/*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Copyright (c) 2006 * Alfred Perlstein . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * ADMtek AN986 Pegasus and AN8511 Pegasus II USB to ethernet driver. * Datasheet is available from http://www.admtek.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City * * SMP locking by Alfred Perlstein . * RED Inc. */ /* * The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet * support: the control endpoint for reading/writing registers, burst * read endpoint for packet reception, burst write for packet transmission * and one for "interrupts." The chip uses the same RX filter scheme * as the other ADMtek ethernet parts: one perfect filter entry for the * the station address and a 64-bit multicast hash table. The chip supports * both MII and HomePNA attachments. * * Since the maximum data transfer speed of USB is supposed to be 12Mbps, * you're never really going to get 100Mbps speeds from this device. I * think the idea is to allow the device to connect to 10 or 100Mbps * networks, not necessarily to provide 100Mbps performance. Also, since * the controller uses an external PHY chip, it's possible that board * designers might simply choose a 10Mbps PHY. * * Registers are accessed using usbd_do_request(). Packet transfers are * done using usbd_transfer() and friends. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #include #include #include #include MODULE_DEPEND(aue, usb, 1, 1, 1); MODULE_DEPEND(aue, ether, 1, 1, 1); MODULE_DEPEND(aue, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/products. */ struct aue_type { struct usb_devno aue_dev; u_int16_t aue_flags; #define LSYS 0x0001 /* use Linksys reset */ #define PNA 0x0002 /* has Home PNA */ #define PII 0x0004 /* Pegasus II chip */ }; static const struct aue_type aue_devs[] = { {{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460B}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX1}, PNA|PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX2}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE1000}, LSYS }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX4}, PNA }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX5}, PNA }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX6}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX7}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX8}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX9}, PNA }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX10}, 0 }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_DSB650TX_PNA}, 0 }, {{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_USB320_EC}, 0 }, {{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SS1001}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUS}, PNA }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_2}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_3}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_4}, PII }, {{ USB_VENDOR_AEI, USB_PRODUCT_AEI_FASTETHERNET}, PII }, {{ USB_VENDOR_ALLIEDTELESYN, USB_PRODUCT_ALLIEDTELESYN_ATUSB100}, PII }, {{ USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC110T}, PII }, {{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_USB2LAN}, PII }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB100}, 0 }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBLP100}, PNA }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBEL100}, 0 }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBE100}, PII }, {{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TX}, 0 }, {{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TXS},PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX4}, LSYS|PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX1}, LSYS }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX}, LSYS }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX_PNA}, PNA }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX3}, LSYS|PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX2}, LSYS|PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650}, LSYS }, {{ USB_VENDOR_ELCON, USB_PRODUCT_ELCON_PLAN}, PNA|PII }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSB20}, PII }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX0}, 0 }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX1}, LSYS }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX2}, 0 }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX3}, LSYS }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBLTX}, PII }, {{ USB_VENDOR_ELSA, USB_PRODUCT_ELSA_USB2ETHERNET}, 0 }, {{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNBR402W}, 0 }, {{ USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_UF100}, PII }, {{ USB_VENDOR_HP, USB_PRODUCT_HP_HN210E}, PII }, {{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTX}, 0 }, {{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTXS}, PII }, {{ USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_KNU101TX}, 0 }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX1}, LSYS|PII }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T}, LSYS }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100TX}, LSYS }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100H1}, LSYS|PNA }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TA}, LSYS }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX2}, LSYS|PII }, {{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX1}, 0 }, {{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX5}, 0 }, {{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUA2TX5}, PII }, {{ USB_VENDOR_MICROSOFT, USB_PRODUCT_MICROSOFT_MN110}, PII }, {{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA101}, PII }, {{ USB_VENDOR_SIEMENS, USB_PRODUCT_SIEMENS_SPEEDSTREAM}, PII }, {{ USB_VENDOR_SIIG2, USB_PRODUCT_SIIG2_USBTOETHER}, PII }, {{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTNIC},PII }, {{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2202USB}, 0 }, {{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2206USB}, PII }, {{ USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB100}, 0 }, {{ USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB110}, PII }, }; #define aue_lookup(v, p) ((const struct aue_type *)usb_lookup(aue_devs, v, p)) static device_probe_t aue_match; static device_attach_t aue_attach; static device_detach_t aue_detach; static device_shutdown_t aue_shutdown; static miibus_readreg_t aue_miibus_readreg; static miibus_writereg_t aue_miibus_writereg; static miibus_statchg_t aue_miibus_statchg; static void aue_reset_pegasus_II(struct aue_softc *sc); static int aue_encap(struct aue_softc *, struct mbuf *, int); #ifdef AUE_INTR_PIPE static void aue_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); #endif static void aue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void aue_rxeof_thread(struct aue_softc *sc); static void aue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void aue_txeof_thread(struct aue_softc *); static void aue_task_sched(struct aue_softc *, int); static void aue_task(void *xsc, int pending); static void aue_tick(void *); static void aue_rxstart(struct ifnet *); static void aue_rxstart_thread(struct aue_softc *); static void aue_start(struct ifnet *); static void aue_start_thread(struct aue_softc *); static int aue_ioctl(struct ifnet *, u_long, caddr_t); static void aue_init(void *); static void aue_init_body(struct aue_softc *); static void aue_stop(struct aue_softc *); static void aue_watchdog(struct aue_softc *); static int aue_ifmedia_upd(struct ifnet *); static void aue_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void aue_eeprom_getword(struct aue_softc *, int, u_int16_t *); static void aue_read_eeprom(struct aue_softc *, caddr_t, int, int, int); static void aue_setmulti(struct aue_softc *); static void aue_reset(struct aue_softc *); static int aue_csr_read_1(struct aue_softc *, int); static int aue_csr_write_1(struct aue_softc *, int, int); static int aue_csr_read_2(struct aue_softc *, int); static int aue_csr_write_2(struct aue_softc *, int, int); static device_method_t aue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, aue_match), DEVMETHOD(device_attach, aue_attach), DEVMETHOD(device_detach, aue_detach), DEVMETHOD(device_shutdown, aue_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, aue_miibus_readreg), DEVMETHOD(miibus_writereg, aue_miibus_writereg), DEVMETHOD(miibus_statchg, aue_miibus_statchg), { 0, 0 } }; static driver_t aue_driver = { "aue", aue_methods, sizeof(struct aue_softc) }; static devclass_t aue_devclass; DRIVER_MODULE(aue, uhub, aue_driver, aue_devclass, usbd_driver_load, 0); DRIVER_MODULE(miibus, aue, miibus_driver, miibus_devclass, 0, 0); #define AUE_SETBIT(sc, reg, x) \ aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) | (x)) #define AUE_CLRBIT(sc, reg, x) \ aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) & ~(x)) static int aue_csr_read_1(struct aue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; u_int8_t val = 0; AUE_SXASSERTLOCKED(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { return (0); } return (val); } static int aue_csr_read_2(struct aue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; u_int16_t val = 0; AUE_SXASSERTLOCKED(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { return (0); } return (val); } static int aue_csr_write_1(struct aue_softc *sc, int reg, int val) { usb_device_request_t req; usbd_status err; AUE_SXASSERTLOCKED(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { return (-1); } return (0); } static int aue_csr_write_2(struct aue_softc *sc, int reg, int val) { usb_device_request_t req; usbd_status err; AUE_SXASSERTLOCKED(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { return (-1); } return (0); } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void aue_eeprom_getword(struct aue_softc *sc, int addr, u_int16_t *dest) { int i; u_int16_t word = 0; aue_csr_write_1(sc, AUE_EE_REG, addr); aue_csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ); for (i = 0; i < AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_EE_CTL) & AUE_EECTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("aue%d: EEPROM read timed out\n", sc->aue_unit); } word = aue_csr_read_2(sc, AUE_EE_DATA); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ static void aue_read_eeprom(struct aue_softc *sc, caddr_t dest, int off, int cnt, int swap) { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { aue_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } static int aue_miibus_readreg(device_t dev, int phy, int reg) { struct aue_softc *sc = device_get_softc(dev); int i; u_int16_t val = 0; /* * The Am79C901 HomePNA PHY actually contains * two transceivers: a 1Mbps HomePNA PHY and a * 10Mbps full/half duplex ethernet PHY with * NWAY autoneg. However in the ADMtek adapter, * only the 1Mbps PHY is actually connected to * anything, so we ignore the 10Mbps one. It * happens to be configured for MII address 3, * so we filter that out. */ if (sc->aue_vendor == USB_VENDOR_ADMTEK && sc->aue_product == USB_PRODUCT_ADMTEK_PEGASUS) { if (phy == 3) return (0); #ifdef notdef if (phy != 1) return (0); #endif } aue_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_READ); for (i = 0; i < AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("aue%d: MII read timed out\n", sc->aue_unit); } val = aue_csr_read_2(sc, AUE_PHY_DATA); return (val); } static int aue_miibus_writereg(device_t dev, int phy, int reg, int data) { struct aue_softc *sc = device_get_softc(dev); int i; if (phy == 3) return (0); aue_csr_write_2(sc, AUE_PHY_DATA, data); aue_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_WRITE); for (i = 0; i < AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("aue%d: MII read timed out\n", sc->aue_unit); } return(0); } static void aue_miibus_statchg(device_t dev) { struct aue_softc *sc = device_get_softc(dev); struct mii_data *mii = GET_MII(sc); AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } else { AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); else AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); /* * Set the LED modes on the LinkSys adapter. * This turns on the 'dual link LED' bin in the auxmode * register of the Broadcom PHY. */ if (sc->aue_flags & LSYS) { u_int16_t auxmode; auxmode = aue_miibus_readreg(dev, 0, 0x1b); aue_miibus_writereg(dev, 0, 0x1b, auxmode | 0x04); } return; } #define AUE_BITS 6 static void aue_setmulti(struct aue_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; u_int32_t h = 0, i; u_int8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; AUE_SXASSERTLOCKED(sc); ifp = sc->aue_ifp; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); return; } AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); /* now program new ones */ IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_le(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) & ((1 << AUE_BITS) - 1); hashtbl[(h >> 3)] |= 1 << (h & 0x7); } IF_ADDR_UNLOCK(ifp); /* write the hashtable */ for (i = 0; i < 8; i++) aue_csr_write_1(sc, AUE_MAR0 + i, hashtbl[i]); return; } static void aue_reset_pegasus_II(struct aue_softc *sc) { /* Magic constants taken from Linux driver. */ aue_csr_write_1(sc, AUE_REG_1D, 0); aue_csr_write_1(sc, AUE_REG_7B, 2); #if 0 if ((sc->aue_flags & HAS_HOME_PNA) && mii_mode) aue_csr_write_1(sc, AUE_REG_81, 6); else #endif aue_csr_write_1(sc, AUE_REG_81, 2); } static void aue_reset(struct aue_softc *sc) { int i; AUE_SXASSERTLOCKED(sc); AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC); for (i = 0; i < AUE_TIMEOUT; i++) { if (!(aue_csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC)) break; } if (i == AUE_TIMEOUT) printf("aue%d: reset failed\n", sc->aue_unit); /* * The PHY(s) attached to the Pegasus chip may be held * in reset until we flip on the GPIO outputs. Make sure * to set the GPIO pins high so that the PHY(s) will * be enabled. * * Note: We force all of the GPIO pins low first, *then* * enable the ones we want. */ aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0); aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0|AUE_GPIO_SEL1); if (sc->aue_flags & LSYS) { /* Grrr. LinkSys has to be different from everyone else. */ aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0 | AUE_GPIO_SEL1); aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0 | AUE_GPIO_SEL1 | AUE_GPIO_OUT0); } if (sc->aue_flags & PII) aue_reset_pegasus_II(sc); /* Wait a little while for the chip to get its brains in order. */ DELAY(10000); return; } /* * Probe for a Pegasus chip. */ static int aue_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->iface != NULL) return (UMATCH_NONE); return (aue_lookup(uaa->vendor, uaa->product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int aue_attach(device_t self) { struct aue_softc *sc = device_get_softc(self); struct usb_attach_arg *uaa = device_get_ivars(self); u_char eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; usbd_interface_handle iface; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; sc->aue_dev = self; sc->aue_udev = uaa->device; sc->aue_unit = device_get_unit(self); if (usbd_set_config_no(sc->aue_udev, AUE_CONFIG_NO, 0)) { device_printf(self, "getting interface handle failed\n"); return ENXIO; } err = usbd_device2interface_handle(uaa->device, AUE_IFACE_IDX, &iface); if (err) { device_printf(self, "getting interface handle failed\n"); return ENXIO; } sc->aue_iface = iface; sc->aue_flags = aue_lookup(uaa->vendor, uaa->product)->aue_flags; sc->aue_product = uaa->product; sc->aue_vendor = uaa->vendor; id = usbd_get_interface_descriptor(sc->aue_iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(iface, i); if (ed == NULL) { device_printf(self, "couldn't get ep %d\n", i); return ENXIO; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->aue_ed[AUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->aue_ed[AUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->aue_ed[AUE_ENDPT_INTR] = ed->bEndpointAddress; } } mtx_init(&sc->aue_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); sx_init(&sc->aue_sx, device_get_nameunit(self)); TASK_INIT(&sc->aue_task, 0, aue_task, sc); usb_ether_task_init(self, 0, &sc->aue_taskqueue); AUE_SXLOCK(sc); /* Reset the adapter. */ aue_reset(sc); /* * Get station address from the EEPROM. */ aue_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0); ifp = sc->aue_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(self, "can not if_alloc()\n"); AUE_SXUNLOCK(sc); mtx_destroy(&sc->aue_mtx); sx_destroy(&sc->aue_sx); usb_ether_task_destroy(&sc->aue_taskqueue); return ENXIO; } ifp->if_softc = sc; if_initname(ifp, "aue", sc->aue_unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = aue_ioctl; ifp->if_start = aue_start; ifp->if_init = aue_init; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); /* * Do MII setup. * NOTE: Doing this causes child devices to be attached to us, * which we would normally disconnect at in the detach routine * using device_delete_child(). However the USB code is set up * such that when this driver is removed, all children devices * are removed as well. In effect, the USB code ends up detaching * all of our children for us, so we don't have to do is ourselves * in aue_detach(). It's important to point this out since if * we *do* try to detach the child devices ourselves, we will * end up getting the children deleted twice, which will crash * the system. */ if (mii_phy_probe(self, &sc->aue_miibus, aue_ifmedia_upd, aue_ifmedia_sts)) { device_printf(self, "MII without any PHY!\n"); if_free(ifp); AUE_SXUNLOCK(sc); mtx_destroy(&sc->aue_mtx); sx_destroy(&sc->aue_sx); usb_ether_task_destroy(&sc->aue_taskqueue); return ENXIO; } sc->aue_qdat.ifp = ifp; sc->aue_qdat.if_rxstart = aue_rxstart; /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); usb_register_netisr(); sc->aue_dying = 0; sc->aue_link = 1; AUE_SXUNLOCK(sc); return 0; } static int aue_detach(device_t dev) { struct aue_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); AUE_SXLOCK(sc); ifp = sc->aue_ifp; ether_ifdetach(ifp); sc->aue_dying = 1; AUE_SXUNLOCK(sc); callout_drain(&sc->aue_tick_callout); usb_ether_task_drain(&sc->aue_taskqueue, &sc->aue_task); usb_ether_task_destroy(&sc->aue_taskqueue); if_free(ifp); if (sc->aue_ep[AUE_ENDPT_TX] != NULL) usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (sc->aue_ep[AUE_ENDPT_RX] != NULL) usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]); #ifdef AUE_INTR_PIPE if (sc->aue_ep[AUE_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]); #endif mtx_destroy(&sc->aue_mtx); sx_destroy(&sc->aue_sx); return (0); } static void aue_rxstart(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; aue_task_sched(sc, AUE_TASK_RXSTART); } static void aue_rxstart_thread(struct aue_softc *sc) { struct ue_chain *c; struct ifnet *ifp; ifp = sc->aue_ifp; sc = ifp->if_softc; AUE_SXASSERTLOCKED(sc); c = &sc->aue_cdata.ue_rx_chain[sc->aue_cdata.ue_rx_prod]; c->ue_mbuf = usb_ether_newbuf(); if (c->ue_mbuf == NULL) { device_printf(sc->aue_dev, "no memory for rx list -- packet " "dropped!\n"); ifp->if_ierrors++; AUE_UNLOCK(sc); return; } /* Setup new transfer. */ usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_RX], c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof); usbd_transfer(c->ue_xfer); return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void aue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ue_chain *c = priv; c->ue_status = status; aue_task_sched(c->ue_sc, AUE_TASK_RXEOF); } static void aue_rxeof_thread(struct aue_softc *sc) { struct ue_chain *c = &(sc->aue_cdata.ue_rx_chain[0]); struct mbuf *m; struct ifnet *ifp; int total_len = 0; struct aue_rxpkt r; usbd_status status = c->ue_status; AUE_SXASSERTLOCKED(sc); ifp = sc->aue_ifp; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { return; } if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { return; } if (usbd_ratecheck(&sc->aue_rx_notice)) device_printf(sc->aue_dev, "usb error on rx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(c->ue_xfer, NULL, NULL, &total_len, NULL); if (total_len <= 4 + ETHER_CRC_LEN) { ifp->if_ierrors++; goto done; } m = c->ue_mbuf; bcopy(mtod(m, char *) + total_len - 4, (char *)&r, sizeof(r)); /* Turn off all the non-error bits in the rx status word. */ r.aue_rxstat &= AUE_RXSTAT_MASK; if (r.aue_rxstat) { ifp->if_ierrors++; goto done; } /* No errors; receive the packet. */ total_len -= (4 + ETHER_CRC_LEN); ifp->if_ipackets++; m->m_pkthdr.rcvif = (void *)&sc->aue_qdat; m->m_pkthdr.len = m->m_len = total_len; /* Put the packet on the special USB input queue. */ usb_ether_input(m); return; done: /* Setup new transfer. */ usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_RX], c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof); usbd_transfer(c->ue_xfer); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void aue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ue_chain *c = priv; c->ue_status = status; aue_task_sched(c->ue_sc, AUE_TASK_TXEOF); } static void aue_txeof_thread(struct aue_softc *sc) { struct ue_chain *c = &(sc->aue_cdata.ue_tx_chain[0]); struct ifnet *ifp; usbd_status err, status; AUE_SXASSERTLOCKED(sc); status = c->ue_status; ifp = sc->aue_ifp; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { return; } device_printf(sc->aue_dev, "usb error on tx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_TX]); return; } sc->aue_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; usbd_get_xfer_status(c->ue_xfer, NULL, NULL, NULL, &err); if (c->ue_mbuf != NULL) { c->ue_mbuf->m_pkthdr.rcvif = ifp; usb_tx_done(c->ue_mbuf); c->ue_mbuf = NULL; } if (err) ifp->if_oerrors++; else ifp->if_opackets++; return; } static void aue_tick(void *xsc) { struct aue_softc *sc = xsc; aue_task_sched(sc, AUE_TASK_TICK); } static void aue_tick_thread(struct aue_softc *sc) { struct ifnet *ifp; struct mii_data *mii; AUE_SXASSERTLOCKED(sc); ifp = sc->aue_ifp; /* * If a timer is set (non-zero) then decrement it * and if it hits zero, then call the watchdog routine. */ if (sc->aue_timer != 0 && --sc->aue_timer == 0) { aue_watchdog(sc); } if (ifp->if_drv_flags & IFF_DRV_RUNNING) { return; } mii = GET_MII(sc); if (mii == NULL) { goto resched; } mii_tick(mii); if (!sc->aue_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->aue_link++; if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) aue_start_thread(sc); } resched: (void) callout_reset(&sc->aue_tick_callout, hz, aue_tick, sc); return; } static int aue_encap(struct aue_softc *sc, struct mbuf *m, int idx) { int total_len; struct ue_chain *c; usbd_status err; AUE_SXASSERTLOCKED(sc); c = &sc->aue_cdata.ue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->ue_buf + 2); c->ue_mbuf = m; total_len = m->m_pkthdr.len + 2; /* * The ADMtek documentation says that the packet length is * supposed to be specified in the first two bytes of the * transfer, however it actually seems to ignore this info * and base the frame size on the bulk transfer length. */ c->ue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->ue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_TX], c, c->ue_buf, total_len, USBD_FORCE_SHORT_XFER, 10000, aue_txeof); /* Transmit */ err = usbd_transfer(c->ue_xfer); if (err != USBD_IN_PROGRESS) { aue_stop(sc); return (EIO); } sc->aue_cdata.ue_tx_cnt++; return (0); } static void aue_start(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; aue_task_sched(sc, AUE_TASK_START); } static void aue_start_thread(struct aue_softc *sc) { struct ifnet *ifp = sc->aue_ifp; struct mbuf *m_head = NULL; AUE_SXASSERTLOCKED(sc); if (!sc->aue_link) { return; } if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { return; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) { return; } if (aue_encap(sc, m_head, 0)) { IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; return; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ sc->aue_timer = 5; return; } static void aue_init(void *xsc) { struct aue_softc *sc = xsc; AUE_SXLOCK(sc); aue_init_body(sc); AUE_SXUNLOCK(sc); } static void aue_init_body(struct aue_softc *sc) { struct ifnet *ifp = sc->aue_ifp; struct mii_data *mii = GET_MII(sc); struct ue_chain *c; usbd_status err; int i; AUE_SXASSERTLOCKED(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { return; } /* * Cancel pending I/O and free all RX/TX buffers. */ aue_reset(sc); /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) aue_csr_write_1(sc, AUE_PAR0 + i, IF_LLADDR(sc->aue_ifp)[i]); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); else AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); /* Init TX ring. */ if (usb_ether_tx_list_init(sc, &sc->aue_cdata, sc->aue_udev) == ENOBUFS) { device_printf(sc->aue_dev, "tx list init failed\n"); return; } /* Init RX ring. */ if (usb_ether_rx_list_init(sc, &sc->aue_cdata, sc->aue_udev) == ENOBUFS) { device_printf(sc->aue_dev, "rx list init failed\n"); return; } /* Load the multicast filter. */ aue_setmulti(sc); /* Enable RX and TX */ aue_csr_write_1(sc, AUE_CTL0, AUE_CTL0_RXSTAT_APPEND | AUE_CTL0_RX_ENB); AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB); AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR); mii_mediachg(mii); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_RX]); if (err) { device_printf(sc->aue_dev, "open rx pipe failed: %s\n", usbd_errstr(err)); return; } err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_TX]); if (err) { device_printf(sc->aue_dev, "open tx pipe failed: %s\n", usbd_errstr(err)); return; } /* Start up the receive pipe. */ for (i = 0; i < UE_RX_LIST_CNT; i++) { c = &sc->aue_cdata.ue_rx_chain[i]; usbd_setup_xfer(c->ue_xfer, sc->aue_ep[AUE_ENDPT_RX], c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof); usbd_transfer(c->ue_xfer); } ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_init(&sc->aue_tick_callout, CALLOUT_MPSAFE); (void) callout_reset(&sc->aue_tick_callout, hz, aue_tick, sc); return; } /* * Set media options. */ static int aue_ifmedia_upd(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); sc->aue_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); sc->aue_link = 1; return (0); } /* * Report current media status. */ static void aue_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct aue_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int aue_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct aue_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int error = 0; /* * This prevents recursion in the interface while it's * being torn down. */ if (sc->aue_dying) return(0); AUE_GIANTLOCK(); switch(command) { case SIOCSIFFLAGS: AUE_SXLOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->aue_if_flags & IFF_PROMISC)) { AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->aue_if_flags & IFF_PROMISC) { AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { aue_init_body(sc); } sc->aue_dying = 0; } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) aue_stop(sc); } sc->aue_if_flags = ifp->if_flags; AUE_SXUNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: AUE_SXLOCK(sc); aue_setmulti(sc); AUE_SXUNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: AUE_SXLOCK(sc); mii = GET_MII(sc); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); AUE_SXUNLOCK(sc); break; default: error = ether_ioctl(ifp, command, data); break; } AUE_GIANTUNLOCK(); return (error); } static void aue_watchdog(struct aue_softc *sc) { struct ifnet *ifp = sc->aue_ifp; struct ue_chain *c; usbd_status stat; AUE_SXASSERTLOCKED(sc); ifp->if_oerrors++; device_printf(sc->aue_dev, "watchdog timeout\n"); c = &sc->aue_cdata.ue_tx_chain[0]; usbd_get_xfer_status(c->ue_xfer, NULL, NULL, NULL, &stat); c->ue_status = stat; aue_txeof_thread(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) aue_start_thread(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void aue_stop(struct aue_softc *sc) { usbd_status err; struct ifnet *ifp; AUE_SXASSERTLOCKED(sc); ifp = sc->aue_ifp; sc->aue_timer = 0; aue_csr_write_1(sc, AUE_CTL0, 0); aue_csr_write_1(sc, AUE_CTL1, 0); aue_reset(sc); sc->aue_dying = 1; /* Stop transfers. */ if (sc->aue_ep[AUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]); if (err) { device_printf(sc->aue_dev, "abort rx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_RX]); if (err) { device_printf(sc->aue_dev, "close rx pipe failed: %s\n", usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_RX] = NULL; } if (sc->aue_ep[AUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (err) { device_printf(sc->aue_dev, "abort tx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (err) { device_printf(sc->aue_dev, "close tx pipe failed: %s\n", usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_TX] = NULL; } #ifdef AUE_INTR_PIPE if (sc->aue_ep[AUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]); if (err) { device_printf(sc->aue_dev, "abort intr pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_INTR]); if (err) { device_printf(sc->aue_dev, "close intr pipe failed: %s\n", usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_INTR] = NULL; } #endif /* Free RX resources. */ usb_ether_rx_list_free(&sc->aue_cdata); /* Free TX resources. */ usb_ether_tx_list_free(&sc->aue_cdata); #ifdef AUE_INTR_PIPE free(sc->aue_cdata.ue_ibuf, M_USBDEV); sc->aue_cdata.ue_ibuf = NULL; #endif sc->aue_link = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int aue_shutdown(device_t dev) { struct aue_softc *sc; sc = device_get_softc(dev); AUE_SXLOCK(sc); sc->aue_dying++; aue_reset(sc); aue_stop(sc); AUE_SXUNLOCK(sc); return (0); } static void aue_task_sched(struct aue_softc *sc, int task) { AUE_LOCK(sc); sc->aue_deferedtasks |= task; usb_ether_task_enqueue(&sc->aue_taskqueue, &sc->aue_task); AUE_UNLOCK(sc); } /* * We defer all interrupt operations to this function. * * This allows us to do more complex operations, such as synchronous * usb io that normally would not be allowed from interrupt context. */ static void aue_task(void *arg, int pending) { struct aue_softc *sc = arg; int tasks; for ( ;; ) { AUE_LOCK(sc); tasks = sc->aue_deferedtasks; sc->aue_deferedtasks = 0; AUE_UNLOCK(sc); if (tasks == 0) break; AUE_GIANTLOCK(); // XXX: usb not giant safe AUE_SXLOCK(sc); if (sc->aue_dying) { AUE_SXUNLOCK(sc); break; } if ((tasks & AUE_TASK_TICK) != 0) { aue_tick_thread(sc); } if ((tasks & AUE_TASK_START) != 0) { aue_start_thread(sc); } if ((tasks & AUE_TASK_RXSTART) != 0) { aue_rxstart_thread(sc); } if ((tasks & AUE_TASK_RXEOF) != 0) { aue_rxeof_thread(sc); } if ((tasks & AUE_TASK_TXEOF) != 0) { aue_txeof_thread(sc); } AUE_SXUNLOCK(sc); AUE_GIANTUNLOCK(); // XXX: usb not giant safe } }