/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include /* * Checksum vectors. * * In the SPA, everything is checksummed. We support checksum vectors * for three distinct reasons: * * 1. Different kinds of data need different levels of protection. * For SPA metadata, we always want a very strong checksum. * For user data, we let users make the trade-off between speed * and checksum strength. * * 2. Cryptographic hash and MAC algorithms are an area of active research. * It is likely that in future hash functions will be at least as strong * as current best-of-breed, and may be substantially faster as well. * We want the ability to take advantage of these new hashes as soon as * they become available. * * 3. If someone develops hardware that can compute a strong hash quickly, * we want the ability to take advantage of that hardware. * * Of course, we don't want a checksum upgrade to invalidate existing * data, so we store the checksum *function* in five bits of the DVA. * This gives us room for up to 32 different checksum functions. * * When writing a block, we always checksum it with the latest-and-greatest * checksum function of the appropriate strength. When reading a block, * we compare the expected checksum against the actual checksum, which we * compute via the checksum function specified in the DVA encoding. */ /*ARGSUSED*/ static void zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp) { ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); } zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { {{NULL, NULL}, 0, 0, "inherit"}, {{NULL, NULL}, 0, 0, "on"}, {{zio_checksum_off, zio_checksum_off}, 0, 0, "off"}, {{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 1, "label"}, {{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 1, "gang_header"}, {{fletcher_2_native, fletcher_2_byteswap}, 0, 1, "zilog"}, {{fletcher_2_native, fletcher_2_byteswap}, 0, 0, "fletcher2"}, {{fletcher_4_native, fletcher_4_byteswap}, 1, 0, "fletcher4"}, {{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 0, "SHA256"}, }; uint8_t zio_checksum_select(uint8_t child, uint8_t parent) { ASSERT(child < ZIO_CHECKSUM_FUNCTIONS); ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS); ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); if (child == ZIO_CHECKSUM_INHERIT) return (parent); if (child == ZIO_CHECKSUM_ON) return (ZIO_CHECKSUM_ON_VALUE); return (child); } /* * Generate the checksum. */ void zio_checksum(uint_t checksum, zio_cksum_t *zcp, void *data, uint64_t size) { zio_block_tail_t *zbt = (zio_block_tail_t *)((char *)data + size) - 1; zio_checksum_info_t *ci = &zio_checksum_table[checksum]; zio_cksum_t zbt_cksum; ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); ASSERT(ci->ci_func[0] != NULL); if (ci->ci_zbt) { *zcp = zbt->zbt_cksum; zbt->zbt_magic = ZBT_MAGIC; ci->ci_func[0](data, size, &zbt_cksum); zbt->zbt_cksum = zbt_cksum; } else { ci->ci_func[0](data, size, zcp); } } int zio_checksum_error(zio_t *zio) { blkptr_t *bp = zio->io_bp; zio_cksum_t zc = bp->blk_cksum; uint_t checksum = BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp); int byteswap = BP_SHOULD_BYTESWAP(bp); void *data = zio->io_data; uint64_t size = ZIO_GET_IOSIZE(zio); zio_block_tail_t *zbt = (zio_block_tail_t *)((char *)data + size) - 1; zio_checksum_info_t *ci = &zio_checksum_table[checksum]; zio_cksum_t actual_cksum, expected_cksum; if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) return (EINVAL); if (ci->ci_zbt) { if (checksum == ZIO_CHECKSUM_GANG_HEADER) zio_set_gang_verifier(zio, &zc); if (zbt->zbt_magic == BSWAP_64(ZBT_MAGIC)) { expected_cksum = zbt->zbt_cksum; byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); zbt->zbt_cksum = zc; byteswap_uint64_array(&zbt->zbt_cksum, sizeof (zio_cksum_t)); ci->ci_func[1](data, size, &actual_cksum); zbt->zbt_cksum = expected_cksum; byteswap_uint64_array(&zbt->zbt_cksum, sizeof (zio_cksum_t)); } else { expected_cksum = zbt->zbt_cksum; zbt->zbt_cksum = zc; ci->ci_func[0](data, size, &actual_cksum); zbt->zbt_cksum = expected_cksum; } zc = expected_cksum; } else { ASSERT(!BP_IS_GANG(bp)); ci->ci_func[byteswap](data, size, &actual_cksum); } if (!ZIO_CHECKSUM_EQUAL(actual_cksum, zc)) return (ECKSUM); if (zio_injection_enabled && !zio->io_error) return (zio_handle_fault_injection(zio, ECKSUM)); return (0); }