/*- * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * Copyright (c) 1998,2000 Doug Rabson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 * from: i386 Id: pmap.c,v 1.193 1998/04/19 15:22:48 bde Exp * with some ideas from NetBSD's alpha pmap */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Manages physical address maps. * * In addition to hardware address maps, this * module is called upon to provide software-use-only * maps which may or may not be stored in the same * form as hardware maps. These pseudo-maps are * used to store intermediate results from copy * operations to and from address spaces. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ /* * Following the Linux model, region IDs are allocated in groups of * eight so that a single region ID can be used for as many RRs as we * want by encoding the RR number into the low bits of the ID. * * We reserve region ID 0 for the kernel and allocate the remaining * IDs for user pmaps. * * Region 0-3: User virtually mapped * Region 4: PBVM and special mappings * Region 5: Kernel virtual memory * Region 6: Direct-mapped uncacheable * Region 7: Direct-mapped cacheable */ /* XXX move to a header. */ extern uint64_t ia64_gateway_page[]; #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif #if !defined(DIAGNOSTIC) #define PMAP_INLINE __inline #else #define PMAP_INLINE #endif #define pmap_accessed(lpte) ((lpte)->pte & PTE_ACCESSED) #define pmap_dirty(lpte) ((lpte)->pte & PTE_DIRTY) #define pmap_exec(lpte) ((lpte)->pte & PTE_AR_RX) #define pmap_managed(lpte) ((lpte)->pte & PTE_MANAGED) #define pmap_ppn(lpte) ((lpte)->pte & PTE_PPN_MASK) #define pmap_present(lpte) ((lpte)->pte & PTE_PRESENT) #define pmap_prot(lpte) (((lpte)->pte & PTE_PROT_MASK) >> 56) #define pmap_wired(lpte) ((lpte)->pte & PTE_WIRED) #define pmap_clear_accessed(lpte) (lpte)->pte &= ~PTE_ACCESSED #define pmap_clear_dirty(lpte) (lpte)->pte &= ~PTE_DIRTY #define pmap_clear_present(lpte) (lpte)->pte &= ~PTE_PRESENT #define pmap_clear_wired(lpte) (lpte)->pte &= ~PTE_WIRED #define pmap_set_wired(lpte) (lpte)->pte |= PTE_WIRED /* * The VHPT bucket head structure. */ struct ia64_bucket { uint64_t chain; struct mtx mutex; u_int length; }; /* * Statically allocated kernel pmap */ struct pmap kernel_pmap_store; vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ /* * Kernel virtual memory management. */ static int nkpt; extern struct ia64_lpte ***ia64_kptdir; #define KPTE_DIR0_INDEX(va) \ (((va) >> (3*PAGE_SHIFT-8)) & ((1<<(PAGE_SHIFT-3))-1)) #define KPTE_DIR1_INDEX(va) \ (((va) >> (2*PAGE_SHIFT-5)) & ((1<<(PAGE_SHIFT-3))-1)) #define KPTE_PTE_INDEX(va) \ (((va) >> PAGE_SHIFT) & ((1<<(PAGE_SHIFT-5))-1)) #define NKPTEPG (PAGE_SIZE / sizeof(struct ia64_lpte)) vm_offset_t kernel_vm_end; /* Values for ptc.e. XXX values for SKI. */ static uint64_t pmap_ptc_e_base = 0x100000000; static uint64_t pmap_ptc_e_count1 = 3; static uint64_t pmap_ptc_e_count2 = 2; static uint64_t pmap_ptc_e_stride1 = 0x2000; static uint64_t pmap_ptc_e_stride2 = 0x100000000; struct mtx pmap_ptc_mutex; /* * Data for the RID allocator */ static int pmap_ridcount; static int pmap_rididx; static int pmap_ridmapsz; static int pmap_ridmax; static uint64_t *pmap_ridmap; struct mtx pmap_ridmutex; /* * Data for the pv entry allocation mechanism */ static uma_zone_t pvzone; static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; /* * Data for allocating PTEs for user processes. */ static uma_zone_t ptezone; /* * Virtual Hash Page Table (VHPT) data. */ /* SYSCTL_DECL(_machdep); */ SYSCTL_NODE(_machdep, OID_AUTO, vhpt, CTLFLAG_RD, 0, ""); struct ia64_bucket *pmap_vhpt_bucket; int pmap_vhpt_nbuckets; SYSCTL_INT(_machdep_vhpt, OID_AUTO, nbuckets, CTLFLAG_RD, &pmap_vhpt_nbuckets, 0, ""); int pmap_vhpt_log2size = 0; TUNABLE_INT("machdep.vhpt.log2size", &pmap_vhpt_log2size); SYSCTL_INT(_machdep_vhpt, OID_AUTO, log2size, CTLFLAG_RD, &pmap_vhpt_log2size, 0, ""); static int pmap_vhpt_inserts; SYSCTL_INT(_machdep_vhpt, OID_AUTO, inserts, CTLFLAG_RD, &pmap_vhpt_inserts, 0, ""); static int pmap_vhpt_population(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_machdep_vhpt, OID_AUTO, population, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, pmap_vhpt_population, "I", ""); static struct ia64_lpte *pmap_find_vhpt(vm_offset_t va); static PMAP_INLINE void free_pv_entry(pv_entry_t pv); static pv_entry_t get_pv_entry(pmap_t locked_pmap); static void pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot); static void pmap_free_pte(struct ia64_lpte *pte, vm_offset_t va); static void pmap_invalidate_all(void); static int pmap_remove_pte(pmap_t pmap, struct ia64_lpte *pte, vm_offset_t va, pv_entry_t pv, int freepte); static int pmap_remove_vhpt(vm_offset_t va); static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m); vm_offset_t pmap_steal_memory(vm_size_t size) { vm_size_t bank_size; vm_offset_t pa, va; size = round_page(size); bank_size = phys_avail[1] - phys_avail[0]; while (size > bank_size) { int i; for (i = 0; phys_avail[i+2]; i+= 2) { phys_avail[i] = phys_avail[i+2]; phys_avail[i+1] = phys_avail[i+3]; } phys_avail[i] = 0; phys_avail[i+1] = 0; if (!phys_avail[0]) panic("pmap_steal_memory: out of memory"); bank_size = phys_avail[1] - phys_avail[0]; } pa = phys_avail[0]; phys_avail[0] += size; va = IA64_PHYS_TO_RR7(pa); bzero((caddr_t) va, size); return va; } static void pmap_initialize_vhpt(vm_offset_t vhpt) { struct ia64_lpte *pte; u_int i; pte = (struct ia64_lpte *)vhpt; for (i = 0; i < pmap_vhpt_nbuckets; i++) { pte[i].pte = 0; pte[i].itir = 0; pte[i].tag = 1UL << 63; /* Invalid tag */ pte[i].chain = (uintptr_t)(pmap_vhpt_bucket + i); } } #ifdef SMP MALLOC_DECLARE(M_SMP); vm_offset_t pmap_alloc_vhpt(void) { vm_offset_t vhpt; vm_size_t size; size = 1UL << pmap_vhpt_log2size; vhpt = (uintptr_t)contigmalloc(size, M_SMP, 0, 0UL, ~0UL, size, 0UL); if (vhpt != 0) { vhpt = IA64_PHYS_TO_RR7(ia64_tpa(vhpt)); pmap_initialize_vhpt(vhpt); } return (vhpt); } #endif /* * Bootstrap the system enough to run with virtual memory. */ void pmap_bootstrap() { struct ia64_pal_result res; vm_offset_t base; size_t size; int i, j, count, ridbits; /* * Query the PAL Code to find the loop parameters for the * ptc.e instruction. */ res = ia64_call_pal_static(PAL_PTCE_INFO, 0, 0, 0); if (res.pal_status != 0) panic("Can't configure ptc.e parameters"); pmap_ptc_e_base = res.pal_result[0]; pmap_ptc_e_count1 = res.pal_result[1] >> 32; pmap_ptc_e_count2 = res.pal_result[1] & ((1L<<32) - 1); pmap_ptc_e_stride1 = res.pal_result[2] >> 32; pmap_ptc_e_stride2 = res.pal_result[2] & ((1L<<32) - 1); if (bootverbose) printf("ptc.e base=0x%lx, count1=%ld, count2=%ld, " "stride1=0x%lx, stride2=0x%lx\n", pmap_ptc_e_base, pmap_ptc_e_count1, pmap_ptc_e_count2, pmap_ptc_e_stride1, pmap_ptc_e_stride2); mtx_init(&pmap_ptc_mutex, "PTC.G mutex", NULL, MTX_SPIN); /* * Setup RIDs. RIDs 0..7 are reserved for the kernel. * * We currently need at least 19 bits in the RID because PID_MAX * can only be encoded in 17 bits and we need RIDs for 4 regions * per process. With PID_MAX equalling 99999 this means that we * need to be able to encode 399996 (=4*PID_MAX). * The Itanium processor only has 18 bits and the architected * minimum is exactly that. So, we cannot use a PID based scheme * in those cases. Enter pmap_ridmap... * We should avoid the map when running on a processor that has * implemented enough bits. This means that we should pass the * process/thread ID to pmap. This we currently don't do, so we * use the map anyway. However, we don't want to allocate a map * that is large enough to cover the range dictated by the number * of bits in the RID, because that may result in a RID map of * 2MB in size for a 24-bit RID. A 64KB map is enough. * The bottomline: we create a 32KB map when the processor only * implements 18 bits (or when we can't figure it out). Otherwise * we create a 64KB map. */ res = ia64_call_pal_static(PAL_VM_SUMMARY, 0, 0, 0); if (res.pal_status != 0) { if (bootverbose) printf("Can't read VM Summary - assuming 18 Region ID bits\n"); ridbits = 18; /* guaranteed minimum */ } else { ridbits = (res.pal_result[1] >> 8) & 0xff; if (bootverbose) printf("Processor supports %d Region ID bits\n", ridbits); } if (ridbits > 19) ridbits = 19; pmap_ridmax = (1 << ridbits); pmap_ridmapsz = pmap_ridmax / 64; pmap_ridmap = (uint64_t *)pmap_steal_memory(pmap_ridmax / 8); pmap_ridmap[0] |= 0xff; pmap_rididx = 0; pmap_ridcount = 8; mtx_init(&pmap_ridmutex, "RID allocator lock", NULL, MTX_DEF); /* * Allocate some memory for initial kernel 'page tables'. */ ia64_kptdir = (void *)pmap_steal_memory(PAGE_SIZE); nkpt = 0; kernel_vm_end = VM_MIN_KERNEL_ADDRESS; for (i = 0; phys_avail[i+2]; i+= 2) ; count = i+2; /* * Determine a valid (mappable) VHPT size. */ TUNABLE_INT_FETCH("machdep.vhpt.log2size", &pmap_vhpt_log2size); if (pmap_vhpt_log2size == 0) pmap_vhpt_log2size = 20; else if (pmap_vhpt_log2size < 16) pmap_vhpt_log2size = 16; else if (pmap_vhpt_log2size > 28) pmap_vhpt_log2size = 28; if (pmap_vhpt_log2size & 1) pmap_vhpt_log2size--; base = 0; size = 1UL << pmap_vhpt_log2size; for (i = 0; i < count; i += 2) { base = (phys_avail[i] + size - 1) & ~(size - 1); if (base + size <= phys_avail[i+1]) break; } if (!phys_avail[i]) panic("Unable to allocate VHPT"); if (base != phys_avail[i]) { /* Split this region. */ for (j = count; j > i; j -= 2) { phys_avail[j] = phys_avail[j-2]; phys_avail[j+1] = phys_avail[j-2+1]; } phys_avail[i+1] = base; phys_avail[i+2] = base + size; } else phys_avail[i] = base + size; base = IA64_PHYS_TO_RR7(base); PCPU_SET(md.vhpt, base); if (bootverbose) printf("VHPT: address=%#lx, size=%#lx\n", base, size); pmap_vhpt_nbuckets = size / sizeof(struct ia64_lpte); pmap_vhpt_bucket = (void *)pmap_steal_memory(pmap_vhpt_nbuckets * sizeof(struct ia64_bucket)); for (i = 0; i < pmap_vhpt_nbuckets; i++) { /* Stolen memory is zeroed. */ mtx_init(&pmap_vhpt_bucket[i].mutex, "VHPT bucket lock", NULL, MTX_NOWITNESS | MTX_SPIN); } pmap_initialize_vhpt(base); map_vhpt(base); ia64_set_pta(base + (1 << 8) + (pmap_vhpt_log2size << 2) + 1); ia64_srlz_i(); virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_KERNEL_ADDRESS; /* * Initialize the kernel pmap (which is statically allocated). */ PMAP_LOCK_INIT(kernel_pmap); for (i = 0; i < IA64_VM_MINKERN_REGION; i++) kernel_pmap->pm_rid[i] = 0; TAILQ_INIT(&kernel_pmap->pm_pvlist); PCPU_SET(md.current_pmap, kernel_pmap); /* Region 5 is mapped via the VHPT. */ ia64_set_rr(IA64_RR_BASE(5), (5 << 8) | (PAGE_SHIFT << 2) | 1); /* * Clear out any random TLB entries left over from booting. */ pmap_invalidate_all(); map_gateway_page(); } static int pmap_vhpt_population(SYSCTL_HANDLER_ARGS) { int count, error, i; count = 0; for (i = 0; i < pmap_vhpt_nbuckets; i++) count += pmap_vhpt_bucket[i].length; error = SYSCTL_OUT(req, &count, sizeof(count)); return (error); } vm_offset_t pmap_page_to_va(vm_page_t m) { vm_paddr_t pa; vm_offset_t va; pa = VM_PAGE_TO_PHYS(m); va = (m->md.memattr == VM_MEMATTR_UNCACHEABLE) ? IA64_PHYS_TO_RR6(pa) : IA64_PHYS_TO_RR7(pa); return (va); } /* * Initialize a vm_page's machine-dependent fields. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); m->md.pv_list_count = 0; m->md.memattr = VM_MEMATTR_DEFAULT; } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { int shpgperproc = PMAP_SHPGPERPROC; /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); pv_entry_high_water = 9 * (pv_entry_max / 10); ptezone = uma_zcreate("PT ENTRY", sizeof (struct ia64_lpte), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); } /*************************************************** * Manipulate TLBs for a pmap ***************************************************/ static void pmap_invalidate_page(vm_offset_t va) { struct ia64_lpte *pte; struct pcpu *pc; uint64_t tag; u_int vhpt_ofs; critical_enter(); vhpt_ofs = ia64_thash(va) - PCPU_GET(md.vhpt); tag = ia64_ttag(va); STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { pte = (struct ia64_lpte *)(pc->pc_md.vhpt + vhpt_ofs); atomic_cmpset_64(&pte->tag, tag, 1UL << 63); } mtx_lock_spin(&pmap_ptc_mutex); ia64_ptc_ga(va, PAGE_SHIFT << 2); ia64_mf(); ia64_srlz_i(); mtx_unlock_spin(&pmap_ptc_mutex); ia64_invala(); critical_exit(); } static void pmap_invalidate_all_1(void *arg) { uint64_t addr; int i, j; critical_enter(); addr = pmap_ptc_e_base; for (i = 0; i < pmap_ptc_e_count1; i++) { for (j = 0; j < pmap_ptc_e_count2; j++) { ia64_ptc_e(addr); addr += pmap_ptc_e_stride2; } addr += pmap_ptc_e_stride1; } critical_exit(); } static void pmap_invalidate_all(void) { #ifdef SMP if (mp_ncpus > 1) { smp_rendezvous(NULL, pmap_invalidate_all_1, NULL, NULL); return; } #endif pmap_invalidate_all_1(NULL); } static uint32_t pmap_allocate_rid(void) { uint64_t bit, bits; int rid; mtx_lock(&pmap_ridmutex); if (pmap_ridcount == pmap_ridmax) panic("pmap_allocate_rid: All Region IDs used"); /* Find an index with a free bit. */ while ((bits = pmap_ridmap[pmap_rididx]) == ~0UL) { pmap_rididx++; if (pmap_rididx == pmap_ridmapsz) pmap_rididx = 0; } rid = pmap_rididx * 64; /* Find a free bit. */ bit = 1UL; while (bits & bit) { rid++; bit <<= 1; } pmap_ridmap[pmap_rididx] |= bit; pmap_ridcount++; mtx_unlock(&pmap_ridmutex); return rid; } static void pmap_free_rid(uint32_t rid) { uint64_t bit; int idx; idx = rid / 64; bit = ~(1UL << (rid & 63)); mtx_lock(&pmap_ridmutex); pmap_ridmap[idx] &= bit; pmap_ridcount--; mtx_unlock(&pmap_ridmutex); } /*************************************************** * Page table page management routines..... ***************************************************/ void pmap_pinit0(struct pmap *pmap) { /* kernel_pmap is the same as any other pmap. */ pmap_pinit(pmap); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ int pmap_pinit(struct pmap *pmap) { int i; PMAP_LOCK_INIT(pmap); for (i = 0; i < IA64_VM_MINKERN_REGION; i++) pmap->pm_rid[i] = pmap_allocate_rid(); TAILQ_INIT(&pmap->pm_pvlist); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); return (1); } /*************************************************** * Pmap allocation/deallocation routines. ***************************************************/ /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { int i; for (i = 0; i < IA64_VM_MINKERN_REGION; i++) if (pmap->pm_rid[i]) pmap_free_rid(pmap->pm_rid[i]); PMAP_LOCK_DESTROY(pmap); } /* * grow the number of kernel page table entries, if needed */ void pmap_growkernel(vm_offset_t addr) { struct ia64_lpte **dir1; struct ia64_lpte *leaf; vm_page_t nkpg; while (kernel_vm_end <= addr) { if (nkpt == PAGE_SIZE/8 + PAGE_SIZE*PAGE_SIZE/64) panic("%s: out of kernel address space", __func__); dir1 = ia64_kptdir[KPTE_DIR0_INDEX(kernel_vm_end)]; if (dir1 == NULL) { nkpg = vm_page_alloc(NULL, nkpt++, VM_ALLOC_NOOBJ|VM_ALLOC_INTERRUPT|VM_ALLOC_WIRED); if (!nkpg) panic("%s: cannot add dir. page", __func__); dir1 = (struct ia64_lpte **)pmap_page_to_va(nkpg); bzero(dir1, PAGE_SIZE); ia64_kptdir[KPTE_DIR0_INDEX(kernel_vm_end)] = dir1; } nkpg = vm_page_alloc(NULL, nkpt++, VM_ALLOC_NOOBJ|VM_ALLOC_INTERRUPT|VM_ALLOC_WIRED); if (!nkpg) panic("%s: cannot add PTE page", __func__); leaf = (struct ia64_lpte *)pmap_page_to_va(nkpg); bzero(leaf, PAGE_SIZE); dir1[KPTE_DIR1_INDEX(kernel_vm_end)] = leaf; kernel_vm_end += PAGE_SIZE * NKPTEPG; } } /*************************************************** * page management routines. ***************************************************/ /* * free the pv_entry back to the free list */ static PMAP_INLINE void free_pv_entry(pv_entry_t pv) { pv_entry_count--; uma_zfree(pvzone, pv); } /* * get a new pv_entry, allocating a block from the system * when needed. */ static pv_entry_t get_pv_entry(pmap_t locked_pmap) { static const struct timeval printinterval = { 60, 0 }; static struct timeval lastprint; struct vpgqueues *vpq; struct ia64_lpte *pte; pmap_t oldpmap, pmap; pv_entry_t allocated_pv, next_pv, pv; vm_offset_t va; vm_page_t m; PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); allocated_pv = uma_zalloc(pvzone, M_NOWAIT); if (allocated_pv != NULL) { pv_entry_count++; if (pv_entry_count > pv_entry_high_water) pagedaemon_wakeup(); else return (allocated_pv); } /* * Reclaim pv entries: At first, destroy mappings to inactive * pages. After that, if a pv entry is still needed, destroy * mappings to active pages. */ if (ratecheck(&lastprint, &printinterval)) printf("Approaching the limit on PV entries, " "increase the vm.pmap.shpgperproc tunable.\n"); vpq = &vm_page_queues[PQ_INACTIVE]; retry: TAILQ_FOREACH(m, &vpq->pl, pageq) { if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy) continue; TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) { va = pv->pv_va; pmap = pv->pv_pmap; /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) PMAP_LOCK(pmap); else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) continue; pmap->pm_stats.resident_count--; oldpmap = pmap_switch(pmap); pte = pmap_find_vhpt(va); KASSERT(pte != NULL, ("pte")); pmap_remove_vhpt(va); pmap_invalidate_page(va); pmap_switch(oldpmap); if (pmap_accessed(pte)) vm_page_aflag_set(m, PGA_REFERENCED); if (pmap_dirty(pte)) vm_page_dirty(m); pmap_free_pte(pte, va); TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist); m->md.pv_list_count--; TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); if (pmap != locked_pmap) PMAP_UNLOCK(pmap); if (allocated_pv == NULL) allocated_pv = pv; else free_pv_entry(pv); } if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } if (allocated_pv == NULL) { if (vpq == &vm_page_queues[PQ_INACTIVE]) { vpq = &vm_page_queues[PQ_ACTIVE]; goto retry; } panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable"); } return (allocated_pv); } /* * Conditionally create a pv entry. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if (pv_entry_count < pv_entry_high_water && (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) { pv_entry_count++; pv->pv_va = va; pv->pv_pmap = pmap; TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); m->md.pv_list_count++; return (TRUE); } else return (FALSE); } /* * Add an ia64_lpte to the VHPT. */ static void pmap_enter_vhpt(struct ia64_lpte *pte, vm_offset_t va) { struct ia64_bucket *bckt; struct ia64_lpte *vhpte; uint64_t pte_pa; /* Can fault, so get it out of the way. */ pte_pa = ia64_tpa((vm_offset_t)pte); vhpte = (struct ia64_lpte *)ia64_thash(va); bckt = (struct ia64_bucket *)vhpte->chain; mtx_lock_spin(&bckt->mutex); pte->chain = bckt->chain; ia64_mf(); bckt->chain = pte_pa; pmap_vhpt_inserts++; bckt->length++; mtx_unlock_spin(&bckt->mutex); } /* * Remove the ia64_lpte matching va from the VHPT. Return zero if it * worked or an appropriate error code otherwise. */ static int pmap_remove_vhpt(vm_offset_t va) { struct ia64_bucket *bckt; struct ia64_lpte *pte; struct ia64_lpte *lpte; struct ia64_lpte *vhpte; uint64_t chain, tag; tag = ia64_ttag(va); vhpte = (struct ia64_lpte *)ia64_thash(va); bckt = (struct ia64_bucket *)vhpte->chain; lpte = NULL; mtx_lock_spin(&bckt->mutex); chain = bckt->chain; pte = (struct ia64_lpte *)IA64_PHYS_TO_RR7(chain); while (chain != 0 && pte->tag != tag) { lpte = pte; chain = pte->chain; pte = (struct ia64_lpte *)IA64_PHYS_TO_RR7(chain); } if (chain == 0) { mtx_unlock_spin(&bckt->mutex); return (ENOENT); } /* Snip this pv_entry out of the collision chain. */ if (lpte == NULL) bckt->chain = pte->chain; else lpte->chain = pte->chain; ia64_mf(); bckt->length--; mtx_unlock_spin(&bckt->mutex); return (0); } /* * Find the ia64_lpte for the given va, if any. */ static struct ia64_lpte * pmap_find_vhpt(vm_offset_t va) { struct ia64_bucket *bckt; struct ia64_lpte *pte; uint64_t chain, tag; tag = ia64_ttag(va); pte = (struct ia64_lpte *)ia64_thash(va); bckt = (struct ia64_bucket *)pte->chain; mtx_lock_spin(&bckt->mutex); chain = bckt->chain; pte = (struct ia64_lpte *)IA64_PHYS_TO_RR7(chain); while (chain != 0 && pte->tag != tag) { chain = pte->chain; pte = (struct ia64_lpte *)IA64_PHYS_TO_RR7(chain); } mtx_unlock_spin(&bckt->mutex); return ((chain != 0) ? pte : NULL); } /* * Remove an entry from the list of managed mappings. */ static int pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va, pv_entry_t pv) { if (!pv) { if (m->md.pv_list_count < pmap->pm_stats.resident_count) { TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { if (pmap == pv->pv_pmap && va == pv->pv_va) break; } } else { TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) { if (va == pv->pv_va) break; } } } if (pv) { TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); m->md.pv_list_count--; if (TAILQ_FIRST(&m->md.pv_list) == NULL) vm_page_aflag_clear(m, PGA_WRITEABLE); TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist); free_pv_entry(pv); return 0; } else { return ENOENT; } } /* * Create a pv entry for page at pa for * (pmap, va). */ static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; pv = get_pv_entry(pmap); pv->pv_pmap = pmap; pv->pv_va = va; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); m->md.pv_list_count++; } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pmap, vm_offset_t va) { struct ia64_lpte *pte; pmap_t oldpmap; vm_paddr_t pa; pa = 0; PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); pte = pmap_find_vhpt(va); if (pte != NULL && pmap_present(pte)) pa = pmap_ppn(pte); pmap_switch(oldpmap); PMAP_UNLOCK(pmap); return (pa); } /* * Routine: pmap_extract_and_hold * Function: * Atomically extract and hold the physical page * with the given pmap and virtual address pair * if that mapping permits the given protection. */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { struct ia64_lpte *pte; pmap_t oldpmap; vm_page_t m; vm_paddr_t pa; pa = 0; m = NULL; PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); retry: pte = pmap_find_vhpt(va); if (pte != NULL && pmap_present(pte) && (pmap_prot(pte) & prot) == prot) { m = PHYS_TO_VM_PAGE(pmap_ppn(pte)); if (vm_page_pa_tryrelock(pmap, pmap_ppn(pte), &pa)) goto retry; vm_page_hold(m); } PA_UNLOCK_COND(pa); pmap_switch(oldpmap); PMAP_UNLOCK(pmap); return (m); } /*************************************************** * Low level mapping routines..... ***************************************************/ /* * Find the kernel lpte for mapping the given virtual address, which * must be in the part of region 5 which we can cover with our kernel * 'page tables'. */ static struct ia64_lpte * pmap_find_kpte(vm_offset_t va) { struct ia64_lpte **dir1; struct ia64_lpte *leaf; KASSERT((va >> 61) == 5, ("kernel mapping 0x%lx not in region 5", va)); KASSERT(va < kernel_vm_end, ("kernel mapping 0x%lx out of range", va)); dir1 = ia64_kptdir[KPTE_DIR0_INDEX(va)]; leaf = dir1[KPTE_DIR1_INDEX(va)]; return (&leaf[KPTE_PTE_INDEX(va)]); } /* * Find a pte suitable for mapping a user-space address. If one exists * in the VHPT, that one will be returned, otherwise a new pte is * allocated. */ static struct ia64_lpte * pmap_find_pte(vm_offset_t va) { struct ia64_lpte *pte; if (va >= VM_MAXUSER_ADDRESS) return pmap_find_kpte(va); pte = pmap_find_vhpt(va); if (pte == NULL) { pte = uma_zalloc(ptezone, M_NOWAIT | M_ZERO); pte->tag = 1UL << 63; } return (pte); } /* * Free a pte which is now unused. This simply returns it to the zone * allocator if it is a user mapping. For kernel mappings, clear the * valid bit to make it clear that the mapping is not currently used. */ static void pmap_free_pte(struct ia64_lpte *pte, vm_offset_t va) { if (va < VM_MAXUSER_ADDRESS) uma_zfree(ptezone, pte); else pmap_clear_present(pte); } static PMAP_INLINE void pmap_pte_prot(pmap_t pm, struct ia64_lpte *pte, vm_prot_t prot) { static long prot2ar[4] = { PTE_AR_R, /* VM_PROT_NONE */ PTE_AR_RW, /* VM_PROT_WRITE */ PTE_AR_RX|PTE_ED, /* VM_PROT_EXECUTE */ PTE_AR_RWX|PTE_ED /* VM_PROT_WRITE|VM_PROT_EXECUTE */ }; pte->pte &= ~(PTE_PROT_MASK | PTE_PL_MASK | PTE_AR_MASK | PTE_ED); pte->pte |= (uint64_t)(prot & VM_PROT_ALL) << 56; pte->pte |= (prot == VM_PROT_NONE || pm == kernel_pmap) ? PTE_PL_KERN : PTE_PL_USER; pte->pte |= prot2ar[(prot & VM_PROT_ALL) >> 1]; } static PMAP_INLINE void pmap_pte_attr(struct ia64_lpte *pte, vm_memattr_t ma) { pte->pte &= ~PTE_MA_MASK; pte->pte |= (ma & PTE_MA_MASK); } /* * Set a pte to contain a valid mapping and enter it in the VHPT. If * the pte was orginally valid, then its assumed to already be in the * VHPT. * This functions does not set the protection bits. It's expected * that those have been set correctly prior to calling this function. */ static void pmap_set_pte(struct ia64_lpte *pte, vm_offset_t va, vm_offset_t pa, boolean_t wired, boolean_t managed) { pte->pte &= PTE_PROT_MASK | PTE_MA_MASK | PTE_PL_MASK | PTE_AR_MASK | PTE_ED; pte->pte |= PTE_PRESENT; pte->pte |= (managed) ? PTE_MANAGED : (PTE_DIRTY | PTE_ACCESSED); pte->pte |= (wired) ? PTE_WIRED : 0; pte->pte |= pa & PTE_PPN_MASK; pte->itir = PAGE_SHIFT << 2; pte->tag = ia64_ttag(va); } /* * Remove the (possibly managed) mapping represented by pte from the * given pmap. */ static int pmap_remove_pte(pmap_t pmap, struct ia64_lpte *pte, vm_offset_t va, pv_entry_t pv, int freepte) { int error; vm_page_t m; /* * First remove from the VHPT. */ error = pmap_remove_vhpt(va); if (error) return (error); pmap_invalidate_page(va); if (pmap_wired(pte)) pmap->pm_stats.wired_count -= 1; pmap->pm_stats.resident_count -= 1; if (pmap_managed(pte)) { m = PHYS_TO_VM_PAGE(pmap_ppn(pte)); if (pmap_dirty(pte)) vm_page_dirty(m); if (pmap_accessed(pte)) vm_page_aflag_set(m, PGA_REFERENCED); error = pmap_remove_entry(pmap, m, va, pv); } if (freepte) pmap_free_pte(pte, va); return (error); } /* * Extract the physical page address associated with a kernel * virtual address. */ vm_paddr_t pmap_kextract(vm_offset_t va) { struct ia64_lpte *pte; uint64_t *pbvm_pgtbl; vm_paddr_t pa; u_int idx; KASSERT(va >= VM_MAXUSER_ADDRESS, ("Must be kernel VA")); /* Regions 6 and 7 are direct mapped. */ if (va >= IA64_RR_BASE(6)) { pa = IA64_RR_MASK(va); goto out; } /* Region 5 is our KVA. Bail out if the VA is beyond our limits. */ if (va >= kernel_vm_end) goto err_out; if (va >= VM_MIN_KERNEL_ADDRESS) { pte = pmap_find_kpte(va); pa = pmap_present(pte) ? pmap_ppn(pte) | (va & PAGE_MASK) : 0; goto out; } /* The PBVM page table. */ if (va >= IA64_PBVM_PGTBL + bootinfo->bi_pbvm_pgtblsz) goto err_out; if (va >= IA64_PBVM_PGTBL) { pa = (va - IA64_PBVM_PGTBL) + bootinfo->bi_pbvm_pgtbl; goto out; } /* The PBVM itself. */ if (va >= IA64_PBVM_BASE) { pbvm_pgtbl = (void *)IA64_PBVM_PGTBL; idx = (va - IA64_PBVM_BASE) >> IA64_PBVM_PAGE_SHIFT; if (idx >= (bootinfo->bi_pbvm_pgtblsz >> 3)) goto err_out; if ((pbvm_pgtbl[idx] & PTE_PRESENT) == 0) goto err_out; pa = (pbvm_pgtbl[idx] & PTE_PPN_MASK) + (va & IA64_PBVM_PAGE_MASK); goto out; } err_out: printf("XXX: %s: va=%#lx is invalid\n", __func__, va); pa = 0; /* FALLTHROUGH */ out: return (pa); } /* * Add a list of wired pages to the kva this routine is only used for * temporary kernel mappings that do not need to have page modification * or references recorded. Note that old mappings are simply written * over. The page is effectively wired, but it's customary to not have * the PTE reflect that, nor update statistics. */ void pmap_qenter(vm_offset_t va, vm_page_t *m, int count) { struct ia64_lpte *pte; int i; for (i = 0; i < count; i++) { pte = pmap_find_kpte(va); if (pmap_present(pte)) pmap_invalidate_page(va); else pmap_enter_vhpt(pte, va); pmap_pte_prot(kernel_pmap, pte, VM_PROT_ALL); pmap_pte_attr(pte, m[i]->md.memattr); pmap_set_pte(pte, va, VM_PAGE_TO_PHYS(m[i]), FALSE, FALSE); va += PAGE_SIZE; } } /* * this routine jerks page mappings from the * kernel -- it is meant only for temporary mappings. */ void pmap_qremove(vm_offset_t va, int count) { struct ia64_lpte *pte; int i; for (i = 0; i < count; i++) { pte = pmap_find_kpte(va); if (pmap_present(pte)) { pmap_remove_vhpt(va); pmap_invalidate_page(va); pmap_clear_present(pte); } va += PAGE_SIZE; } } /* * Add a wired page to the kva. As for pmap_qenter(), it's customary * to not have the PTE reflect that, nor update statistics. */ void pmap_kenter(vm_offset_t va, vm_offset_t pa) { struct ia64_lpte *pte; pte = pmap_find_kpte(va); if (pmap_present(pte)) pmap_invalidate_page(va); else pmap_enter_vhpt(pte, va); pmap_pte_prot(kernel_pmap, pte, VM_PROT_ALL); pmap_pte_attr(pte, VM_MEMATTR_DEFAULT); pmap_set_pte(pte, va, pa, FALSE, FALSE); } /* * Remove a page from the kva */ void pmap_kremove(vm_offset_t va) { struct ia64_lpte *pte; pte = pmap_find_kpte(va); if (pmap_present(pte)) { pmap_remove_vhpt(va); pmap_invalidate_page(va); pmap_clear_present(pte); } } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot) { return IA64_PHYS_TO_RR7(start); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ void pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { pmap_t oldpmap; vm_offset_t va; pv_entry_t npv, pv; struct ia64_lpte *pte; if (pmap->pm_stats.resident_count == 0) return; vm_page_lock_queues(); PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); /* * special handling of removing one page. a very * common operation and easy to short circuit some * code. */ if (sva + PAGE_SIZE == eva) { pte = pmap_find_vhpt(sva); if (pte != NULL) pmap_remove_pte(pmap, pte, sva, 0, 1); goto out; } if (pmap->pm_stats.resident_count < ((eva - sva) >> PAGE_SHIFT)) { TAILQ_FOREACH_SAFE(pv, &pmap->pm_pvlist, pv_plist, npv) { va = pv->pv_va; if (va >= sva && va < eva) { pte = pmap_find_vhpt(va); KASSERT(pte != NULL, ("pte")); pmap_remove_pte(pmap, pte, va, pv, 1); } } } else { for (va = sva; va < eva; va += PAGE_SIZE) { pte = pmap_find_vhpt(va); if (pte != NULL) pmap_remove_pte(pmap, pte, va, 0, 1); } } out: vm_page_unlock_queues(); pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { pmap_t oldpmap; pv_entry_t pv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_all: page %p is not managed", m)); vm_page_lock_queues(); while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { struct ia64_lpte *pte; pmap_t pmap = pv->pv_pmap; vm_offset_t va = pv->pv_va; PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); pte = pmap_find_vhpt(va); KASSERT(pte != NULL, ("pte")); if (pmap_ppn(pte) != VM_PAGE_TO_PHYS(m)) panic("pmap_remove_all: pv_table for %lx is inconsistent", VM_PAGE_TO_PHYS(m)); pmap_remove_pte(pmap, pte, va, pv, 1); pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); vm_page_unlock_queues(); } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { pmap_t oldpmap; struct ia64_lpte *pte; if ((prot & VM_PROT_READ) == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); return; } if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) == (VM_PROT_WRITE|VM_PROT_EXECUTE)) return; if ((sva & PAGE_MASK) || (eva & PAGE_MASK)) panic("pmap_protect: unaligned addresses"); PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); for ( ; sva < eva; sva += PAGE_SIZE) { /* If page is invalid, skip this page */ pte = pmap_find_vhpt(sva); if (pte == NULL) continue; /* If there's no change, skip it too */ if (pmap_prot(pte) == prot) continue; if ((prot & VM_PROT_WRITE) == 0 && pmap_managed(pte) && pmap_dirty(pte)) { vm_paddr_t pa = pmap_ppn(pte); vm_page_t m = PHYS_TO_VM_PAGE(pa); vm_page_dirty(m); pmap_clear_dirty(pte); } if (prot & VM_PROT_EXECUTE) ia64_sync_icache(sva, PAGE_SIZE); pmap_pte_prot(pmap, pte, prot); pmap_invalidate_page(sva); } pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ void pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m, vm_prot_t prot, boolean_t wired) { pmap_t oldpmap; vm_offset_t pa; vm_offset_t opa; struct ia64_lpte origpte; struct ia64_lpte *pte; boolean_t icache_inval, managed; vm_page_lock_queues(); PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); va &= ~PAGE_MASK; KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig")); KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0, ("pmap_enter: page %p is not busy", m)); /* * Find (or create) a pte for the given mapping. */ while ((pte = pmap_find_pte(va)) == NULL) { pmap_switch(oldpmap); PMAP_UNLOCK(pmap); vm_page_unlock_queues(); VM_WAIT; vm_page_lock_queues(); PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); } origpte = *pte; if (!pmap_present(pte)) { opa = ~0UL; pmap_enter_vhpt(pte, va); } else opa = pmap_ppn(pte); managed = FALSE; pa = VM_PAGE_TO_PHYS(m); icache_inval = (prot & VM_PROT_EXECUTE) ? TRUE : FALSE; /* * Mapping has not changed, must be protection or wiring change. */ if (opa == pa) { /* * Wiring change, just update stats. We don't worry about * wiring PT pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is wired, * the PT page will be also. */ if (wired && !pmap_wired(&origpte)) pmap->pm_stats.wired_count++; else if (!wired && pmap_wired(&origpte)) pmap->pm_stats.wired_count--; managed = (pmap_managed(&origpte)) ? TRUE : FALSE; /* * We might be turning off write access to the page, * so we go ahead and sense modify status. Otherwise, * we can avoid I-cache invalidation if the page * already allowed execution. */ if (managed && pmap_dirty(&origpte)) vm_page_dirty(m); else if (pmap_exec(&origpte)) icache_inval = FALSE; pmap_invalidate_page(va); goto validate; } /* * Mapping has changed, invalidate old range and fall * through to handle validating new mapping. */ if (opa != ~0UL) { pmap_remove_pte(pmap, pte, va, 0, 0); pmap_enter_vhpt(pte, va); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva, ("pmap_enter: managed mapping within the clean submap")); pmap_insert_entry(pmap, va, m); managed = TRUE; } /* * Increment counters */ pmap->pm_stats.resident_count++; if (wired) pmap->pm_stats.wired_count++; validate: /* * Now validate mapping with desired protection/wiring. This * adds the pte to the VHPT if necessary. */ pmap_pte_prot(pmap, pte, prot); pmap_pte_attr(pte, m->md.memattr); pmap_set_pte(pte, va, pa, wired, managed); /* Invalidate the I-cache when needed. */ if (icache_inval) ia64_sync_icache(va, PAGE_SIZE); if ((prot & VM_PROT_WRITE) != 0 && managed) vm_page_aflag_set(m, PGA_WRITEABLE); vm_page_unlock_queues(); pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { pmap_t oldpmap; vm_page_t m; vm_pindex_t diff, psize; VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED); psize = atop(end - start); m = m_start; vm_page_lock_queues(); PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { pmap_enter_quick_locked(pmap, start + ptoa(diff), m, prot); m = TAILQ_NEXT(m, listq); } vm_page_unlock_queues(); pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } /* * this code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No page table pages. * but is *MUCH* faster than pmap_enter... */ void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { pmap_t oldpmap; vm_page_lock_queues(); PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); pmap_enter_quick_locked(pmap, va, m, prot); vm_page_unlock_queues(); pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } static void pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { struct ia64_lpte *pte; boolean_t managed; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0, ("pmap_enter_quick_locked: managed mapping within the clean submap")); mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((pte = pmap_find_pte(va)) == NULL) return; if (!pmap_present(pte)) { /* Enter on the PV list if the page is managed. */ if ((m->oflags & VPO_UNMANAGED) == 0) { if (!pmap_try_insert_pv_entry(pmap, va, m)) { pmap_free_pte(pte, va); return; } managed = TRUE; } else managed = FALSE; /* Increment counters. */ pmap->pm_stats.resident_count++; /* Initialise with R/O protection and enter into VHPT. */ pmap_enter_vhpt(pte, va); pmap_pte_prot(pmap, pte, prot & (VM_PROT_READ | VM_PROT_EXECUTE)); pmap_pte_attr(pte, m->md.memattr); pmap_set_pte(pte, va, VM_PAGE_TO_PHYS(m), FALSE, managed); if (prot & VM_PROT_EXECUTE) ia64_sync_icache(va, PAGE_SIZE); } } /* * pmap_object_init_pt preloads the ptes for a given object * into the specified pmap. This eliminates the blast of soft * faults on process startup and immediately after an mmap. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("pmap_object_init_pt: non-device object")); } /* * Routine: pmap_change_wiring * Function: Change the wiring attribute for a map/virtual-address * pair. * In/out conditions: * The mapping must already exist in the pmap. */ void pmap_change_wiring(pmap, va, wired) register pmap_t pmap; vm_offset_t va; boolean_t wired; { pmap_t oldpmap; struct ia64_lpte *pte; PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); pte = pmap_find_vhpt(va); KASSERT(pte != NULL, ("pte")); if (wired && !pmap_wired(pte)) { pmap->pm_stats.wired_count++; pmap_set_wired(pte); } else if (!wired && pmap_wired(pte)) { pmap->pm_stats.wired_count--; pmap_clear_wired(pte); } pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { } /* * pmap_zero_page zeros the specified hardware page by * mapping it into virtual memory and using bzero to clear * its contents. */ void pmap_zero_page(vm_page_t m) { void *p; p = (void *)pmap_page_to_va(m); bzero(p, PAGE_SIZE); } /* * pmap_zero_page_area zeros the specified hardware page by * mapping it into virtual memory and using bzero to clear * its contents. * * off and size must reside within a single page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { char *p; p = (void *)pmap_page_to_va(m); bzero(p + off, size); } /* * pmap_zero_page_idle zeros the specified hardware page by * mapping it into virtual memory and using bzero to clear * its contents. This is for the vm_idlezero process. */ void pmap_zero_page_idle(vm_page_t m) { void *p; p = (void *)pmap_page_to_va(m); bzero(p, PAGE_SIZE); } /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. */ void pmap_copy_page(vm_page_t msrc, vm_page_t mdst) { void *dst, *src; src = (void *)pmap_page_to_va(msrc); dst = (void *)pmap_page_to_va(mdst); bcopy(src, dst, PAGE_SIZE); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_page_exists_quick: page %p is not managed", m)); rv = FALSE; vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { if (pv->pv_pmap == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } vm_page_unlock_queues(); return (rv); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { struct ia64_lpte *pte; pmap_t oldpmap, pmap; pv_entry_t pv; int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = pv->pv_pmap; PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); pte = pmap_find_vhpt(pv->pv_va); KASSERT(pte != NULL, ("pte")); if (pmap_wired(pte)) count++; pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } vm_page_unlock_queues(); return (count); } /* * Remove all pages from specified address space * this aids process exit speeds. Also, this code * is special cased for current process only, but * can have the more generic (and slightly slower) * mode enabled. This is much faster than pmap_remove * in the case of running down an entire address space. */ void pmap_remove_pages(pmap_t pmap) { pmap_t oldpmap; pv_entry_t pv, npv; if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) { printf("warning: %s called with non-current pmap\n", __func__); return; } vm_page_lock_queues(); PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) { struct ia64_lpte *pte; npv = TAILQ_NEXT(pv, pv_plist); pte = pmap_find_vhpt(pv->pv_va); KASSERT(pte != NULL, ("pte")); if (!pmap_wired(pte)) pmap_remove_pte(pmap, pte, pv->pv_va, pv, 1); } pmap_switch(oldpmap); PMAP_UNLOCK(pmap); vm_page_unlock_queues(); } /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ int pmap_ts_referenced(vm_page_t m) { struct ia64_lpte *pte; pmap_t oldpmap; pv_entry_t pv; int count = 0; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_ts_referenced: page %p is not managed", m)); vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); oldpmap = pmap_switch(pv->pv_pmap); pte = pmap_find_vhpt(pv->pv_va); KASSERT(pte != NULL, ("pte")); if (pmap_accessed(pte)) { count++; pmap_clear_accessed(pte); pmap_invalidate_page(pv->pv_va); } pmap_switch(oldpmap); PMAP_UNLOCK(pv->pv_pmap); } vm_page_unlock_queues(); return (count); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t pmap_is_modified(vm_page_t m) { struct ia64_lpte *pte; pmap_t oldpmap; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_modified: page %p is not managed", m)); rv = FALSE; /* * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTEs can be dirty. */ VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) return (rv); vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); oldpmap = pmap_switch(pv->pv_pmap); pte = pmap_find_vhpt(pv->pv_va); pmap_switch(oldpmap); KASSERT(pte != NULL, ("pte")); rv = pmap_dirty(pte) ? TRUE : FALSE; PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } vm_page_unlock_queues(); return (rv); } /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is elgible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { struct ia64_lpte *pte; pte = pmap_find_vhpt(addr); if (pte != NULL && pmap_present(pte)) return (FALSE); return (TRUE); } /* * pmap_is_referenced: * * Return whether or not the specified physical page was referenced * in any physical maps. */ boolean_t pmap_is_referenced(vm_page_t m) { struct ia64_lpte *pte; pmap_t oldpmap; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_referenced: page %p is not managed", m)); rv = FALSE; vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); oldpmap = pmap_switch(pv->pv_pmap); pte = pmap_find_vhpt(pv->pv_va); pmap_switch(oldpmap); KASSERT(pte != NULL, ("pte")); rv = pmap_accessed(pte) ? TRUE : FALSE; PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } vm_page_unlock_queues(); return (rv); } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { struct ia64_lpte *pte; pmap_t oldpmap; pv_entry_t pv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_modify: page %p is not managed", m)); VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); KASSERT((m->oflags & VPO_BUSY) == 0, ("pmap_clear_modify: page %p is busy", m)); /* * If the page is not PGA_WRITEABLE, then no PTEs can be modified. * If the object containing the page is locked and the page is not * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); oldpmap = pmap_switch(pv->pv_pmap); pte = pmap_find_vhpt(pv->pv_va); KASSERT(pte != NULL, ("pte")); if (pmap_dirty(pte)) { pmap_clear_dirty(pte); pmap_invalidate_page(pv->pv_va); } pmap_switch(oldpmap); PMAP_UNLOCK(pv->pv_pmap); } vm_page_unlock_queues(); } /* * pmap_clear_reference: * * Clear the reference bit on the specified physical page. */ void pmap_clear_reference(vm_page_t m) { struct ia64_lpte *pte; pmap_t oldpmap; pv_entry_t pv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_reference: page %p is not managed", m)); vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); oldpmap = pmap_switch(pv->pv_pmap); pte = pmap_find_vhpt(pv->pv_va); KASSERT(pte != NULL, ("pte")); if (pmap_accessed(pte)) { pmap_clear_accessed(pte); pmap_invalidate_page(pv->pv_va); } pmap_switch(oldpmap); PMAP_UNLOCK(pv->pv_pmap); } vm_page_unlock_queues(); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { struct ia64_lpte *pte; pmap_t oldpmap, pmap; pv_entry_t pv; vm_prot_t prot; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_write: page %p is not managed", m)); /* * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by * another thread while the object is locked. Thus, if PGA_WRITEABLE * is clear, no page table entries need updating. */ VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) return; vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = pv->pv_pmap; PMAP_LOCK(pmap); oldpmap = pmap_switch(pmap); pte = pmap_find_vhpt(pv->pv_va); KASSERT(pte != NULL, ("pte")); prot = pmap_prot(pte); if ((prot & VM_PROT_WRITE) != 0) { if (pmap_dirty(pte)) { vm_page_dirty(m); pmap_clear_dirty(pte); } prot &= ~VM_PROT_WRITE; pmap_pte_prot(pmap, pte, prot); pmap_pte_attr(pte, m->md.memattr); pmap_invalidate_page(pv->pv_va); } pmap_switch(oldpmap); PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); vm_page_unlock_queues(); } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * pmap_mapdev(vm_paddr_t pa, vm_size_t sz) { static void *last_va = NULL; static vm_paddr_t last_pa = 0; static vm_size_t last_sz = 0; struct efi_md *md; vm_offset_t va; if (pa == last_pa && sz == last_sz) return (last_va); md = efi_md_find(pa); if (md == NULL) { printf("%s: [%#lx..%#lx] not covered by memory descriptor\n", __func__, pa, pa + sz - 1); return (NULL); } if (md->md_type == EFI_MD_TYPE_FREE) { printf("%s: [%#lx..%#lx] is in DRAM\n", __func__, pa, pa + sz - 1); return (NULL); } va = (md->md_attr & EFI_MD_ATTR_WB) ? IA64_PHYS_TO_RR7(pa) : IA64_PHYS_TO_RR6(pa); last_va = (void *)va; last_pa = pa; last_sz = sz; return (last_va); } /* * 'Unmap' a range mapped by pmap_mapdev(). */ void pmap_unmapdev(vm_offset_t va, vm_size_t size) { } /* * Sets the memory attribute for the specified page. */ static void pmap_page_set_memattr_1(void *arg) { struct ia64_pal_result res; register_t is; uintptr_t pp = (uintptr_t)arg; is = intr_disable(); res = ia64_call_pal_static(pp, 0, 0, 0); intr_restore(is); } void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma) { struct ia64_lpte *pte; pmap_t oldpmap; pv_entry_t pv; void *va; vm_page_lock_queues(); m->md.memattr = ma; TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); oldpmap = pmap_switch(pv->pv_pmap); pte = pmap_find_vhpt(pv->pv_va); KASSERT(pte != NULL, ("pte")); pmap_pte_attr(pte, ma); pmap_invalidate_page(pv->pv_va); pmap_switch(oldpmap); PMAP_UNLOCK(pv->pv_pmap); } vm_page_unlock_queues(); if (ma == VM_MEMATTR_UNCACHEABLE) { #ifdef SMP smp_rendezvous(NULL, pmap_page_set_memattr_1, NULL, (void *)PAL_PREFETCH_VISIBILITY); #else pmap_page_set_memattr_1((void *)PAL_PREFETCH_VISIBILITY); #endif va = (void *)pmap_page_to_va(m); critical_enter(); cpu_flush_dcache(va, PAGE_SIZE); critical_exit(); #ifdef SMP smp_rendezvous(NULL, pmap_page_set_memattr_1, NULL, (void *)PAL_MC_DRAIN); #else pmap_page_set_memattr_1((void *)PAL_MC_DRAIN); #endif } } /* * perform the pmap work for mincore */ int pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { pmap_t oldpmap; struct ia64_lpte *pte, tpte; vm_paddr_t pa; int val; PMAP_LOCK(pmap); retry: oldpmap = pmap_switch(pmap); pte = pmap_find_vhpt(addr); if (pte != NULL) { tpte = *pte; pte = &tpte; } pmap_switch(oldpmap); if (pte == NULL || !pmap_present(pte)) { val = 0; goto out; } val = MINCORE_INCORE; if (pmap_dirty(pte)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if (pmap_accessed(pte)) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && pmap_managed(pte)) { pa = pmap_ppn(pte); /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */ if (vm_page_pa_tryrelock(pmap, pa, locked_pa)) goto retry; } else out: PA_UNLOCK_COND(*locked_pa); PMAP_UNLOCK(pmap); return (val); } void pmap_activate(struct thread *td) { pmap_switch(vmspace_pmap(td->td_proc->p_vmspace)); } pmap_t pmap_switch(pmap_t pm) { pmap_t prevpm; int i; critical_enter(); prevpm = PCPU_GET(md.current_pmap); if (prevpm == pm) goto out; if (pm == NULL) { for (i = 0; i < IA64_VM_MINKERN_REGION; i++) { ia64_set_rr(IA64_RR_BASE(i), (i << 8)|(PAGE_SHIFT << 2)|1); } } else { for (i = 0; i < IA64_VM_MINKERN_REGION; i++) { ia64_set_rr(IA64_RR_BASE(i), (pm->pm_rid[i] << 8)|(PAGE_SHIFT << 2)|1); } } PCPU_SET(md.current_pmap, pm); ia64_srlz_d(); out: critical_exit(); return (prevpm); } void pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) { pmap_t oldpm; struct ia64_lpte *pte; vm_offset_t lim; vm_size_t len; sz += va & 31; va &= ~31; sz = (sz + 31) & ~31; PMAP_LOCK(pm); oldpm = pmap_switch(pm); while (sz > 0) { lim = round_page(va); len = MIN(lim - va, sz); pte = pmap_find_vhpt(va); if (pte != NULL && pmap_present(pte)) ia64_sync_icache(va, len); va += len; sz -= len; } pmap_switch(oldpm); PMAP_UNLOCK(pm); } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more superpage mappings. */ void pmap_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { } #include "opt_ddb.h" #ifdef DDB #include static const char* psnames[] = { "1B", "2B", "4B", "8B", "16B", "32B", "64B", "128B", "256B", "512B", "1K", "2K", "4K", "8K", "16K", "32K", "64K", "128K", "256K", "512K", "1M", "2M", "4M", "8M", "16M", "32M", "64M", "128M", "256M", "512M", "1G", "2G" }; static void print_trs(int type) { struct ia64_pal_result res; int i, maxtr; struct { pt_entry_t pte; uint64_t itir; uint64_t ifa; struct ia64_rr rr; } buf; static const char *manames[] = { "WB", "bad", "bad", "bad", "UC", "UCE", "WC", "NaT", }; res = ia64_call_pal_static(PAL_VM_SUMMARY, 0, 0, 0); if (res.pal_status != 0) { db_printf("Can't get VM summary\n"); return; } if (type == 0) maxtr = (res.pal_result[0] >> 40) & 0xff; else maxtr = (res.pal_result[0] >> 32) & 0xff; db_printf("V RID Virtual Page Physical Page PgSz ED AR PL D A MA P KEY\n"); for (i = 0; i <= maxtr; i++) { bzero(&buf, sizeof(buf)); res = ia64_pal_physical(PAL_VM_TR_READ, i, type, ia64_tpa((uint64_t)&buf)); if (!(res.pal_result[0] & 1)) buf.pte &= ~PTE_AR_MASK; if (!(res.pal_result[0] & 2)) buf.pte &= ~PTE_PL_MASK; if (!(res.pal_result[0] & 4)) pmap_clear_dirty(&buf); if (!(res.pal_result[0] & 8)) buf.pte &= ~PTE_MA_MASK; db_printf("%d %06x %013lx %013lx %4s %d %d %d %d %d %-3s " "%d %06x\n", (int)buf.ifa & 1, buf.rr.rr_rid, buf.ifa >> 12, (buf.pte & PTE_PPN_MASK) >> 12, psnames[(buf.itir & ITIR_PS_MASK) >> 2], (buf.pte & PTE_ED) ? 1 : 0, (int)(buf.pte & PTE_AR_MASK) >> 9, (int)(buf.pte & PTE_PL_MASK) >> 7, (pmap_dirty(&buf)) ? 1 : 0, (pmap_accessed(&buf)) ? 1 : 0, manames[(buf.pte & PTE_MA_MASK) >> 2], (pmap_present(&buf)) ? 1 : 0, (int)((buf.itir & ITIR_KEY_MASK) >> 8)); } } DB_COMMAND(itr, db_itr) { print_trs(0); } DB_COMMAND(dtr, db_dtr) { print_trs(1); } DB_COMMAND(rr, db_rr) { int i; uint64_t t; struct ia64_rr rr; printf("RR RID PgSz VE\n"); for (i = 0; i < 8; i++) { __asm __volatile ("mov %0=rr[%1]" : "=r"(t) : "r"(IA64_RR_BASE(i))); *(uint64_t *) &rr = t; printf("%d %06x %4s %d\n", i, rr.rr_rid, psnames[rr.rr_ps], rr.rr_ve); } } DB_COMMAND(thash, db_thash) { if (!have_addr) return; db_printf("%p\n", (void *) ia64_thash(addr)); } DB_COMMAND(ttag, db_ttag) { if (!have_addr) return; db_printf("0x%lx\n", ia64_ttag(addr)); } DB_COMMAND(kpte, db_kpte) { struct ia64_lpte *pte; if (!have_addr) { db_printf("usage: kpte \n"); return; } if (addr < VM_MIN_KERNEL_ADDRESS) { db_printf("kpte: error: invalid \n"); return; } pte = pmap_find_kpte(addr); db_printf("kpte at %p:\n", pte); db_printf(" pte =%016lx\n", pte->pte); db_printf(" itir =%016lx\n", pte->itir); db_printf(" tag =%016lx\n", pte->tag); db_printf(" chain=%016lx\n", pte->chain); } #endif