/* $NetBSD: hpc_machdep.c,v 1.70 2003/09/16 08:18:22 agc Exp $ */ /*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_md.h" #define _ARM32_BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MDROOT_ADDR 0xd0400000 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */ #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_IO 3 /* Page table for mapping IO */ #define KERNEL_PT_IRQ 2 /* Page table for mapping irq handler */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_L1 4 /* Page table for mapping l1pt */ #define KERNEL_PT_VMDATA 5 /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 7 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #define UND_STACK_SIZE 1 #define KERNEL_VM_BASE (KERNBASE + 0x00100000) #define KERNEL_VM_SIZE 0x05000000 extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; struct pv_addr kernel_pt_table[NUM_KERNEL_PTS]; extern void *_end; extern vm_offset_t sa1110_uart_vaddr; extern vm_offset_t sa1_cache_clean_addr; extern int *end; struct pcpu __pcpu; struct pcpu *pcpup = &__pcpu; #ifndef MD_ROOT_SIZE #define MD_ROOT_SIZE 65535 #endif /* Physical and virtual addresses for some global pages */ vm_paddr_t phys_avail[10]; vm_paddr_t dump_avail[4]; vm_paddr_t physical_start; vm_paddr_t physical_end; vm_paddr_t physical_freestart; vm_offset_t physical_pages; struct pv_addr systempage; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; static struct trapframe proc0_tf; /* Static device mappings. */ static const struct pmap_devmap assabet_devmap[] = { /* * Map the on-board devices VA == PA so that we can access them * with the MMU on or off. */ { SACOM1_VBASE, SACOM1_BASE, SACOM1_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { SAIPIC_BASE, SAIPIC_BASE, SAIPIC_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; struct arm32_dma_range * bus_dma_get_range(void) { return (NULL); } int bus_dma_get_range_nb(void) { return (0); } void cpu_reset() { cpu_halt(); while (1); } #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2) void * initarm(void *arg, void *arg2) { struct pcpu *pc; struct pv_addr kernel_l1pt; struct pv_addr md_addr; struct pv_addr md_bla; struct pv_addr dpcpu; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t lastalloced; vm_offset_t lastaddr; uint32_t memsize = 32 * 1024 * 1024; sa1110_uart_vaddr = SACOM1_VBASE; boothowto = RB_VERBOSE | RB_SINGLE; cninit(); set_cpufuncs(); lastaddr = fake_preload_metadata(); physmem = memsize / PAGE_SIZE; pc = &__pcpu; pcpu_init(pc, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); physical_start = (vm_offset_t) KERNBASE; physical_end = lastaddr; physical_freestart = (((vm_offset_t)physical_end) + PAGE_MASK) & ~PAGE_MASK; md_addr.pv_va = md_addr.pv_pa = MDROOT_ADDR; freemempos = (vm_offset_t)round_page(physical_freestart); memset((void *)freemempos, 0, 256*1024); /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa; #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += ((np) * PAGE_SIZE);\ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while ((freemempos & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); valloc_pages(md_bla, L2_TABLE_SIZE / PAGE_SIZE); alloc_pages(sa1_cache_clean_addr, CPU_SA110_CACHE_CLEAN_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa; } } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); lastalloced = kernelstack.pv_va; /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_KERNEL]); pmap_link_l2pt(l1pagetable, 0xd0000000, &kernel_pt_table[KERNEL_PT_IO]); pmap_link_l2pt(l1pagetable, lastalloced & ~((L1_S_SIZE * 4) - 1), &kernel_pt_table[KERNEL_PT_L1]); pmap_link_l2pt(l1pagetable, 0x90000000, &kernel_pt_table[KERNEL_PT_IRQ]); pmap_link_l2pt(l1pagetable, MDROOT_ADDR, &md_bla); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00100000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); pmap_map_chunk(l1pagetable, KERNBASE, KERNBASE, ((uint32_t)lastaddr - KERNBASE), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the DPCPU pages */ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, md_addr.pv_va, md_addr.pv_pa, MD_ROOT_SIZE * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } pmap_map_chunk(l1pagetable, md_bla.pv_va, md_bla.pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, assabet_devmap); pmap_map_chunk(l1pagetable, sa1_cache_clean_addr, 0xf0000000, CPU_SA110_CACHE_CLEAN_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); bootverbose = 1; /* Set stack for exception handlers */ proc_linkup0(&proc0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; /* Enable MMU, I-cache, D-cache, write buffer. */ cpufunc_control(0x337f, 0x107d); arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); pmap_curmaxkvaddr = freemempos + KERNEL_PT_VMDATA_NUM * 0x400000; dump_avail[0] = phys_avail[0] = round_page(virtual_avail); dump_avail[1] = phys_avail[1] = 0xc0000000 + 0x02000000 - 1; dump_avail[2] = phys_avail[2] = 0; dump_avail[3] = phys_avail[3] = 0; mutex_init(); pmap_bootstrap(freemempos, 0xd0000000, &kernel_l1pt); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }