok_number);
2364                                 goto exit;
2365                         }
2366                         hextets[i] = db_tok_number;
2367                 } else if (t == tEOL) {
2368                         /*
2369                          * We can only detect the end of an IPv6 address in
2370                          * compact representation with EOL.
2371                          */
2372                         if (af != AF_INET6 || exp < 0) {
2373                                 db_printf("Parse failed.  Got unexpected EOF "
2374                                     "when the address is not a compact-"
2375                                     "representation IPv6 address.\n");
2376                                 goto exit;
2377                         }
2378                         break;
2379                 } else {
2380                         db_printf("Parse failed.  Unexpected token %d.\n", t);
2381                         goto exit;
2382                 }
2383
2384                 /* Next, look for a separator, if appropriate. */
2385                 if (i == tets - 1)
2386                         continue;
2387
2388                 t = db_read_token_flags(tokflags);
2389                 if (af < 0) {
2390                         if (t == tCOLON) {
2391                                 af = AF_INET6;
2392                                 continue;
2393                         }
2394                         if (t == tCOLONCOLON) {
2395                                 af = AF_INET6;
2396                                 i++;
2397                                 hextets[i] = 0;
2398                                 exp = i;
2399                                 continue;
2400                         }
2401                         if (t == tDOT) {
2402                                 unsigned hn, dn;
2403
2404                                 af = AF_INET;
2405                                 /* Need to fixup the first parsed number. */
2406                                 if (hextets[0] > 0x255 ||
2407                                     (hextets[0] & 0xf0) > 0x90 ||
2408                                     (hextets[0] & 0xf) > 9) {
2409                                         db_printf("Not a valid v4 octet: %x\n",
2410                                             hextets[0]);
2411                                         goto exit;
2412                                 }
2413
2414                                 hn = hextets[0];
2415                                 dn = (hn >> 8) * 100 +
2416                                     ((hn >> 4) & 0xf) * 10 +
2417                                     (hn & 0xf);
2418
2419                                 hextets[0] = dn;
2420
2421                                 /* Switch to decimal for remaining octets. */
2422                                 tokflags &= ~DRT_RADIX_MASK;
2423                                 tokflags |= DRT_DECIMAL;
2424
2425                                 tets = 4;
2426                                 continue;
2427                         }
2428
2429                         db_printf("Parse error.  Unexpected token %d.\n", t);
2430                         goto exit;
2431                 } else if (af == AF_INET) {
2432                         if (t == tDOT)
2433                                 continue;
2434                         db_printf("Expected '.' (%d) between octets but got "
2435                             "(%d).\n", tDOT, t);
2436                         goto exit;
2437
2438                 } else if (af == AF_INET6) {
2439                         if (t == tCOLON)
2440                                 continue;
2441                         if (t == tCOLONCOLON) {
2442                                 if (exp < 0) {
2443                                         i++;
2444                                         hextets[i] = 0;
2445                                         exp = i;
2446                                         continue;
2447                                 }
2448                                 db_printf("Got bogus second '::' in v6 "
2449                                     "address.\n");
2450                                 goto exit;
2451                         }
2452                         if (t == tEOL) {
2453                                 /*
2454                                  * Handle in the earlier part of the loop
2455                                  * because we need to handle trailing :: too.
2456                                  */
2457                                 db_unread_token(t);
2458                                 continue;
2459                         }
2460
2461                         db_printf("Expected ':' (%d) or '::' (%d) between "
2462                             "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t);
2463                         goto exit;
2464                 }
2465         }
2466
2467         /* Check for trailing garbage. */
2468         if (i == tets) {
2469                 t = db_read_token_flags(tokflags);
2470                 if (t != tEOL) {
2471                         db_printf("Got unexpected garbage after address "
2472                             "(%d).\n", t);
2473                         goto exit;
2474                 }
2475         }
2476
2477         /*
2478          * Need to expand compact INET6 addresses.
2479          *
2480          * Technically '::' for a single ':0:' is MUST NOT but just in case,
2481          * don't bother expanding that form (exp >= 0 && i == tets case).
2482          */
2483         if (af == AF_INET6 && exp >= 0 && i < tets) {
2484                 if (exp + 1 < i) {
2485                         memmove(&hextets[exp + 1 + (nitems(hextets) - i)],
2486                             &hextets[exp + 1],
2487                             (i - (exp + 1)) * sizeof(hextets[0]));
2488                 }
2489                 memset(&hextets[exp + 1], 0, (nitems(hextets) - i) *
2490                     sizeof(hextets[0]));
2491         }
2492
2493         memset(&u, 0, sizeof(u));
2494         if (af == AF_INET) {
2495                 u.dest_sin.sin_family = AF_INET;
2496                 u.dest_sin.sin_len = sizeof(u.dest_sin);
2497                 u.dest_sin.sin_addr.s_addr = htonl(
2498                     ((uint32_t)hextets[0] << 24) |
2499                     ((uint32_t)hextets[1] << 16) |
2500                     ((uint32_t)hextets[2] << 8) |
2501                     (uint32_t)hextets[3]);
2502                 dstp = (void *)&u.dest_sin;
2503                 dst_addrp = &u.dest_sin.sin_addr;
2504         } else if (af == AF_INET6) {
2505                 u.dest_sin6.sin6_family = AF_INET6;
2506                 u.dest_sin6.sin6_len = sizeof(u.dest_sin6);
2507                 for (i = 0; i < nitems(hextets); i++)
2508                         u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]);
2509                 dstp = (void *)&u.dest_sin6;
2510                 dst_addrp = &u.dest_sin6.sin6_addr;
2511         } else {
2512                 MPASS(false);
2513                 /* UNREACHABLE */
2514                 /* Appease Clang false positive: */
2515                 dstp = NULL;
2516         }
2517
2518         bp = inet_ntop(af, dst_addrp, buf, sizeof(buf));
2519         if (bp != NULL)
2520                 db_printf("Looking up route to destination '%s'\n", bp);
2521
2522         CURVNET_SET(vnet0);
2523         rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED);
2524         CURVNET_RESTORE();
2525
2526         if (rt == NULL) {
2527                 db_printf("Could not get route for that server.\n");
2528                 return;
2529         }
2530
2531         rt_dumpentry_ddb((void *)rt, NULL);
2532         RTFREE_LOCKED(rt);
2533
2534         return;
2535 usage:
2536         db_printf("Usage: 'show route <address>'\n"
2537             "  Currently accepts only dotted-decimal INET or colon-separated\n"
2538             "  hextet INET6 addresses.\n");
2539 exit:
2540         db_skip_to_eol();
2541 }
2542 #endif