]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/net/rtsock.c
Remove an duplicate definition of nhops_dump_sysctl()
[FreeBSD/FreeBSD.git] / sys / net / rtsock.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      @(#)rtsock.c    8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #include <ddb/db_lex.h>
60 #endif
61
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/if_llatbl.h>
66 #include <net/if_types.h>
67 #include <net/netisr.h>
68 #include <net/raw_cb.h>
69 #include <net/route.h>
70 #include <net/route_var.h>
71 #include <net/vnet.h>
72
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #include <netinet/ip_carp.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/scope6_var.h>
79 #endif
80 #include <net/route/nhop.h>
81 #include <net/route/shared.h>
82
83 #ifdef COMPAT_FREEBSD32
84 #include <sys/mount.h>
85 #include <compat/freebsd32/freebsd32.h>
86
87 struct if_msghdr32 {
88         uint16_t ifm_msglen;
89         uint8_t ifm_version;
90         uint8_t ifm_type;
91         int32_t ifm_addrs;
92         int32_t ifm_flags;
93         uint16_t ifm_index;
94         uint16_t _ifm_spare1;
95         struct  if_data ifm_data;
96 };
97
98 struct if_msghdrl32 {
99         uint16_t ifm_msglen;
100         uint8_t ifm_version;
101         uint8_t ifm_type;
102         int32_t ifm_addrs;
103         int32_t ifm_flags;
104         uint16_t ifm_index;
105         uint16_t _ifm_spare1;
106         uint16_t ifm_len;
107         uint16_t ifm_data_off;
108         uint32_t _ifm_spare2;
109         struct  if_data ifm_data;
110 };
111
112 struct ifa_msghdrl32 {
113         uint16_t ifam_msglen;
114         uint8_t ifam_version;
115         uint8_t ifam_type;
116         int32_t ifam_addrs;
117         int32_t ifam_flags;
118         uint16_t ifam_index;
119         uint16_t _ifam_spare1;
120         uint16_t ifam_len;
121         uint16_t ifam_data_off;
122         int32_t ifam_metric;
123         struct  if_data ifam_data;
124 };
125
126 #define SA_SIZE32(sa)                                           \
127     (  (((struct sockaddr *)(sa))->sa_len == 0) ?               \
128         sizeof(int)             :                               \
129         1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
130
131 #endif /* COMPAT_FREEBSD32 */
132
133 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
134
135 /* NB: these are not modified */
136 static struct   sockaddr route_src = { 2, PF_ROUTE, };
137 static struct   sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
138
139 /* These are external hooks for CARP. */
140 int     (*carp_get_vhid_p)(struct ifaddr *);
141
142 /*
143  * Used by rtsock/raw_input callback code to decide whether to filter the update
144  * notification to a socket bound to a particular FIB.
145  */
146 #define RTS_FILTER_FIB  M_PROTO8
147
148 typedef struct {
149         int     ip_count;       /* attached w/ AF_INET */
150         int     ip6_count;      /* attached w/ AF_INET6 */
151         int     any_count;      /* total attached */
152 } route_cb_t;
153 VNET_DEFINE_STATIC(route_cb_t, route_cb);
154 #define V_route_cb VNET(route_cb)
155
156 struct mtx rtsock_mtx;
157 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
158
159 #define RTSOCK_LOCK()   mtx_lock(&rtsock_mtx)
160 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
161 #define RTSOCK_LOCK_ASSERT()    mtx_assert(&rtsock_mtx, MA_OWNED)
162
163 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
164     "");
165
166 struct walkarg {
167         int     w_tmemsize;
168         int     w_op, w_arg;
169         caddr_t w_tmem;
170         struct sysctl_req *w_req;
171 };
172
173 static void     rts_input(struct mbuf *m);
174 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
175 static int      rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
176                         struct walkarg *w, int *plen);
177 static int      rt_xaddrs(caddr_t cp, caddr_t cplim,
178                         struct rt_addrinfo *rtinfo);
179 static int      sysctl_dumpentry(struct radix_node *rn, void *vw);
180 static int      sysctl_iflist(int af, struct walkarg *w);
181 static int      sysctl_ifmalist(int af, struct walkarg *w);
182 static int      route_output(struct mbuf *m, struct socket *so, ...);
183 static void     rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
184 static void     rt_dispatch(struct mbuf *, sa_family_t);
185 static struct sockaddr  *rtsock_fix_netmask(struct sockaddr *dst,
186                         struct sockaddr *smask, struct sockaddr_storage *dmask);
187 static int      handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
188                         struct rt_msghdr *rtm, struct rtentry **ret_nrt);
189 static int      update_rtm_from_rte(struct rt_addrinfo *info,
190                         struct rt_msghdr **prtm, int alloc_len,
191                         struct rtentry *rt);
192 static void     send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
193                         struct mbuf *m, sa_family_t saf, u_int fibnum,
194                         int rtm_errno);
195 static int      can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
196
197 static struct netisr_handler rtsock_nh = {
198         .nh_name = "rtsock",
199         .nh_handler = rts_input,
200         .nh_proto = NETISR_ROUTE,
201         .nh_policy = NETISR_POLICY_SOURCE,
202 };
203
204 static int
205 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
206 {
207         int error, qlimit;
208
209         netisr_getqlimit(&rtsock_nh, &qlimit);
210         error = sysctl_handle_int(oidp, &qlimit, 0, req);
211         if (error || !req->newptr)
212                 return (error);
213         if (qlimit < 1)
214                 return (EINVAL);
215         return (netisr_setqlimit(&rtsock_nh, qlimit));
216 }
217 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
218     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
219     0, 0, sysctl_route_netisr_maxqlen, "I",
220     "maximum routing socket dispatch queue length");
221
222 static void
223 vnet_rts_init(void)
224 {
225         int tmp;
226
227         if (IS_DEFAULT_VNET(curvnet)) {
228                 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
229                         rtsock_nh.nh_qlimit = tmp;
230                 netisr_register(&rtsock_nh);
231         }
232 #ifdef VIMAGE
233          else
234                 netisr_register_vnet(&rtsock_nh);
235 #endif
236 }
237 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
238     vnet_rts_init, 0);
239
240 #ifdef VIMAGE
241 static void
242 vnet_rts_uninit(void)
243 {
244
245         netisr_unregister_vnet(&rtsock_nh);
246 }
247 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
248     vnet_rts_uninit, 0);
249 #endif
250
251 static int
252 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
253     struct rawcb *rp)
254 {
255         int fibnum;
256
257         KASSERT(m != NULL, ("%s: m is NULL", __func__));
258         KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
259         KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
260
261         /* No filtering requested. */
262         if ((m->m_flags & RTS_FILTER_FIB) == 0)
263                 return (0);
264
265         /* Check if it is a rts and the fib matches the one of the socket. */
266         fibnum = M_GETFIB(m);
267         if (proto->sp_family != PF_ROUTE ||
268             rp->rcb_socket == NULL ||
269             rp->rcb_socket->so_fibnum == fibnum)
270                 return (0);
271
272         /* Filtering requested and no match, the socket shall be skipped. */
273         return (1);
274 }
275
276 static void
277 rts_input(struct mbuf *m)
278 {
279         struct sockproto route_proto;
280         unsigned short *family;
281         struct m_tag *tag;
282
283         route_proto.sp_family = PF_ROUTE;
284         tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
285         if (tag != NULL) {
286                 family = (unsigned short *)(tag + 1);
287                 route_proto.sp_protocol = *family;
288                 m_tag_delete(m, tag);
289         } else
290                 route_proto.sp_protocol = 0;
291
292         raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
293 }
294
295 /*
296  * It really doesn't make any sense at all for this code to share much
297  * with raw_usrreq.c, since its functionality is so restricted.  XXX
298  */
299 static void
300 rts_abort(struct socket *so)
301 {
302
303         raw_usrreqs.pru_abort(so);
304 }
305
306 static void
307 rts_close(struct socket *so)
308 {
309
310         raw_usrreqs.pru_close(so);
311 }
312
313 /* pru_accept is EOPNOTSUPP */
314
315 static int
316 rts_attach(struct socket *so, int proto, struct thread *td)
317 {
318         struct rawcb *rp;
319         int error;
320
321         KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
322
323         /* XXX */
324         rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
325
326         so->so_pcb = (caddr_t)rp;
327         so->so_fibnum = td->td_proc->p_fibnum;
328         error = raw_attach(so, proto);
329         rp = sotorawcb(so);
330         if (error) {
331                 so->so_pcb = NULL;
332                 free(rp, M_PCB);
333                 return error;
334         }
335         RTSOCK_LOCK();
336         switch(rp->rcb_proto.sp_protocol) {
337         case AF_INET:
338                 V_route_cb.ip_count++;
339                 break;
340         case AF_INET6:
341                 V_route_cb.ip6_count++;
342                 break;
343         }
344         V_route_cb.any_count++;
345         RTSOCK_UNLOCK();
346         soisconnected(so);
347         so->so_options |= SO_USELOOPBACK;
348         return 0;
349 }
350
351 static int
352 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
353 {
354
355         return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
356 }
357
358 static int
359 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
360 {
361
362         return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
363 }
364
365 /* pru_connect2 is EOPNOTSUPP */
366 /* pru_control is EOPNOTSUPP */
367
368 static void
369 rts_detach(struct socket *so)
370 {
371         struct rawcb *rp = sotorawcb(so);
372
373         KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
374
375         RTSOCK_LOCK();
376         switch(rp->rcb_proto.sp_protocol) {
377         case AF_INET:
378                 V_route_cb.ip_count--;
379                 break;
380         case AF_INET6:
381                 V_route_cb.ip6_count--;
382                 break;
383         }
384         V_route_cb.any_count--;
385         RTSOCK_UNLOCK();
386         raw_usrreqs.pru_detach(so);
387 }
388
389 static int
390 rts_disconnect(struct socket *so)
391 {
392
393         return (raw_usrreqs.pru_disconnect(so));
394 }
395
396 /* pru_listen is EOPNOTSUPP */
397
398 static int
399 rts_peeraddr(struct socket *so, struct sockaddr **nam)
400 {
401
402         return (raw_usrreqs.pru_peeraddr(so, nam));
403 }
404
405 /* pru_rcvd is EOPNOTSUPP */
406 /* pru_rcvoob is EOPNOTSUPP */
407
408 static int
409 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
410          struct mbuf *control, struct thread *td)
411 {
412
413         return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
414 }
415
416 /* pru_sense is null */
417
418 static int
419 rts_shutdown(struct socket *so)
420 {
421
422         return (raw_usrreqs.pru_shutdown(so));
423 }
424
425 static int
426 rts_sockaddr(struct socket *so, struct sockaddr **nam)
427 {
428
429         return (raw_usrreqs.pru_sockaddr(so, nam));
430 }
431
432 static struct pr_usrreqs route_usrreqs = {
433         .pru_abort =            rts_abort,
434         .pru_attach =           rts_attach,
435         .pru_bind =             rts_bind,
436         .pru_connect =          rts_connect,
437         .pru_detach =           rts_detach,
438         .pru_disconnect =       rts_disconnect,
439         .pru_peeraddr =         rts_peeraddr,
440         .pru_send =             rts_send,
441         .pru_shutdown =         rts_shutdown,
442         .pru_sockaddr =         rts_sockaddr,
443         .pru_close =            rts_close,
444 };
445
446 #ifndef _SOCKADDR_UNION_DEFINED
447 #define _SOCKADDR_UNION_DEFINED
448 /*
449  * The union of all possible address formats we handle.
450  */
451 union sockaddr_union {
452         struct sockaddr         sa;
453         struct sockaddr_in      sin;
454         struct sockaddr_in6     sin6;
455 };
456 #endif /* _SOCKADDR_UNION_DEFINED */
457
458 static int
459 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
460     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
461 {
462 #if defined(INET) || defined(INET6)
463         struct epoch_tracker et;
464 #endif
465
466         /* First, see if the returned address is part of the jail. */
467         if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
468                 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
469                 return (0);
470         }
471
472         switch (info->rti_info[RTAX_DST]->sa_family) {
473 #ifdef INET
474         case AF_INET:
475         {
476                 struct in_addr ia;
477                 struct ifaddr *ifa;
478                 int found;
479
480                 found = 0;
481                 /*
482                  * Try to find an address on the given outgoing interface
483                  * that belongs to the jail.
484                  */
485                 NET_EPOCH_ENTER(et);
486                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
487                         struct sockaddr *sa;
488                         sa = ifa->ifa_addr;
489                         if (sa->sa_family != AF_INET)
490                                 continue;
491                         ia = ((struct sockaddr_in *)sa)->sin_addr;
492                         if (prison_check_ip4(cred, &ia) == 0) {
493                                 found = 1;
494                                 break;
495                         }
496                 }
497                 NET_EPOCH_EXIT(et);
498                 if (!found) {
499                         /*
500                          * As a last resort return the 'default' jail address.
501                          */
502                         ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
503                             sin_addr;
504                         if (prison_get_ip4(cred, &ia) != 0)
505                                 return (ESRCH);
506                 }
507                 bzero(&saun->sin, sizeof(struct sockaddr_in));
508                 saun->sin.sin_len = sizeof(struct sockaddr_in);
509                 saun->sin.sin_family = AF_INET;
510                 saun->sin.sin_addr.s_addr = ia.s_addr;
511                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
512                 break;
513         }
514 #endif
515 #ifdef INET6
516         case AF_INET6:
517         {
518                 struct in6_addr ia6;
519                 struct ifaddr *ifa;
520                 int found;
521
522                 found = 0;
523                 /*
524                  * Try to find an address on the given outgoing interface
525                  * that belongs to the jail.
526                  */
527                 NET_EPOCH_ENTER(et);
528                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
529                         struct sockaddr *sa;
530                         sa = ifa->ifa_addr;
531                         if (sa->sa_family != AF_INET6)
532                                 continue;
533                         bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
534                             &ia6, sizeof(struct in6_addr));
535                         if (prison_check_ip6(cred, &ia6) == 0) {
536                                 found = 1;
537                                 break;
538                         }
539                 }
540                 NET_EPOCH_EXIT(et);
541                 if (!found) {
542                         /*
543                          * As a last resort return the 'default' jail address.
544                          */
545                         ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
546                             sin6_addr;
547                         if (prison_get_ip6(cred, &ia6) != 0)
548                                 return (ESRCH);
549                 }
550                 bzero(&saun->sin6, sizeof(struct sockaddr_in6));
551                 saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
552                 saun->sin6.sin6_family = AF_INET6;
553                 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
554                 if (sa6_recoverscope(&saun->sin6) != 0)
555                         return (ESRCH);
556                 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
557                 break;
558         }
559 #endif
560         default:
561                 return (ESRCH);
562         }
563         return (0);
564 }
565
566 /*
567  * Fills in @info based on userland-provided @rtm message.
568  *
569  * Returns 0 on success.
570  */
571 static int
572 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
573 {
574         int error;
575         sa_family_t saf;
576
577         rtm->rtm_pid = curproc->p_pid;
578         info->rti_addrs = rtm->rtm_addrs;
579
580         info->rti_mflags = rtm->rtm_inits;
581         info->rti_rmx = &rtm->rtm_rmx;
582
583         /*
584          * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
585          * link-local address because rtrequest requires addresses with
586          * embedded scope id.
587          */
588         if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
589                 return (EINVAL);
590
591         if (rtm->rtm_flags & RTF_RNH_LOCKED)
592                 return (EINVAL);
593         info->rti_flags = rtm->rtm_flags;
594         if (info->rti_info[RTAX_DST] == NULL ||
595             info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
596             (info->rti_info[RTAX_GATEWAY] != NULL &&
597              info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
598                 return (EINVAL);
599         saf = info->rti_info[RTAX_DST]->sa_family;
600         /*
601          * Verify that the caller has the appropriate privilege; RTM_GET
602          * is the only operation the non-superuser is allowed.
603          */
604         if (rtm->rtm_type != RTM_GET) {
605                 error = priv_check(curthread, PRIV_NET_ROUTE);
606                 if (error != 0)
607                         return (error);
608         }
609
610         /*
611          * The given gateway address may be an interface address.
612          * For example, issuing a "route change" command on a route
613          * entry that was created from a tunnel, and the gateway
614          * address given is the local end point. In this case the 
615          * RTF_GATEWAY flag must be cleared or the destination will
616          * not be reachable even though there is no error message.
617          */
618         if (info->rti_info[RTAX_GATEWAY] != NULL &&
619             info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
620                 struct rt_addrinfo ginfo;
621                 struct sockaddr *gdst;
622                 struct sockaddr_storage ss;
623
624                 bzero(&ginfo, sizeof(ginfo));
625                 bzero(&ss, sizeof(ss));
626                 ss.ss_len = sizeof(ss);
627
628                 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
629                 gdst = info->rti_info[RTAX_GATEWAY];
630
631                 /* 
632                  * A host route through the loopback interface is 
633                  * installed for each interface adddress. In pre 8.0
634                  * releases the interface address of a PPP link type
635                  * is not reachable locally. This behavior is fixed as 
636                  * part of the new L2/L3 redesign and rewrite work. The
637                  * signature of this interface address route is the
638                  * AF_LINK sa_family type of the rt_gateway, and the
639                  * rt_ifp has the IFF_LOOPBACK flag set.
640                  */
641                 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
642                         if (ss.ss_family == AF_LINK &&
643                             ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
644                                 info->rti_flags &= ~RTF_GATEWAY;
645                                 info->rti_flags |= RTF_GWFLAG_COMPAT;
646                         }
647                         rib_free_info(&ginfo);
648                 }
649         }
650
651         return (0);
652 }
653
654 /*
655  * Handles RTM_GET message from routing socket, returning matching rt.
656  *
657  * Returns:
658  * 0 on success, with locked and referenced matching rt in @rt_nrt
659  * errno of failure
660  */
661 static int
662 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
663     struct rt_msghdr *rtm, struct rtentry **ret_nrt)
664 {
665         RIB_RLOCK_TRACKER;
666         struct rtentry *rt;
667         struct rib_head *rnh;
668         sa_family_t saf;
669
670         saf = info->rti_info[RTAX_DST]->sa_family;
671
672         rnh = rt_tables_get_rnh(fibnum, saf);
673         if (rnh == NULL)
674                 return (EAFNOSUPPORT);
675
676         RIB_RLOCK(rnh);
677
678         if (info->rti_info[RTAX_NETMASK] == NULL) {
679                 /*
680                  * Provide longest prefix match for
681                  * address lookup (no mask).
682                  * 'route -n get addr'
683                  */
684                 rt = (struct rtentry *) rnh->rnh_matchaddr(
685                     info->rti_info[RTAX_DST], &rnh->head);
686         } else
687                 rt = (struct rtentry *) rnh->rnh_lookup(
688                     info->rti_info[RTAX_DST],
689                     info->rti_info[RTAX_NETMASK], &rnh->head);
690
691         if (rt == NULL) {
692                 RIB_RUNLOCK(rnh);
693                 return (ESRCH);
694         }
695 #ifdef RADIX_MPATH
696         /*
697          * for RTM_GET, gate is optional even with multipath.
698          * if gate == NULL the first match is returned.
699          * (no need to call rt_mpath_matchgate if gate == NULL)
700          */
701         if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
702                 rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]);
703                 if (!rt) {
704                         RIB_RUNLOCK(rnh);
705                         return (ESRCH);
706                 }
707         }
708 #endif
709         /*
710          * If performing proxied L2 entry insertion, and
711          * the actual PPP host entry is found, perform
712          * another search to retrieve the prefix route of
713          * the local end point of the PPP link.
714          */
715         if (rtm->rtm_flags & RTF_ANNOUNCE) {
716                 struct sockaddr laddr;
717
718                 if (rt->rt_ifp != NULL && 
719                     rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
720                         struct epoch_tracker et;
721                         struct ifaddr *ifa;
722
723                         NET_EPOCH_ENTER(et);
724                         ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
725                                         RT_ALL_FIBS);
726                         NET_EPOCH_EXIT(et);
727                         if (ifa != NULL)
728                                 rt_maskedcopy(ifa->ifa_addr,
729                                               &laddr,
730                                               ifa->ifa_netmask);
731                 } else
732                         rt_maskedcopy(rt->rt_ifa->ifa_addr,
733                                       &laddr,
734                                       rt->rt_ifa->ifa_netmask);
735                 /* 
736                  * refactor rt and no lock operation necessary
737                  */
738                 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
739                     &rnh->head);
740                 if (rt == NULL) {
741                         RIB_RUNLOCK(rnh);
742                         return (ESRCH);
743                 }
744         } 
745         RT_LOCK(rt);
746         RT_ADDREF(rt);
747         RIB_RUNLOCK(rnh);
748
749         *ret_nrt = rt;
750
751         return (0);
752 }
753
754 /*
755  * Update sockaddrs, flags, etc in @prtm based on @rt data.
756  * Assumes @rt is locked.
757  * rtm can be reallocated.
758  *
759  * Returns 0 on success, along with pointer to (potentially reallocated)
760  *  rtm.
761  *
762  */
763 static int
764 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm,
765     int alloc_len, struct rtentry *rt)
766 {
767         struct sockaddr_storage netmask_ss;
768         struct walkarg w;
769         union sockaddr_union saun;
770         struct rt_msghdr *rtm, *orig_rtm = NULL;
771         struct ifnet *ifp;
772         int error, len;
773
774         RT_LOCK_ASSERT(rt);
775
776         rtm = *prtm;
777
778         info->rti_info[RTAX_DST] = rt_key(rt);
779         info->rti_info[RTAX_GATEWAY] = rt->rt_gateway;
780         info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
781             rt_mask(rt), &netmask_ss);
782         info->rti_info[RTAX_GENMASK] = 0;
783         ifp = rt->rt_ifp;
784         if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
785                 if (ifp) {
786                         info->rti_info[RTAX_IFP] =
787                             ifp->if_addr->ifa_addr;
788                         error = rtm_get_jailed(info, ifp, rt,
789                             &saun, curthread->td_ucred);
790                         if (error != 0)
791                                 return (error);
792                         if (ifp->if_flags & IFF_POINTOPOINT)
793                                 info->rti_info[RTAX_BRD] =
794                                     rt->rt_ifa->ifa_dstaddr;
795                         rtm->rtm_index = ifp->if_index;
796                 } else {
797                         info->rti_info[RTAX_IFP] = NULL;
798                         info->rti_info[RTAX_IFA] = NULL;
799                 }
800         } else if (ifp != NULL)
801                 rtm->rtm_index = ifp->if_index;
802
803         /* Check if we need to realloc storage */
804         rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
805         if (len > alloc_len) {
806                 struct rt_msghdr *tmp_rtm;
807
808                 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
809                 if (tmp_rtm == NULL)
810                         return (ENOBUFS);
811                 bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
812                 orig_rtm = rtm;
813                 rtm = tmp_rtm;
814                 alloc_len = len;
815
816                 /*
817                  * Delay freeing original rtm as info contains
818                  * data referencing it.
819                  */
820         }
821
822         w.w_tmem = (caddr_t)rtm;
823         w.w_tmemsize = alloc_len;
824         rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
825
826         if (rt->rt_flags & RTF_GWFLAG_COMPAT)
827                 rtm->rtm_flags = RTF_GATEWAY | 
828                         (rt->rt_flags & ~RTF_GWFLAG_COMPAT);
829         else
830                 rtm->rtm_flags = rt->rt_flags;
831         rt_getmetrics(rt, &rtm->rtm_rmx);
832         rtm->rtm_addrs = info->rti_addrs;
833
834         if (orig_rtm != NULL)
835                 free(orig_rtm, M_TEMP);
836         *prtm = rtm;
837
838         return (0);
839 }
840
841 /*ARGSUSED*/
842 static int
843 route_output(struct mbuf *m, struct socket *so, ...)
844 {
845         struct rt_msghdr *rtm = NULL;
846         struct rtentry *rt = NULL;
847         struct rt_addrinfo info;
848         struct epoch_tracker et;
849 #ifdef INET6
850         struct sockaddr_storage ss;
851         struct sockaddr_in6 *sin6;
852         int i, rti_need_deembed = 0;
853 #endif
854         int alloc_len = 0, len, error = 0, fibnum;
855         sa_family_t saf = AF_UNSPEC;
856         struct walkarg w;
857
858         fibnum = so->so_fibnum;
859
860 #define senderr(e) { error = e; goto flush;}
861         if (m == NULL || ((m->m_len < sizeof(long)) &&
862                        (m = m_pullup(m, sizeof(long))) == NULL))
863                 return (ENOBUFS);
864         if ((m->m_flags & M_PKTHDR) == 0)
865                 panic("route_output");
866         NET_EPOCH_ENTER(et);
867         len = m->m_pkthdr.len;
868         if (len < sizeof(*rtm) ||
869             len != mtod(m, struct rt_msghdr *)->rtm_msglen)
870                 senderr(EINVAL);
871
872         /*
873          * Most of current messages are in range 200-240 bytes,
874          * minimize possible re-allocation on reply using larger size
875          * buffer aligned on 1k boundaty.
876          */
877         alloc_len = roundup2(len, 1024);
878         if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
879                 senderr(ENOBUFS);
880
881         m_copydata(m, 0, len, (caddr_t)rtm);
882         bzero(&info, sizeof(info));
883         bzero(&w, sizeof(w));
884
885         if (rtm->rtm_version != RTM_VERSION) {
886                 /* Do not touch message since format is unknown */
887                 free(rtm, M_TEMP);
888                 rtm = NULL;
889                 senderr(EPROTONOSUPPORT);
890         }
891
892         /*
893          * Starting from here, it is possible
894          * to alter original message and insert
895          * caller PID and error value.
896          */
897
898         if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
899                 senderr(error);
900         }
901
902         saf = info.rti_info[RTAX_DST]->sa_family;
903
904         /* support for new ARP code */
905         if (rtm->rtm_flags & RTF_LLDATA) {
906                 error = lla_rt_output(rtm, &info);
907 #ifdef INET6
908                 if (error == 0)
909                         rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
910 #endif
911                 goto flush;
912         }
913
914         switch (rtm->rtm_type) {
915                 struct rtentry *saved_nrt;
916
917         case RTM_ADD:
918         case RTM_CHANGE:
919                 if (rtm->rtm_type == RTM_ADD) {
920                         if (info.rti_info[RTAX_GATEWAY] == NULL)
921                                 senderr(EINVAL);
922                 }
923                 saved_nrt = NULL;
924                 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
925                     fibnum);
926                 if (error == 0 && saved_nrt != NULL) {
927 #ifdef INET6
928                         rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
929 #endif
930                         RT_LOCK(saved_nrt);
931                         rtm->rtm_index = saved_nrt->rt_ifp->if_index;
932                         RT_REMREF(saved_nrt);
933                         RT_UNLOCK(saved_nrt);
934                 }
935                 break;
936
937         case RTM_DELETE:
938                 saved_nrt = NULL;
939                 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
940                 if (error == 0) {
941                         RT_LOCK(saved_nrt);
942                         rt = saved_nrt;
943                         goto report;
944                 }
945 #ifdef INET6
946                 /* rt_msg2() will not be used when RTM_DELETE fails. */
947                 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
948 #endif
949                 break;
950
951         case RTM_GET:
952                 error = handle_rtm_get(&info, fibnum, rtm, &rt);
953                 if (error != 0)
954                         senderr(error);
955
956 report:
957                 RT_LOCK_ASSERT(rt);
958                 if (!can_export_rte(curthread->td_ucred, rt)) {
959                         RT_UNLOCK(rt);
960                         senderr(ESRCH);
961                 }
962                 error = update_rtm_from_rte(&info, &rtm, alloc_len, rt);
963                 /*
964                  * Note that some sockaddr pointers may have changed to
965                  * point to memory outsize @rtm. Some may be pointing
966                  * to the on-stack variables.
967                  * Given that, any pointer in @info CANNOT BE USED.
968                  */
969
970                 /*
971                  * scopeid deembedding has been performed while
972                  * writing updated rtm in rtsock_msg_buffer().
973                  * With that in mind, skip deembedding procedure below.
974                  */
975 #ifdef INET6
976                 rti_need_deembed = 0;
977 #endif
978                 RT_UNLOCK(rt);
979                 if (error != 0)
980                         senderr(error);
981                 break;
982
983         default:
984                 senderr(EOPNOTSUPP);
985         }
986
987 flush:
988         NET_EPOCH_EXIT(et);
989         if (rt != NULL)
990                 RTFREE(rt);
991
992 #ifdef INET6
993         if (rtm != NULL) {
994                 if (rti_need_deembed) {
995                         /* sin6_scope_id is recovered before sending rtm. */
996                         sin6 = (struct sockaddr_in6 *)&ss;
997                         for (i = 0; i < RTAX_MAX; i++) {
998                                 if (info.rti_info[i] == NULL)
999                                         continue;
1000                                 if (info.rti_info[i]->sa_family != AF_INET6)
1001                                         continue;
1002                                 bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1003                                 if (sa6_recoverscope(sin6) == 0)
1004                                         bcopy(sin6, info.rti_info[i],
1005                                                     sizeof(*sin6));
1006                         }
1007                 }
1008         }
1009 #endif
1010         send_rtm_reply(so, rtm, m, saf, fibnum, error);
1011
1012         return (error);
1013 }
1014
1015 /*
1016  * Sends the prepared reply message in @rtm to all rtsock clients.
1017  * Frees @m and @rtm.
1018  *
1019  */
1020 static void
1021 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1022     sa_family_t saf, u_int fibnum, int rtm_errno)
1023 {
1024         struct rawcb *rp = NULL;
1025
1026         /*
1027          * Check to see if we don't want our own messages.
1028          */
1029         if ((so->so_options & SO_USELOOPBACK) == 0) {
1030                 if (V_route_cb.any_count <= 1) {
1031                         if (rtm != NULL)
1032                                 free(rtm, M_TEMP);
1033                         m_freem(m);
1034                         return;
1035                 }
1036                 /* There is another listener, so construct message */
1037                 rp = sotorawcb(so);
1038         }
1039
1040         if (rtm != NULL) {
1041                 if (rtm_errno!= 0)
1042                         rtm->rtm_errno = rtm_errno;
1043                 else
1044                         rtm->rtm_flags |= RTF_DONE;
1045
1046                 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1047                 if (m->m_pkthdr.len < rtm->rtm_msglen) {
1048                         m_freem(m);
1049                         m = NULL;
1050                 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
1051                         m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1052
1053                 free(rtm, M_TEMP);
1054         }
1055         if (m != NULL) {
1056                 M_SETFIB(m, fibnum);
1057                 m->m_flags |= RTS_FILTER_FIB;
1058                 if (rp) {
1059                         /*
1060                          * XXX insure we don't get a copy by
1061                          * invalidating our protocol
1062                          */
1063                         unsigned short family = rp->rcb_proto.sp_family;
1064                         rp->rcb_proto.sp_family = 0;
1065                         rt_dispatch(m, saf);
1066                         rp->rcb_proto.sp_family = family;
1067                 } else
1068                         rt_dispatch(m, saf);
1069         }
1070 }
1071
1072
1073 static void
1074 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1075 {
1076
1077         bzero(out, sizeof(*out));
1078         out->rmx_mtu = rt->rt_mtu;
1079         out->rmx_weight = rt->rt_weight;
1080         out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1081         out->rmx_nhidx = nhop_get_idx(rt->rt_nhop);
1082         /* Kernel -> userland timebase conversion. */
1083         out->rmx_expire = rt->rt_expire ?
1084             rt->rt_expire - time_uptime + time_second : 0;
1085 }
1086
1087 /*
1088  * Extract the addresses of the passed sockaddrs.
1089  * Do a little sanity checking so as to avoid bad memory references.
1090  * This data is derived straight from userland.
1091  */
1092 static int
1093 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1094 {
1095         struct sockaddr *sa;
1096         int i;
1097
1098         for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1099                 if ((rtinfo->rti_addrs & (1 << i)) == 0)
1100                         continue;
1101                 sa = (struct sockaddr *)cp;
1102                 /*
1103                  * It won't fit.
1104                  */
1105                 if (cp + sa->sa_len > cplim)
1106                         return (EINVAL);
1107                 /*
1108                  * there are no more.. quit now
1109                  * If there are more bits, they are in error.
1110                  * I've seen this. route(1) can evidently generate these. 
1111                  * This causes kernel to core dump.
1112                  * for compatibility, If we see this, point to a safe address.
1113                  */
1114                 if (sa->sa_len == 0) {
1115                         rtinfo->rti_info[i] = &sa_zero;
1116                         return (0); /* should be EINVAL but for compat */
1117                 }
1118                 /* accept it */
1119 #ifdef INET6
1120                 if (sa->sa_family == AF_INET6)
1121                         sa6_embedscope((struct sockaddr_in6 *)sa,
1122                             V_ip6_use_defzone);
1123 #endif
1124                 rtinfo->rti_info[i] = sa;
1125                 cp += SA_SIZE(sa);
1126         }
1127         return (0);
1128 }
1129
1130 /*
1131  * Fill in @dmask with valid netmask leaving original @smask
1132  * intact. Mostly used with radix netmasks.
1133  */
1134 static struct sockaddr *
1135 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1136     struct sockaddr_storage *dmask)
1137 {
1138         if (dst == NULL || smask == NULL)
1139                 return (NULL);
1140
1141         memset(dmask, 0, dst->sa_len);
1142         memcpy(dmask, smask, smask->sa_len);
1143         dmask->ss_len = dst->sa_len;
1144         dmask->ss_family = dst->sa_family;
1145
1146         return ((struct sockaddr *)dmask);
1147 }
1148
1149 /*
1150  * Writes information related to @rtinfo object to newly-allocated mbuf.
1151  * Assumes MCLBYTES is enough to construct any message.
1152  * Used for OS notifications of vaious events (if/ifa announces,etc)
1153  *
1154  * Returns allocated mbuf or NULL on failure.
1155  */
1156 static struct mbuf *
1157 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1158 {
1159         struct rt_msghdr *rtm;
1160         struct mbuf *m;
1161         int i;
1162         struct sockaddr *sa;
1163 #ifdef INET6
1164         struct sockaddr_storage ss;
1165         struct sockaddr_in6 *sin6;
1166 #endif
1167         int len, dlen;
1168
1169         switch (type) {
1170
1171         case RTM_DELADDR:
1172         case RTM_NEWADDR:
1173                 len = sizeof(struct ifa_msghdr);
1174                 break;
1175
1176         case RTM_DELMADDR:
1177         case RTM_NEWMADDR:
1178                 len = sizeof(struct ifma_msghdr);
1179                 break;
1180
1181         case RTM_IFINFO:
1182                 len = sizeof(struct if_msghdr);
1183                 break;
1184
1185         case RTM_IFANNOUNCE:
1186         case RTM_IEEE80211:
1187                 len = sizeof(struct if_announcemsghdr);
1188                 break;
1189
1190         default:
1191                 len = sizeof(struct rt_msghdr);
1192         }
1193
1194         /* XXXGL: can we use MJUMPAGESIZE cluster here? */
1195         KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1196         if (len > MHLEN)
1197                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1198         else
1199                 m = m_gethdr(M_NOWAIT, MT_DATA);
1200         if (m == NULL)
1201                 return (m);
1202
1203         m->m_pkthdr.len = m->m_len = len;
1204         rtm = mtod(m, struct rt_msghdr *);
1205         bzero((caddr_t)rtm, len);
1206         for (i = 0; i < RTAX_MAX; i++) {
1207                 if ((sa = rtinfo->rti_info[i]) == NULL)
1208                         continue;
1209                 rtinfo->rti_addrs |= (1 << i);
1210                 dlen = SA_SIZE(sa);
1211 #ifdef INET6
1212                 if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1213                         sin6 = (struct sockaddr_in6 *)&ss;
1214                         bcopy(sa, sin6, sizeof(*sin6));
1215                         if (sa6_recoverscope(sin6) == 0)
1216                                 sa = (struct sockaddr *)sin6;
1217                 }
1218 #endif
1219                 m_copyback(m, len, dlen, (caddr_t)sa);
1220                 len += dlen;
1221         }
1222         if (m->m_pkthdr.len != len) {
1223                 m_freem(m);
1224                 return (NULL);
1225         }
1226         rtm->rtm_msglen = len;
1227         rtm->rtm_version = RTM_VERSION;
1228         rtm->rtm_type = type;
1229         return (m);
1230 }
1231
1232 /*
1233  * Writes information related to @rtinfo object to preallocated buffer.
1234  * Stores needed size in @plen. If @w is NULL, calculates size without
1235  * writing.
1236  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1237  *
1238  * Returns 0 on success.
1239  *
1240  */
1241 static int
1242 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1243 {
1244         int i;
1245         int len, buflen = 0, dlen;
1246         caddr_t cp = NULL;
1247         struct rt_msghdr *rtm = NULL;
1248 #ifdef INET6
1249         struct sockaddr_storage ss;
1250         struct sockaddr_in6 *sin6;
1251 #endif
1252 #ifdef COMPAT_FREEBSD32
1253         bool compat32 = false;
1254 #endif
1255
1256         switch (type) {
1257
1258         case RTM_DELADDR:
1259         case RTM_NEWADDR:
1260                 if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1261 #ifdef COMPAT_FREEBSD32
1262                         if (w->w_req->flags & SCTL_MASK32) {
1263                                 len = sizeof(struct ifa_msghdrl32);
1264                                 compat32 = true;
1265                         } else
1266 #endif
1267                                 len = sizeof(struct ifa_msghdrl);
1268                 } else
1269                         len = sizeof(struct ifa_msghdr);
1270                 break;
1271
1272         case RTM_IFINFO:
1273 #ifdef COMPAT_FREEBSD32
1274                 if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1275                         if (w->w_op == NET_RT_IFLISTL)
1276                                 len = sizeof(struct if_msghdrl32);
1277                         else
1278                                 len = sizeof(struct if_msghdr32);
1279                         compat32 = true;
1280                         break;
1281                 }
1282 #endif
1283                 if (w != NULL && w->w_op == NET_RT_IFLISTL)
1284                         len = sizeof(struct if_msghdrl);
1285                 else
1286                         len = sizeof(struct if_msghdr);
1287                 break;
1288
1289         case RTM_NEWMADDR:
1290                 len = sizeof(struct ifma_msghdr);
1291                 break;
1292
1293         default:
1294                 len = sizeof(struct rt_msghdr);
1295         }
1296
1297         if (w != NULL) {
1298                 rtm = (struct rt_msghdr *)w->w_tmem;
1299                 buflen = w->w_tmemsize - len;
1300                 cp = (caddr_t)w->w_tmem + len;
1301         }
1302
1303         rtinfo->rti_addrs = 0;
1304         for (i = 0; i < RTAX_MAX; i++) {
1305                 struct sockaddr *sa;
1306
1307                 if ((sa = rtinfo->rti_info[i]) == NULL)
1308                         continue;
1309                 rtinfo->rti_addrs |= (1 << i);
1310 #ifdef COMPAT_FREEBSD32
1311                 if (compat32)
1312                         dlen = SA_SIZE32(sa);
1313                 else
1314 #endif
1315                         dlen = SA_SIZE(sa);
1316                 if (cp != NULL && buflen >= dlen) {
1317 #ifdef INET6
1318                         if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1319                                 sin6 = (struct sockaddr_in6 *)&ss;
1320                                 bcopy(sa, sin6, sizeof(*sin6));
1321                                 if (sa6_recoverscope(sin6) == 0)
1322                                         sa = (struct sockaddr *)sin6;
1323                         }
1324 #endif
1325                         bcopy((caddr_t)sa, cp, (unsigned)dlen);
1326                         cp += dlen;
1327                         buflen -= dlen;
1328                 } else if (cp != NULL) {
1329                         /*
1330                          * Buffer too small. Count needed size
1331                          * and return with error.
1332                          */
1333                         cp = NULL;
1334                 }
1335
1336                 len += dlen;
1337         }
1338
1339         if (cp != NULL) {
1340                 dlen = ALIGN(len) - len;
1341                 if (buflen < dlen)
1342                         cp = NULL;
1343                 else {
1344                         bzero(cp, dlen);
1345                         cp += dlen;
1346                         buflen -= dlen;
1347                 }
1348         }
1349         len = ALIGN(len);
1350
1351         if (cp != NULL) {
1352                 /* fill header iff buffer is large enough */
1353                 rtm->rtm_version = RTM_VERSION;
1354                 rtm->rtm_type = type;
1355                 rtm->rtm_msglen = len;
1356         }
1357
1358         *plen = len;
1359
1360         if (w != NULL && cp == NULL)
1361                 return (ENOBUFS);
1362
1363         return (0);
1364 }
1365
1366 /*
1367  * This routine is called to generate a message from the routing
1368  * socket indicating that a redirect has occurred, a routing lookup
1369  * has failed, or that a protocol has detected timeouts to a particular
1370  * destination.
1371  */
1372 void
1373 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1374     int fibnum)
1375 {
1376         struct rt_msghdr *rtm;
1377         struct mbuf *m;
1378         struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1379
1380         if (V_route_cb.any_count == 0)
1381                 return;
1382         m = rtsock_msg_mbuf(type, rtinfo);
1383         if (m == NULL)
1384                 return;
1385
1386         if (fibnum != RT_ALL_FIBS) {
1387                 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1388                     "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1389                 M_SETFIB(m, fibnum);
1390                 m->m_flags |= RTS_FILTER_FIB;
1391         }
1392
1393         rtm = mtod(m, struct rt_msghdr *);
1394         rtm->rtm_flags = RTF_DONE | flags;
1395         rtm->rtm_errno = error;
1396         rtm->rtm_addrs = rtinfo->rti_addrs;
1397         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1398 }
1399
1400 void
1401 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1402 {
1403
1404         rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1405 }
1406
1407 /*
1408  * This routine is called to generate a message from the routing
1409  * socket indicating that the status of a network interface has changed.
1410  */
1411 void
1412 rt_ifmsg(struct ifnet *ifp)
1413 {
1414         struct if_msghdr *ifm;
1415         struct mbuf *m;
1416         struct rt_addrinfo info;
1417
1418         if (V_route_cb.any_count == 0)
1419                 return;
1420         bzero((caddr_t)&info, sizeof(info));
1421         m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1422         if (m == NULL)
1423                 return;
1424         ifm = mtod(m, struct if_msghdr *);
1425         ifm->ifm_index = ifp->if_index;
1426         ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1427         if_data_copy(ifp, &ifm->ifm_data);
1428         ifm->ifm_addrs = 0;
1429         rt_dispatch(m, AF_UNSPEC);
1430 }
1431
1432 /*
1433  * Announce interface address arrival/withdraw.
1434  * Please do not call directly, use rt_addrmsg().
1435  * Assume input data to be valid.
1436  * Returns 0 on success.
1437  */
1438 int
1439 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1440 {
1441         struct rt_addrinfo info;
1442         struct sockaddr *sa;
1443         int ncmd;
1444         struct mbuf *m;
1445         struct ifa_msghdr *ifam;
1446         struct ifnet *ifp = ifa->ifa_ifp;
1447         struct sockaddr_storage ss;
1448
1449         if (V_route_cb.any_count == 0)
1450                 return (0);
1451
1452         ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1453
1454         bzero((caddr_t)&info, sizeof(info));
1455         info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1456         info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1457         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1458             info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1459         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1460         if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1461                 return (ENOBUFS);
1462         ifam = mtod(m, struct ifa_msghdr *);
1463         ifam->ifam_index = ifp->if_index;
1464         ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1465         ifam->ifam_flags = ifa->ifa_flags;
1466         ifam->ifam_addrs = info.rti_addrs;
1467
1468         if (fibnum != RT_ALL_FIBS) {
1469                 M_SETFIB(m, fibnum);
1470                 m->m_flags |= RTS_FILTER_FIB;
1471         }
1472
1473         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1474
1475         return (0);
1476 }
1477
1478 /*
1479  * Announce route addition/removal to rtsock based on @rt data.
1480  * Callers are advives to use rt_routemsg() instead of using this
1481  *  function directly.
1482  * Assume @rt data is consistent.
1483  *
1484  * Returns 0 on success.
1485  */
1486 int
1487 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1488     int fibnum)
1489 {
1490         struct sockaddr_storage ss;
1491         struct rt_addrinfo info;
1492
1493         if (V_route_cb.any_count == 0)
1494                 return (0);
1495
1496         bzero((caddr_t)&info, sizeof(info));
1497         info.rti_info[RTAX_DST] = rt_key(rt);
1498         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1499         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1500         info.rti_flags = rt->rt_flags;
1501         info.rti_ifp = ifp;
1502
1503         return (rtsock_routemsg_info(cmd, &info, fibnum));
1504 }
1505
1506 int
1507 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1508 {
1509         struct rt_msghdr *rtm;
1510         struct sockaddr *sa;
1511         struct mbuf *m;
1512
1513         if (V_route_cb.any_count == 0)
1514                 return (0);
1515
1516         if (info->rti_flags & RTF_HOST)
1517                 info->rti_info[RTAX_NETMASK] = NULL;
1518
1519         m = rtsock_msg_mbuf(cmd, info);
1520         if (m == NULL)
1521                 return (ENOBUFS);
1522
1523         if (fibnum != RT_ALL_FIBS) {
1524                 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1525                     "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1526                 M_SETFIB(m, fibnum);
1527                 m->m_flags |= RTS_FILTER_FIB;
1528         }
1529
1530         rtm = mtod(m, struct rt_msghdr *);
1531         rtm->rtm_addrs = info->rti_addrs;
1532         if (info->rti_ifp != NULL)
1533                 rtm->rtm_index = info->rti_ifp->if_index;
1534         /* Add RTF_DONE to indicate command 'completion' required by API */
1535         info->rti_flags |= RTF_DONE;
1536         /* Reported routes has to be up */
1537         if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1538                 info->rti_flags |= RTF_UP;
1539         rtm->rtm_flags = info->rti_flags;
1540
1541         sa = info->rti_info[RTAX_DST];
1542         rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1543
1544         return (0);
1545 }
1546
1547 /*
1548  * This is the analogue to the rt_newaddrmsg which performs the same
1549  * function but for multicast group memberhips.  This is easier since
1550  * there is no route state to worry about.
1551  */
1552 void
1553 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1554 {
1555         struct rt_addrinfo info;
1556         struct mbuf *m = NULL;
1557         struct ifnet *ifp = ifma->ifma_ifp;
1558         struct ifma_msghdr *ifmam;
1559
1560         if (V_route_cb.any_count == 0)
1561                 return;
1562
1563         bzero((caddr_t)&info, sizeof(info));
1564         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1565         if (ifp && ifp->if_addr)
1566                 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1567         else
1568                 info.rti_info[RTAX_IFP] = NULL;
1569         /*
1570          * If a link-layer address is present, present it as a ``gateway''
1571          * (similarly to how ARP entries, e.g., are presented).
1572          */
1573         info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1574         m = rtsock_msg_mbuf(cmd, &info);
1575         if (m == NULL)
1576                 return;
1577         ifmam = mtod(m, struct ifma_msghdr *);
1578         KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1579             __func__));
1580         ifmam->ifmam_index = ifp->if_index;
1581         ifmam->ifmam_addrs = info.rti_addrs;
1582         rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1583 }
1584
1585 static struct mbuf *
1586 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1587         struct rt_addrinfo *info)
1588 {
1589         struct if_announcemsghdr *ifan;
1590         struct mbuf *m;
1591
1592         if (V_route_cb.any_count == 0)
1593                 return NULL;
1594         bzero((caddr_t)info, sizeof(*info));
1595         m = rtsock_msg_mbuf(type, info);
1596         if (m != NULL) {
1597                 ifan = mtod(m, struct if_announcemsghdr *);
1598                 ifan->ifan_index = ifp->if_index;
1599                 strlcpy(ifan->ifan_name, ifp->if_xname,
1600                         sizeof(ifan->ifan_name));
1601                 ifan->ifan_what = what;
1602         }
1603         return m;
1604 }
1605
1606 /*
1607  * This is called to generate routing socket messages indicating
1608  * IEEE80211 wireless events.
1609  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1610  */
1611 void
1612 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1613 {
1614         struct mbuf *m;
1615         struct rt_addrinfo info;
1616
1617         m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1618         if (m != NULL) {
1619                 /*
1620                  * Append the ieee80211 data.  Try to stick it in the
1621                  * mbuf containing the ifannounce msg; otherwise allocate
1622                  * a new mbuf and append.
1623                  *
1624                  * NB: we assume m is a single mbuf.
1625                  */
1626                 if (data_len > M_TRAILINGSPACE(m)) {
1627                         struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1628                         if (n == NULL) {
1629                                 m_freem(m);
1630                                 return;
1631                         }
1632                         bcopy(data, mtod(n, void *), data_len);
1633                         n->m_len = data_len;
1634                         m->m_next = n;
1635                 } else if (data_len > 0) {
1636                         bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1637                         m->m_len += data_len;
1638                 }
1639                 if (m->m_flags & M_PKTHDR)
1640                         m->m_pkthdr.len += data_len;
1641                 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1642                 rt_dispatch(m, AF_UNSPEC);
1643         }
1644 }
1645
1646 /*
1647  * This is called to generate routing socket messages indicating
1648  * network interface arrival and departure.
1649  */
1650 void
1651 rt_ifannouncemsg(struct ifnet *ifp, int what)
1652 {
1653         struct mbuf *m;
1654         struct rt_addrinfo info;
1655
1656         m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1657         if (m != NULL)
1658                 rt_dispatch(m, AF_UNSPEC);
1659 }
1660
1661 static void
1662 rt_dispatch(struct mbuf *m, sa_family_t saf)
1663 {
1664         struct m_tag *tag;
1665
1666         /*
1667          * Preserve the family from the sockaddr, if any, in an m_tag for
1668          * use when injecting the mbuf into the routing socket buffer from
1669          * the netisr.
1670          */
1671         if (saf != AF_UNSPEC) {
1672                 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1673                     M_NOWAIT);
1674                 if (tag == NULL) {
1675                         m_freem(m);
1676                         return;
1677                 }
1678                 *(unsigned short *)(tag + 1) = saf;
1679                 m_tag_prepend(m, tag);
1680         }
1681 #ifdef VIMAGE
1682         if (V_loif)
1683                 m->m_pkthdr.rcvif = V_loif;
1684         else {
1685                 m_freem(m);
1686                 return;
1687         }
1688 #endif
1689         netisr_queue(NETISR_ROUTE, m);  /* mbuf is free'd on failure. */
1690 }
1691
1692 /*
1693  * Checks if rte can be exported v.r.t jails/vnets.
1694  *
1695  * Returns 1 if it can, 0 otherwise.
1696  */
1697 static int
1698 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1699 {
1700
1701         if ((rt->rt_flags & RTF_HOST) == 0
1702             ? jailed_without_vnet(td_ucred)
1703             : prison_if(td_ucred, rt_key_const(rt)) != 0)
1704                 return (0);
1705         return (1);
1706 }
1707
1708 /*
1709  * This is used in dumping the kernel table via sysctl().
1710  */
1711 static int
1712 sysctl_dumpentry(struct radix_node *rn, void *vw)
1713 {
1714         struct walkarg *w = vw;
1715         struct rtentry *rt = (struct rtentry *)rn;
1716         int error = 0, size;
1717         struct rt_addrinfo info;
1718         struct sockaddr_storage ss;
1719
1720         NET_EPOCH_ASSERT();
1721
1722         if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1723                 return 0;
1724         if (!can_export_rte(w->w_req->td->td_ucred, rt))
1725                 return (0);
1726         bzero((caddr_t)&info, sizeof(info));
1727         info.rti_info[RTAX_DST] = rt_key(rt);
1728         info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1729         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1730             rt_mask(rt), &ss);
1731         info.rti_info[RTAX_GENMASK] = 0;
1732         if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) {
1733                 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1734                 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1735                 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1736                         info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1737         }
1738         if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1739                 return (error);
1740         if (w->w_req && w->w_tmem) {
1741                 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1742
1743                 bzero(&rtm->rtm_index,
1744                     sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1745                 if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1746                         rtm->rtm_flags = RTF_GATEWAY | 
1747                                 (rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1748                 else
1749                         rtm->rtm_flags = rt->rt_flags;
1750                 rt_getmetrics(rt, &rtm->rtm_rmx);
1751                 rtm->rtm_index = rt->rt_ifp->if_index;
1752                 rtm->rtm_addrs = info.rti_addrs;
1753                 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1754                 return (error);
1755         }
1756         return (error);
1757 }
1758
1759 static int
1760 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1761     struct rt_addrinfo *info, struct walkarg *w, int len)
1762 {
1763         struct if_msghdrl *ifm;
1764         struct if_data *ifd;
1765
1766         ifm = (struct if_msghdrl *)w->w_tmem;
1767
1768 #ifdef COMPAT_FREEBSD32
1769         if (w->w_req->flags & SCTL_MASK32) {
1770                 struct if_msghdrl32 *ifm32;
1771
1772                 ifm32 = (struct if_msghdrl32 *)ifm;
1773                 ifm32->ifm_addrs = info->rti_addrs;
1774                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1775                 ifm32->ifm_index = ifp->if_index;
1776                 ifm32->_ifm_spare1 = 0;
1777                 ifm32->ifm_len = sizeof(*ifm32);
1778                 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1779                 ifm32->_ifm_spare2 = 0;
1780                 ifd = &ifm32->ifm_data;
1781         } else
1782 #endif
1783         {
1784                 ifm->ifm_addrs = info->rti_addrs;
1785                 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1786                 ifm->ifm_index = ifp->if_index;
1787                 ifm->_ifm_spare1 = 0;
1788                 ifm->ifm_len = sizeof(*ifm);
1789                 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1790                 ifm->_ifm_spare2 = 0;
1791                 ifd = &ifm->ifm_data;
1792         }
1793
1794         memcpy(ifd, src_ifd, sizeof(*ifd));
1795
1796         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1797 }
1798
1799 static int
1800 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1801     struct rt_addrinfo *info, struct walkarg *w, int len)
1802 {
1803         struct if_msghdr *ifm;
1804         struct if_data *ifd;
1805
1806         ifm = (struct if_msghdr *)w->w_tmem;
1807
1808 #ifdef COMPAT_FREEBSD32
1809         if (w->w_req->flags & SCTL_MASK32) {
1810                 struct if_msghdr32 *ifm32;
1811
1812                 ifm32 = (struct if_msghdr32 *)ifm;
1813                 ifm32->ifm_addrs = info->rti_addrs;
1814                 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1815                 ifm32->ifm_index = ifp->if_index;
1816                 ifm32->_ifm_spare1 = 0;
1817                 ifd = &ifm32->ifm_data;
1818         } else
1819 #endif
1820         {
1821                 ifm->ifm_addrs = info->rti_addrs;
1822                 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1823                 ifm->ifm_index = ifp->if_index;
1824                 ifm->_ifm_spare1 = 0;
1825                 ifd = &ifm->ifm_data;
1826         }
1827
1828         memcpy(ifd, src_ifd, sizeof(*ifd));
1829
1830         return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1831 }
1832
1833 static int
1834 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1835     struct walkarg *w, int len)
1836 {
1837         struct ifa_msghdrl *ifam;
1838         struct if_data *ifd;
1839
1840         ifam = (struct ifa_msghdrl *)w->w_tmem;
1841
1842 #ifdef COMPAT_FREEBSD32
1843         if (w->w_req->flags & SCTL_MASK32) {
1844                 struct ifa_msghdrl32 *ifam32;
1845
1846                 ifam32 = (struct ifa_msghdrl32 *)ifam;
1847                 ifam32->ifam_addrs = info->rti_addrs;
1848                 ifam32->ifam_flags = ifa->ifa_flags;
1849                 ifam32->ifam_index = ifa->ifa_ifp->if_index;
1850                 ifam32->_ifam_spare1 = 0;
1851                 ifam32->ifam_len = sizeof(*ifam32);
1852                 ifam32->ifam_data_off =
1853                     offsetof(struct ifa_msghdrl32, ifam_data);
1854                 ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1855                 ifd = &ifam32->ifam_data;
1856         } else
1857 #endif
1858         {
1859                 ifam->ifam_addrs = info->rti_addrs;
1860                 ifam->ifam_flags = ifa->ifa_flags;
1861                 ifam->ifam_index = ifa->ifa_ifp->if_index;
1862                 ifam->_ifam_spare1 = 0;
1863                 ifam->ifam_len = sizeof(*ifam);
1864                 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1865                 ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1866                 ifd = &ifam->ifam_data;
1867         }
1868
1869         bzero(ifd, sizeof(*ifd));
1870         ifd->ifi_datalen = sizeof(struct if_data);
1871         ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1872         ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1873         ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1874         ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1875
1876         /* Fixup if_data carp(4) vhid. */
1877         if (carp_get_vhid_p != NULL)
1878                 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1879
1880         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1881 }
1882
1883 static int
1884 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1885     struct walkarg *w, int len)
1886 {
1887         struct ifa_msghdr *ifam;
1888
1889         ifam = (struct ifa_msghdr *)w->w_tmem;
1890         ifam->ifam_addrs = info->rti_addrs;
1891         ifam->ifam_flags = ifa->ifa_flags;
1892         ifam->ifam_index = ifa->ifa_ifp->if_index;
1893         ifam->_ifam_spare1 = 0;
1894         ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1895
1896         return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1897 }
1898
1899 static int
1900 sysctl_iflist(int af, struct walkarg *w)
1901 {
1902         struct ifnet *ifp;
1903         struct ifaddr *ifa;
1904         struct if_data ifd;
1905         struct rt_addrinfo info;
1906         int len, error = 0;
1907         struct sockaddr_storage ss;
1908
1909         bzero((caddr_t)&info, sizeof(info));
1910         bzero(&ifd, sizeof(ifd));
1911         CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1912                 if (w->w_arg && w->w_arg != ifp->if_index)
1913                         continue;
1914                 if_data_copy(ifp, &ifd);
1915                 ifa = ifp->if_addr;
1916                 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1917                 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1918                 if (error != 0)
1919                         goto done;
1920                 info.rti_info[RTAX_IFP] = NULL;
1921                 if (w->w_req && w->w_tmem) {
1922                         if (w->w_op == NET_RT_IFLISTL)
1923                                 error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1924                                     len);
1925                         else
1926                                 error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1927                                     len);
1928                         if (error)
1929                                 goto done;
1930                 }
1931                 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1932                         if (af && af != ifa->ifa_addr->sa_family)
1933                                 continue;
1934                         if (prison_if(w->w_req->td->td_ucred,
1935                             ifa->ifa_addr) != 0)
1936                                 continue;
1937                         info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1938                         info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1939                             ifa->ifa_addr, ifa->ifa_netmask, &ss);
1940                         info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1941                         error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1942                         if (error != 0)
1943                                 goto done;
1944                         if (w->w_req && w->w_tmem) {
1945                                 if (w->w_op == NET_RT_IFLISTL)
1946                                         error = sysctl_iflist_ifaml(ifa, &info,
1947                                             w, len);
1948                                 else
1949                                         error = sysctl_iflist_ifam(ifa, &info,
1950                                             w, len);
1951                                 if (error)
1952                                         goto done;
1953                         }
1954                 }
1955                 info.rti_info[RTAX_IFA] = NULL;
1956                 info.rti_info[RTAX_NETMASK] = NULL;
1957                 info.rti_info[RTAX_BRD] = NULL;
1958         }
1959 done:
1960         return (error);
1961 }
1962
1963 static int
1964 sysctl_ifmalist(int af, struct walkarg *w)
1965 {
1966         struct rt_addrinfo info;
1967         struct ifaddr *ifa;
1968         struct ifmultiaddr *ifma;
1969         struct ifnet *ifp;
1970         int error, len;
1971
1972         NET_EPOCH_ASSERT();
1973
1974         error = 0;
1975         bzero((caddr_t)&info, sizeof(info));
1976
1977         CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1978                 if (w->w_arg && w->w_arg != ifp->if_index)
1979                         continue;
1980                 ifa = ifp->if_addr;
1981                 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1982                 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1983                         if (af && af != ifma->ifma_addr->sa_family)
1984                                 continue;
1985                         if (prison_if(w->w_req->td->td_ucred,
1986                             ifma->ifma_addr) != 0)
1987                                 continue;
1988                         info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1989                         info.rti_info[RTAX_GATEWAY] =
1990                             (ifma->ifma_addr->sa_family != AF_LINK) ?
1991                             ifma->ifma_lladdr : NULL;
1992                         error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1993                         if (error != 0)
1994                                 break;
1995                         if (w->w_req && w->w_tmem) {
1996                                 struct ifma_msghdr *ifmam;
1997
1998                                 ifmam = (struct ifma_msghdr *)w->w_tmem;
1999                                 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2000                                 ifmam->ifmam_flags = 0;
2001                                 ifmam->ifmam_addrs = info.rti_addrs;
2002                                 ifmam->_ifmam_spare1 = 0;
2003                                 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2004                                 if (error != 0)
2005                                         break;
2006                         }
2007                 }
2008                 if (error != 0)
2009                         break;
2010         }
2011         return (error);
2012 }
2013
2014 static int
2015 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2016 {
2017         RIB_RLOCK_TRACKER;
2018         struct epoch_tracker et;
2019         int     *name = (int *)arg1;
2020         u_int   namelen = arg2;
2021         struct rib_head *rnh = NULL; /* silence compiler. */
2022         int     i, lim, error = EINVAL;
2023         int     fib = 0;
2024         u_char  af;
2025         struct  walkarg w;
2026
2027         name ++;
2028         namelen--;
2029         if (req->newptr)
2030                 return (EPERM);
2031         if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) {
2032                 if (namelen == 3)
2033                         fib = req->td->td_proc->p_fibnum;
2034                 else if (namelen == 4)
2035                         fib = (name[3] == RT_ALL_FIBS) ?
2036                             req->td->td_proc->p_fibnum : name[3];
2037                 else
2038                         return ((namelen < 3) ? EISDIR : ENOTDIR);
2039                 if (fib < 0 || fib >= rt_numfibs)
2040                         return (EINVAL);
2041         } else if (namelen != 3)
2042                 return ((namelen < 3) ? EISDIR : ENOTDIR);
2043         af = name[0];
2044         if (af > AF_MAX)
2045                 return (EINVAL);
2046         bzero(&w, sizeof(w));
2047         w.w_op = name[1];
2048         w.w_arg = name[2];
2049         w.w_req = req;
2050
2051         error = sysctl_wire_old_buffer(req, 0);
2052         if (error)
2053                 return (error);
2054         
2055         /*
2056          * Allocate reply buffer in advance.
2057          * All rtsock messages has maximum length of u_short.
2058          */
2059         w.w_tmemsize = 65536;
2060         w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2061
2062         NET_EPOCH_ENTER(et);
2063         switch (w.w_op) {
2064         case NET_RT_DUMP:
2065         case NET_RT_FLAGS:
2066                 if (af == 0) {                  /* dump all tables */
2067                         i = 1;
2068                         lim = AF_MAX;
2069                 } else                          /* dump only one table */
2070                         i = lim = af;
2071
2072                 /*
2073                  * take care of llinfo entries, the caller must
2074                  * specify an AF
2075                  */
2076                 if (w.w_op == NET_RT_FLAGS &&
2077                     (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2078                         if (af != 0)
2079                                 error = lltable_sysctl_dumparp(af, w.w_req);
2080                         else
2081                                 error = EINVAL;
2082                         break;
2083                 }
2084                 /*
2085                  * take care of routing entries
2086                  */
2087                 for (error = 0; error == 0 && i <= lim; i++) {
2088                         rnh = rt_tables_get_rnh(fib, i);
2089                         if (rnh != NULL) {
2090                                 RIB_RLOCK(rnh); 
2091                                 error = rnh->rnh_walktree(&rnh->head,
2092                                     sysctl_dumpentry, &w);
2093                                 RIB_RUNLOCK(rnh);
2094                         } else if (af != 0)
2095                                 error = EAFNOSUPPORT;
2096                 }
2097                 break;
2098         case NET_RT_NHOP:
2099                 /* Allow dumping one specific af/fib at a time */
2100                 if (namelen < 4) {
2101                         error = EINVAL;
2102                         break;
2103                 }
2104                 fib = name[3];
2105                 if (fib < 0 || fib > rt_numfibs) {
2106                         error = EINVAL;
2107                         break;
2108                 }
2109                 rnh = rt_tables_get_rnh(fib, af);
2110                 if (rnh == NULL) {
2111                         error = EAFNOSUPPORT;
2112                         break;
2113                 }
2114                 if (w.w_op == NET_RT_NHOP)
2115                         error = nhops_dump_sysctl(rnh, w.w_req);
2116                 break;
2117         case NET_RT_IFLIST:
2118         case NET_RT_IFLISTL:
2119                 error = sysctl_iflist(af, &w);
2120                 break;
2121
2122         case NET_RT_IFMALIST:
2123                 error = sysctl_ifmalist(af, &w);
2124                 break;
2125         }
2126         NET_EPOCH_EXIT(et);
2127
2128         free(w.w_tmem, M_TEMP);
2129         return (error);
2130 }
2131
2132 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2133     sysctl_rtsock, "Return route tables and interface/address lists");
2134
2135 /*
2136  * Definitions of protocols supported in the ROUTE domain.
2137  */
2138
2139 static struct domain routedomain;               /* or at least forward */
2140
2141 static struct protosw routesw[] = {
2142 {
2143         .pr_type =              SOCK_RAW,
2144         .pr_domain =            &routedomain,
2145         .pr_flags =             PR_ATOMIC|PR_ADDR,
2146         .pr_output =            route_output,
2147         .pr_ctlinput =          raw_ctlinput,
2148         .pr_init =              raw_init,
2149         .pr_usrreqs =           &route_usrreqs
2150 }
2151 };
2152
2153 static struct domain routedomain = {
2154         .dom_family =           PF_ROUTE,
2155         .dom_name =              "route",
2156         .dom_protosw =          routesw,
2157         .dom_protoswNPROTOSW =  &routesw[nitems(routesw)]
2158 };
2159
2160 VNET_DOMAIN_SET(route);
2161
2162 #ifdef DDB
2163 /*
2164  * Unfortunately, RTF_ values are expressed as raw masks rather than powers of
2165  * 2, so we cannot use them as nice C99 initializer indices below.
2166  */
2167 static const char * const rtf_flag_strings[] = {
2168         "UP",
2169         "GATEWAY",
2170         "HOST",
2171         "REJECT",
2172         "DYNAMIC",
2173         "MODIFIED",
2174         "DONE",
2175         "UNUSED_0x80",
2176         "UNUSED_0x100",
2177         "XRESOLVE",
2178         "LLDATA",
2179         "STATIC",
2180         "BLACKHOLE",
2181         "UNUSED_0x2000",
2182         "PROTO2",
2183         "PROTO1",
2184         "UNUSED_0x10000",
2185         "UNUSED_0x20000",
2186         "PROTO3",
2187         "FIXEDMTU",
2188         "PINNED",
2189         "LOCAL",
2190         "BROADCAST",
2191         "MULTICAST",
2192         /* Big gap. */
2193         [28] = "STICKY",
2194         [30] = "RNH_LOCKED",
2195         [31] = "GWFLAG_COMPAT",
2196 };
2197
2198 static const char * __pure
2199 rt_flag_name(unsigned idx)
2200 {
2201         if (idx >= nitems(rtf_flag_strings))
2202                 return ("INVALID_FLAG");
2203         if (rtf_flag_strings[idx] == NULL)
2204                 return ("UNKNOWN");
2205         return (rtf_flag_strings[idx]);
2206 }
2207
2208 static void
2209 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa)
2210 {
2211         char buf[INET6_ADDRSTRLEN], *res;
2212
2213         res = NULL;
2214         if (sa == NULL)
2215                 res = "NULL";
2216         else if (sa->sa_family == AF_INET) {
2217                 res = inet_ntop(AF_INET,
2218                     &((const struct sockaddr_in *)sa)->sin_addr,
2219                     buf, sizeof(buf));
2220         } else if (sa->sa_family == AF_INET6) {
2221                 res = inet_ntop(AF_INET6,
2222                     &((const struct sockaddr_in6 *)sa)->sin6_addr,
2223                     buf, sizeof(buf));
2224         } else if (sa->sa_family == AF_LINK) {
2225                 res = "on link";
2226         }
2227
2228         if (res != NULL) {
2229                 db_printf("%s <%s> ", name, res);
2230                 return;
2231         }
2232
2233         db_printf("%s <af:%d> ", name, sa->sa_family);
2234 }
2235
2236 static int
2237 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused)
2238 {
2239         struct sockaddr_storage ss;
2240         struct rtentry *rt;
2241         int flags, idx;
2242
2243         /* If RNTORT is important, put it in a header. */
2244         rt = (void *)rn;
2245
2246         rt_dumpaddr_ddb("dst", rt_key(rt));
2247         rt_dumpaddr_ddb("gateway", rt->rt_gateway);
2248         rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt),
2249             &ss));
2250         if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) {
2251                 rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr);
2252                 rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr);
2253         }
2254
2255         db_printf("flags ");
2256         flags = rt->rt_flags;
2257         if (flags == 0)
2258                 db_printf("none");
2259
2260         while ((idx = ffs(flags)) > 0) {
2261                 idx--;
2262
2263                 if (flags != rt->rt_flags)
2264                         db_printf(",");
2265                 db_printf("%s", rt_flag_name(idx));
2266
2267                 flags &= ~(1ul << idx);
2268         }
2269
2270         db_printf("\n");
2271         return (0);
2272 }
2273
2274 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd)
2275 {
2276         struct rib_head *rnh;
2277         int error, i, lim;
2278
2279         if (have_addr)
2280                 i = lim = addr;
2281         else {
2282                 i = 1;
2283                 lim = AF_MAX;
2284         }
2285
2286         for (; i <= lim; i++) {
2287                 rnh = rt_tables_get_rnh(0, i);
2288                 if (rnh == NULL) {
2289                         if (have_addr) {
2290                                 db_printf("%s: AF %d not supported?\n",
2291                                     __func__, i);
2292                                 break;
2293                         }
2294                         continue;
2295                 }
2296
2297                 if (!have_addr && i > 1)
2298                         db_printf("\n");
2299
2300                 db_printf("Route table for AF %d%s%s%s:\n", i,
2301                     (i == AF_INET || i == AF_INET6) ? " (" : "",
2302                     (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "",
2303                     (i == AF_INET || i == AF_INET6) ? ")" : "");
2304
2305                 error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL);
2306                 if (error != 0)
2307                         db_printf("%s: walktree(%d): %d\n", __func__, i,
2308                             error);
2309         }
2310 }
2311
2312 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL)
2313 {
2314         char buf[INET6_ADDRSTRLEN], *bp;
2315         const void *dst_addrp;
2316         struct sockaddr *dstp;
2317         struct rtentry *rt;
2318         union {
2319                 struct sockaddr_in dest_sin;
2320                 struct sockaddr_in6 dest_sin6;
2321         } u;
2322         uint16_t hextets[8];
2323         unsigned i, tets;
2324         int t, af, exp, tokflags;
2325
2326         /*
2327          * Undecoded address family.  No double-colon expansion seen yet.
2328          */
2329         af = -1;
2330         exp = -1;
2331         /* Assume INET6 to start; we can work back if guess was wrong. */
2332         tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL;
2333
2334         /*
2335          * db_command has lexed 'show route' for us.
2336          */
2337         t = db_read_token_flags(tokflags);
2338         if (t == tWSPACE)
2339                 t = db_read_token_flags(tokflags);
2340
2341         /*
2342          * tEOL: Just 'show route' isn't a valid mode.
2343          * tMINUS: It's either '-h' or some invalid option.  Regardless, usage.
2344          */
2345         if (t == tEOL || t == tMINUS)
2346                 goto usage;
2347
2348         db_unread_token(t);
2349
2350         tets = nitems(hextets);
2351
2352         /*
2353          * Each loop iteration, we expect to read one octet (v4) or hextet
2354          * (v6), followed by an appropriate field separator ('.' or ':' or
2355          * '::').
2356          *
2357          * At the start of each loop, we're looking for a number (octet or
2358          * hextet).
2359          *
2360          * INET6 addresses have a special case where they may begin with '::'.
2361          */
2362         for (i = 0; i < tets; i++) {
2363                 t = db_read_token_flags(tokflags);
2364
2365                 if (t == tCOLONCOLON) {
2366                         /* INET6 with leading '::' or invalid. */
2367                         if (i != 0) {
2368                                 db_printf("Parse error: unexpected extra "
2369                                     "colons.\n");
2370                                 goto exit;
2371                         }
2372
2373                         af = AF_INET6;
2374                         exp = i;
2375                         hextets[i] = 0;
2376                         continue;
2377                 } else if (t == tNUMBER) {
2378                         /*
2379                          * Lexer separates out '-' as tMINUS, but make the
2380                          * assumption explicit here.
2381                          */
2382                         MPASS(db_tok_number >= 0);
2383
2384                         if (af == AF_INET && db_tok_number > UINT8_MAX) {
2385                                 db_printf("Not a valid v4 octet: %ld\n",
2386                                     (long)db_tok_number);
2387                                 goto exit;
2388                         }
2389                         hextets[i] = db_tok_number;
2390                 } else if (t == tEOL) {
2391                         /*
2392                          * We can only detect the end of an IPv6 address in
2393                          * compact representation with EOL.
2394                          */
2395                         if (af != AF_INET6 || exp < 0) {
2396                                 db_printf("Parse failed.  Got unexpected EOF "
2397                                     "when the address is not a compact-"
2398                                     "representation IPv6 address.\n");
2399                                 goto exit;
2400                         }
2401                         break;
2402                 } else {
2403                         db_printf("Parse failed.  Unexpected token %d.\n", t);
2404                         goto exit;
2405                 }
2406
2407                 /* Next, look for a separator, if appropriate. */
2408                 if (i == tets - 1)
2409                         continue;
2410
2411                 t = db_read_token_flags(tokflags);
2412                 if (af < 0) {
2413                         if (t == tCOLON) {
2414                                 af = AF_INET6;
2415                                 continue;
2416                         }
2417                         if (t == tCOLONCOLON) {
2418                                 af = AF_INET6;
2419                                 i++;
2420                                 hextets[i] = 0;
2421                                 exp = i;
2422                                 continue;
2423                         }
2424                         if (t == tDOT) {
2425                                 unsigned hn, dn;
2426
2427                                 af = AF_INET;
2428                                 /* Need to fixup the first parsed number. */
2429                                 if (hextets[0] > 0x255 ||
2430                                     (hextets[0] & 0xf0) > 0x90 ||
2431                                     (hextets[0] & 0xf) > 9) {
2432                                         db_printf("Not a valid v4 octet: %x\n",
2433                                             hextets[0]);
2434                                         goto exit;
2435                                 }
2436
2437                                 hn = hextets[0];
2438                                 dn = (hn >> 8) * 100 +
2439                                     ((hn >> 4) & 0xf) * 10 +
2440                                     (hn & 0xf);
2441
2442                                 hextets[0] = dn;
2443
2444                                 /* Switch to decimal for remaining octets. */
2445                                 tokflags &= ~DRT_RADIX_MASK;
2446                                 tokflags |= DRT_DECIMAL;
2447
2448                                 tets = 4;
2449                                 continue;
2450                         }
2451
2452                         db_printf("Parse error.  Unexpected token %d.\n", t);
2453                         goto exit;
2454                 } else if (af == AF_INET) {
2455                         if (t == tDOT)
2456                                 continue;
2457                         db_printf("Expected '.' (%d) between octets but got "
2458                             "(%d).\n", tDOT, t);
2459                         goto exit;
2460
2461                 } else if (af == AF_INET6) {
2462                         if (t == tCOLON)
2463                                 continue;
2464                         if (t == tCOLONCOLON) {
2465                                 if (exp < 0) {
2466                                         i++;
2467                                         hextets[i] = 0;
2468                                         exp = i;
2469                                         continue;
2470                                 }
2471                                 db_printf("Got bogus second '::' in v6 "
2472                                     "address.\n");
2473                                 goto exit;
2474                         }
2475                         if (t == tEOL) {
2476                                 /*
2477                                  * Handle in the earlier part of the loop
2478                                  * because we need to handle trailing :: too.
2479                                  */
2480                                 db_unread_token(t);
2481                                 continue;
2482                         }
2483
2484                         db_printf("Expected ':' (%d) or '::' (%d) between "
2485                             "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t);
2486                         goto exit;
2487                 }
2488         }
2489
2490         /* Check for trailing garbage. */
2491         if (i == tets) {
2492                 t = db_read_token_flags(tokflags);
2493                 if (t != tEOL) {
2494                         db_printf("Got unexpected garbage after address "
2495                             "(%d).\n", t);
2496                         goto exit;
2497                 }
2498         }
2499
2500         /*
2501          * Need to expand compact INET6 addresses.
2502          *
2503          * Technically '::' for a single ':0:' is MUST NOT but just in case,
2504          * don't bother expanding that form (exp >= 0 && i == tets case).
2505          */
2506         if (af == AF_INET6 && exp >= 0 && i < tets) {
2507                 if (exp + 1 < i) {
2508                         memmove(&hextets[exp + 1 + (nitems(hextets) - i)],
2509                             &hextets[exp + 1],
2510                             (i - (exp + 1)) * sizeof(hextets[0]));
2511                 }
2512                 memset(&hextets[exp + 1], 0, (nitems(hextets) - i) *
2513                     sizeof(hextets[0]));
2514         }
2515
2516         memset(&u, 0, sizeof(u));
2517         if (af == AF_INET) {
2518                 u.dest_sin.sin_family = AF_INET;
2519                 u.dest_sin.sin_len = sizeof(u.dest_sin);
2520                 u.dest_sin.sin_addr.s_addr = htonl(
2521                     ((uint32_t)hextets[0] << 24) |
2522                     ((uint32_t)hextets[1] << 16) |
2523                     ((uint32_t)hextets[2] << 8) |
2524                     (uint32_t)hextets[3]);
2525                 dstp = (void *)&u.dest_sin;
2526                 dst_addrp = &u.dest_sin.sin_addr;
2527         } else if (af == AF_INET6) {
2528                 u.dest_sin6.sin6_family = AF_INET6;
2529                 u.dest_sin6.sin6_len = sizeof(u.dest_sin6);
2530                 for (i = 0; i < nitems(hextets); i++)
2531                         u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]);
2532                 dstp = (void *)&u.dest_sin6;
2533                 dst_addrp = &u.dest_sin6.sin6_addr;
2534         } else {
2535                 MPASS(false);
2536                 /* UNREACHABLE */
2537                 /* Appease Clang false positive: */
2538                 dstp = NULL;
2539         }
2540
2541         bp = inet_ntop(af, dst_addrp, buf, sizeof(buf));
2542         if (bp != NULL)
2543                 db_printf("Looking up route to destination '%s'\n", bp);
2544
2545         CURVNET_SET(vnet0);
2546         rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED);
2547         CURVNET_RESTORE();
2548
2549         if (rt == NULL) {
2550                 db_printf("Could not get route for that server.\n");
2551                 return;
2552         }
2553
2554         rt_dumpentry_ddb((void *)rt, NULL);
2555         RTFREE_LOCKED(rt);
2556
2557         return;
2558 usage:
2559         db_printf("Usage: 'show route <address>'\n"
2560             "  Currently accepts only dotted-decimal INET or colon-separated\n"
2561             "  hextet INET6 addresses.\n");
2562 exit:
2563         db_skip_to_eol();
2564 }
2565 #endif