/****************************************************************************** Copyright (c) 2001-2008, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD$*/ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #include "opt_inet.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IGB_TIMESYNC #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1000_api.h" #include "e1000_82575.h" #include "if_igb.h" /********************************************************************* * Set this to one to display debug statistics *********************************************************************/ int igb_display_debug_stats = 0; /********************************************************************* * Driver version: *********************************************************************/ char igb_driver_version[] = "version - 1.4.1"; /********************************************************************* * PCI Device ID Table * * Used by probe to select devices to load on * Last field stores an index into e1000_strings * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } *********************************************************************/ static igb_vendor_info_t igb_vendor_info_array[] = { { 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82576, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82576_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82576_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, /* required last entry */ { 0, 0, 0, 0, 0} }; /********************************************************************* * Table of branding strings for all supported NICs. *********************************************************************/ static char *igb_strings[] = { "Intel(R) PRO/1000 Network Connection" }; /********************************************************************* * Function prototypes *********************************************************************/ static int igb_probe(device_t); static int igb_attach(device_t); static int igb_detach(device_t); static int igb_shutdown(device_t); static int igb_suspend(device_t); static int igb_resume(device_t); static void igb_start(struct ifnet *); static void igb_start_locked(struct tx_ring *, struct ifnet *ifp); static int igb_ioctl(struct ifnet *, u_long, caddr_t); static void igb_watchdog(struct adapter *); static void igb_init(void *); static void igb_init_locked(struct adapter *); static void igb_stop(void *); static void igb_media_status(struct ifnet *, struct ifmediareq *); static int igb_media_change(struct ifnet *); static void igb_identify_hardware(struct adapter *); static int igb_allocate_pci_resources(struct adapter *); static int igb_allocate_msix(struct adapter *); static int igb_allocate_legacy(struct adapter *); static int igb_setup_msix(struct adapter *); static void igb_free_pci_resources(struct adapter *); static void igb_local_timer(void *); static int igb_hardware_init(struct adapter *); static void igb_setup_interface(device_t, struct adapter *); static int igb_allocate_queues(struct adapter *); static void igb_configure_queues(struct adapter *); static int igb_allocate_transmit_buffers(struct tx_ring *); static void igb_setup_transmit_structures(struct adapter *); static void igb_setup_transmit_ring(struct tx_ring *); static void igb_initialize_transmit_units(struct adapter *); static void igb_free_transmit_structures(struct adapter *); static void igb_free_transmit_buffers(struct tx_ring *); static int igb_allocate_receive_buffers(struct rx_ring *); static int igb_setup_receive_structures(struct adapter *); static int igb_setup_receive_ring(struct rx_ring *); static void igb_initialize_receive_units(struct adapter *); static void igb_free_receive_structures(struct adapter *); static void igb_free_receive_buffers(struct rx_ring *); static void igb_enable_intr(struct adapter *); static void igb_disable_intr(struct adapter *); static void igb_update_stats_counters(struct adapter *); static bool igb_txeof(struct tx_ring *); static bool igb_rxeof(struct rx_ring *, int); #ifndef __NO_STRICT_ALIGNMENT static int igb_fixup_rx(struct rx_ring *); #endif static void igb_rx_checksum(u32, struct mbuf *); static int igb_tx_ctx_setup(struct tx_ring *, struct mbuf *); static bool igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *); static void igb_set_promisc(struct adapter *); static void igb_disable_promisc(struct adapter *); static void igb_set_multi(struct adapter *); static void igb_print_hw_stats(struct adapter *); static void igb_update_link_status(struct adapter *); static int igb_get_buf(struct rx_ring *, int); #ifdef IGB_HW_VLAN_SUPPORT static void igb_register_vlan(void *, struct ifnet *, u16); static void igb_unregister_vlan(void *, struct ifnet *, u16); #endif static int igb_xmit(struct tx_ring *, struct mbuf **); static int igb_dma_malloc(struct adapter *, bus_size_t, struct igb_dma_alloc *, int); static void igb_dma_free(struct adapter *, struct igb_dma_alloc *); static void igb_print_debug_info(struct adapter *); static void igb_print_nvm_info(struct adapter *); static int igb_is_valid_ether_addr(u8 *); static int igb_sysctl_stats(SYSCTL_HANDLER_ARGS); static int igb_sysctl_debug_info(SYSCTL_HANDLER_ARGS); /* Management and WOL Support */ static void igb_init_manageability(struct adapter *); static void igb_release_manageability(struct adapter *); static void igb_get_hw_control(struct adapter *); static void igb_release_hw_control(struct adapter *); static void igb_enable_wakeup(device_t); #ifdef IGB_TIMESYNC /* Precision Time sync support */ static int igb_tsync_init(struct adapter *); static void igb_tsync_disable(struct adapter *); #endif static int igb_irq_fast(void *); static void igb_add_rx_process_limit(struct adapter *, const char *, const char *, int *, int); static void igb_handle_rxtx(void *context, int pending); static void igb_handle_tx(void *context, int pending); static void igb_handle_rx(void *context, int pending); static void igb_handle_link(void *context, int pending); /* These are MSIX only irq handlers */ static void igb_msix_rx(void *); static void igb_msix_tx(void *); static void igb_msix_link(void *); /* Adaptive Interrupt Moderation */ static void igb_update_aim(struct rx_ring *); /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ static device_method_t igb_methods[] = { /* Device interface */ DEVMETHOD(device_probe, igb_probe), DEVMETHOD(device_attach, igb_attach), DEVMETHOD(device_detach, igb_detach), DEVMETHOD(device_shutdown, igb_shutdown), DEVMETHOD(device_suspend, igb_suspend), DEVMETHOD(device_resume, igb_resume), {0, 0} }; static driver_t igb_driver = { "igb", igb_methods, sizeof(struct adapter), }; static devclass_t igb_devclass; DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); MODULE_DEPEND(igb, pci, 1, 1, 1); MODULE_DEPEND(igb, ether, 1, 1, 1); /********************************************************************* * Tunable default values. *********************************************************************/ /* Descriptor defaults */ static int igb_rxd = IGB_DEFAULT_RXD; static int igb_txd = IGB_DEFAULT_TXD; TUNABLE_INT("hw.igb.rxd", &igb_rxd); TUNABLE_INT("hw.igb.txd", &igb_txd); /* ** These parameters are used in Adaptive ** Interrupt Moderation. The value is set ** into EITR and controls the interrupt ** frequency. They can be modified but ** be careful in tuning them. */ static int igb_enable_aim = TRUE; TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim); static int igb_low_latency = IGB_LOW_LATENCY; TUNABLE_INT("hw.igb.low_latency", &igb_low_latency); static int igb_ave_latency = IGB_AVE_LATENCY; TUNABLE_INT("hw.igb.ave_latency", &igb_ave_latency); static int igb_bulk_latency = IGB_BULK_LATENCY; TUNABLE_INT("hw.igb.bulk_latency", &igb_bulk_latency); /* ** IF YOU CHANGE THESE: be sure and change IGB_MSIX_VEC in ** if_igb.h to match. These can be autoconfigured if set to ** 0, it will then be based on number of cpus. */ static int igb_tx_queues = 1; static int igb_rx_queues = 1; TUNABLE_INT("hw.igb.tx_queues", &igb_tx_queues); TUNABLE_INT("hw.igb.rx_queues", &igb_rx_queues); /* How many packets rxeof tries to clean at a time */ static int igb_rx_process_limit = 100; TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit); /* Flow control setting - default to none */ static int igb_fc_setting = 0; TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting); /* * Should the driver do LRO on the RX end * this can be toggled on the fly, but the * interface must be reset (down/up) for it * to take effect. */ static int igb_enable_lro = 1; TUNABLE_INT("hw.igb.enable_lro", &igb_enable_lro); extern int mp_ncpus; /********************************************************************* * Device identification routine * * igb_probe determines if the driver should be loaded on * adapter based on PCI vendor/device id of the adapter. * * return BUS_PROBE_DEFAULT on success, positive on failure *********************************************************************/ static int igb_probe(device_t dev) { char adapter_name[60]; uint16_t pci_vendor_id = 0; uint16_t pci_device_id = 0; uint16_t pci_subvendor_id = 0; uint16_t pci_subdevice_id = 0; igb_vendor_info_t *ent; INIT_DEBUGOUT("igb_probe: begin"); pci_vendor_id = pci_get_vendor(dev); if (pci_vendor_id != IGB_VENDOR_ID) return (ENXIO); pci_device_id = pci_get_device(dev); pci_subvendor_id = pci_get_subvendor(dev); pci_subdevice_id = pci_get_subdevice(dev); ent = igb_vendor_info_array; while (ent->vendor_id != 0) { if ((pci_vendor_id == ent->vendor_id) && (pci_device_id == ent->device_id) && ((pci_subvendor_id == ent->subvendor_id) || (ent->subvendor_id == PCI_ANY_ID)) && ((pci_subdevice_id == ent->subdevice_id) || (ent->subdevice_id == PCI_ANY_ID))) { sprintf(adapter_name, "%s %s", igb_strings[ent->index], igb_driver_version); device_set_desc_copy(dev, adapter_name); return (BUS_PROBE_DEFAULT); } ent++; } return (ENXIO); } /********************************************************************* * Device initialization routine * * The attach entry point is called when the driver is being loaded. * This routine identifies the type of hardware, allocates all resources * and initializes the hardware. * * return 0 on success, positive on failure *********************************************************************/ static int igb_attach(device_t dev) { struct adapter *adapter; int error = 0; u16 eeprom_data; INIT_DEBUGOUT("igb_attach: begin"); adapter = device_get_softc(dev); adapter->dev = adapter->osdep.dev = dev; IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev)); /* SYSCTL stuff */ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, igb_sysctl_debug_info, "I", "Debug Information"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, igb_sysctl_stats, "I", "Statistics"); SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW, &igb_fc_setting, 0, "Flow Control"); SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), OID_AUTO, "enable_lro", CTLTYPE_INT|CTLFLAG_RW, &igb_enable_lro, 0, "Large Receive Offload"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW, &igb_enable_aim, 1, "Interrupt Moderation"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "low_latency", CTLTYPE_INT|CTLFLAG_RW, &igb_low_latency, 1, "Low Latency"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "ave_latency", CTLTYPE_INT|CTLFLAG_RW, &igb_ave_latency, 1, "Average Latency"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "bulk_latency", CTLTYPE_INT|CTLFLAG_RW, &igb_bulk_latency, 1, "Bulk Latency"); callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0); /* Determine hardware and mac info */ igb_identify_hardware(adapter); /* Setup PCI resources */ if (igb_allocate_pci_resources(adapter)) { device_printf(dev, "Allocation of PCI resources failed\n"); error = ENXIO; goto err_pci; } /* Do Shared Code initialization */ if (e1000_setup_init_funcs(&adapter->hw, TRUE)) { device_printf(dev, "Setup of Shared code failed\n"); error = ENXIO; goto err_pci; } e1000_get_bus_info(&adapter->hw); /* Sysctls for limiting the amount of work done in the taskqueue */ igb_add_rx_process_limit(adapter, "rx_processing_limit", "max number of rx packets to process", &adapter->rx_process_limit, igb_rx_process_limit); /* * Validate number of transmit and receive descriptors. It * must not exceed hardware maximum, and must be multiple * of E1000_DBA_ALIGN. */ if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 || (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) { device_printf(dev, "Using %d TX descriptors instead of %d!\n", IGB_DEFAULT_TXD, igb_txd); adapter->num_tx_desc = IGB_DEFAULT_TXD; } else adapter->num_tx_desc = igb_txd; if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 || (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) { device_printf(dev, "Using %d RX descriptors instead of %d!\n", IGB_DEFAULT_RXD, igb_rxd); adapter->num_rx_desc = IGB_DEFAULT_RXD; } else adapter->num_rx_desc = igb_rxd; adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.autoneg_wait_to_complete = FALSE; adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; adapter->rx_buffer_len = 2048; /* Copper options */ if (adapter->hw.phy.media_type == e1000_media_type_copper) { adapter->hw.phy.mdix = AUTO_ALL_MODES; adapter->hw.phy.disable_polarity_correction = FALSE; adapter->hw.phy.ms_type = IGB_MASTER_SLAVE; } /* * Set the frame limits assuming * standard ethernet sized frames. */ adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE; /* ** Allocate and Setup Queues */ if (igb_allocate_queues(adapter)) { error = ENOMEM; goto err_pci; } /* Make sure we have a good EEPROM before we read from it */ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { /* ** Some PCI-E parts fail the first check due to ** the link being in sleep state, call it again, ** if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { device_printf(dev, "The EEPROM Checksum Is Not Valid\n"); error = EIO; goto err_late; } } /* Initialize the hardware */ if (igb_hardware_init(adapter)) { device_printf(dev, "Unable to initialize the hardware\n"); error = EIO; goto err_late; } /* Copy the permanent MAC address out of the EEPROM */ if (e1000_read_mac_addr(&adapter->hw) < 0) { device_printf(dev, "EEPROM read error while reading MAC" " address\n"); error = EIO; goto err_late; } if (!igb_is_valid_ether_addr(adapter->hw.mac.addr)) { device_printf(dev, "Invalid MAC address\n"); error = EIO; goto err_late; } /* ** Configure Interrupts */ if (adapter->msix > 1) /* MSIX */ error = igb_allocate_msix(adapter); else /* MSI or Legacy */ error = igb_allocate_legacy(adapter); if (error) goto err_late; /* Setup OS specific network interface */ igb_setup_interface(dev, adapter); /* Initialize statistics */ igb_update_stats_counters(adapter); adapter->hw.mac.get_link_status = 1; igb_update_link_status(adapter); /* Indicate SOL/IDER usage */ if (e1000_check_reset_block(&adapter->hw)) device_printf(dev, "PHY reset is blocked due to SOL/IDER session.\n"); /* Determine if we have to control management hardware */ adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); /* * Setup Wake-on-Lan */ /* APME bit in EEPROM is mapped to WUC.APME */ eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME; if (eeprom_data) adapter->wol = E1000_WUFC_MAG; #ifdef IGB_HW_VLAN_SUPPORT /* Register for VLAN events */ adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config, igb_register_vlan, 0, EVENTHANDLER_PRI_FIRST); adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, igb_unregister_vlan, 0, EVENTHANDLER_PRI_FIRST); #endif /* Tell the stack that the interface is not active */ adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); INIT_DEBUGOUT("igb_attach: end"); return (0); err_late: igb_free_transmit_structures(adapter); igb_free_receive_structures(adapter); igb_release_hw_control(adapter); err_pci: igb_free_pci_resources(adapter); IGB_CORE_LOCK_DESTROY(adapter); return (error); } /********************************************************************* * Device removal routine * * The detach entry point is called when the driver is being removed. * This routine stops the adapter and deallocates all the resources * that were allocated for driver operation. * * return 0 on success, positive on failure *********************************************************************/ static int igb_detach(device_t dev) { struct adapter *adapter = device_get_softc(dev); struct ifnet *ifp = adapter->ifp; INIT_DEBUGOUT("igb_detach: begin"); /* Make sure VLANS are not using driver */ if (adapter->ifp->if_vlantrunk != NULL) { device_printf(dev,"Vlan in use, detach first\n"); return (EBUSY); } IGB_CORE_LOCK(adapter); adapter->in_detach = 1; igb_stop(adapter); IGB_CORE_UNLOCK(adapter); e1000_phy_hw_reset(&adapter->hw); /* Give control back to firmware */ igb_release_manageability(adapter); igb_release_hw_control(adapter); if (adapter->wol) { E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); igb_enable_wakeup(dev); } #ifdef IGB_HW_VLAN_SUPPORT /* Unregister VLAN events */ if (adapter->vlan_attach != NULL) EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach); if (adapter->vlan_detach != NULL) EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach); #endif ether_ifdetach(adapter->ifp); callout_drain(&adapter->timer); igb_free_pci_resources(adapter); bus_generic_detach(dev); if_free(ifp); igb_free_transmit_structures(adapter); igb_free_receive_structures(adapter); IGB_CORE_LOCK_DESTROY(adapter); return (0); } /********************************************************************* * * Shutdown entry point * **********************************************************************/ static int igb_shutdown(device_t dev) { return igb_suspend(dev); } /* * Suspend/resume device methods. */ static int igb_suspend(device_t dev) { struct adapter *adapter = device_get_softc(dev); IGB_CORE_LOCK(adapter); igb_stop(adapter); igb_release_manageability(adapter); igb_release_hw_control(adapter); if (adapter->wol) { E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); igb_enable_wakeup(dev); } IGB_CORE_UNLOCK(adapter); return bus_generic_suspend(dev); } static int igb_resume(device_t dev) { struct adapter *adapter = device_get_softc(dev); struct ifnet *ifp = adapter->ifp; IGB_CORE_LOCK(adapter); igb_init_locked(adapter); igb_init_manageability(adapter); if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) igb_start(ifp); IGB_CORE_UNLOCK(adapter); return bus_generic_resume(dev); } /********************************************************************* * Transmit entry point * * igb_start is called by the stack to initiate a transmit. * The driver will remain in this routine as long as there are * packets to transmit and transmit resources are available. * In case resources are not available stack is notified and * the packet is requeued. **********************************************************************/ static void igb_start_locked(struct tx_ring *txr, struct ifnet *ifp) { struct adapter *adapter = ifp->if_softc; struct mbuf *m_head; IGB_TX_LOCK_ASSERT(txr); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; if (!adapter->link_active) return; while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Encapsulation can modify our pointer, and or make it * NULL on failure. In that event, we can't requeue. */ if (igb_xmit(txr, &m_head)) { if (m_head == NULL) break; ifp->if_drv_flags |= IFF_DRV_OACTIVE; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); break; } /* Send a copy of the frame to the BPF listener */ ETHER_BPF_MTAP(ifp, m_head); /* Set timeout in case hardware has problems transmitting. */ txr->watchdog_timer = IGB_TX_TIMEOUT; } } static void igb_start(struct ifnet *ifp) { struct adapter *adapter = ifp->if_softc; struct tx_ring *txr; u32 queue = 0; /* ** This is really just here for testing ** TX multiqueue, ultimately what is ** needed is the flow support in the stack ** and appropriate logic here to deal with ** it. -jfv */ if (adapter->num_tx_queues > 1) queue = (curcpu % adapter->num_tx_queues); txr = &adapter->tx_rings[queue]; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { IGB_TX_LOCK(txr); igb_start_locked(txr, ifp); IGB_TX_UNLOCK(txr); } } /********************************************************************* * Ioctl entry point * * igb_ioctl is called when the user wants to configure the * interface. * * return 0 on success, positive on failure **********************************************************************/ static int igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct adapter *adapter = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int error = 0; if (adapter->in_detach) return (error); switch (command) { case SIOCSIFADDR: if (ifa->ifa_addr->sa_family == AF_INET) { /* * XXX * Since resetting hardware takes a very long time * and results in link renegotiation we only * initialize the hardware only when it is absolutely * required. */ ifp->if_flags |= IFF_UP; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { IGB_CORE_LOCK(adapter); igb_init_locked(adapter); IGB_CORE_UNLOCK(adapter); } arp_ifinit(ifp, ifa); } else error = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: { int max_frame_size; IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); IGB_CORE_LOCK(adapter); max_frame_size = 9234; if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { IGB_CORE_UNLOCK(adapter); error = EINVAL; break; } ifp->if_mtu = ifr->ifr_mtu; adapter->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; igb_init_locked(adapter); IGB_CORE_UNLOCK(adapter); break; } case SIOCSIFFLAGS: IOCTL_DEBUGOUT("ioctl rcv'd:\ SIOCSIFFLAGS (Set Interface Flags)"); IGB_CORE_LOCK(adapter); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) { if ((ifp->if_flags ^ adapter->if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) { igb_disable_promisc(adapter); igb_set_promisc(adapter); } } else igb_init_locked(adapter); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) igb_stop(adapter); adapter->if_flags = ifp->if_flags; IGB_CORE_UNLOCK(adapter); break; case SIOCADDMULTI: case SIOCDELMULTI: IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI"); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { IGB_CORE_LOCK(adapter); igb_disable_intr(adapter); igb_set_multi(adapter); igb_enable_intr(adapter); IGB_CORE_UNLOCK(adapter); } break; case SIOCSIFMEDIA: /* Check SOL/IDER usage */ IGB_CORE_LOCK(adapter); if (e1000_check_reset_block(&adapter->hw)) { IGB_CORE_UNLOCK(adapter); device_printf(adapter->dev, "Media change is" " blocked due to SOL/IDER session.\n"); break; } IGB_CORE_UNLOCK(adapter); case SIOCGIFMEDIA: IOCTL_DEBUGOUT("ioctl rcv'd: \ SIOCxIFMEDIA (Get/Set Interface Media)"); error = ifmedia_ioctl(ifp, ifr, &adapter->media, command); break; case SIOCSIFCAP: { int mask, reinit; IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)"); reinit = 0; mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= IFCAP_HWCSUM; reinit = 1; } if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; reinit = 1; } if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; reinit = 1; } #ifdef IGB_HW_VLAN_SUPPORT if (mask & IFCAP_VLAN_HWFILTER) { ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; reinit = 1; } #endif if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) igb_init(adapter); VLAN_CAPABILITIES(ifp); break; } #ifdef IGB_TIMESYNC /* ** IOCTL support for Precision Time (IEEE 1588) Support */ case IGB_TIMESYNC_READTS: { u32 rx_ctl, tx_ctl; struct igb_tsync_read *tdata; tdata = (struct igb_tsync_read *) ifr->ifr_data; if (tdata->read_current_time) { getnanotime(&tdata->system_time); tdata->network_time = E1000_READ_REG(&adapter->hw, E1000_SYSTIML); tdata->network_time |= (u64)E1000_READ_REG(&adapter->hw, E1000_SYSTIMH ) << 32; } rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); if (rx_ctl & 0x1) { u32 tmp; unsigned char *tmp_cp; tdata->rx_valid = 1; tdata->rx_stamp = E1000_READ_REG(&adapter->hw, E1000_RXSTMPL); tdata->rx_stamp |= (u64)E1000_READ_REG(&adapter->hw, E1000_RXSTMPH) << 32; tmp = E1000_READ_REG(&adapter->hw, E1000_RXSATRL); tmp_cp = (unsigned char *) &tmp; tdata->srcid[0] = tmp_cp[0]; tdata->srcid[1] = tmp_cp[1]; tdata->srcid[2] = tmp_cp[2]; tdata->srcid[3] = tmp_cp[3]; tmp = E1000_READ_REG(&adapter->hw, E1000_RXSATRH); tmp_cp = (unsigned char *) &tmp; tdata->srcid[4] = tmp_cp[0]; tdata->srcid[5] = tmp_cp[1]; tdata->seqid = tmp >> 16; tdata->seqid = htons(tdata->seqid); } else tdata->rx_valid = 0; if (tx_ctl & 0x1) { tdata->tx_valid = 1; tdata->tx_stamp = E1000_READ_REG(&adapter->hw, E1000_TXSTMPL); tdata->tx_stamp |= (u64) E1000_READ_REG(&adapter->hw, E1000_TXSTMPH) << 32; } else tdata->tx_valid = 0; return (0); } #endif /* IGB_TIMESYNC */ default: error = ether_ioctl(ifp, command, data); break; } return (error); } /********************************************************************* * Watchdog timer: * * This routine is called from the local timer every second. * As long as transmit descriptors are being cleaned the value * is non-zero and we do nothing. Reaching 0 indicates a tx hang * and we then reset the device. * **********************************************************************/ static void igb_watchdog(struct adapter *adapter) { struct tx_ring *txr = adapter->tx_rings; bool tx_hang = FALSE; IGB_CORE_LOCK_ASSERT(adapter); /* ** The timer is set to 5 every time start() queues a packet. ** Then txeof keeps resetting it as long as it cleans at ** least one descriptor. ** Finally, anytime all descriptors are clean the timer is ** set to 0. ** ** With TX Multiqueue we need to check every queue's timer, ** if any time out we do the reset. */ for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { IGB_TX_LOCK(txr); if (txr->watchdog_timer == 0 || (--txr->watchdog_timer)) { IGB_TX_UNLOCK(txr); continue; } else { tx_hang = TRUE; IGB_TX_UNLOCK(txr); break; } } if (tx_hang == FALSE) return; /* If we are in this routine because of pause frames, then * don't reset the hardware. */ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_TXOFF) { txr = adapter->tx_rings; /* reset pointer */ for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { IGB_TX_LOCK(txr); txr->watchdog_timer = IGB_TX_TIMEOUT; IGB_TX_UNLOCK(txr); } return; } if (e1000_check_for_link(&adapter->hw) == 0) device_printf(adapter->dev, "watchdog timeout -- resetting\n"); for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { device_printf(adapter->dev, "Queue(%d) tdh = %d, tdt = %d\n", i, E1000_READ_REG(&adapter->hw, E1000_TDH(i)), E1000_READ_REG(&adapter->hw, E1000_TDT(i))); device_printf(adapter->dev, "Queue(%d) desc avail = %d," " Next Desc to Clean = %d\n", i, txr->tx_avail, txr->next_to_clean); } adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; adapter->watchdog_events++; igb_init_locked(adapter); } /********************************************************************* * Init entry point * * This routine is used in two ways. It is used by the stack as * init entry point in network interface structure. It is also used * by the driver as a hw/sw initialization routine to get to a * consistent state. * * return 0 on success, positive on failure **********************************************************************/ static void igb_init_locked(struct adapter *adapter) { struct rx_ring *rxr = adapter->rx_rings; struct tx_ring *txr = adapter->tx_rings; struct ifnet *ifp = adapter->ifp; device_t dev = adapter->dev; u32 pba = 0; INIT_DEBUGOUT("igb_init: begin"); IGB_CORE_LOCK_ASSERT(adapter); igb_stop(adapter); /* * Packet Buffer Allocation (PBA) * Writing PBA sets the receive portion of the buffer * the remainder is used for the transmit buffer. */ if (adapter->hw.mac.type == e1000_82575) { INIT_DEBUGOUT1("igb_init: pba=%dK",pba); pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); } /* Get the latest mac address, User can use a LAA */ bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN); /* Put the address into the Receive Address Array */ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); /* Initialize the hardware */ if (igb_hardware_init(adapter)) { device_printf(dev, "Unable to initialize the hardware\n"); return; } igb_update_link_status(adapter); E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); #ifndef IGB_HW_VLAN_SUPPORT /* Vlan's enabled but HW Filtering off */ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { u32 ctrl; ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); ctrl |= E1000_CTRL_VME; E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); } #endif /* Set hardware offload abilities */ ifp->if_hwassist = 0; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP); if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_TSO; /* Configure for OS presence */ igb_init_manageability(adapter); /* Prepare transmit descriptors and buffers */ igb_setup_transmit_structures(adapter); igb_initialize_transmit_units(adapter); /* Setup Multicast table */ igb_set_multi(adapter); /* Prepare receive descriptors and buffers */ if (igb_setup_receive_structures(adapter)) { device_printf(dev, "Could not setup receive structures\n"); igb_stop(adapter); return; } igb_initialize_receive_units(adapter); /* Don't lose promiscuous settings */ igb_set_promisc(adapter); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&adapter->timer, hz, igb_local_timer, adapter); e1000_clear_hw_cntrs_base_generic(&adapter->hw); if (adapter->msix > 1) /* Set up queue routing */ igb_configure_queues(adapter); /* Set default RX interrupt moderation */ for (int i = 0; i < adapter->num_rx_queues; i++, rxr++) { E1000_WRITE_REG(&adapter->hw, E1000_EITR(rxr->msix), igb_ave_latency); rxr->eitr_setting = igb_ave_latency; } /* Set TX interrupt rate & reset TX watchdog */ for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { E1000_WRITE_REG(&adapter->hw, E1000_EITR(txr->msix), igb_ave_latency); txr->watchdog_timer = FALSE; } /* this clears any pending interrupts */ E1000_READ_REG(&adapter->hw, E1000_ICR); igb_enable_intr(adapter); E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); #ifdef IGB_TIMESYNC /* Initialize IEEE 1588 Time sync if available */ if (adapter->hw.mac.type == e1000_82576) igb_tsync_init(adapter); #endif /* Don't reset the phy next time init gets called */ adapter->hw.phy.reset_disable = TRUE; } static void igb_init(void *arg) { struct adapter *adapter = arg; IGB_CORE_LOCK(adapter); igb_init_locked(adapter); IGB_CORE_UNLOCK(adapter); } static void igb_handle_link(void *context, int pending) { struct adapter *adapter = context; struct ifnet *ifp; ifp = adapter->ifp; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return; IGB_CORE_LOCK(adapter); callout_stop(&adapter->timer); igb_update_link_status(adapter); callout_reset(&adapter->timer, hz, igb_local_timer, adapter); IGB_CORE_UNLOCK(adapter); } static void igb_handle_rxtx(void *context, int pending) { struct adapter *adapter = context; struct tx_ring *txr = adapter->tx_rings; struct rx_ring *rxr = adapter->rx_rings; struct ifnet *ifp; ifp = adapter->ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if (igb_rxeof(rxr, adapter->rx_process_limit) != 0) taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); IGB_TX_LOCK(txr); igb_txeof(txr); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) igb_start_locked(txr, ifp); IGB_TX_UNLOCK(txr); } igb_enable_intr(adapter); } static void igb_handle_rx(void *context, int pending) { struct rx_ring *rxr = context; struct adapter *adapter = rxr->adapter; struct ifnet *ifp = adapter->ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) if (igb_rxeof(rxr, adapter->rx_process_limit) != 0) /* More to clean, schedule another task */ taskqueue_enqueue(adapter->tq, &rxr->rx_task); } static void igb_handle_tx(void *context, int pending) { struct tx_ring *txr = context; struct adapter *adapter = txr->adapter; struct ifnet *ifp = adapter->ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { IGB_TX_LOCK(txr); igb_txeof(txr); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) igb_start_locked(txr, ifp); IGB_TX_UNLOCK(txr); } } /********************************************************************* * * MSI/Legacy Deferred * Interrupt Service routine * *********************************************************************/ static int igb_irq_fast(void *arg) { struct adapter *adapter = arg; uint32_t reg_icr; reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); /* Hot eject? */ if (reg_icr == 0xffffffff) return FILTER_STRAY; /* Definitely not our interrupt. */ if (reg_icr == 0x0) return FILTER_STRAY; if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) return FILTER_STRAY; /* * Mask interrupts until the taskqueue is finished running. This is * cheap, just assume that it is needed. This also works around the * MSI message reordering errata on certain systems. */ igb_disable_intr(adapter); taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); /* Link status change */ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { adapter->hw.mac.get_link_status = 1; taskqueue_enqueue(adapter->tq, &adapter->link_task); } if (reg_icr & E1000_ICR_RXO) adapter->rx_overruns++; return FILTER_HANDLED; } /********************************************************************* * * MSIX TX Interrupt Service routine * **********************************************************************/ static void igb_msix_tx(void *arg) { struct tx_ring *txr = arg; struct adapter *adapter = txr->adapter; struct ifnet *ifp = adapter->ifp; ++txr->tx_irq; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { IGB_TX_LOCK(txr); igb_txeof(txr); IGB_TX_UNLOCK(txr); taskqueue_enqueue(adapter->tq, &txr->tx_task); } /* Reenable this interrupt */ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txr->eims); return; } /********************************************************************* * * MSIX RX Interrupt Service routine * **********************************************************************/ static void igb_msix_rx(void *arg) { struct rx_ring *rxr = arg; struct adapter *adapter = rxr->adapter; u32 more, loop = 5; ++rxr->rx_irq; do { more = igb_rxeof(rxr, adapter->rx_process_limit); } while (loop-- || more != 0); taskqueue_enqueue(adapter->tq, &rxr->rx_task); /* Update interrupt rate */ if (igb_enable_aim == TRUE) igb_update_aim(rxr); /* Reenable this interrupt */ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxr->eims); return; } /* ** Routine to adjust the RX EITR value based on traffic, ** its a simple three state model, but seems to help. ** ** Note that the three EITR values are tuneable using ** sysctl in real time. The feature can be effectively ** nullified by setting them equal. */ #define BULK_THRESHOLD 10000 #define AVE_THRESHOLD 1600 static void igb_update_aim(struct rx_ring *rxr) { struct adapter *adapter = rxr->adapter; u32 olditr, newitr; /* Update interrupt moderation based on traffic */ olditr = rxr->eitr_setting; newitr = olditr; /* Idle, don't change setting */ if (rxr->bytes == 0) return; if (olditr == igb_low_latency) { if (rxr->bytes > AVE_THRESHOLD) newitr = igb_ave_latency; } else if (olditr == igb_ave_latency) { if (rxr->bytes < AVE_THRESHOLD) newitr = igb_low_latency; else if (rxr->bytes > BULK_THRESHOLD) newitr = igb_bulk_latency; } else if (olditr == igb_bulk_latency) { if (rxr->bytes < BULK_THRESHOLD) newitr = igb_ave_latency; } if (olditr != newitr) { /* Change interrupt rate */ rxr->eitr_setting = newitr; E1000_WRITE_REG(&adapter->hw, E1000_EITR(rxr->me), newitr | (newitr << 16)); } rxr->bytes = 0; return; } /********************************************************************* * * MSIX Link Interrupt Service routine * **********************************************************************/ static void igb_msix_link(void *arg) { struct adapter *adapter = arg; u32 icr; ++adapter->link_irq; icr = E1000_READ_REG(&adapter->hw, E1000_ICR); if (!(icr & E1000_ICR_LSC)) goto spurious; adapter->hw.mac.get_link_status = 1; taskqueue_enqueue(adapter->tq, &adapter->link_task); spurious: /* Rearm */ E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC); E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); return; } /********************************************************************* * * Media Ioctl callback * * This routine is called whenever the user queries the status of * the interface using ifconfig. * **********************************************************************/ static void igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct adapter *adapter = ifp->if_softc; u_char fiber_type = IFM_1000_SX; INIT_DEBUGOUT("igb_media_status: begin"); IGB_CORE_LOCK(adapter); igb_update_link_status(adapter); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!adapter->link_active) { IGB_CORE_UNLOCK(adapter); return; } ifmr->ifm_status |= IFM_ACTIVE; if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) ifmr->ifm_active |= fiber_type | IFM_FDX; else { switch (adapter->link_speed) { case 10: ifmr->ifm_active |= IFM_10_T; break; case 100: ifmr->ifm_active |= IFM_100_TX; break; case 1000: ifmr->ifm_active |= IFM_1000_T; break; } if (adapter->link_duplex == FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } IGB_CORE_UNLOCK(adapter); } /********************************************************************* * * Media Ioctl callback * * This routine is called when the user changes speed/duplex using * media/mediopt option with ifconfig. * **********************************************************************/ static int igb_media_change(struct ifnet *ifp) { struct adapter *adapter = ifp->if_softc; struct ifmedia *ifm = &adapter->media; INIT_DEBUGOUT("igb_media_change: begin"); if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); IGB_CORE_LOCK(adapter); switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; break; case IFM_1000_LX: case IFM_1000_SX: case IFM_1000_T: adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; break; case IFM_100_TX: adapter->hw.mac.autoneg = FALSE; adapter->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; else adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; break; case IFM_10_T: adapter->hw.mac.autoneg = FALSE; adapter->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; else adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; break; default: device_printf(adapter->dev, "Unsupported media type\n"); } /* As the speed/duplex settings my have changed we need to * reset the PHY. */ adapter->hw.phy.reset_disable = FALSE; igb_init_locked(adapter); IGB_CORE_UNLOCK(adapter); return (0); } /********************************************************************* * * This routine maps the mbufs to Advanced TX descriptors. * used by the 82575 adapter. * **********************************************************************/ static int igb_xmit(struct tx_ring *txr, struct mbuf **m_headp) { struct adapter *adapter = txr->adapter; bus_dma_segment_t segs[IGB_MAX_SCATTER]; bus_dmamap_t map; struct igb_buffer *tx_buffer, *tx_buffer_mapped; union e1000_adv_tx_desc *txd = NULL; struct mbuf *m_head; u32 olinfo_status = 0, cmd_type_len = 0; int nsegs, i, j, error, first, last = 0; u32 hdrlen = 0, offload = 0; m_head = *m_headp; /* Set basic descriptor constants */ cmd_type_len |= E1000_ADVTXD_DTYP_DATA; cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT; if (m_head->m_flags & M_VLANTAG) cmd_type_len |= E1000_ADVTXD_DCMD_VLE; /* * Force a cleanup if number of TX descriptors * available hits the threshold */ if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD) { igb_txeof(txr); /* Now do we at least have a minimal? */ if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) { txr->no_desc_avail++; return (ENOBUFS); } } /* * Map the packet for DMA. * * Capture the first descriptor index, * this descriptor will have the index * of the EOP which is the only one that * now gets a DONE bit writeback. */ first = txr->next_avail_desc; tx_buffer = &txr->tx_buffers[first]; tx_buffer_mapped = tx_buffer; map = tx_buffer->map; error = bus_dmamap_load_mbuf_sg(txr->txtag, map, *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { struct mbuf *m; m = m_defrag(*m_headp, M_DONTWAIT); if (m == NULL) { adapter->mbuf_alloc_failed++; m_freem(*m_headp); *m_headp = NULL; return (ENOBUFS); } *m_headp = m; /* Try it again */ error = bus_dmamap_load_mbuf_sg(txr->txtag, map, *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); if (error == ENOMEM) { adapter->no_tx_dma_setup++; return (error); } else if (error != 0) { adapter->no_tx_dma_setup++; m_freem(*m_headp); *m_headp = NULL; return (error); } } else if (error == ENOMEM) { adapter->no_tx_dma_setup++; return (error); } else if (error != 0) { adapter->no_tx_dma_setup++; m_freem(*m_headp); *m_headp = NULL; return (error); } /* Check again to be sure we have enough descriptors */ if (nsegs > (txr->tx_avail - 2)) { txr->no_desc_avail++; bus_dmamap_unload(txr->txtag, map); return (ENOBUFS); } m_head = *m_headp; /* * Set up the context descriptor: * used when any hardware offload is done. * This includes CSUM, VLAN, and TSO. It * will use the first descriptor. */ if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { if (igb_tso_setup(txr, m_head, &hdrlen)) { cmd_type_len |= E1000_ADVTXD_DCMD_TSE; olinfo_status |= E1000_TXD_POPTS_IXSM << 8; olinfo_status |= E1000_TXD_POPTS_TXSM << 8; } else return (ENXIO); } else /* Do all other context descriptor setup */ offload = igb_tx_ctx_setup(txr, m_head); if (offload == TRUE) olinfo_status |= E1000_TXD_POPTS_TXSM << 8; #ifdef IGB_TIMESYNC if (offload == IGB_TIMESTAMP) cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; #endif /* Calculate payload length */ olinfo_status |= ((m_head->m_pkthdr.len - hdrlen) << E1000_ADVTXD_PAYLEN_SHIFT); /* Set up our transmit descriptors */ i = txr->next_avail_desc; for (j = 0; j < nsegs; j++) { bus_size_t seg_len; bus_addr_t seg_addr; tx_buffer = &txr->tx_buffers[i]; txd = (union e1000_adv_tx_desc *)&txr->tx_base[i]; seg_addr = segs[j].ds_addr; seg_len = segs[j].ds_len; txd->read.buffer_addr = htole64(seg_addr); txd->read.cmd_type_len = htole32( adapter->txd_cmd | cmd_type_len | seg_len); txd->read.olinfo_status = htole32(olinfo_status); last = i; if (++i == adapter->num_tx_desc) i = 0; tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; } txr->next_avail_desc = i; txr->tx_avail -= nsegs; tx_buffer->m_head = m_head; tx_buffer_mapped->map = tx_buffer->map; tx_buffer->map = map; bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE); /* * Last Descriptor of Packet * needs End Of Packet (EOP) * and Report Status (RS) */ txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); /* * Keep track in the first buffer which * descriptor will be written back */ tx_buffer = &txr->tx_buffers[first]; tx_buffer->next_eop = last; /* * Advance the Transmit Descriptor Tail (TDT), this tells the E1000 * that this frame is available to transmit. */ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i); ++txr->tx_packets; return (0); } static void igb_set_promisc(struct adapter *adapter) { struct ifnet *ifp = adapter->ifp; uint32_t reg_rctl; reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); if (ifp->if_flags & IFF_PROMISC) { reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } else if (ifp->if_flags & IFF_ALLMULTI) { reg_rctl |= E1000_RCTL_MPE; reg_rctl &= ~E1000_RCTL_UPE; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } } static void igb_disable_promisc(struct adapter *adapter) { uint32_t reg_rctl; reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl &= (~E1000_RCTL_UPE); reg_rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } /********************************************************************* * Multicast Update * * This routine is called whenever multicast address list is updated. * **********************************************************************/ static void igb_set_multi(struct adapter *adapter) { struct ifnet *ifp = adapter->ifp; struct ifmultiaddr *ifma; u32 reg_rctl = 0; u8 mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_ADDR_LEN]; int mcnt = 0; IOCTL_DEBUGOUT("igb_set_multi: begin"); IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (mcnt == MAX_NUM_MULTICAST_ADDRESSES) break; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); mcnt++; } IF_ADDR_UNLOCK(ifp); if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } else e1000_update_mc_addr_list(&adapter->hw, mta, mcnt, 1, adapter->hw.mac.rar_entry_count); } /********************************************************************* * Timer routine * * This routine checks for link status and updates statistics. * **********************************************************************/ static void igb_local_timer(void *arg) { struct adapter *adapter = arg; struct ifnet *ifp = adapter->ifp; IGB_CORE_LOCK_ASSERT(adapter); igb_update_link_status(adapter); igb_update_stats_counters(adapter); if (igb_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING) igb_print_hw_stats(adapter); /* * Each second we check the watchdog to * protect against hardware hangs. */ igb_watchdog(adapter); callout_reset(&adapter->timer, hz, igb_local_timer, adapter); } static void igb_update_link_status(struct adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct ifnet *ifp = adapter->ifp; device_t dev = adapter->dev; struct tx_ring *txr = adapter->tx_rings; u32 link_check = 0; /* Get the cached link value or read for real */ switch (hw->phy.media_type) { case e1000_media_type_copper: if (hw->mac.get_link_status) { /* Do the work to read phy */ e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; } else link_check = TRUE; break; case e1000_media_type_fiber: e1000_check_for_link(hw); link_check = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: e1000_check_for_link(hw); link_check = adapter->hw.mac.serdes_has_link; break; default: case e1000_media_type_unknown: break; } /* Now we check if a transition has happened */ if (link_check && (adapter->link_active == 0)) { e1000_get_speed_and_duplex(&adapter->hw, &adapter->link_speed, &adapter->link_duplex); if (bootverbose) device_printf(dev, "Link is up %d Mbps %s\n", adapter->link_speed, ((adapter->link_duplex == FULL_DUPLEX) ? "Full Duplex" : "Half Duplex")); adapter->link_active = 1; ifp->if_baudrate = adapter->link_speed * 1000000; if_link_state_change(ifp, LINK_STATE_UP); } else if (!link_check && (adapter->link_active == 1)) { ifp->if_baudrate = adapter->link_speed = 0; adapter->link_duplex = 0; if (bootverbose) device_printf(dev, "Link is Down\n"); adapter->link_active = 0; if_link_state_change(ifp, LINK_STATE_DOWN); /* Turn off watchdogs */ for (int i = 0; i < adapter->num_tx_queues; i++, txr++) txr->watchdog_timer = FALSE; } } /********************************************************************* * * This routine disables all traffic on the adapter by issuing a * global reset on the MAC and deallocates TX/RX buffers. * **********************************************************************/ static void igb_stop(void *arg) { struct adapter *adapter = arg; struct ifnet *ifp = adapter->ifp; IGB_CORE_LOCK_ASSERT(adapter); INIT_DEBUGOUT("igb_stop: begin"); igb_disable_intr(adapter); callout_stop(&adapter->timer); /* Tell the stack that the interface is no longer active */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); #ifdef IGB_TIMESYNC /* Disable IEEE 1588 Time sync */ if (adapter->hw.mac.type == e1000_82576) igb_tsync_disable(adapter); #endif e1000_reset_hw(&adapter->hw); E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0); } /********************************************************************* * * Determine hardware revision. * **********************************************************************/ static void igb_identify_hardware(struct adapter *adapter) { device_t dev = adapter->dev; /* Make sure our PCI config space has the necessary stuff set */ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) && (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) { device_printf(dev, "Memory Access and/or Bus Master bits " "were not set!\n"); adapter->hw.bus.pci_cmd_word |= (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN); pci_write_config(dev, PCIR_COMMAND, adapter->hw.bus.pci_cmd_word, 2); } /* Save off the information about this board */ adapter->hw.vendor_id = pci_get_vendor(dev); adapter->hw.device_id = pci_get_device(dev); adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); adapter->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2); adapter->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2); /* Do Shared Code Init and Setup */ if (e1000_set_mac_type(&adapter->hw)) { device_printf(dev, "Setup init failure\n"); return; } } static int igb_allocate_pci_resources(struct adapter *adapter) { device_t dev = adapter->dev; int rid, error = 0; rid = PCIR_BAR(0); adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (adapter->pci_mem == NULL) { device_printf(dev, "Unable to allocate bus resource: memory\n"); return (ENXIO); } adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->pci_mem); adapter->osdep.mem_bus_space_handle = rman_get_bushandle(adapter->pci_mem); adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle; /* ** Init the resource arrays */ for (int i = 0; i < IGB_MSIX_VEC; i++) { adapter->rid[i] = i + 1; /* MSI/X RID starts at 1 */ adapter->tag[i] = NULL; adapter->res[i] = NULL; } adapter->num_tx_queues = 1; /* Defaults for Legacy or MSI */ adapter->num_rx_queues = 1; /* This will setup either MSI/X or MSI */ adapter->msix = igb_setup_msix(adapter); adapter->hw.back = &adapter->osdep; return (error); } /********************************************************************* * * Setup the Legacy or MSI Interrupt handler * **********************************************************************/ static int igb_allocate_legacy(struct adapter *adapter) { device_t dev = adapter->dev; int error; /* Turn off all interrupts */ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); /* Legacy RID at 0 */ if (adapter->msix == 0) adapter->rid[0] = 0; /* We allocate a single interrupt resource */ adapter->res[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &adapter->rid[0], RF_SHAREABLE | RF_ACTIVE); if (adapter->res[0] == NULL) { device_printf(dev, "Unable to allocate bus resource: " "interrupt\n"); return (ENXIO); } /* * Try allocating a fast interrupt and the associated deferred * processing contexts. */ TASK_INIT(&adapter->rxtx_task, 0, igb_handle_rxtx, adapter); TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter); adapter->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT, taskqueue_thread_enqueue, &adapter->tq); taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", device_get_nameunit(adapter->dev)); if ((error = bus_setup_intr(dev, adapter->res[0], INTR_TYPE_NET | INTR_MPSAFE, igb_irq_fast, NULL, adapter, &adapter->tag[0])) != 0) { device_printf(dev, "Failed to register fast interrupt " "handler: %d\n", error); taskqueue_free(adapter->tq); adapter->tq = NULL; return (error); } return (0); } /********************************************************************* * * Setup the MSIX Interrupt handlers: * **********************************************************************/ static int igb_allocate_msix(struct adapter *adapter) { device_t dev = adapter->dev; struct tx_ring *txr = adapter->tx_rings; struct rx_ring *rxr = adapter->rx_rings; int error, vector = 0; /* * Setup the interrupt handlers */ /* TX Setup */ for (int i = 0; i < adapter->num_tx_queues; i++, vector++, txr++) { adapter->res[vector] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &adapter->rid[vector], RF_SHAREABLE | RF_ACTIVE); if (adapter->res[vector] == NULL) { device_printf(dev, "Unable to allocate bus resource: " "MSIX TX Interrupt\n"); return (ENXIO); } error = bus_setup_intr(dev, adapter->res[vector], INTR_TYPE_NET | INTR_MPSAFE, NULL, igb_msix_tx, txr, &adapter->tag[vector]); if (error) { adapter->res[vector] = NULL; device_printf(dev, "Failed to register TX handler"); return (error); } /* Make tasklet for deferred handling - one per queue */ TASK_INIT(&txr->tx_task, 0, igb_handle_tx, txr); if (adapter->hw.mac.type == e1000_82575) { txr->eims = E1000_EICR_TX_QUEUE0 << i; /* MSIXBM registers start at 0 */ txr->msix = adapter->rid[vector] - 1; } else { txr->eims = 1 << vector; txr->msix = vector; } } /* RX Setup */ for (int i = 0; i < adapter->num_rx_queues; i++, vector++, rxr++) { adapter->res[vector] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &adapter->rid[vector], RF_SHAREABLE | RF_ACTIVE); if (adapter->res[vector] == NULL) { device_printf(dev, "Unable to allocate bus resource: " "MSIX RX Interrupt\n"); return (ENXIO); } error = bus_setup_intr(dev, adapter->res[vector], INTR_TYPE_NET | INTR_MPSAFE, NULL, igb_msix_rx, rxr, &adapter->tag[vector]); if (error) { adapter->res[vector] = NULL; device_printf(dev, "Failed to register RX handler"); return (error); } TASK_INIT(&rxr->rx_task, 0, igb_handle_rx, rxr); if (adapter->hw.mac.type == e1000_82575) { rxr->eims = E1000_EICR_RX_QUEUE0 << i; rxr->msix = adapter->rid[vector] - 1; } else { rxr->eims = 1 << vector; rxr->msix = vector; } } /* And Link */ adapter->res[vector] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &adapter->rid[vector], RF_SHAREABLE | RF_ACTIVE); if (adapter->res[vector] == NULL) { device_printf(dev, "Unable to allocate bus resource: " "MSIX Link Interrupt\n"); return (ENXIO); } if ((error = bus_setup_intr(dev, adapter->res[vector], INTR_TYPE_NET | INTR_MPSAFE, NULL, igb_msix_link, adapter, &adapter->tag[vector])) != 0) { device_printf(dev, "Failed to register Link handler"); return (error); } if (adapter->hw.mac.type == e1000_82575) adapter->linkvec = adapter->rid[vector] - 1; else adapter->linkvec = vector; /* Make tasklet for deferred link interrupt handling */ TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter); adapter->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT, taskqueue_thread_enqueue, &adapter->tq); taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", device_get_nameunit(adapter->dev)); return (0); } static void igb_configure_queues(struct adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct tx_ring *txr; struct rx_ring *rxr; /* Turn on MSIX */ /* ** 82576 uses IVARs to route MSI/X ** interrupts, its not very intuitive, ** study the code carefully :) */ if (adapter->hw.mac.type == e1000_82576) { u32 ivar = 0; /* First turn on the capability */ E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | E1000_GPIE_PBA | E1000_GPIE_NSICR); /* RX */ for (int i = 0; i < adapter->num_rx_queues; i++) { u32 index = i & 0x7; /* Each IVAR has two entries */ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); rxr = &adapter->rx_rings[i]; if (i < 8) { ivar &= 0xFFFFFF00; ivar |= rxr->msix | E1000_IVAR_VALID; } else { ivar &= 0xFF00FFFF; ivar |= (rxr->msix | E1000_IVAR_VALID) << 16; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); adapter->eims_mask |= rxr->eims; } /* TX */ for (int i = 0; i < adapter->num_tx_queues; i++) { u32 index = i & 0x7; /* Each IVAR has two entries */ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); txr = &adapter->tx_rings[i]; if (i < 8) { ivar &= 0xFFFF00FF; ivar |= (txr->msix | E1000_IVAR_VALID) << 8; } else { ivar &= 0x00FFFFFF; ivar |= (txr->msix | E1000_IVAR_VALID) << 24; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); adapter->eims_mask |= txr->eims; } /* And for the link interrupt */ ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; adapter->link_mask = 1 << adapter->linkvec; adapter->eims_mask |= adapter->link_mask; E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); } else { /* 82575 */ int tmp; /* enable MSI-X PBA support*/ tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); tmp |= E1000_CTRL_EXT_PBA_CLR; /* Auto-Mask interrupts upon ICR read. */ tmp |= E1000_CTRL_EXT_EIAME; tmp |= E1000_CTRL_EXT_IRCA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); /* TX */ for (int i = 0; i < adapter->num_tx_queues; i++) { txr = &adapter->tx_rings[i]; E1000_WRITE_REG(hw, E1000_MSIXBM(txr->msix), txr->eims); adapter->eims_mask |= txr->eims; } /* RX */ for (int i = 0; i < adapter->num_rx_queues; i++) { rxr = &adapter->rx_rings[i]; E1000_WRITE_REG(hw, E1000_MSIXBM(rxr->msix), rxr->eims); adapter->eims_mask |= rxr->eims; } /* Link */ E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), E1000_EIMS_OTHER); adapter->link_mask |= E1000_EIMS_OTHER; adapter->eims_mask |= adapter->link_mask; } return; } static void igb_free_pci_resources(struct adapter *adapter) { device_t dev = adapter->dev; /* Make sure the for loop below runs once */ if (adapter->msix == 0) adapter->msix = 1; /* * First release all the interrupt resources: * notice that since these are just kept * in an array we can do the same logic * whether its MSIX or just legacy. */ for (int i = 0; i < adapter->msix; i++) { if (adapter->tag[i] != NULL) { bus_teardown_intr(dev, adapter->res[i], adapter->tag[i]); adapter->tag[i] = NULL; } if (adapter->res[i] != NULL) { bus_release_resource(dev, SYS_RES_IRQ, adapter->rid[i], adapter->res[i]); } } if (adapter->msix) pci_release_msi(dev); if (adapter->msix_mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem); if (adapter->pci_mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), adapter->pci_mem); } /* * Setup Either MSI/X or MSI */ static int igb_setup_msix(struct adapter *adapter) { device_t dev = adapter->dev; int rid, want, queues, msgs; /* First try MSI/X */ rid = PCIR_BAR(IGB_MSIX_BAR); adapter->msix_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!adapter->msix_mem) { /* May not be enabled */ device_printf(adapter->dev, "Unable to map MSIX table \n"); goto msi; } msgs = pci_msix_count(dev); if (msgs == 0) { /* system has msix disabled */ bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem); adapter->msix_mem = NULL; goto msi; } /* Limit by the number set in header */ if (msgs > IGB_MSIX_VEC) msgs = IGB_MSIX_VEC; /* Figure out a reasonable auto config value */ queues = (mp_ncpus > ((msgs-1)/2)) ? (msgs-1)/2 : mp_ncpus; if (igb_tx_queues == 0) igb_tx_queues = queues; if (igb_rx_queues == 0) igb_rx_queues = queues; want = igb_tx_queues + igb_rx_queues + 1; if (msgs >= want) msgs = want; else { device_printf(adapter->dev, "MSIX Configuration Problem, " "%d vectors configured, but %d queues wanted!\n", msgs, want); return (ENXIO); } if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) { device_printf(adapter->dev, "Using MSIX interrupts with %d vectors\n", msgs); adapter->num_tx_queues = igb_tx_queues; adapter->num_rx_queues = igb_rx_queues; return (msgs); } msi: msgs = pci_msi_count(dev); if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0) device_printf(adapter->dev,"Using MSI interrupt\n"); return (msgs); } /********************************************************************* * * Initialize the hardware to a configuration * as specified by the adapter structure. * **********************************************************************/ static int igb_hardware_init(struct adapter *adapter) { device_t dev = adapter->dev; u32 rx_buffer_size; INIT_DEBUGOUT("igb_hardware_init: begin"); /* Issue a global reset */ e1000_reset_hw(&adapter->hw); /* Let the firmware know the OS is in control */ igb_get_hw_control(adapter); /* * These parameters control the automatic generation (Tx) and * response (Rx) to Ethernet PAUSE frames. * - High water mark should allow for at least two frames to be * received after sending an XOFF. * - Low water mark works best when it is very near the high water mark. * This allows the receiver to restart by sending XON when it has * drained a bit. Here we use an arbitary value of 1500 which will * restart after one full frame is pulled from the buffer. There * could be several smaller frames in the buffer and if so they will * not trigger the XON until their total number reduces the buffer * by 1500. * - The pause time is fairly large at 1000 x 512ns = 512 usec. */ if (adapter->hw.mac.type == e1000_82576) rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_RXPBS) & 0xffff) << 10 ); else rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10 ); adapter->hw.fc.high_water = rx_buffer_size - roundup2(adapter->max_frame_size, 1024); adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500; adapter->hw.fc.pause_time = IGB_FC_PAUSE_TIME; adapter->hw.fc.send_xon = TRUE; /* Set Flow control, use the tunable location if sane */ if ((igb_fc_setting >= 0) || (igb_fc_setting < 4)) adapter->hw.fc.requested_mode = igb_fc_setting; else adapter->hw.fc.requested_mode = e1000_fc_none; if (e1000_init_hw(&adapter->hw) < 0) { device_printf(dev, "Hardware Initialization Failed\n"); return (EIO); } e1000_check_for_link(&adapter->hw); return (0); } /********************************************************************* * * Setup networking device structure and register an interface. * **********************************************************************/ static void igb_setup_interface(device_t dev, struct adapter *adapter) { struct ifnet *ifp; INIT_DEBUGOUT("igb_setup_interface: begin"); ifp = adapter->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) panic("%s: can not if_alloc()", device_get_nameunit(dev)); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_init = igb_init; ifp->if_softc = adapter; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = igb_ioctl; ifp->if_start = igb_start; IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1); ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1; IFQ_SET_READY(&ifp->if_snd); ether_ifattach(ifp, adapter->hw.mac.addr); ifp->if_capabilities = ifp->if_capenable = 0; ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM; ifp->if_capabilities |= IFCAP_TSO4; ifp->if_capenable = ifp->if_capabilities; /* * Tell the upper layer(s) what we support. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable |= IFCAP_VLAN_HWTAGGING; ifp->if_capenable |= IFCAP_VLAN_MTU; #ifdef IGB_HW_VLAN_SUPPORT ifp->if_capabilities |= IFCAP_VLAN_HWFILTER; ifp->if_capenable |= IFCAP_VLAN_HWFILTER; #endif /* * Specify the media types supported by this adapter and register * callbacks to update media and link information */ ifmedia_init(&adapter->media, IFM_IMASK, igb_media_change, igb_media_status); if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL); } else { ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); if (adapter->hw.phy.type != e1000_phy_ife) { ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); } } ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); } /* * Manage DMA'able memory. */ static void igb_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error) return; *(bus_addr_t *) arg = segs[0].ds_addr; } static int igb_dma_malloc(struct adapter *adapter, bus_size_t size, struct igb_dma_alloc *dma, int mapflags) { int error; error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */ IGB_DBA_ALIGN, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dma->dma_tag); if (error) { device_printf(adapter->dev, "%s: bus_dma_tag_create failed: %d\n", __func__, error); goto fail_0; } error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, BUS_DMA_NOWAIT, &dma->dma_map); if (error) { device_printf(adapter->dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n", __func__, (uintmax_t)size, error); goto fail_2; } dma->dma_paddr = 0; error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size, igb_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT); if (error || dma->dma_paddr == 0) { device_printf(adapter->dev, "%s: bus_dmamap_load failed: %d\n", __func__, error); goto fail_3; } return (0); fail_3: bus_dmamap_unload(dma->dma_tag, dma->dma_map); fail_2: bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); bus_dma_tag_destroy(dma->dma_tag); fail_0: dma->dma_map = NULL; dma->dma_tag = NULL; return (error); } static void igb_dma_free(struct adapter *adapter, struct igb_dma_alloc *dma) { if (dma->dma_tag == NULL) return; if (dma->dma_map != NULL) { bus_dmamap_sync(dma->dma_tag, dma->dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->dma_tag, dma->dma_map); bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); dma->dma_map = NULL; } bus_dma_tag_destroy(dma->dma_tag); dma->dma_tag = NULL; } /********************************************************************* * * Allocate memory for the transmit and receive rings, and then * the descriptors associated with each, called only once at attach. * **********************************************************************/ static int igb_allocate_queues(struct adapter *adapter) { device_t dev = adapter->dev; struct tx_ring *txr; struct rx_ring *rxr; int rsize, tsize, error = E1000_SUCCESS; int txconf = 0, rxconf = 0; /* First allocate the TX ring struct memory */ if (!(adapter->tx_rings = (struct tx_ring *) malloc(sizeof(struct tx_ring) * adapter->num_tx_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate TX ring memory\n"); error = ENOMEM; goto fail; } txr = adapter->tx_rings; /* Next allocate the RX */ if (!(adapter->rx_rings = (struct rx_ring *) malloc(sizeof(struct rx_ring) * adapter->num_rx_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX ring memory\n"); error = ENOMEM; goto rx_fail; } rxr = adapter->rx_rings; tsize = roundup2(adapter->num_tx_desc * sizeof(union e1000_adv_tx_desc), IGB_DBA_ALIGN); /* * Now set up the TX queues, txconf is needed to handle the * possibility that things fail midcourse and we need to * undo memory gracefully */ for (int i = 0; i < adapter->num_tx_queues; i++, txconf++) { /* Set up some basics */ txr = &adapter->tx_rings[i]; txr->adapter = adapter; txr->me = i; /* Initialize the TX lock */ snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)", device_get_nameunit(dev), txr->me); mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF); if (igb_dma_malloc(adapter, tsize, &txr->txdma, BUS_DMA_NOWAIT)) { device_printf(dev, "Unable to allocate TX Descriptor memory\n"); error = ENOMEM; goto err_tx_desc; } txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr; bzero((void *)txr->tx_base, tsize); /* Now allocate transmit buffers for the ring */ if (igb_allocate_transmit_buffers(txr)) { device_printf(dev, "Critical Failure setting up transmit buffers\n"); error = ENOMEM; goto err_tx_desc; } } /* * Next the RX queues... */ rsize = roundup2(adapter->num_rx_desc * sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN); for (int i = 0; i < adapter->num_rx_queues; i++, rxconf++) { rxr = &adapter->rx_rings[i]; rxr->adapter = adapter; rxr->me = i; /* Initialize the RX lock */ snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)", device_get_nameunit(dev), txr->me); mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF); if (igb_dma_malloc(adapter, rsize, &rxr->rxdma, BUS_DMA_NOWAIT)) { device_printf(dev, "Unable to allocate RxDescriptor memory\n"); error = ENOMEM; goto err_rx_desc; } rxr->rx_base = (union e1000_adv_rx_desc *)rxr->rxdma.dma_vaddr; bzero((void *)rxr->rx_base, rsize); /* Allocate receive buffers for the ring*/ if (igb_allocate_receive_buffers(rxr)) { device_printf(dev, "Critical Failure setting up receive buffers\n"); error = ENOMEM; goto err_rx_desc; } } return (0); err_rx_desc: for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--) igb_dma_free(adapter, &rxr->rxdma); err_tx_desc: for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--) igb_dma_free(adapter, &txr->txdma); free(adapter->rx_rings, M_DEVBUF); rx_fail: free(adapter->tx_rings, M_DEVBUF); fail: return (error); } /********************************************************************* * * Allocate memory for tx_buffer structures. The tx_buffer stores all * the information needed to transmit a packet on the wire. This is * called only once at attach, setup is done every reset. * **********************************************************************/ static int igb_allocate_transmit_buffers(struct tx_ring *txr) { struct adapter *adapter = txr->adapter; device_t dev = adapter->dev; struct igb_buffer *txbuf; int error, i; /* * Setup DMA descriptor areas. */ if ((error = bus_dma_tag_create(NULL, /* parent */ PAGE_SIZE, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ IGB_TSO_SIZE, /* maxsize */ IGB_MAX_SCATTER, /* nsegments */ PAGE_SIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txr->txtag))) { device_printf(dev,"Unable to allocate TX DMA tag\n"); goto fail; } if (!(txr->tx_buffers = (struct igb_buffer *) malloc(sizeof(struct igb_buffer) * adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate tx_buffer memory\n"); error = ENOMEM; goto fail; } /* Create the descriptor buffer dma maps */ txbuf = txr->tx_buffers; for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) { error = bus_dmamap_create(txr->txtag, 0, &txbuf->map); if (error != 0) { device_printf(dev, "Unable to create TX DMA map\n"); goto fail; } } return 0; fail: /* We free all, it handles case where we are in the middle */ igb_free_transmit_structures(adapter); return (error); } /********************************************************************* * * Initialize a transmit ring. * **********************************************************************/ static void igb_setup_transmit_ring(struct tx_ring *txr) { struct adapter *adapter = txr->adapter; struct igb_buffer *txbuf; int i; /* Clear the old ring contents */ bzero((void *)txr->tx_base, (sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc); /* Reset indices */ txr->next_avail_desc = 0; txr->next_to_clean = 0; /* Free any existing tx buffers. */ txbuf = txr->tx_buffers; for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) { if (txbuf->m_head != NULL) { bus_dmamap_sync(txr->txtag, txbuf->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txr->txtag, txbuf->map); m_freem(txbuf->m_head); txbuf->m_head = NULL; } /* clear the watch index */ txbuf->next_eop = -1; } /* Set number of descriptors available */ txr->tx_avail = adapter->num_tx_desc; bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /********************************************************************* * * Initialize all transmit rings. * **********************************************************************/ static void igb_setup_transmit_structures(struct adapter *adapter) { struct tx_ring *txr = adapter->tx_rings; for (int i = 0; i < adapter->num_tx_queues; i++, txr++) igb_setup_transmit_ring(txr); return; } /********************************************************************* * * Enable transmit unit. * **********************************************************************/ static void igb_initialize_transmit_units(struct adapter *adapter) { struct tx_ring *txr = adapter->tx_rings; u32 tctl, txdctl; INIT_DEBUGOUT("igb_initialize_transmit_units: begin"); /* Setup the Base and Length of the Tx Descriptor Rings */ for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { u64 bus_addr = txr->txdma.dma_paddr; E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(i), adapter->num_tx_desc * sizeof(struct e1000_tx_desc)); E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(i), (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(i), (uint32_t)bus_addr); /* Setup the HW Tx Head and Tail descriptor pointers */ E1000_WRITE_REG(&adapter->hw, E1000_TDT(i), 0); E1000_WRITE_REG(&adapter->hw, E1000_TDH(i), 0); HW_DEBUGOUT2("Base = %x, Length = %x\n", E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); /* Setup Transmit Descriptor Base Settings */ adapter->txd_cmd = E1000_TXD_CMD_IFCS; txdctl = E1000_READ_REG(&adapter->hw, E1000_TXDCTL(i)); txdctl |= E1000_TXDCTL_QUEUE_ENABLE; E1000_WRITE_REG(&adapter->hw, E1000_TXDCTL(i), txdctl); } /* Program the Transmit Control Register */ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); tctl &= ~E1000_TCTL_CT; tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); e1000_config_collision_dist(&adapter->hw); /* This write will effectively turn on the transmit unit. */ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); } /********************************************************************* * * Free all transmit rings. * **********************************************************************/ static void igb_free_transmit_structures(struct adapter *adapter) { struct tx_ring *txr = adapter->tx_rings; for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { IGB_TX_LOCK(txr); igb_free_transmit_buffers(txr); igb_dma_free(adapter, &txr->txdma); IGB_TX_UNLOCK(txr); IGB_TX_LOCK_DESTROY(txr); } free(adapter->tx_rings, M_DEVBUF); } /********************************************************************* * * Free transmit ring related data structures. * **********************************************************************/ static void igb_free_transmit_buffers(struct tx_ring *txr) { struct adapter *adapter = txr->adapter; struct igb_buffer *tx_buffer; int i; INIT_DEBUGOUT("free_transmit_ring: begin"); if (txr->tx_buffers == NULL) return; tx_buffer = txr->tx_buffers; for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) { if (tx_buffer->m_head != NULL) { bus_dmamap_sync(txr->txtag, tx_buffer->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txr->txtag, tx_buffer->map); m_freem(tx_buffer->m_head); tx_buffer->m_head = NULL; if (tx_buffer->map != NULL) { bus_dmamap_destroy(txr->txtag, tx_buffer->map); tx_buffer->map = NULL; } } else if (tx_buffer->map != NULL) { bus_dmamap_unload(txr->txtag, tx_buffer->map); bus_dmamap_destroy(txr->txtag, tx_buffer->map); tx_buffer->map = NULL; } } if (txr->tx_buffers != NULL) { free(txr->tx_buffers, M_DEVBUF); txr->tx_buffers = NULL; } if (txr->txtag != NULL) { bus_dma_tag_destroy(txr->txtag); txr->txtag = NULL; } return; } /********************************************************************** * * Setup work for hardware segmentation offload (TSO) on * adapters using advanced tx descriptors (82575) * **********************************************************************/ static boolean_t igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen) { struct adapter *adapter = txr->adapter; struct e1000_adv_tx_context_desc *TXD; struct igb_buffer *tx_buffer; u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0; u32 mss_l4len_idx = 0; u16 vtag = 0; int ctxd, ehdrlen, ip_hlen, tcp_hlen; struct ether_vlan_header *eh; struct ip *ip; struct tcphdr *th; /* * Determine where frame payload starts. * Jump over vlan headers if already present */ eh = mtod(mp, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; else ehdrlen = ETHER_HDR_LEN; /* Ensure we have at least the IP+TCP header in the first mbuf. */ if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr)) return FALSE; /* Only supports IPV4 for now */ ctxd = txr->next_avail_desc; tx_buffer = &txr->tx_buffers[ctxd]; TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd]; ip = (struct ip *)(mp->m_data + ehdrlen); if (ip->ip_p != IPPROTO_TCP) return FALSE; /* 0 */ ip->ip_sum = 0; ip_hlen = ip->ip_hl << 2; th = (struct tcphdr *)((caddr_t)ip + ip_hlen); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); tcp_hlen = th->th_off << 2; /* * Calculate header length, this is used * in the transmit desc in igb_xmit */ *hdrlen = ehdrlen + ip_hlen + tcp_hlen; /* VLAN MACLEN IPLEN */ if (mp->m_flags & M_VLANTAG) { vtag = htole16(mp->m_pkthdr.ether_vtag); vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT); } vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT); vlan_macip_lens |= ip_hlen; TXD->vlan_macip_lens |= htole32(vlan_macip_lens); /* ADV DTYPE TUCMD */ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4; TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl); /* MSS L4LEN IDX */ mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT); mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT); TXD->mss_l4len_idx = htole32(mss_l4len_idx); TXD->seqnum_seed = htole32(0); tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; if (++ctxd == adapter->num_tx_desc) ctxd = 0; txr->tx_avail--; txr->next_avail_desc = ctxd; return TRUE; } /********************************************************************* * * Context Descriptor setup for VLAN or CSUM * **********************************************************************/ static int igb_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp) { struct adapter *adapter = txr->adapter; struct e1000_adv_tx_context_desc *TXD; struct igb_buffer *tx_buffer; uint32_t vlan_macip_lens = 0, type_tucmd_mlhl = 0; struct ether_vlan_header *eh; struct ip *ip = NULL; struct ip6_hdr *ip6; int ehdrlen, ip_hlen = 0; u16 etype; u8 ipproto = 0; bool offload = TRUE; u16 vtag = 0; int ctxd = txr->next_avail_desc; tx_buffer = &txr->tx_buffers[ctxd]; TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd]; if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0) offload = FALSE; /* Only here to handle VLANs */ /* ** In advanced descriptors the vlan tag must ** be placed into the descriptor itself. */ if (mp->m_flags & M_VLANTAG) { vtag = htole16(mp->m_pkthdr.ether_vtag); vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT); } else if (offload == FALSE) return FALSE; /* * Determine where frame payload starts. * Jump over vlan headers if already present, * helpful for QinQ too. */ eh = mtod(mp, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { etype = ntohs(eh->evl_proto); ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { etype = ntohs(eh->evl_encap_proto); ehdrlen = ETHER_HDR_LEN; } /* Set the ether header length */ vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT; switch (etype) { case ETHERTYPE_IP: ip = (struct ip *)(mp->m_data + ehdrlen); ip_hlen = ip->ip_hl << 2; if (mp->m_len < ehdrlen + ip_hlen) { offload = FALSE; break; } ipproto = ip->ip_p; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4; break; case ETHERTYPE_IPV6: ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); ip_hlen = sizeof(struct ip6_hdr); if (mp->m_len < ehdrlen + ip_hlen) return FALSE; /* failure */ ipproto = ip6->ip6_nxt; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6; break; #ifdef IGB_TIMESYNC case ETHERTYPE_IEEE1588: offload = IGB_TIMESTAMP; break; #endif default: offload = FALSE; break; } vlan_macip_lens |= ip_hlen; type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT; switch (ipproto) { case IPPROTO_TCP: if (mp->m_pkthdr.csum_flags & CSUM_TCP) type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; break; case IPPROTO_UDP: { #ifdef IGB_TIMESYNC void *hdr = (caddr_t) ip + ip_hlen; struct udphdr *uh = (struct udphdr *)hdr; if (uh->uh_dport == htons(TSYNC_PORT)) offload = IGB_TIMESTAMP; #endif if (mp->m_pkthdr.csum_flags & CSUM_UDP) type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP; break; } default: offload = FALSE; break; } /* Now copy bits into descriptor */ TXD->vlan_macip_lens |= htole32(vlan_macip_lens); TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl); TXD->seqnum_seed = htole32(0); TXD->mss_l4len_idx = htole32(0); tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; /* We've consumed the first desc, adjust counters */ if (++ctxd == adapter->num_tx_desc) ctxd = 0; txr->next_avail_desc = ctxd; --txr->tx_avail; return (offload); } /********************************************************************** * * Examine each tx_buffer in the used queue. If the hardware is done * processing the packet then free associated resources. The * tx_buffer is put back on the free queue. * * TRUE return means there's work in the ring to clean, FALSE its empty. **********************************************************************/ static bool igb_txeof(struct tx_ring *txr) { struct adapter *adapter = txr->adapter; int first, last, done, num_avail; struct igb_buffer *tx_buffer; struct e1000_tx_desc *tx_desc, *eop_desc; struct ifnet *ifp = adapter->ifp; IGB_TX_LOCK_ASSERT(txr); if (txr->tx_avail == adapter->num_tx_desc) return FALSE; num_avail = txr->tx_avail; first = txr->next_to_clean; tx_desc = &txr->tx_base[first]; tx_buffer = &txr->tx_buffers[first]; last = tx_buffer->next_eop; eop_desc = &txr->tx_base[last]; /* * What this does is get the index of the * first descriptor AFTER the EOP of the * first packet, that way we can do the * simple comparison on the inner while loop. */ if (++last == adapter->num_tx_desc) last = 0; done = last; bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, BUS_DMASYNC_POSTREAD); while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) { /* We clean the range of the packet */ while (first != done) { tx_desc->upper.data = 0; tx_desc->lower.data = 0; tx_desc->buffer_addr = 0; num_avail++; if (tx_buffer->m_head) { ifp->if_opackets++; bus_dmamap_sync(txr->txtag, tx_buffer->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txr->txtag, tx_buffer->map); m_freem(tx_buffer->m_head); tx_buffer->m_head = NULL; } tx_buffer->next_eop = -1; if (++first == adapter->num_tx_desc) first = 0; tx_buffer = &txr->tx_buffers[first]; tx_desc = &txr->tx_base[first]; } /* See if we can continue to the next packet */ last = tx_buffer->next_eop; if (last != -1) { eop_desc = &txr->tx_base[last]; /* Get new done point */ if (++last == adapter->num_tx_desc) last = 0; done = last; } else break; } bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); txr->next_to_clean = first; /* * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack * that it is OK to send packets. * If there are no pending descriptors, clear the timeout. Otherwise, * if some descriptors have been freed, restart the timeout. */ if (num_avail > IGB_TX_CLEANUP_THRESHOLD) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* All clean, turn off the timer */ if (num_avail == adapter->num_tx_desc) { txr->watchdog_timer = 0; txr->tx_avail = num_avail; return FALSE; } /* Some cleaned, reset the timer */ else if (num_avail != txr->tx_avail) txr->watchdog_timer = IGB_TX_TIMEOUT; } txr->tx_avail = num_avail; return TRUE; } /********************************************************************* * * Get a buffer from system mbuf buffer pool. * **********************************************************************/ static int igb_get_buf(struct rx_ring *rxr, int i) { struct adapter *adapter = rxr->adapter; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; struct igb_buffer *rx_buffer; int error, nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { adapter->mbuf_cluster_failed++; return (ENOBUFS); } m->m_len = m->m_pkthdr.len = MCLBYTES; if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN)) m_adj(m, ETHER_ALIGN); /* * Using memory from the mbuf cluster pool, invoke the * bus_dma machinery to arrange the memory mapping. */ error = bus_dmamap_load_mbuf_sg(rxr->rxtag, rxr->rx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_free(m); return (error); } /* If nsegs is wrong then the stack is corrupt. */ KASSERT(nsegs == 1, ("Too many segments returned!")); rx_buffer = &rxr->rx_buffers[i]; if (rx_buffer->m_head != NULL) bus_dmamap_unload(rxr->rxtag, rx_buffer->map); map = rx_buffer->map; rx_buffer->map = rxr->rx_spare_map; rxr->rx_spare_map = map; bus_dmamap_sync(rxr->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD); rx_buffer->m_head = m; rxr->rx_base[i].read.pkt_addr = htole64(segs[0].ds_addr); return (0); } /********************************************************************* * * Allocate memory for rx_buffer structures. Since we use one * rx_buffer per received packet, the maximum number of rx_buffer's * that we'll need is equal to the number of receive descriptors * that we've allocated. * **********************************************************************/ static int igb_allocate_receive_buffers(struct rx_ring *rxr) { struct adapter *adapter = rxr->adapter; device_t dev = adapter->dev; struct igb_buffer *rxbuf; int i, bsize, error; bsize = sizeof(struct igb_buffer) * adapter->num_rx_desc; if (!(rxr->rx_buffers = (struct igb_buffer *) malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate rx_buffer memory\n"); error = ENOMEM; goto fail; } if ((error = bus_dma_tag_create(NULL, /* parent */ PAGE_SIZE, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &rxr->rxtag))) { device_printf(dev, "Unable to create RX Small DMA tag\n"); goto fail; } /* Create the spare map (used by getbuf) */ error = bus_dmamap_create(rxr->rxtag, BUS_DMA_NOWAIT, &rxr->rx_spare_map); if (error) { device_printf(dev, "%s: bus_dmamap_create failed: %d\n", __func__, error); goto fail; } for (i = 0; i < adapter->num_rx_desc; i++, rxbuf++) { rxbuf = &rxr->rx_buffers[i]; error = bus_dmamap_create(rxr->rxtag, BUS_DMA_NOWAIT, &rxbuf->map); if (error) { device_printf(dev, "Unable to create Small RX DMA map\n"); goto fail; } } return (0); fail: /* Frees all, but can handle partial completion */ igb_free_receive_structures(adapter); return (error); } /********************************************************************* * * Initialize a receive ring and its buffers. * **********************************************************************/ static int igb_setup_receive_ring(struct rx_ring *rxr) { struct adapter *adapter; device_t dev; struct igb_buffer *rxbuf; struct lro_ctrl *lro = &rxr->lro; int j, rsize; adapter = rxr->adapter; dev = adapter->dev; rsize = roundup2(adapter->num_rx_desc * sizeof(union e1000_adv_rx_desc), 4096); /* Clear the ring contents */ bzero((void *)rxr->rx_base, rsize); /* ** Free current RX buffers: the size buffer ** that is loaded is indicated by the buffer ** bigbuf value. */ for (int i = 0; i < adapter->num_rx_desc; i++) { rxbuf = &rxr->rx_buffers[i]; if (rxbuf->m_head != NULL) { bus_dmamap_sync(rxr->rxtag, rxbuf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(rxr->rxtag, rxbuf->map); m_freem(rxbuf->m_head); rxbuf->m_head = NULL; } } for (j = 0; j < adapter->num_rx_desc; j++) { if (igb_get_buf(rxr, j) == ENOBUFS) { rxr->rx_buffers[j].m_head = NULL; rxr->rx_base[j].read.pkt_addr = 0; goto fail; } } /* Setup our descriptor indices */ rxr->next_to_check = 0; rxr->last_cleaned = 0; bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Now set up the LRO interface */ if (igb_enable_lro) { int err = tcp_lro_init(lro); if (err) { device_printf(dev,"LRO Initialization failed!\n"); goto fail; } INIT_DEBUGOUT("RX LRO Initialized\n"); lro->ifp = adapter->ifp; } return (0); fail: /* * We need to clean up any buffers allocated * so far, 'j' is the failing index. */ for (int i = 0; i < j; i++) { rxbuf = &rxr->rx_buffers[i]; if (rxbuf->m_head != NULL) { bus_dmamap_sync(rxr->rxtag, rxbuf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(rxr->rxtag, rxbuf->map); m_freem(rxbuf->m_head); rxbuf->m_head = NULL; } } return (ENOBUFS); } /********************************************************************* * * Initialize all receive rings. * **********************************************************************/ static int igb_setup_receive_structures(struct adapter *adapter) { struct rx_ring *rxr = adapter->rx_rings; int j; for (j = 0; j < adapter->num_rx_queues; j++, rxr++) if (igb_setup_receive_ring(rxr)) goto fail; return (0); fail: /* * Free RX buffers allocated so far, we will only handle * the rings that completed, the failing case will have * cleaned up for itself. Clean up til 'j', the failure. */ for (int i = 0; i < j; i++) { rxr = &adapter->rx_rings[i]; for (int n = 0; n < adapter->num_rx_desc; n++) { struct igb_buffer *rxbuf; rxbuf = &rxr->rx_buffers[n]; if (rxbuf->m_head != NULL) { bus_dmamap_sync(rxr->rxtag, rxbuf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(rxr->rxtag, rxbuf->map); m_freem(rxbuf->m_head); rxbuf->m_head = NULL; } } } return (ENOBUFS); } /********************************************************************* * * Enable receive unit. * **********************************************************************/ static void igb_initialize_receive_units(struct adapter *adapter) { struct rx_ring *rxr = adapter->rx_rings; struct ifnet *ifp = adapter->ifp; u32 rctl, rxcsum, psize; INIT_DEBUGOUT("igb_initialize_receive_unit: begin"); /* * Make sure receives are disabled while setting * up the descriptor ring */ rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); /* Setup the Base and Length of the Rx Descriptor Rings */ for (int i = 0; i < adapter->num_rx_queues; i++, rxr++) { u64 bus_addr = rxr->rxdma.dma_paddr; u32 rxdctl, srrctl; E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(i), adapter->num_rx_desc * sizeof(struct e1000_rx_desc)); E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(i), (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(i), (uint32_t)bus_addr); /* Use Advanced Descriptor type */ srrctl = E1000_READ_REG(&adapter->hw, E1000_SRRCTL(i)); srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; E1000_WRITE_REG(&adapter->hw, E1000_SRRCTL(i), srrctl); /* Enable this Queue */ rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(i)); rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; rxdctl &= 0xFFF00000; rxdctl |= IGB_RX_PTHRESH; rxdctl |= IGB_RX_HTHRESH << 8; rxdctl |= IGB_RX_WTHRESH << 16; E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(i), rxdctl); } /* ** Setup for RX MultiQueue */ if (adapter->num_rx_queues >1) { u32 random[10], mrqc, shift = 0; union igb_reta { u32 dword; u8 bytes[4]; } reta; arc4rand(&random, sizeof(random), 0); if (adapter->hw.mac.type == e1000_82575) shift = 6; /* Warning FM follows */ for (int i = 0; i < 128; i++) { reta.bytes[i & 3] = (i % adapter->num_rx_queues) << shift; if ((i & 3) == 3) E1000_WRITE_REG(&adapter->hw, E1000_RETA(i & ~3), reta.dword); } /* Now fill in hash table */ mrqc = E1000_MRQC_ENABLE_RSS_4Q; for (int i = 0; i < 10; i++) E1000_WRITE_REG_ARRAY(&adapter->hw, E1000_RSSRK(0), i, random[i]); mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP); mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP); mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP); mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); E1000_WRITE_REG(&adapter->hw, E1000_MRQC, mrqc); /* ** NOTE: Receive Full-Packet Checksum Offload ** is mutually exclusive with Multiqueue. However ** this is not the same as TCP/IP checksums which ** still work. */ rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum); } else if (ifp->if_capenable & IFCAP_RXCSUM) { rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM); rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum); } /* Setup the Receive Control Register */ rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); /* Make sure VLAN Filters are off */ rctl &= ~E1000_RCTL_VFE; rctl &= ~E1000_RCTL_SBP; switch (adapter->rx_buffer_len) { default: case 2048: rctl |= E1000_RCTL_SZ_2048; break; case 4096: rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; break; case 8192: rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; break; case 16384: rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; break; } if (ifp->if_mtu > ETHERMTU) { /* Set maximum packet len */ psize = adapter->max_frame_size; /* are we on a vlan? */ if (adapter->ifp->if_vlantrunk != NULL) psize += VLAN_TAG_SIZE; E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); rctl |= E1000_RCTL_LPE; } else rctl &= ~E1000_RCTL_LPE; /* Enable Receives */ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); /* * Setup the HW Rx Head and Tail Descriptor Pointers * - needs to be after enable */ for (int i = 0; i < adapter->num_rx_queues; i++) { E1000_WRITE_REG(&adapter->hw, E1000_RDH(i), 0); E1000_WRITE_REG(&adapter->hw, E1000_RDT(i), adapter->num_rx_desc - 1); } return; } /********************************************************************* * * Free receive rings. * **********************************************************************/ static void igb_free_receive_structures(struct adapter *adapter) { struct rx_ring *rxr = adapter->rx_rings; for (int i = 0; i < adapter->num_rx_queues; i++, rxr++) { struct lro_ctrl *lro = &rxr->lro; igb_free_receive_buffers(rxr); tcp_lro_free(lro); igb_dma_free(adapter, &rxr->rxdma); } free(adapter->rx_rings, M_DEVBUF); } /********************************************************************* * * Free receive ring data structures. * **********************************************************************/ static void igb_free_receive_buffers(struct rx_ring *rxr) { struct adapter *adapter = rxr->adapter; struct igb_buffer *rx_buffer; INIT_DEBUGOUT("free_receive_structures: begin"); if (rxr->rx_spare_map) { bus_dmamap_destroy(rxr->rxtag, rxr->rx_spare_map); rxr->rx_spare_map = NULL; } /* Cleanup any existing buffers */ if (rxr->rx_buffers != NULL) { rx_buffer = &rxr->rx_buffers[0]; for (int i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { if (rx_buffer->m_head != NULL) { bus_dmamap_sync(rxr->rxtag, rx_buffer->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(rxr->rxtag, rx_buffer->map); m_freem(rx_buffer->m_head); rx_buffer->m_head = NULL; } else if (rx_buffer->map != NULL) bus_dmamap_unload(rxr->rxtag, rx_buffer->map); if (rx_buffer->map != NULL) { bus_dmamap_destroy(rxr->rxtag, rx_buffer->map); rx_buffer->map = NULL; } } } if (rxr->rx_buffers != NULL) { free(rxr->rx_buffers, M_DEVBUF); rxr->rx_buffers = NULL; } if (rxr->rxtag != NULL) { bus_dma_tag_destroy(rxr->rxtag); rxr->rxtag = NULL; } } /********************************************************************* * * This routine executes in interrupt context. It replenishes * the mbufs in the descriptor and sends data which has been * dma'ed into host memory to upper layer. * * We loop at most count times if count is > 0, or until done if * count < 0. * * Return TRUE if all clean, FALSE otherwise *********************************************************************/ static bool igb_rxeof(struct rx_ring *rxr, int count) { struct adapter *adapter = rxr->adapter; struct ifnet *ifp; struct lro_ctrl *lro = &rxr->lro; struct lro_entry *queued; struct mbuf *mp; uint8_t accept_frame = 0; uint8_t eop = 0; uint16_t len, desc_len, prev_len_adj; int i; u32 staterr; union e1000_adv_rx_desc *cur; IGB_RX_LOCK(rxr); ifp = adapter->ifp; i = rxr->next_to_check; cur = &rxr->rx_base[i]; staterr = cur->wb.upper.status_error; bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, BUS_DMASYNC_POSTREAD); if (!(staterr & E1000_RXD_STAT_DD)) { IGB_RX_UNLOCK(rxr); return FALSE; } while ((staterr & E1000_RXD_STAT_DD) && (count != 0) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { struct mbuf *m = NULL; mp = rxr->rx_buffers[i].m_head; /* * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT * needs to access the last received byte in the mbuf. */ bus_dmamap_sync(rxr->rxtag, rxr->rx_buffers[i].map, BUS_DMASYNC_POSTREAD); accept_frame = 1; prev_len_adj = 0; desc_len = le16toh(cur->wb.upper.length); if (staterr & E1000_RXD_STAT_EOP) { count--; eop = 1; if (desc_len < ETHER_CRC_LEN) { len = 0; prev_len_adj = ETHER_CRC_LEN - desc_len; } else len = desc_len - ETHER_CRC_LEN; } else { eop = 0; len = desc_len; } if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { u32 pkt_len = desc_len; if (rxr->fmp != NULL) pkt_len += rxr->fmp->m_pkthdr.len; accept_frame = 0; } if (accept_frame) { if (igb_get_buf(rxr, i) != 0) { ifp->if_iqdrops++; goto discard; } /* Assign correct length to the current fragment */ mp->m_len = len; if (rxr->fmp == NULL) { mp->m_pkthdr.len = len; rxr->fmp = mp; /* Store the first mbuf */ rxr->lmp = mp; } else { /* Chain mbuf's together */ mp->m_flags &= ~M_PKTHDR; /* * Adjust length of previous mbuf in chain if * we received less than 4 bytes in the last * descriptor. */ if (prev_len_adj > 0) { rxr->lmp->m_len -= prev_len_adj; rxr->fmp->m_pkthdr.len -= prev_len_adj; } rxr->lmp->m_next = mp; rxr->lmp = rxr->lmp->m_next; rxr->fmp->m_pkthdr.len += len; } if (eop) { rxr->fmp->m_pkthdr.rcvif = ifp; ifp->if_ipackets++; rxr->rx_packets++; rxr->bytes += rxr->fmp->m_pkthdr.len; rxr->rx_bytes += rxr->bytes; igb_rx_checksum(staterr, rxr->fmp); #ifndef __NO_STRICT_ALIGNMENT if (adapter->max_frame_size > (MCLBYTES - ETHER_ALIGN) && igb_fixup_rx(rxr) != 0) goto skip; #endif if (staterr & E1000_RXD_STAT_VP) { rxr->fmp->m_pkthdr.ether_vtag = le16toh(cur->wb.upper.vlan); rxr->fmp->m_flags |= M_VLANTAG; } #ifndef __NO_STRICT_ALIGNMENT skip: #endif m = rxr->fmp; rxr->fmp = NULL; rxr->lmp = NULL; } } else { ifp->if_ierrors++; discard: /* Reuse loaded DMA map and just update mbuf chain */ mp = rxr->rx_buffers[i].m_head; mp->m_len = mp->m_pkthdr.len = MCLBYTES; mp->m_data = mp->m_ext.ext_buf; mp->m_next = NULL; if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN)) m_adj(mp, ETHER_ALIGN); if (rxr->fmp != NULL) { m_freem(rxr->fmp); rxr->fmp = NULL; rxr->lmp = NULL; } m = NULL; } /* Zero out the receive descriptors status. */ cur->wb.upper.status_error = 0; bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); rxr->last_cleaned = i; /* For updating tail */ /* Advance our pointers to the next descriptor. */ if (++i == adapter->num_rx_desc) i = 0; if (m != NULL) { rxr->next_to_check = i; /* Use LRO if possible */ if ((!lro->lro_cnt) || (tcp_lro_rx(lro, m, 0))) { /* Pass up to the stack */ (*ifp->if_input)(ifp, m); i = rxr->next_to_check; } } /* Get the next descriptor */ cur = &rxr->rx_base[i]; staterr = cur->wb.upper.status_error; } rxr->next_to_check = i; /* Advance the E1000's Receive Queue #0 "Tail Pointer". */ E1000_WRITE_REG(&adapter->hw, E1000_RDT(rxr->me), rxr->last_cleaned); /* * Flush any outstanding LRO work */ while (!SLIST_EMPTY(&lro->lro_active)) { queued = SLIST_FIRST(&lro->lro_active); SLIST_REMOVE_HEAD(&lro->lro_active, next); tcp_lro_flush(lro, queued); } IGB_RX_UNLOCK(rxr); if (!((staterr) & E1000_RXD_STAT_DD)) return FALSE; return TRUE; } #ifndef __NO_STRICT_ALIGNMENT /* * When jumbo frames are enabled we should realign entire payload on * architecures with strict alignment. This is serious design mistake of 8254x * as it nullifies DMA operations. 8254x just allows RX buffer size to be * 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its * payload. On architecures without strict alignment restrictions 8254x still * performs unaligned memory access which would reduce the performance too. * To avoid copying over an entire frame to align, we allocate a new mbuf and * copy ethernet header to the new mbuf. The new mbuf is prepended into the * existing mbuf chain. * * Be aware, best performance of the 8254x is achived only when jumbo frame is * not used at all on architectures with strict alignment. */ static int igb_fixup_rx(struct rx_ring *rxr) { struct adapter *adapter = rxr->adapter; struct mbuf *m, *n; int error; error = 0; m = rxr->fmp; if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); m->m_data += ETHER_HDR_LEN; } else { MGETHDR(n, M_DONTWAIT, MT_DATA); if (n != NULL) { bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); m->m_data += ETHER_HDR_LEN; m->m_len -= ETHER_HDR_LEN; n->m_len = ETHER_HDR_LEN; M_MOVE_PKTHDR(n, m); n->m_next = m; rxr->fmp = n; } else { adapter->dropped_pkts++; m_freem(rxr->fmp); rxr->fmp = NULL; error = ENOMEM; } } return (error); } #endif /********************************************************************* * * Verify that the hardware indicated that the checksum is valid. * Inform the stack about the status of checksum so that stack * doesn't spend time verifying the checksum. * *********************************************************************/ static void igb_rx_checksum(u32 staterr, struct mbuf *mp) { u16 status = (u16)staterr; u8 errors = (u8) (staterr >> 24); /* Ignore Checksum bit is set */ if (status & E1000_RXD_STAT_IXSM) { mp->m_pkthdr.csum_flags = 0; return; } if (status & E1000_RXD_STAT_IPCS) { /* Did it pass? */ if (!(errors & E1000_RXD_ERR_IPE)) { /* IP Checksum Good */ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED; mp->m_pkthdr.csum_flags |= CSUM_IP_VALID; } else mp->m_pkthdr.csum_flags = 0; } if (status & E1000_RXD_STAT_TCPCS) { /* Did it pass? */ if (!(errors & E1000_RXD_ERR_TCPE)) { mp->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); mp->m_pkthdr.csum_data = htons(0xffff); } } return; } #ifdef IGB_HW_VLAN_SUPPORT /* * This routine is run via an vlan * config EVENT */ static void igb_register_vlan(void *unused, struct ifnet *ifp, u16 vtag) { struct adapter *adapter = ifp->if_softc; u32 ctrl, rctl, index, vfta; /* Shouldn't happen */ if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) return; ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); ctrl |= E1000_CTRL_VME; E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); /* Setup for Hardware Filter */ rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); rctl |= E1000_RCTL_VFE; rctl &= ~E1000_RCTL_CFIEN; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); /* Make entry in the hardware filter table */ index = ((vtag >> 5) & 0x7F); vfta = E1000_READ_REG_ARRAY(&adapter->hw, E1000_VFTA, index); vfta |= (1 << (vtag & 0x1F)); E1000_WRITE_REG_ARRAY(&adapter->hw, E1000_VFTA, index, vfta); /* Update the frame size */ E1000_WRITE_REG(&adapter->hw, E1000_RLPML, adapter->max_frame_size + VLAN_TAG_SIZE); } /* * This routine is run via an vlan * unconfig EVENT */ static void igb_unregister_vlan(void *unused, struct ifnet *ifp, u16 vtag) { struct adapter *adapter = ifp->if_softc; u32 index, vfta; /* Shouldn't happen */ if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0) return; /* Remove entry in the hardware filter table */ index = ((vtag >> 5) & 0x7F); vfta = E1000_READ_REG_ARRAY(&adapter->hw, E1000_VFTA, index); vfta &= ~(1 << (vtag & 0x1F)); E1000_WRITE_REG_ARRAY(&adapter->hw, E1000_VFTA, index, vfta); /* Have all vlans unregistered? */ if (adapter->ifp->if_vlantrunk == NULL) { u32 rctl; /* Turn off the filter table */ rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); rctl &= ~E1000_RCTL_VFE; rctl |= E1000_RCTL_CFIEN; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); /* Reset the frame size */ E1000_WRITE_REG(&adapter->hw, E1000_RLPML, adapter->max_frame_size); } } #endif /* IGB_HW_VLAN_SUPPORT */ static void igb_enable_intr(struct adapter *adapter) { /* With RSS set up what to auto clear */ if (adapter->msix_mem) { E1000_WRITE_REG(&adapter->hw, E1000_EIAC, adapter->eims_mask); E1000_WRITE_REG(&adapter->hw, E1000_EIAM, adapter->eims_mask); E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->eims_mask); E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC); } else { E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK); } E1000_WRITE_FLUSH(&adapter->hw); return; } static void igb_disable_intr(struct adapter *adapter) { if (adapter->msix_mem) { E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0); E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0); } E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0); E1000_WRITE_FLUSH(&adapter->hw); return; } /* * Bit of a misnomer, what this really means is * to enable OS management of the system... aka * to disable special hardware management features */ static void igb_init_manageability(struct adapter *adapter) { /* A shared code workaround */ #define E1000_82542_MANC2H E1000_MANC2H if (adapter->has_manage) { int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); /* enable receiving management packets to the host */ manc |= E1000_MANC_EN_MNG2HOST; #define E1000_MNG2HOST_PORT_623 (1 << 5) #define E1000_MNG2HOST_PORT_664 (1 << 6) manc2h |= E1000_MNG2HOST_PORT_623; manc2h |= E1000_MNG2HOST_PORT_664; E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); } } /* * Give control back to hardware management * controller if there is one. */ static void igb_release_manageability(struct adapter *adapter) { if (adapter->has_manage) { int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); /* re-enable hardware interception of ARP */ manc |= E1000_MANC_ARP_EN; manc &= ~E1000_MANC_EN_MNG2HOST; E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); } } /* * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is loaded. * */ static void igb_get_hw_control(struct adapter *adapter) { u32 ctrl_ext; /* Let firmware know the driver has taken over */ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } /* * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. * */ static void igb_release_hw_control(struct adapter *adapter) { u32 ctrl_ext; /* Let firmware taken over control of h/w */ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); } static int igb_is_valid_ether_addr(uint8_t *addr) { char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { return (FALSE); } return (TRUE); } /* * Enable PCI Wake On Lan capability */ void igb_enable_wakeup(device_t dev) { u16 cap, status; u8 id; /* First find the capabilities pointer*/ cap = pci_read_config(dev, PCIR_CAP_PTR, 2); /* Read the PM Capabilities */ id = pci_read_config(dev, cap, 1); if (id != PCIY_PMG) /* Something wrong */ return; /* OK, we have the power capabilities, so now get the status register */ cap += PCIR_POWER_STATUS; status = pci_read_config(dev, cap, 2); status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(dev, cap, status, 2); return; } /********************************************************************** * * Update the board statistics counters. * **********************************************************************/ static void igb_update_stats_counters(struct adapter *adapter) { struct ifnet *ifp; if(adapter->hw.phy.media_type == e1000_media_type_copper || (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); } adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); /* For the 64-bit byte counters the low dword must be read first. */ /* Both registers clear on the read of the high dword */ adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH); adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH); adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); adapter->stats.algnerrc += E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); adapter->stats.rxerrc += E1000_READ_REG(&adapter->hw, E1000_RXERRC); adapter->stats.tncrs += E1000_READ_REG(&adapter->hw, E1000_TNCRS); adapter->stats.cexterr += E1000_READ_REG(&adapter->hw, E1000_CEXTERR); adapter->stats.tsctc += E1000_READ_REG(&adapter->hw, E1000_TSCTC); adapter->stats.tsctfc += E1000_READ_REG(&adapter->hw, E1000_TSCTFC); ifp = adapter->ifp; ifp->if_collisions = adapter->stats.colc; /* Rx Errors */ ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + adapter->stats.mpc + adapter->stats.cexterr; /* Tx Errors */ ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol + adapter->watchdog_events; } /********************************************************************** * * This routine is called only when igb_display_debug_stats is enabled. * This routine provides a way to take a look at important statistics * maintained by the driver and hardware. * **********************************************************************/ static void igb_print_debug_info(struct adapter *adapter) { device_t dev = adapter->dev; struct rx_ring *rxr = adapter->rx_rings; struct tx_ring *txr = adapter->tx_rings; uint8_t *hw_addr = adapter->hw.hw_addr; device_printf(dev, "Adapter hardware address = %p \n", hw_addr); device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n", E1000_READ_REG(&adapter->hw, E1000_CTRL), E1000_READ_REG(&adapter->hw, E1000_RCTL)); #if (DEBUG_HW > 0) /* Dont output these errors normally */ device_printf(dev, "IMS = 0x%x EIMS = 0x%x \n", E1000_READ_REG(&adapter->hw, E1000_IMS), E1000_READ_REG(&adapter->hw, E1000_EIMS)); #endif device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n", ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\ (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) ); device_printf(dev, "Flow control watermarks high = %d low = %d\n", adapter->hw.fc.high_water, adapter->hw.fc.low_water); for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { device_printf(dev, "Queue(%d) tdh = %d, tdt = %d\n", i, E1000_READ_REG(&adapter->hw, E1000_TDH(i)), E1000_READ_REG(&adapter->hw, E1000_TDT(i))); device_printf(dev, "no descriptors avail event = %lld\n", (long long)txr->no_desc_avail); device_printf(dev, "TX(%d) MSIX IRQ Handled = %lld\n", txr->me, (long long)txr->tx_irq); device_printf(dev, "TX(%d) Packets sent = %lld\n", txr->me, (long long)txr->tx_packets); } for (int i = 0; i < adapter->num_rx_queues; i++, rxr++) { struct lro_ctrl *lro = &rxr->lro; device_printf(dev, "Queue(%d) rdh = %d, rdt = %d\n", i, E1000_READ_REG(&adapter->hw, E1000_RDH(i)), E1000_READ_REG(&adapter->hw, E1000_RDT(i))); device_printf(dev, "RX(%d) Packets received = %lld\n", rxr->me, (long long)rxr->rx_packets); device_printf(dev, "RX(%d) Byte count = %lld\n", rxr->me, (long long)rxr->rx_bytes); device_printf(dev, "RX(%d) MSIX IRQ Handled = %lld\n", rxr->me, (long long)rxr->rx_irq); device_printf(dev,"RX(%d) LRO Queued= %d\n", rxr->me, lro->lro_queued); device_printf(dev,"RX(%d) LRO Flushed= %d\n", rxr->me, lro->lro_flushed); } device_printf(dev, "LINK MSIX IRQ Handled = %u\n", adapter->link_irq); device_printf(dev, "Std mbuf failed = %ld\n", adapter->mbuf_alloc_failed); device_printf(dev, "Std mbuf cluster failed = %ld\n", adapter->mbuf_cluster_failed); device_printf(dev, "Driver dropped packets = %ld\n", adapter->dropped_pkts); device_printf(dev, "Driver tx dma failure in xmit = %ld\n", adapter->no_tx_dma_setup); } static void igb_print_hw_stats(struct adapter *adapter) { device_t dev = adapter->dev; device_printf(dev, "Excessive collisions = %lld\n", (long long)adapter->stats.ecol); #if (DEBUG_HW > 0) /* Dont output these errors normally */ device_printf(dev, "Symbol errors = %lld\n", (long long)adapter->stats.symerrs); #endif device_printf(dev, "Sequence errors = %lld\n", (long long)adapter->stats.sec); device_printf(dev, "Defer count = %lld\n", (long long)adapter->stats.dc); device_printf(dev, "Missed Packets = %lld\n", (long long)adapter->stats.mpc); device_printf(dev, "Receive No Buffers = %lld\n", (long long)adapter->stats.rnbc); /* RLEC is inaccurate on some hardware, calculate our own. */ device_printf(dev, "Receive Length Errors = %lld\n", ((long long)adapter->stats.roc + (long long)adapter->stats.ruc)); device_printf(dev, "Receive errors = %lld\n", (long long)adapter->stats.rxerrc); device_printf(dev, "Crc errors = %lld\n", (long long)adapter->stats.crcerrs); device_printf(dev, "Alignment errors = %lld\n", (long long)adapter->stats.algnerrc); /* On 82575 these are collision counts */ device_printf(dev, "Collision/Carrier extension errors = %lld\n", (long long)adapter->stats.cexterr); device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns); device_printf(dev, "watchdog timeouts = %ld\n", adapter->watchdog_events); device_printf(dev, "XON Rcvd = %lld\n", (long long)adapter->stats.xonrxc); device_printf(dev, "XON Xmtd = %lld\n", (long long)adapter->stats.xontxc); device_printf(dev, "XOFF Rcvd = %lld\n", (long long)adapter->stats.xoffrxc); device_printf(dev, "XOFF Xmtd = %lld\n", (long long)adapter->stats.xofftxc); device_printf(dev, "Good Packets Rcvd = %lld\n", (long long)adapter->stats.gprc); device_printf(dev, "Good Packets Xmtd = %lld\n", (long long)adapter->stats.gptc); device_printf(dev, "TSO Contexts Xmtd = %lld\n", (long long)adapter->stats.tsctc); device_printf(dev, "TSO Contexts Failed = %lld\n", (long long)adapter->stats.tsctfc); } /********************************************************************** * * This routine provides a way to dump out the adapter eeprom, * often a useful debug/service tool. This only dumps the first * 32 words, stuff that matters is in that extent. * **********************************************************************/ static void igb_print_nvm_info(struct adapter *adapter) { u16 eeprom_data; int i, j, row = 0; /* Its a bit crude, but it gets the job done */ printf("\nInterface EEPROM Dump:\n"); printf("Offset\n0x0000 "); for (i = 0, j = 0; i < 32; i++, j++) { if (j == 8) { /* Make the offset block */ j = 0; ++row; printf("\n0x00%x0 ",row); } e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); printf("%04x ", eeprom_data); } printf("\n"); } static int igb_sysctl_debug_info(SYSCTL_HANDLER_ARGS) { struct adapter *adapter; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { adapter = (struct adapter *)arg1; igb_print_debug_info(adapter); } /* * This value will cause a hex dump of the * first 32 16-bit words of the EEPROM to * the screen. */ if (result == 2) { adapter = (struct adapter *)arg1; igb_print_nvm_info(adapter); } return (error); } static int igb_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct adapter *adapter; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { adapter = (struct adapter *)arg1; igb_print_hw_stats(adapter); } return (error); } static void igb_add_rx_process_limit(struct adapter *adapter, const char *name, const char *description, int *limit, int value) { *limit = value; SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description); } #ifdef IGB_TIMESYNC /* * Initialize the Time Sync Feature */ static int igb_tsync_init(struct adapter *adapter) { device_t dev = adapter->dev; u32 tx_ctl, rx_ctl, val; E1000_WRITE_REG(&adapter->hw, E1000_TIMINCA, (1<<24) | 20833/PICOSECS_PER_TICK); adapter->last_stamp = E1000_READ_REG(&adapter->hw, E1000_SYSTIML); adapter->last_stamp |= (u64)E1000_READ_REG(&adapter->hw, E1000_SYSTIMH) << 32ULL; /* Enable the TX side */ tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); tx_ctl |= 0x10; E1000_WRITE_REG(&adapter->hw, E1000_TSYNCTXCTL, tx_ctl); E1000_WRITE_FLUSH(&adapter->hw); tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); if ((tx_ctl & 0x10) == 0) { device_printf(dev, "Failed to enable TX timestamping\n"); return (ENXIO); } /* Enable RX */ rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); rx_ctl |= 0x10; /* Enable the feature */ rx_ctl |= 0x04; /* This value turns on Ver 1 and 2 */ E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCTL, rx_ctl); /* * Ethertype Filter Queue Filter[0][15:0] = 0x88F7 (Ethertype) * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter) * Ethertype Filter Queue Filter[0][31] = 0x1 (Enable Timestamping) */ E1000_WRITE_REG(&adapter->hw, E1000_ETQF(0), 0x440088f7); E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCFG, 0x0); /* * Source Port Queue Filter Setup: * this is for UDP port filtering */ E1000_WRITE_REG(&adapter->hw, E1000_SPQF(0), TSYNC_PORT); /* Protocol = UDP, enable Timestamp, and filter on source/protocol */ val = (0x11 | (1 << 27) | (6 << 28)); E1000_WRITE_REG(&adapter->hw, E1000_FTQF(0), val); E1000_WRITE_FLUSH(&adapter->hw); rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); if ((rx_ctl & 0x10) == 0) { device_printf(dev, "Failed to enable RX timestamping\n"); return (ENXIO); } device_printf(dev, "IEEE 1588 Precision Time Protocol enabled\n"); return (0); } /* * Disable the Time Sync Feature */ static void igb_tsync_disable(struct adapter *adapter) { u32 tx_ctl, rx_ctl; tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); tx_ctl &= ~0x10; E1000_WRITE_REG(&adapter->hw, E1000_TSYNCTXCTL, tx_ctl); E1000_WRITE_FLUSH(&adapter->hw); /* Invalidate TX Timestamp */ E1000_READ_REG(&adapter->hw, E1000_TXSTMPH); tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); if (tx_ctl & 0x10) HW_DEBUGOUT("Failed to disable TX timestamping\n"); rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); rx_ctl &= ~0x10; E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCTL, rx_ctl); E1000_WRITE_FLUSH(&adapter->hw); /* Invalidate RX Timestamp */ E1000_READ_REG(&adapter->hw, E1000_RXSATRH); rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); if (rx_ctl & 0x10) HW_DEBUGOUT("Failed to disable RX timestamping\n"); return; } #endif /* IGB_TIMESYNC */