/*- * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30 * * $FreeBSD$ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ #include #include /* * Pte related macros */ #define PTE_NOCACHE 0 #define PTE_CACHE 1 #define PTE_PAGETABLE 2 #ifndef LOCORE #include #include #include #define PDESIZE sizeof(pd_entry_t) /* for assembly files */ #define PTESIZE sizeof(pt_entry_t) /* for assembly files */ #ifdef _KERNEL #define vtophys(va) pmap_extract(pmap_kernel(), (vm_offset_t)(va)) #define pmap_kextract(va) pmap_extract(pmap_kernel(), (vm_offset_t)(va)) #endif #define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list)) /* * Pmap stuff */ /* * This structure is used to hold a virtual<->physical address * association and is used mostly by bootstrap code */ struct pv_addr { SLIST_ENTRY(pv_addr) pv_list; vm_offset_t pv_va; vm_paddr_t pv_pa; }; struct pv_entry; struct md_page { int pvh_attrs; u_int uro_mappings; u_int urw_mappings; union { u_short s_mappings[2]; /* Assume kernel count <= 65535 */ u_int i_mappings; } k_u; #define kro_mappings k_u.s_mappings[0] #define krw_mappings k_u.s_mappings[1] #define k_mappings k_u.i_mappings int pv_list_count; TAILQ_HEAD(,pv_entry) pv_list; }; #define VM_MDPAGE_INIT(pg) \ do { \ TAILQ_INIT(&pg->pv_list); \ mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\ (pg)->mdpage.pvh_attrs = 0; \ (pg)->mdpage.uro_mappings = 0; \ (pg)->mdpage.urw_mappings = 0; \ (pg)->mdpage.k_mappings = 0; \ } while (/*CONSTCOND*/0) struct l1_ttable; struct l2_dtable; /* * The number of L2 descriptor tables which can be tracked by an l2_dtable. * A bucket size of 16 provides for 16MB of contiguous virtual address * space per l2_dtable. Most processes will, therefore, require only two or * three of these to map their whole working set. */ #define L2_BUCKET_LOG2 4 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) /* * Given the above "L2-descriptors-per-l2_dtable" constant, the number * of l2_dtable structures required to track all possible page descriptors * mappable by an L1 translation table is given by the following constants: */ #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2) #define L2_SIZE (1 << L2_LOG2) struct pmap { struct mtx pm_mtx; u_int8_t pm_domain; struct l1_ttable *pm_l1; struct l2_dtable *pm_l2[L2_SIZE]; pd_entry_t *pm_pdir; /* KVA of page directory */ int pm_count; /* reference count */ int pm_active; /* active on cpus */ struct pmap_statistics pm_stats; /* pmap statictics */ TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */ }; typedef struct pmap *pmap_t; #ifdef _KERNEL extern pmap_t kernel_pmap; #define pmap_kernel() kernel_pmap #define PMAP_ASSERT_LOCKED(pmap) \ mtx_assert(&(pmap)->pm_mtx, MA_OWNED) #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ NULL, MTX_DEF | MTX_DUPOK) #define PMAP_OWNED(pmap) mtx_owned(&(pmap)->pm_mtx) #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_list. */ typedef struct pv_entry { pmap_t pv_pmap; /* pmap where mapping lies */ vm_offset_t pv_va; /* virtual address for mapping */ TAILQ_ENTRY(pv_entry) pv_list; TAILQ_ENTRY(pv_entry) pv_plist; int pv_flags; /* flags (wired, etc...) */ } *pv_entry_t; #define PV_ENTRY_NULL ((pv_entry_t) 0) #ifdef _KERNEL boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **); /* * virtual address to page table entry and * to physical address. Likewise for alternate address space. * Note: these work recursively, thus vtopte of a pte will give * the corresponding pde that in turn maps it. */ /* * The current top of kernel VM. */ extern vm_offset_t pmap_curmaxkvaddr; struct pcb; void pmap_set_pcb_pagedir(pmap_t, struct pcb *); /* Virtual address to page table entry */ static __inline pt_entry_t * vtopte(vm_offset_t va) { pd_entry_t *pdep; pt_entry_t *ptep; if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE) return (NULL); return (ptep); } extern vm_offset_t phys_avail[]; extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; void pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *); void pmap_kenter(vm_offset_t va, vm_paddr_t pa); void pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa); void pmap_kenter_user(vm_offset_t va, vm_paddr_t pa); void pmap_kremove(vm_offset_t); void *pmap_mapdev(vm_offset_t, vm_size_t); void pmap_unmapdev(vm_offset_t, vm_size_t); vm_page_t pmap_use_pt(pmap_t, vm_offset_t); void pmap_debug(int); void pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int); void pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *); vm_size_t pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int); void pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot, int cache); int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int); /* * Definitions for MMU domains */ #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ #define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */ /* * The new pmap ensures that page-tables are always mapping Write-Thru. * Thus, on some platforms we can run fast and loose and avoid syncing PTEs * on every change. * * Unfortunately, not all CPUs have a write-through cache mode. So we * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, * and if there is the chance for PTE syncs to be needed, we define * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) * the code. */ extern int pmap_needs_pte_sync; /* * These macros define the various bit masks in the PTE. * * We use these macros since we use different bits on different processor * models. */ #define L1_S_PROT_U (L1_S_AP(AP_U)) #define L1_S_PROT_W (L1_S_AP(AP_W)) #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W) #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\ L1_S_XSCALE_TEX(TEX_XSCALE_T)) #define L2_L_PROT_U (L2_AP(AP_U)) #define L2_L_PROT_W (L2_AP(AP_W)) #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W) #define L2_L_CACHE_MASK_generic (L2_B|L2_C) #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \ L2_XSCALE_L_TEX(TEX_XSCALE_T)) #define L2_S_PROT_U_generic (L2_AP(AP_U)) #define L2_S_PROT_W_generic (L2_AP(AP_W)) #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W) #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W) #define L2_S_CACHE_MASK_generic (L2_B|L2_C) #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \ L2_XSCALE_T_TEX(TEX_XSCALE_X)) #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) #define L1_S_PROTO_xscale (L1_TYPE_S) #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) #define L1_C_PROTO_xscale (L1_TYPE_C) #define L2_L_PROTO (L2_TYPE_L) #define L2_S_PROTO_generic (L2_TYPE_S) #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS) /* * User-visible names for the ones that vary with MMU class. */ #if ARM_NMMUS > 1 /* More than one MMU class configured; use variables. */ #define L2_S_PROT_U pte_l2_s_prot_u #define L2_S_PROT_W pte_l2_s_prot_w #define L2_S_PROT_MASK pte_l2_s_prot_mask #define L1_S_CACHE_MASK pte_l1_s_cache_mask #define L2_L_CACHE_MASK pte_l2_l_cache_mask #define L2_S_CACHE_MASK pte_l2_s_cache_mask #define L1_S_PROTO pte_l1_s_proto #define L1_C_PROTO pte_l1_c_proto #define L2_S_PROTO pte_l2_s_proto #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 #define L2_S_PROT_U L2_S_PROT_U_generic #define L2_S_PROT_W L2_S_PROT_W_generic #define L2_S_PROT_MASK L2_S_PROT_MASK_generic #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic #define L1_S_PROTO L1_S_PROTO_generic #define L1_C_PROTO L1_C_PROTO_generic #define L2_S_PROTO L2_S_PROTO_generic #elif ARM_MMU_XSCALE == 1 #define L2_S_PROT_U L2_S_PROT_U_xscale #define L2_S_PROT_W L2_S_PROT_W_xscale #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale #define L1_S_PROTO L1_S_PROTO_xscale #define L1_C_PROTO L1_C_PROTO_xscale #define L2_S_PROTO L2_S_PROTO_xscale #endif /* ARM_NMMUS > 1 */ #ifdef SKYEYE_WORKAROUNDS #define PMAP_NEEDS_PTE_SYNC 1 #define PMAP_INCLUDE_PTE_SYNC #else #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1) #define PMAP_NEEDS_PTE_SYNC 1 #define PMAP_INCLUDE_PTE_SYNC #elif defined(CPU_XSCALE_81342) #define PMAP_NEEDS_PTE_SYNC 1 #define PMAP_INCLUDE_PTE_SYNC #elif (ARM_MMU_SA1 == 0) #define PMAP_NEEDS_PTE_SYNC 0 #endif #endif /* * These macros return various bits based on kernel/user and protection. * Note that the compiler will usually fold these at compile time. */ #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)) #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)) #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)) /* * Macros to test if a mapping is mappable with an L1 Section mapping * or an L2 Large Page mapping. */ #define L1_S_MAPPABLE_P(va, pa, size) \ ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) #define L2_L_MAPPABLE_P(va, pa, size) \ ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) /* * Provide a fallback in case we were not able to determine it at * compile-time. */ #ifndef PMAP_NEEDS_PTE_SYNC #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync #define PMAP_INCLUDE_PTE_SYNC #endif #define PTE_SYNC(pte) \ do { \ if (PMAP_NEEDS_PTE_SYNC) { \ cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\ cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\ }\ } while (/*CONSTCOND*/0) #define PTE_SYNC_RANGE(pte, cnt) \ do { \ if (PMAP_NEEDS_PTE_SYNC) { \ cpu_dcache_wb_range((vm_offset_t)(pte), \ (cnt) << 2); /* * sizeof(pt_entry_t) */ \ cpu_l2cache_wb_range((vm_offset_t)(pte), \ (cnt) << 2); /* * sizeof(pt_entry_t) */ \ } \ } while (/*CONSTCOND*/0) extern pt_entry_t pte_l1_s_cache_mode; extern pt_entry_t pte_l1_s_cache_mask; extern pt_entry_t pte_l2_l_cache_mode; extern pt_entry_t pte_l2_l_cache_mask; extern pt_entry_t pte_l2_s_cache_mode; extern pt_entry_t pte_l2_s_cache_mask; extern pt_entry_t pte_l1_s_cache_mode_pt; extern pt_entry_t pte_l2_l_cache_mode_pt; extern pt_entry_t pte_l2_s_cache_mode_pt; extern pt_entry_t pte_l2_s_prot_u; extern pt_entry_t pte_l2_s_prot_w; extern pt_entry_t pte_l2_s_prot_mask; extern pt_entry_t pte_l1_s_proto; extern pt_entry_t pte_l1_c_proto; extern pt_entry_t pte_l2_s_proto; extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t); extern void (*pmap_zero_page_func)(vm_paddr_t, int, int); #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342) void pmap_copy_page_generic(vm_paddr_t, vm_paddr_t); void pmap_zero_page_generic(vm_paddr_t, int, int); void pmap_pte_init_generic(void); #if defined(CPU_ARM8) void pmap_pte_init_arm8(void); #endif #if defined(CPU_ARM9) void pmap_pte_init_arm9(void); #endif /* CPU_ARM9 */ #if defined(CPU_ARM10) void pmap_pte_init_arm10(void); #endif /* CPU_ARM10 */ #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ #if /* ARM_MMU_SA1 == */1 void pmap_pte_init_sa1(void); #endif /* ARM_MMU_SA1 == 1 */ #if ARM_MMU_XSCALE == 1 void pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t); void pmap_zero_page_xscale(vm_paddr_t, int, int); void pmap_pte_init_xscale(void); void xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t); void pmap_use_minicache(vm_offset_t, vm_size_t); #endif /* ARM_MMU_XSCALE == 1 */ #if defined(CPU_XSCALE_81342) #define ARM_HAVE_SUPERSECTIONS #endif #define PTE_KERNEL 0 #define PTE_USER 1 #define l1pte_valid(pde) ((pde) != 0) #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT) #define l2pte_valid(pte) ((pte) != 0) #define l2pte_pa(pte) ((pte) & L2_S_FRAME) #define l2pte_minidata(pte) (((pte) & \ (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\ == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X))) /* L1 and L2 page table macros */ #define pmap_pde_v(pde) l1pte_valid(*(pde)) #define pmap_pde_section(pde) l1pte_section_p(*(pde)) #define pmap_pde_page(pde) l1pte_page_p(*(pde)) #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) #define pmap_pte_v(pte) l2pte_valid(*(pte)) #define pmap_pte_pa(pte) l2pte_pa(*(pte)) /* * Flags that indicate attributes of pages or mappings of pages. * * The PVF_MOD and PVF_REF flags are stored in the mdpage for each * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual * pv_entry's for each page. They live in the same "namespace" so * that we can clear multiple attributes at a time. * * Note the "non-cacheable" flag generally means the page has * multiple mappings in a given address space. */ #define PVF_MOD 0x01 /* page is modified */ #define PVF_REF 0x02 /* page is referenced */ #define PVF_WIRED 0x04 /* mapping is wired */ #define PVF_WRITE 0x08 /* mapping is writable */ #define PVF_EXEC 0x10 /* mapping is executable */ #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ #define PVF_NC (PVF_UNC|PVF_KNC) void vector_page_setprot(int); void pmap_update(pmap_t); /* * This structure is used by machine-dependent code to describe * static mappings of devices, created at bootstrap time. */ struct pmap_devmap { vm_offset_t pd_va; /* virtual address */ vm_paddr_t pd_pa; /* physical address */ vm_size_t pd_size; /* size of region */ vm_prot_t pd_prot; /* protection code */ int pd_cache; /* cache attributes */ }; const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t); const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t); void pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *); void pmap_devmap_register(const struct pmap_devmap *); #define SECTION_CACHE 0x1 #define SECTION_PT 0x2 void pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags); #ifdef ARM_HAVE_SUPERSECTIONS void pmap_kenter_supersection(vm_offset_t, uint64_t, int flags); #endif extern char *_tmppt; void pmap_postinit(void); #ifdef ARM_USE_SMALL_ALLOC void arm_add_smallalloc_pages(void *, void *, int, int); vm_offset_t arm_ptovirt(vm_paddr_t); void arm_init_smallalloc(void); struct arm_small_page { void *addr; TAILQ_ENTRY(arm_small_page) pg_list; }; #endif #define ARM_NOCACHE_KVA_SIZE 0x1000000 extern vm_offset_t arm_nocache_startaddr; void *arm_remap_nocache(void *, vm_size_t); void arm_unmap_nocache(void *, vm_size_t); extern vm_paddr_t dump_avail[]; #endif /* _KERNEL */ #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */