/*- * Copyright (c) 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 */ #include __FBSDID("$FreeBSD$"); /* * Socket operations for use by nfs */ #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRUE 1 #define FALSE 0 static int nfs_realign_test; static int nfs_realign_count; static int nfs_bufpackets = 4; static int nfs_reconnects; static int nfs3_jukebox_delay = 10; static int nfs_skip_wcc_data_onerr = 1; SYSCTL_DECL(_vfs_nfs); SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, ""); SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, ""); SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, ""); SYSCTL_INT(_vfs_nfs, OID_AUTO, reconnects, CTLFLAG_RD, &nfs_reconnects, 0, "number of times the nfs client has had to reconnect"); SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs3_jukebox_delay, CTLFLAG_RW, &nfs3_jukebox_delay, 0, "number of seconds to delay a retry after receiving EJUKEBOX"); SYSCTL_INT(_vfs_nfs, OID_AUTO, skip_wcc_data_onerr, CTLFLAG_RW, &nfs_skip_wcc_data_onerr, 0, ""); /* * There is a congestion window for outstanding rpcs maintained per mount * point. The cwnd size is adjusted in roughly the way that: * Van Jacobson, Congestion avoidance and Control, In "Proceedings of * SIGCOMM '88". ACM, August 1988. * describes for TCP. The cwnd size is chopped in half on a retransmit timeout * and incremented by 1/cwnd when each rpc reply is received and a full cwnd * of rpcs is in progress. * (The sent count and cwnd are scaled for integer arith.) * Variants of "slow start" were tried and were found to be too much of a * performance hit (ave. rtt 3 times larger), * I suspect due to the large rtt that nfs rpcs have. */ #define NFS_CWNDSCALE 256 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) #define NFS_NBACKOFF 8 static int nfs_backoff[NFS_NBACKOFF] = { 2, 4, 8, 16, 32, 64, 128, 256, }; struct callout nfs_callout; static int nfs_msg(struct thread *, const char *, const char *, int); static int nfs_realign(struct mbuf **pm, int hsiz); static int nfs_reply(struct nfsreq *); static void nfs_softterm(struct nfsreq *rep); static int nfs_reconnect(struct nfsreq *rep); static void nfs_clnt_tcp_soupcall(struct socket *so, void *arg, int waitflag); static void nfs_clnt_udp_soupcall(struct socket *so, void *arg, int waitflag); extern struct mtx nfs_reqq_mtx; /* * RTT estimator */ static enum nfs_rto_timer_t nfs_proct[NFS_NPROCS] = { NFS_DEFAULT_TIMER, /* NULL */ NFS_GETATTR_TIMER, /* GETATTR */ NFS_DEFAULT_TIMER, /* SETATTR */ NFS_LOOKUP_TIMER, /* LOOKUP */ NFS_GETATTR_TIMER, /* ACCESS */ NFS_READ_TIMER, /* READLINK */ NFS_READ_TIMER, /* READ */ NFS_WRITE_TIMER, /* WRITE */ NFS_DEFAULT_TIMER, /* CREATE */ NFS_DEFAULT_TIMER, /* MKDIR */ NFS_DEFAULT_TIMER, /* SYMLINK */ NFS_DEFAULT_TIMER, /* MKNOD */ NFS_DEFAULT_TIMER, /* REMOVE */ NFS_DEFAULT_TIMER, /* RMDIR */ NFS_DEFAULT_TIMER, /* RENAME */ NFS_DEFAULT_TIMER, /* LINK */ NFS_READ_TIMER, /* READDIR */ NFS_READ_TIMER, /* READDIRPLUS */ NFS_DEFAULT_TIMER, /* FSSTAT */ NFS_DEFAULT_TIMER, /* FSINFO */ NFS_DEFAULT_TIMER, /* PATHCONF */ NFS_DEFAULT_TIMER, /* COMMIT */ NFS_DEFAULT_TIMER, /* NOOP */ }; /* * Choose the correct RTT timer for this NFS procedure. */ static inline enum nfs_rto_timer_t nfs_rto_timer(u_int32_t procnum) { return nfs_proct[procnum]; } /* * Initialize the RTT estimator state for a new mount point. */ static void nfs_init_rtt(struct nfsmount *nmp) { int i; for (i = 0; i < NFS_MAX_TIMER; i++) nmp->nm_srtt[i] = NFS_INITRTT; for (i = 0; i < NFS_MAX_TIMER; i++) nmp->nm_sdrtt[i] = 0; } /* * Update a mount point's RTT estimator state using data from the * passed-in request. * * Use a gain of 0.125 on the mean and a gain of 0.25 on the deviation. * * NB: Since the timer resolution of NFS_HZ is so course, it can often * result in r_rtt == 0. Since r_rtt == N means that the actual RTT is * between N + dt and N + 2 - dt ticks, add 1 before calculating the * update values. */ static void nfs_update_rtt(struct nfsreq *rep) { int t1 = rep->r_rtt + 1; int index = nfs_rto_timer(rep->r_procnum) - 1; int *srtt = &rep->r_nmp->nm_srtt[index]; int *sdrtt = &rep->r_nmp->nm_sdrtt[index]; t1 -= *srtt >> 3; *srtt += t1; if (t1 < 0) t1 = -t1; t1 -= *sdrtt >> 2; *sdrtt += t1; } /* * Estimate RTO for an NFS RPC sent via an unreliable datagram. * * Use the mean and mean deviation of RTT for the appropriate type * of RPC for the frequent RPCs and a default for the others. * The justification for doing "other" this way is that these RPCs * happen so infrequently that timer est. would probably be stale. * Also, since many of these RPCs are non-idempotent, a conservative * timeout is desired. * * getattr, lookup - A+2D * read, write - A+4D * other - nm_timeo */ static int nfs_estimate_rto(struct nfsmount *nmp, u_int32_t procnum) { enum nfs_rto_timer_t timer = nfs_rto_timer(procnum); int index = timer - 1; int rto; switch (timer) { case NFS_GETATTR_TIMER: case NFS_LOOKUP_TIMER: rto = ((nmp->nm_srtt[index] + 3) >> 2) + ((nmp->nm_sdrtt[index] + 1) >> 1); break; case NFS_READ_TIMER: case NFS_WRITE_TIMER: rto = ((nmp->nm_srtt[index] + 7) >> 3) + (nmp->nm_sdrtt[index] + 1); break; default: rto = nmp->nm_timeo; return (rto); } if (rto < NFS_MINRTO) rto = NFS_MINRTO; else if (rto > NFS_MAXRTO) rto = NFS_MAXRTO; return (rto); } /* * Initialize sockets and congestion for a new NFS connection. * We do not free the sockaddr if error. */ int nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) { struct socket *so; int error, rcvreserve, sndreserve; int pktscale; struct sockaddr *saddr; struct ucred *origcred; struct thread *td = curthread; /* * We need to establish the socket using the credentials of * the mountpoint. Some parts of this process (such as * sobind() and soconnect()) will use the curent thread's * credential instead of the socket credential. To work * around this, temporarily change the current thread's * credential to that of the mountpoint. * * XXX: It would be better to explicitly pass the correct * credential to sobind() and soconnect(). */ origcred = td->td_ucred; td->td_ucred = nmp->nm_mountp->mnt_cred; if (nmp->nm_sotype == SOCK_STREAM) { mtx_lock(&nmp->nm_mtx); nmp->nm_nfstcpstate.flags |= NFS_TCP_EXPECT_RPCMARKER; nmp->nm_nfstcpstate.rpcresid = 0; mtx_unlock(&nmp->nm_mtx); } nmp->nm_so = NULL; saddr = nmp->nm_nam; error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto, nmp->nm_mountp->mnt_cred, td); if (error) goto bad; so = nmp->nm_so; nmp->nm_soflags = so->so_proto->pr_flags; /* * Some servers require that the client port be a reserved port number. */ if (nmp->nm_flag & NFSMNT_RESVPORT) { struct sockopt sopt; int ip, ip2, len; struct sockaddr_in6 ssin; struct sockaddr *sa; bzero(&sopt, sizeof sopt); switch(saddr->sa_family) { case AF_INET: sopt.sopt_level = IPPROTO_IP; sopt.sopt_name = IP_PORTRANGE; ip = IP_PORTRANGE_LOW; ip2 = IP_PORTRANGE_DEFAULT; len = sizeof (struct sockaddr_in); break; #ifdef INET6 case AF_INET6: sopt.sopt_level = IPPROTO_IPV6; sopt.sopt_name = IPV6_PORTRANGE; ip = IPV6_PORTRANGE_LOW; ip2 = IPV6_PORTRANGE_DEFAULT; len = sizeof (struct sockaddr_in6); break; #endif default: goto noresvport; } sa = (struct sockaddr *)&ssin; bzero(sa, len); sa->sa_len = len; sa->sa_family = saddr->sa_family; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = (void *)&ip; sopt.sopt_valsize = sizeof(ip); error = sosetopt(so, &sopt); if (error) goto bad; error = sobind(so, sa, td); if (error) goto bad; ip = ip2; error = sosetopt(so, &sopt); if (error) goto bad; noresvport: ; } /* * Protocols that do not require connections may be optionally left * unconnected for servers that reply from a port other than NFS_PORT. */ mtx_lock(&nmp->nm_mtx); if (nmp->nm_flag & NFSMNT_NOCONN) { if (nmp->nm_soflags & PR_CONNREQUIRED) { error = ENOTCONN; mtx_unlock(&nmp->nm_mtx); goto bad; } else mtx_unlock(&nmp->nm_mtx); } else { mtx_unlock(&nmp->nm_mtx); error = soconnect(so, nmp->nm_nam, td); if (error) goto bad; /* * Wait for the connection to complete. Cribbed from the * connect system call but with the wait timing out so * that interruptible mounts don't hang here for a long time. */ SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { (void) msleep(&so->so_timeo, SOCK_MTX(so), PSOCK, "nfscon", 2 * hz); if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0 && rep && (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0) { so->so_state &= ~SS_ISCONNECTING; SOCK_UNLOCK(so); goto bad; } } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCK_UNLOCK(so); goto bad; } SOCK_UNLOCK(so); } so->so_rcv.sb_timeo = 12 * hz; if (nmp->nm_sotype == SOCK_STREAM) so->so_snd.sb_timeo = 1 * hz; /* 1s snd timeout for NFS/TCP */ else so->so_snd.sb_timeo = 5 * hz; /* * Get buffer reservation size from sysctl, but impose reasonable * limits. */ pktscale = nfs_bufpackets; if (pktscale < 2) pktscale = 2; if (pktscale > 64) pktscale = 64; mtx_lock(&nmp->nm_mtx); if (nmp->nm_sotype == SOCK_DGRAM) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * pktscale; } else if (nmp->nm_sotype == SOCK_SEQPACKET) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * pktscale; } else { if (nmp->nm_sotype != SOCK_STREAM) panic("nfscon sotype"); if (so->so_proto->pr_flags & PR_CONNREQUIRED) { struct sockopt sopt; int val; bzero(&sopt, sizeof sopt); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = SOL_SOCKET; sopt.sopt_name = SO_KEEPALIVE; sopt.sopt_val = &val; sopt.sopt_valsize = sizeof val; val = 1; mtx_unlock(&nmp->nm_mtx); sosetopt(so, &sopt); mtx_lock(&nmp->nm_mtx); } if (so->so_proto->pr_protocol == IPPROTO_TCP) { struct sockopt sopt; int val; bzero(&sopt, sizeof sopt); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = IPPROTO_TCP; sopt.sopt_name = TCP_NODELAY; sopt.sopt_val = &val; sopt.sopt_valsize = sizeof val; val = 1; mtx_unlock(&nmp->nm_mtx); sosetopt(so, &sopt); mtx_lock(&nmp->nm_mtx); } sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * pktscale; rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * pktscale; } mtx_unlock(&nmp->nm_mtx); error = soreserve(so, sndreserve, rcvreserve); if (error) goto bad; SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_flags |= SB_NOINTR; so->so_upcallarg = (caddr_t)nmp; if (so->so_type == SOCK_STREAM) so->so_upcall = nfs_clnt_tcp_soupcall; else so->so_upcall = nfs_clnt_udp_soupcall; so->so_rcv.sb_flags |= SB_UPCALL; SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags |= SB_NOINTR; SOCKBUF_UNLOCK(&so->so_snd); /* Restore current thread's credentials. */ td->td_ucred = origcred; mtx_lock(&nmp->nm_mtx); /* Initialize other non-zero congestion variables */ nfs_init_rtt(nmp); nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ nmp->nm_sent = 0; nmp->nm_timeouts = 0; mtx_unlock(&nmp->nm_mtx); return (0); bad: /* Restore current thread's credentials. */ td->td_ucred = origcred; nfs_disconnect(nmp); return (error); } static void nfs_wakup_reconnectors(struct nfsmount *nmp) { KASSERT(mtx_owned(&nmp->nm_mtx), ("NFS mnt lock not owned !")); if (--nmp->nm_nfstcpstate.sock_send_inprog == 0 && (nmp->nm_nfstcpstate.flags & NFS_TCP_WAIT_WRITE_DRAIN)) { nmp->nm_nfstcpstate.flags &= ~NFS_TCP_WAIT_WRITE_DRAIN; wakeup((caddr_t)&nmp->nm_nfstcpstate.sock_send_inprog); } } /* * Reconnect routine: * Called when a connection is broken on a reliable protocol. * - clean up the old socket * - nfs_connect() again * - set R_MUSTRESEND for all outstanding requests on mount point * If this fails the mount point is DEAD! * nb: Must be called with the nfs_sndlock() set on the mount point. */ static int nfs_reconnect(struct nfsreq *rep) { struct nfsreq *rp; struct nfsmount *nmp = rep->r_nmp; int error; int slpflag = 0; KASSERT(mtx_owned(&nmp->nm_mtx), ("NFS mnt lock not owned !")); if (nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; /* * Wait for any pending writes to this socket to drain (or timeout). */ while (nmp->nm_nfstcpstate.sock_send_inprog > 0) { nmp->nm_nfstcpstate.flags |= NFS_TCP_WAIT_WRITE_DRAIN; error = msleep((caddr_t)&nmp->nm_nfstcpstate.sock_send_inprog, &nmp->nm_mtx, slpflag | (PZERO - 1), "nfscon", 0); } /* * Grab the nfs_connect_lock to serialize connects. * After grabbing the nfs_connect_lock, check if a reconnect is necessary or * if someone else beat us to the connect ! */ error = nfs_connect_lock(rep); if (error) goto unlock_exit; if ((nmp->nm_nfstcpstate.flags & NFS_TCP_FORCE_RECONNECT) == 0) goto unlock_exit; else mtx_unlock(&nmp->nm_mtx); nfs_reconnects++; nfs_disconnect(nmp); while ((error = nfs_connect(nmp, rep)) != 0) { if (error == ERESTART) error = EINTR; if (error == EIO || error == EINTR) { mtx_lock(&nmp->nm_mtx); goto unlock_exit; } (void) tsleep(&lbolt, PSOCK, "nfscon", 0); } /* * Clear the FORCE_RECONNECT flag only after the connect * succeeds. To prevent races between multiple processes * waiting on the mountpoint where the connection is being * torn down. The first one to acquire the sndlock will * retry the connection. The others block on the sndlock * until the connection is established successfully, and * then re-transmit the request. */ mtx_lock(&nmp->nm_mtx); nmp->nm_nfstcpstate.flags &= ~NFS_TCP_FORCE_RECONNECT; nmp->nm_nfstcpstate.rpcresid = 0; mtx_unlock(&nmp->nm_mtx); /* * Loop through outstanding request list and fix up all requests * on old socket. */ mtx_lock(&nfs_reqq_mtx); TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { if (rp->r_nmp == nmp) { mtx_lock(&rp->r_mtx); rp->r_flags |= R_MUSTRESEND; mtx_unlock(&rp->r_mtx); } } mtx_unlock(&nfs_reqq_mtx); mtx_lock(&nmp->nm_mtx); unlock_exit: nfs_connect_unlock(rep); mtx_unlock(&nmp->nm_mtx); return (error); } /* * NFS disconnect. Clean up and unlink. */ void nfs_disconnect(struct nfsmount *nmp) { struct socket *so; mtx_lock(&nmp->nm_mtx); if (nmp->nm_so) { so = nmp->nm_so; nmp->nm_so = NULL; mtx_unlock(&nmp->nm_mtx); SOCKBUF_LOCK(&so->so_rcv); so->so_upcallarg = NULL; so->so_upcall = NULL; so->so_rcv.sb_flags &= ~SB_UPCALL; SOCKBUF_UNLOCK(&so->so_rcv); soshutdown(so, SHUT_WR); soclose(so); } else mtx_unlock(&nmp->nm_mtx); } void nfs_safedisconnect(struct nfsmount *nmp) { struct nfsreq dummyreq; bzero(&dummyreq, sizeof(dummyreq)); dummyreq.r_nmp = nmp; nfs_disconnect(nmp); } /* * This is the nfs send routine. For connection based socket types, it * must be called with an nfs_sndlock() on the socket. * - return EINTR if the RPC is terminated, 0 otherwise * - set R_MUSTRESEND if the send fails for any reason * - do any cleanup required by recoverable socket errors (?) */ int nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top, struct nfsreq *rep) { struct sockaddr *sendnam; int error, error2, soflags, flags; KASSERT(rep, ("nfs_send: called with rep == NULL")); error = nfs_sigintr(rep->r_nmp, rep, rep->r_td); if (error) { m_freem(top); return (error); } mtx_lock(&rep->r_nmp->nm_mtx); mtx_lock(&rep->r_mtx); if ((so = rep->r_nmp->nm_so) == NULL) { rep->r_flags |= R_MUSTRESEND; mtx_unlock(&rep->r_mtx); mtx_unlock(&rep->r_nmp->nm_mtx); m_freem(top); return (EPIPE); } rep->r_flags &= ~R_MUSTRESEND; soflags = rep->r_nmp->nm_soflags; mtx_unlock(&rep->r_mtx); mtx_unlock(&rep->r_nmp->nm_mtx); if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) sendnam = NULL; else sendnam = nam; if (so->so_type == SOCK_SEQPACKET) flags = MSG_EOR; else flags = 0; error = sosend(so, sendnam, 0, top, 0, flags, curthread /*XXX*/); if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { error = 0; mtx_lock(&rep->r_mtx); rep->r_flags |= R_MUSTRESEND; mtx_unlock(&rep->r_mtx); } if (error) { /* * Don't report EPIPE errors on nfs sockets. * These can be due to idle tcp mounts which will be closed by * netapp, solaris, etc. if left idle too long. */ if (error != EPIPE) { log(LOG_INFO, "nfs send error %d for server %s\n", error, rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); } /* * Deal with errors for the client side. */ error2 = NFS_SIGREP(rep); if (error2) error = error2; else { mtx_lock(&rep->r_mtx); rep->r_flags |= R_MUSTRESEND; mtx_unlock(&rep->r_mtx); } /* * Handle any recoverable (soft) socket errors here. (?) * Make EWOULDBLOCK a recoverable error, we'll rexmit from nfs_timer(). */ if (error != EINTR && error != ERESTART && error != EIO && error != EPIPE) error = 0; } return (error); } int nfs_reply(struct nfsreq *rep) { register struct socket *so; register struct mbuf *m; int error = 0, sotype, slpflag; struct nfsmount *nmp = rep->r_nmp; sotype = nmp->nm_sotype; /* * For reliable protocols, lock against other senders/receivers * in case a reconnect is necessary. */ if (sotype != SOCK_DGRAM) { tryagain: mtx_lock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); if (rep->r_mrep) { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); return (0); } if (rep->r_flags & R_SOFTTERM) { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); return (EINTR); } so = nmp->nm_so; if (!so || (nmp->nm_nfstcpstate.flags & NFS_TCP_FORCE_RECONNECT)) { mtx_unlock(&rep->r_mtx); nmp->nm_nfstcpstate.flags |= NFS_TCP_FORCE_RECONNECT; error = nfs_reconnect(rep); if (error) return (error); goto tryagain; } while (rep->r_flags & R_MUSTRESEND) { mtx_unlock(&rep->r_mtx); nmp->nm_nfstcpstate.sock_send_inprog++; mtx_unlock(&nmp->nm_mtx); m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); nfsstats.rpcretries++; error = nfs_send(so, nmp->nm_nam, m, rep); if (error) { mtx_lock(&nmp->nm_mtx); nfs_wakup_reconnectors(nmp); if (!(error == EINTR || error == ERESTART)) { nmp->nm_nfstcpstate.flags |= NFS_TCP_FORCE_RECONNECT; error = nfs_reconnect(rep); } else mtx_unlock(&nmp->nm_mtx); if (error) return (error); goto tryagain; } else { mtx_lock(&nmp->nm_mtx); nfs_wakup_reconnectors(nmp); mtx_lock(&rep->r_mtx); } } mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); } slpflag = 0; mtx_lock(&nmp->nm_mtx); if (nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; mtx_unlock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); while ((rep->r_mrep == NULL) && (error == 0) && ((rep->r_flags & R_SOFTTERM) == 0) && ((sotype == SOCK_DGRAM) || ((rep->r_flags & R_MUSTRESEND) == 0))) error = msleep((caddr_t)rep, &rep->r_mtx, slpflag | (PZERO - 1), "nfsreq", 0); if (error == EINTR || error == ERESTART) { /* NFS operations aren't restartable. Map ERESTART to EINTR */ mtx_unlock(&rep->r_mtx); return (EINTR); } if (rep->r_flags & R_SOFTTERM) { /* Request was terminated because we exceeded the retries (soft mount) */ mtx_unlock(&rep->r_mtx); return (ETIMEDOUT); } mtx_unlock(&rep->r_mtx); if (sotype == SOCK_STREAM) { mtx_lock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); if (((nmp->nm_nfstcpstate.flags & NFS_TCP_FORCE_RECONNECT) || (rep->r_flags & R_MUSTRESEND))) { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); goto tryagain; } else { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); } } return (error); } /* * XXX TO DO * Make nfs_realign() non-blocking. Also make nfsm_dissect() nonblocking. */ static void nfs_clnt_match_xid(struct socket *so, struct nfsmount *nmp, struct mbuf *mrep) { struct mbuf *md; caddr_t dpos; u_int32_t rxid, *tl; struct nfsreq *rep; int error; /* * Search for any mbufs that are not a multiple of 4 bytes long * or with m_data not longword aligned. * These could cause pointer alignment problems, so copy them to * well aligned mbufs. */ if (nfs_realign(&mrep, 5 * NFSX_UNSIGNED) == ENOMEM) { m_freem(mrep); nfsstats.rpcinvalid++; return; } /* * Get the xid and check that it is an rpc reply */ md = mrep; dpos = mtod(md, caddr_t); tl = nfsm_dissect_nonblock(u_int32_t *, 2*NFSX_UNSIGNED); rxid = *tl++; if (*tl != rpc_reply) { m_freem(mrep); nfsmout: nfsstats.rpcinvalid++; return; } mtx_lock(&nfs_reqq_mtx); /* * Loop through the request list to match up the reply * Iff no match, just drop the datagram */ TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { mtx_lock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); if (rep->r_mrep == NULL && rxid == rep->r_xid) { /* Found it.. */ rep->r_mrep = mrep; rep->r_md = md; rep->r_dpos = dpos; /* * Update congestion window. * Do the additive increase of * one rpc/rtt. */ if (nmp->nm_cwnd <= nmp->nm_sent) { nmp->nm_cwnd += (NFS_CWNDSCALE * NFS_CWNDSCALE + (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; if (nmp->nm_cwnd > NFS_MAXCWND) nmp->nm_cwnd = NFS_MAXCWND; } if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_SENT; nmp->nm_sent -= NFS_CWNDSCALE; } if (rep->r_flags & R_TIMING) nfs_update_rtt(rep); nmp->nm_timeouts = 0; wakeup((caddr_t)rep); mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); break; } mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); } /* * If not matched to a request, drop it. * If it's mine, wake up requestor. */ if (rep == 0) { nfsstats.rpcunexpected++; m_freem(mrep); } mtx_unlock(&nfs_reqq_mtx); } static void nfs_mark_for_reconnect(struct nfsmount *nmp) { struct nfsreq *rp; mtx_lock(&nmp->nm_mtx); nmp->nm_nfstcpstate.flags |= NFS_TCP_FORCE_RECONNECT; mtx_unlock(&nmp->nm_mtx); /* * Wakeup all processes that are waiting for replies * on this mount point. One of them does the reconnect. */ mtx_lock(&nfs_reqq_mtx); TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { if (rp->r_nmp == nmp) { mtx_lock(&rp->r_mtx); rp->r_flags |= R_MUSTRESEND; wakeup((caddr_t)rp); mtx_unlock(&rp->r_mtx); } } mtx_unlock(&nfs_reqq_mtx); } static int nfstcp_readable(struct socket *so, int bytes) { int retval; SOCKBUF_LOCK(&so->so_rcv); retval = (so->so_rcv.sb_cc >= (bytes) || (so->so_rcv.sb_state & SBS_CANTRCVMORE) || so->so_error); SOCKBUF_UNLOCK(&so->so_rcv); return (retval); } #define nfstcp_marker_readable(so) nfstcp_readable(so, sizeof(u_int32_t)) static int nfs_copy_len(struct mbuf *mp, char *buf, int len) { while (len > 0 && mp != NULL) { int copylen = min(len, mp->m_len); bcopy(mp->m_data, buf, copylen); buf += copylen; len -= copylen; mp = mp->m_next; } return (len); } static void nfs_clnt_tcp_soupcall(struct socket *so, void *arg, int waitflag) { struct nfsmount *nmp = (struct nfsmount *)arg; struct mbuf *mp = NULL; struct uio auio; int error; u_int32_t len; int rcvflg; /* * Don't pick any more data from the socket if we've marked the * mountpoint for reconnect. */ mtx_lock(&nmp->nm_mtx); if (nmp->nm_nfstcpstate.flags & NFS_TCP_FORCE_RECONNECT) { mtx_unlock(&nmp->nm_mtx); return; } else mtx_unlock(&nmp->nm_mtx); auio.uio_td = curthread; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; for ( ; ; ) { mtx_lock(&nmp->nm_mtx); if (nmp->nm_nfstcpstate.flags & NFS_TCP_EXPECT_RPCMARKER) { int resid; mtx_unlock(&nmp->nm_mtx); if (!nfstcp_marker_readable(so)) { /* Marker is not readable */ return; } auio.uio_resid = sizeof(u_int32_t); auio.uio_iov = NULL; auio.uio_iovcnt = 0; mp = NULL; rcvflg = (MSG_DONTWAIT | MSG_SOCALLBCK); error = soreceive(so, (struct sockaddr **)0, &auio, &mp, (struct mbuf **)0, &rcvflg); /* * We've already tested that the socket is readable. 2 cases * here, we either read 0 bytes (client closed connection), * or got some other error. In both cases, we tear down the * connection. */ if (error || auio.uio_resid > 0) { if (error && error != ECONNRESET) { log(LOG_ERR, "nfs/tcp clnt: Error %d reading socket, tearing down TCP connection\n", error); } goto mark_reconnect; } if (mp == NULL) panic("nfs_clnt_tcp_soupcall: Got empty mbuf chain from sorecv\n"); /* * Sigh. We can't do the obvious thing here (which would * be to have soreceive copy the length from mbufs for us). * Calling uiomove() from the context of a socket callback * (even for kernel-kernel copies) leads to LORs (since * we hold network locks at this point). */ if ((resid = nfs_copy_len(mp, (char *)&len, sizeof(u_int32_t)))) { log(LOG_ERR, "%s (%d) from nfs server %s\n", "Bad RPC HDR length", (int)(sizeof(u_int32_t) - resid), nmp->nm_mountp->mnt_stat.f_mntfromname); goto mark_reconnect; } len = ntohl(len) & ~0x80000000; m_freem(mp); /* * This is SERIOUS! We are out of sync with the sender * and forcing a disconnect/reconnect is all I can do. */ if (len > NFS_MAXPACKET || len == 0) { log(LOG_ERR, "%s (%d) from nfs server %s\n", "impossible packet length", len, nmp->nm_mountp->mnt_stat.f_mntfromname); goto mark_reconnect; } mtx_lock(&nmp->nm_mtx); nmp->nm_nfstcpstate.rpcresid = len; nmp->nm_nfstcpstate.flags &= ~(NFS_TCP_EXPECT_RPCMARKER); mtx_unlock(&nmp->nm_mtx); } else mtx_unlock(&nmp->nm_mtx); /* * Processed RPC marker or no RPC marker to process. * Pull in and process data. */ mtx_lock(&nmp->nm_mtx); if (nmp->nm_nfstcpstate.rpcresid > 0) { mtx_unlock(&nmp->nm_mtx); if (!nfstcp_readable(so, nmp->nm_nfstcpstate.rpcresid)) { /* All data not readable */ return; } auio.uio_resid = nmp->nm_nfstcpstate.rpcresid; auio.uio_iov = NULL; auio.uio_iovcnt = 0; mp = NULL; rcvflg = (MSG_DONTWAIT | MSG_SOCALLBCK); error = soreceive(so, (struct sockaddr **)0, &auio, &mp, (struct mbuf **)0, &rcvflg); if (error || auio.uio_resid > 0) { if (error && error != ECONNRESET) { log(LOG_ERR, "nfs/tcp clnt: Error %d reading socket, tearing down TCP connection\n", error); } goto mark_reconnect; } if (mp == NULL) panic("nfs_clnt_tcp_soupcall: Got empty mbuf chain from sorecv\n"); mtx_lock(&nmp->nm_mtx); nmp->nm_nfstcpstate.rpcresid = 0; nmp->nm_nfstcpstate.flags |= NFS_TCP_EXPECT_RPCMARKER; mtx_unlock(&nmp->nm_mtx); /* We got the entire RPC reply. Match XIDs and wake up requestor */ nfs_clnt_match_xid(so, nmp, mp); } else mtx_unlock(&nmp->nm_mtx); } mark_reconnect: nfs_mark_for_reconnect(nmp); } static void nfs_clnt_udp_soupcall(struct socket *so, void *arg, int waitflag) { struct nfsmount *nmp = (struct nfsmount *)arg; struct uio auio; struct mbuf *mp = NULL; struct mbuf *control = NULL; int error, rcvflag; auio.uio_resid = 1000000; auio.uio_td = curthread; rcvflag = MSG_DONTWAIT; auio.uio_resid = 1000000000; do { mp = control = NULL; error = soreceive(so, NULL, &auio, &mp, &control, &rcvflag); if (control) m_freem(control); if (mp) nfs_clnt_match_xid(so, nmp, mp); } while (mp && !error); } /* * nfs_request - goes something like this * - fill in request struct * - links it into list * - calls nfs_send() for first transmit * - calls nfs_receive() to get reply * - break down rpc header and return with nfs reply pointed to * by mrep or error * nb: always frees up mreq mbuf list */ int nfs_request(struct vnode *vp, struct mbuf *mrest, int procnum, struct thread *td, struct ucred *cred, struct mbuf **mrp, struct mbuf **mdp, caddr_t *dposp) { struct mbuf *mrep, *m2; struct nfsreq *rep; u_int32_t *tl; int i; struct nfsmount *nmp; struct mbuf *m, *md, *mheadend; time_t waituntil; caddr_t dpos; int error = 0, mrest_len, auth_len, auth_type; struct timeval now; u_int32_t *xidp; /* Reject requests while attempting a forced unmount. */ if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { m_freem(mrest); return (ESTALE); } nmp = VFSTONFS(vp->v_mount); if ((nmp->nm_flag & NFSMNT_NFSV4) != 0) return nfs4_request(vp, mrest, procnum, td, cred, mrp, mdp, dposp); MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); bzero(rep, sizeof(struct nfsreq)); rep->r_nmp = nmp; rep->r_vp = vp; rep->r_td = td; rep->r_procnum = procnum; mtx_init(&rep->r_mtx, "NFSrep lock", NULL, MTX_DEF); getmicrouptime(&now); rep->r_lastmsg = now.tv_sec - ((nmp->nm_tprintf_delay) - (nmp->nm_tprintf_initial_delay)); mrest_len = m_length(mrest, NULL); /* * Get the RPC header with authorization. */ auth_type = RPCAUTH_UNIX; if (cred->cr_ngroups < 1) panic("nfsreq nogrps"); auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ? nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) + 5 * NFSX_UNSIGNED; m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, mrest, mrest_len, &mheadend, &xidp); /* * For stream protocols, insert a Sun RPC Record Mark. */ if (nmp->nm_sotype == SOCK_STREAM) { M_PREPEND(m, NFSX_UNSIGNED, M_TRYWAIT); *mtod(m, u_int32_t *) = htonl(0x80000000 | (m->m_pkthdr.len - NFSX_UNSIGNED)); } rep->r_mreq = m; rep->r_xid = *xidp; tryagain: if (nmp->nm_flag & NFSMNT_SOFT) rep->r_retry = nmp->nm_retry; else rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ rep->r_rtt = rep->r_rexmit = 0; if (nfs_rto_timer(procnum) != NFS_DEFAULT_TIMER) rep->r_flags = R_TIMING; else rep->r_flags = 0; rep->r_mrep = NULL; /* * Do the client side RPC. */ nfsstats.rpcrequests++; /* * Chain request into list of outstanding requests. Be sure * to put it LAST so timer finds oldest requests first. */ mtx_lock(&nfs_reqq_mtx); if (TAILQ_EMPTY(&nfs_reqq)) callout_reset(&nfs_callout, nfs_ticks, nfs_timer, NULL); TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); mtx_unlock(&nfs_reqq_mtx); /* * If backing off another request or avoiding congestion, don't * send this one now but let timer do it. If not timing a request, * do it now. */ mtx_lock(&nmp->nm_mtx); if (nmp->nm_so && (((nmp->nm_sotype == SOCK_STREAM) && !(nmp->nm_nfstcpstate.flags & NFS_TCP_FORCE_RECONNECT)) || (nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) { if (nmp->nm_sotype == SOCK_STREAM) nmp->nm_nfstcpstate.sock_send_inprog++; mtx_unlock(&nmp->nm_mtx); m2 = m_copym(m, 0, M_COPYALL, M_TRYWAIT); error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep); mtx_lock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); /* * nfs_timer() could've re-transmitted the request if we ended up * blocking on nfs_send() too long, so check for R_SENT here. */ if (!error && (rep->r_flags & (R_SENT | R_MUSTRESEND)) == 0) { nmp->nm_sent += NFS_CWNDSCALE; rep->r_flags |= R_SENT; } mtx_unlock(&rep->r_mtx); if (nmp->nm_sotype == SOCK_STREAM) nfs_wakup_reconnectors(rep->r_nmp); mtx_unlock(&nmp->nm_mtx); } else { mtx_unlock(&nmp->nm_mtx); rep->r_rtt = -1; } /* * Wait for the reply from our send or the timer's. */ if (!error || error == EPIPE) error = nfs_reply(rep); /* * nfs_timer() may be in the process of re-transmitting this request. * nfs_timer() drops the nfs_reqq_mtx before the pru_send() (to avoid LORs). * Wait till nfs_timer() completes the re-transmission. When the reply * comes back, it will be discarded (since the req struct for it no longer * exists). */ wait_for_pinned_req: mtx_lock(&rep->r_mtx); while (rep->r_flags & R_PIN_REQ) { msleep((caddr_t)&rep->r_flags, &rep->r_mtx, (PZERO - 1), "nfsrxmt", 0); } mtx_unlock(&rep->r_mtx); mtx_lock(&nfs_reqq_mtx); /* Have to check for R_PIN_REQ after grabbing wlock again */ mtx_lock(&rep->r_mtx); if (rep->r_flags & R_PIN_REQ) { mtx_unlock(&rep->r_mtx); mtx_unlock(&nfs_reqq_mtx); goto wait_for_pinned_req; } else mtx_unlock(&rep->r_mtx); /* RPC done (timer not active, request not pinned), unlink the request */ TAILQ_REMOVE(&nfs_reqq, rep, r_chain); if (TAILQ_EMPTY(&nfs_reqq)) callout_stop(&nfs_callout); mtx_unlock(&nfs_reqq_mtx); /* * Decrement the outstanding request count. */ mtx_lock(&rep->r_mtx); if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_SENT; /* paranoia */ mtx_unlock(&rep->r_mtx); mtx_lock(&nmp->nm_mtx); nmp->nm_sent -= NFS_CWNDSCALE; mtx_unlock(&nmp->nm_mtx); } else mtx_unlock(&rep->r_mtx); /* * If there was a successful reply and a tprintf msg. * tprintf a response. */ if (!error) { nfs_up(rep, nmp, rep->r_td, "is alive again", NFSSTA_TIMEO); } mrep = rep->r_mrep; md = rep->r_md; dpos = rep->r_dpos; if (error) { /* * If we got interrupted by a signal in nfs_reply(), there's * a very small window where the reply could've come in before * this process got scheduled in. To handle that case, we need * to free the reply if it was delivered. */ if (rep->r_mrep != NULL) m_freem(rep->r_mrep); m_freem(rep->r_mreq); mtx_destroy(&rep->r_mtx); free((caddr_t)rep, M_NFSREQ); return (error); } if (rep->r_mrep == NULL) panic("nfs_request: rep->r_mrep shouldn't be NULL if no error\n"); /* * break down the rpc header and check if ok */ tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED); if (*tl++ == rpc_msgdenied) { if (*tl == rpc_mismatch) error = EOPNOTSUPP; else error = EACCES; m_freem(mrep); m_freem(rep->r_mreq); mtx_destroy(&rep->r_mtx); free((caddr_t)rep, M_NFSREQ); return (error); } /* * Just throw away any verifyer (ie: kerberos etc). */ i = fxdr_unsigned(int, *tl++); /* verf type */ i = fxdr_unsigned(int32_t, *tl); /* len */ if (i > 0) nfsm_adv(nfsm_rndup(i)); tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); /* 0 == ok */ if (*tl == 0) { tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED); if (*tl != 0) { error = fxdr_unsigned(int, *tl); if ((nmp->nm_flag & NFSMNT_NFSV3) && error == NFSERR_TRYLATER) { m_freem(mrep); error = 0; waituntil = time_second + nfs3_jukebox_delay; while (time_second < waituntil) { (void) tsleep(&lbolt, PSOCK, "nqnfstry", 0); } rep->r_xid = *xidp = txdr_unsigned(nfs_xid_gen()); goto tryagain; } /* * If the File Handle was stale, invalidate the * lookup cache, just in case. */ if (error == ESTALE) cache_purge(vp); /* * Skip wcc data on NFS errors for now. NetApp filers return corrupt * postop attrs in the wcc data for NFS err EROFS. Not sure if they * could return corrupt postop attrs for others errors. */ if ((nmp->nm_flag & NFSMNT_NFSV3) && !nfs_skip_wcc_data_onerr) { *mrp = mrep; *mdp = md; *dposp = dpos; error |= NFSERR_RETERR; } else m_freem(mrep); m_freem(rep->r_mreq); mtx_destroy(&rep->r_mtx); free((caddr_t)rep, M_NFSREQ); return (error); } *mrp = mrep; *mdp = md; *dposp = dpos; m_freem(rep->r_mreq); mtx_destroy(&rep->r_mtx); FREE((caddr_t)rep, M_NFSREQ); return (0); } m_freem(mrep); error = EPROTONOSUPPORT; nfsmout: m_freem(rep->r_mreq); mtx_destroy(&rep->r_mtx); free((caddr_t)rep, M_NFSREQ); return (error); } /* * Nfs timer routine * Scan the nfsreq list and retranmit any requests that have timed out * To avoid retransmission attempts on STREAM sockets (in the future) make * sure to set the r_retry field to 0 (implies nm_retry == 0). * * The nfs reqq lock cannot be held while we do the pru_send() because of a * lock ordering violation. The NFS client socket callback acquires * inp_lock->nfsreq mutex and pru_send acquires inp_lock. So we drop the * reqq mutex (and reacquire it after the pru_send()). The req structure * (for the rexmit) is prevented from being removed by the R_PIN_REQ flag. */ void nfs_timer(void *arg) { struct nfsreq *rep; struct mbuf *m; struct socket *so; struct nfsmount *nmp; int timeo; int error; struct timeval now; getmicrouptime(&now); mtx_lock(&nfs_reqq_mtx); TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { nmp = rep->r_nmp; mtx_lock(&rep->r_mtx); if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { mtx_unlock(&rep->r_mtx); continue; } else { /* * Terminate request if force-unmount in progress. * Note that NFS could have vfs_busy'ed the mount, * causing the unmount to wait for the mnt_lock, making * this bit of logic necessary. */ if (rep->r_nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) { nfs_softterm(rep); mtx_unlock(&rep->r_mtx); continue; } mtx_unlock(&rep->r_mtx); } if (nfs_sigintr(nmp, rep, rep->r_td)) continue; mtx_lock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); if (nmp->nm_tprintf_initial_delay != 0 && (rep->r_rexmit > 2 || (rep->r_flags & R_RESENDERR)) && rep->r_lastmsg + nmp->nm_tprintf_delay < now.tv_sec) { rep->r_lastmsg = now.tv_sec; /* * Pin down the request and drop locks for the acquisition * of Giant from tprintf() in nfs_down(). */ rep->r_flags |= R_PIN_REQ; mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); mtx_unlock(&nfs_reqq_mtx); nfs_down(rep, nmp, rep->r_td, "not responding", 0, NFSSTA_TIMEO); mtx_lock(&nfs_reqq_mtx); mtx_lock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); rep->r_flags &= ~R_PIN_REQ; wakeup((caddr_t)&rep->r_flags); } if (rep->r_rtt >= 0) { rep->r_rtt++; if (nmp->nm_flag & NFSMNT_DUMBTIMR) timeo = nmp->nm_timeo; else timeo = nfs_estimate_rto(nmp, rep->r_procnum); if (nmp->nm_timeouts > 0) timeo *= nfs_backoff[nmp->nm_timeouts - 1]; if (rep->r_rtt <= timeo) { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); continue; } if (nmp->nm_timeouts < NFS_NBACKOFF) nmp->nm_timeouts++; } if (rep->r_rexmit >= rep->r_retry) { /* too many */ nfsstats.rpctimeouts++; nfs_softterm(rep); mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); continue; } if (nmp->nm_sotype != SOCK_DGRAM) { if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; /* * For NFS/TCP, setting R_MUSTRESEND and waking up * the requester will cause the request to be * retransmitted (in nfs_reply()), re-connecting * if necessary. */ rep->r_flags |= R_MUSTRESEND; wakeup((caddr_t)rep); rep->r_rtt = 0; mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); continue; } if ((so = nmp->nm_so) == NULL) { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); continue; } /* * If there is enough space and the window allows.. * Resend it * Set r_rtt to -1 in case we fail to send it now. */ rep->r_rtt = -1; if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && ((nmp->nm_flag & NFSMNT_DUMBTIMR) || (rep->r_flags & R_SENT) || nmp->nm_sent < nmp->nm_cwnd)) { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); if ((m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))) { /* * Mark the request to indicate that a XMIT is in * progress to prevent the req structure being * removed in nfs_request(). */ mtx_lock(&rep->r_mtx); rep->r_flags |= R_PIN_REQ; mtx_unlock(&rep->r_mtx); mtx_unlock(&nfs_reqq_mtx); if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) error = (*so->so_proto->pr_usrreqs->pru_send) (so, 0, m, NULL, NULL, curthread); else error = (*so->so_proto->pr_usrreqs->pru_send) (so, 0, m, nmp->nm_nam, NULL, curthread); mtx_lock(&nfs_reqq_mtx); mtx_lock(&nmp->nm_mtx); mtx_lock(&rep->r_mtx); rep->r_flags &= ~R_PIN_REQ; wakeup((caddr_t)&rep->r_flags); if (error) { if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) so->so_error = 0; rep->r_flags |= R_RESENDERR; } else { /* * Iff first send, start timing * else turn timing off, backoff timer * and divide congestion window by 2. */ rep->r_flags &= ~R_RESENDERR; if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_TIMING; if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; nmp->nm_cwnd >>= 1; if (nmp->nm_cwnd < NFS_CWNDSCALE) nmp->nm_cwnd = NFS_CWNDSCALE; nfsstats.rpcretries++; } else { rep->r_flags |= R_SENT; nmp->nm_sent += NFS_CWNDSCALE; } rep->r_rtt = 0; } mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); } } else { mtx_unlock(&rep->r_mtx); mtx_unlock(&nmp->nm_mtx); } } mtx_unlock(&nfs_reqq_mtx); callout_reset(&nfs_callout, nfs_ticks, nfs_timer, NULL); } /* * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and * wait for all requests to complete. This is used by forced unmounts * to terminate any outstanding RPCs. */ int nfs_nmcancelreqs(nmp) struct nfsmount *nmp; { struct nfsreq *req; int i; mtx_lock(&nfs_reqq_mtx); TAILQ_FOREACH(req, &nfs_reqq, r_chain) { mtx_lock(&req->r_mtx); if (nmp != req->r_nmp || req->r_mrep != NULL || (req->r_flags & R_SOFTTERM)) { mtx_unlock(&req->r_mtx); continue; } nfs_softterm(req); mtx_unlock(&req->r_mtx); } mtx_unlock(&nfs_reqq_mtx); for (i = 0; i < 30; i++) { mtx_lock(&nfs_reqq_mtx); TAILQ_FOREACH(req, &nfs_reqq, r_chain) { if (nmp == req->r_nmp) break; } mtx_unlock(&nfs_reqq_mtx); if (req == NULL) return (0); tsleep(&lbolt, PSOCK, "nfscancel", 0); } return (EBUSY); } /* * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT). * The nm_send count is decremented now to avoid deadlocks when the process in * soreceive() hasn't yet managed to send its own request. */ static void nfs_softterm(struct nfsreq *rep) { KASSERT(mtx_owned(&rep->r_mtx), ("NFS req lock not owned !")); rep->r_flags |= R_SOFTTERM; if (rep->r_flags & R_SENT) { rep->r_nmp->nm_sent -= NFS_CWNDSCALE; rep->r_flags &= ~R_SENT; } /* * Request terminated, wakeup the blocked process, so that we * can return EINTR back. */ wakeup((caddr_t)rep); } /* * Any signal that can interrupt an NFS operation in an intr mount * should be added to this set. SIGSTOP and SIGKILL cannot be masked. */ int nfs_sig_set[] = { SIGINT, SIGTERM, SIGHUP, SIGKILL, SIGSTOP, SIGQUIT }; /* * Check to see if one of the signals in our subset is pending on * the process (in an intr mount). */ static int nfs_sig_pending(sigset_t set) { int i; for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) if (SIGISMEMBER(set, nfs_sig_set[i])) return (1); return (0); } /* * The set/restore sigmask functions are used to (temporarily) overwrite * the process p_sigmask during an RPC call (for example). These are also * used in other places in the NFS client that might tsleep(). */ void nfs_set_sigmask(struct thread *td, sigset_t *oldset) { sigset_t newset; int i; struct proc *p; SIGFILLSET(newset); if (td == NULL) td = curthread; /* XXX */ p = td->td_proc; /* Remove the NFS set of signals from newset */ PROC_LOCK(p); mtx_lock(&p->p_sigacts->ps_mtx); for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) { /* * But make sure we leave the ones already masked * by the process, ie. remove the signal from the * temporary signalmask only if it wasn't already * in p_sigmask. */ if (!SIGISMEMBER(td->td_sigmask, nfs_sig_set[i]) && !SIGISMEMBER(p->p_sigacts->ps_sigignore, nfs_sig_set[i])) SIGDELSET(newset, nfs_sig_set[i]); } mtx_unlock(&p->p_sigacts->ps_mtx); PROC_UNLOCK(p); kern_sigprocmask(td, SIG_SETMASK, &newset, oldset, 0); } void nfs_restore_sigmask(struct thread *td, sigset_t *set) { if (td == NULL) td = curthread; /* XXX */ kern_sigprocmask(td, SIG_SETMASK, set, NULL, 0); } /* * NFS wrapper to msleep(), that shoves a new p_sigmask and restores the * old one after msleep() returns. */ int nfs_msleep(struct thread *td, void *ident, struct mtx *mtx, int priority, char *wmesg, int timo) { sigset_t oldset; int error; struct proc *p; if ((priority & PCATCH) == 0) return msleep(ident, mtx, priority, wmesg, timo); if (td == NULL) td = curthread; /* XXX */ nfs_set_sigmask(td, &oldset); error = msleep(ident, mtx, priority, wmesg, timo); nfs_restore_sigmask(td, &oldset); p = td->td_proc; return (error); } /* * Test for a termination condition pending on the process. * This is used for NFSMNT_INT mounts. */ int nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td) { struct proc *p; sigset_t tmpset; if ((nmp->nm_flag & NFSMNT_NFSV4) != 0) return nfs4_sigintr(nmp, rep, td); if (rep) { mtx_lock(&rep->r_mtx); if (rep->r_flags & R_SOFTTERM) { mtx_unlock(&rep->r_mtx); return (EIO); } else mtx_unlock(&rep->r_mtx); } /* Terminate all requests while attempting a forced unmount. */ if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) return (EIO); if (!(nmp->nm_flag & NFSMNT_INT)) return (0); if (td == NULL) return (0); p = td->td_proc; PROC_LOCK(p); tmpset = p->p_siglist; SIGSETOR(tmpset, td->td_siglist); SIGSETNAND(tmpset, td->td_sigmask); mtx_lock(&p->p_sigacts->ps_mtx); SIGSETNAND(tmpset, p->p_sigacts->ps_sigignore); mtx_unlock(&p->p_sigacts->ps_mtx); if ((SIGNOTEMPTY(p->p_siglist) || SIGNOTEMPTY(td->td_siglist)) && nfs_sig_pending(tmpset)) { PROC_UNLOCK(p); return (EINTR); } PROC_UNLOCK(p); return (0); } /* * Lock a socket against others. * Necessary for STREAM sockets to ensure you get an entire rpc request/reply * and also to avoid race conditions between the processes with nfs requests * in progress when a reconnect is necessary. */ int nfs_connect_lock(struct nfsreq *rep) { int *statep = &rep->r_nmp->nm_state; struct thread *td; int error, slpflag = 0, slptimeo = 0; td = rep->r_td; if (rep->r_nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; while (*statep & NFSSTA_SNDLOCK) { error = nfs_sigintr(rep->r_nmp, rep, td); if (error) { return (error); } *statep |= NFSSTA_WANTSND; (void) msleep(statep, &rep->r_nmp->nm_mtx, slpflag | (PZERO - 1), "nfsndlck", slptimeo); if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } } *statep |= NFSSTA_SNDLOCK; return (0); } /* * Unlock the stream socket for others. */ void nfs_connect_unlock(struct nfsreq *rep) { int *statep = &rep->r_nmp->nm_state; if ((*statep & NFSSTA_SNDLOCK) == 0) panic("nfs sndunlock"); *statep &= ~NFSSTA_SNDLOCK; if (*statep & NFSSTA_WANTSND) { *statep &= ~NFSSTA_WANTSND; wakeup(statep); } } /* * nfs_realign: * * Check for badly aligned mbuf data and realign by copying the unaligned * portion of the data into a new mbuf chain and freeing the portions * of the old chain that were replaced. * * We cannot simply realign the data within the existing mbuf chain * because the underlying buffers may contain other rpc commands and * we cannot afford to overwrite them. * * We would prefer to avoid this situation entirely. The situation does * not occur with NFS/UDP and is supposed to only occassionally occur * with TCP. Use vfs.nfs.realign_count and realign_test to check this. * */ static int nfs_realign(struct mbuf **pm, int hsiz) { struct mbuf *m; struct mbuf *n = NULL; int off = 0; ++nfs_realign_test; while ((m = *pm) != NULL) { if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) { MGET(n, M_DONTWAIT, MT_DATA); if (n == NULL) return (ENOMEM); if (m->m_len >= MINCLSIZE) { MCLGET(n, M_DONTWAIT); if (n->m_ext.ext_buf == NULL) { m_freem(n); return (ENOMEM); } } n->m_len = 0; break; } pm = &m->m_next; } /* * If n is non-NULL, loop on m copying data, then replace the * portion of the chain that had to be realigned. */ if (n != NULL) { ++nfs_realign_count; while (m) { m_copyback(n, off, m->m_len, mtod(m, caddr_t)); off += m->m_len; m = m->m_next; } m_freem(*pm); *pm = n; } return (0); } static int nfs_msg(struct thread *td, const char *server, const char *msg, int error) { struct proc *p; p = td ? td->td_proc : NULL; if (error) { tprintf(p, LOG_INFO, "nfs server %s: %s, error %d\n", server, msg, error); } else { tprintf(p, LOG_INFO, "nfs server %s: %s\n", server, msg); } return (0); } void nfs_down(rep, nmp, td, msg, error, flags) struct nfsreq *rep; struct nfsmount *nmp; struct thread *td; const char *msg; int error, flags; { if (nmp == NULL) return; mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_TIMEO) && !(nmp->nm_state & NFSSTA_TIMEO)) { nmp->nm_state |= NFSSTA_TIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESP, 0); } else mtx_unlock(&nmp->nm_mtx); #ifdef NFSSTA_LOCKTIMEO mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_LOCKTIMEO) && !(nmp->nm_state & NFSSTA_LOCKTIMEO)) { nmp->nm_state |= NFSSTA_LOCKTIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESPLOCK, 0); } else mtx_unlock(&nmp->nm_mtx); #endif if (rep != NULL) { mtx_lock(&rep->r_mtx); rep->r_flags |= R_TPRINTFMSG; mtx_unlock(&rep->r_mtx); } nfs_msg(td, nmp->nm_mountp->mnt_stat.f_mntfromname, msg, error); } void nfs_up(rep, nmp, td, msg, flags) struct nfsreq *rep; struct nfsmount *nmp; struct thread *td; const char *msg; int flags; { if (nmp == NULL || rep == NULL) return; mtx_lock(&rep->r_mtx); if ((rep->r_flags & R_TPRINTFMSG) != 0) { mtx_unlock(&rep->r_mtx); nfs_msg(td, nmp->nm_mountp->mnt_stat.f_mntfromname, msg, 0); } else mtx_unlock(&rep->r_mtx); mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_TIMEO) && (nmp->nm_state & NFSSTA_TIMEO)) { nmp->nm_state &= ~NFSSTA_TIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESP, 1); } else mtx_unlock(&nmp->nm_mtx); #ifdef NFSSTA_LOCKTIMEO mtx_lock(&nmp->nm_mtx); if ((flags & NFSSTA_LOCKTIMEO) && (nmp->nm_state & NFSSTA_LOCKTIMEO)) { nmp->nm_state &= ~NFSSTA_LOCKTIMEO; mtx_unlock(&nmp->nm_mtx); vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid, VQ_NOTRESPLOCK, 1); } else mtx_unlock(&nmp->nm_mtx); #endif }