//===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to describe a subtarget's machine model // for scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCSCHEDULE_H #define LLVM_MC_MCSCHEDULE_H #include "llvm/Support/DataTypes.h" #include namespace llvm { struct InstrItinerary; /// Define a kind of processor resource that will be modeled by the scheduler. struct MCProcResourceDesc { #ifndef NDEBUG const char *Name; #endif unsigned NumUnits; // Number of resource of this kind unsigned SuperIdx; // Index of the resources kind that contains this kind. // Buffered resources may be consumed at some indeterminate cycle after // dispatch (e.g. for instructions that may issue out-of-order). Unbuffered // resources always consume their resource some fixed number of cycles after // dispatch (e.g. for instruction interlocking that may stall the pipeline). bool IsBuffered; bool operator==(const MCProcResourceDesc &Other) const { return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx && IsBuffered == Other.IsBuffered; } }; /// Identify one of the processor resource kinds consumed by a particular /// scheduling class for the specified number of cycles. struct MCWriteProcResEntry { unsigned ProcResourceIdx; unsigned Cycles; bool operator==(const MCWriteProcResEntry &Other) const { return ProcResourceIdx == Other.ProcResourceIdx && Cycles == Other.Cycles; } }; /// Specify the latency in cpu cycles for a particular scheduling class and def /// index. -1 indicates an invalid latency. Heuristics would typically consider /// an instruction with invalid latency to have infinite latency. Also identify /// the WriteResources of this def. When the operand expands to a sequence of /// writes, this ID is the last write in the sequence. struct MCWriteLatencyEntry { int Cycles; unsigned WriteResourceID; bool operator==(const MCWriteLatencyEntry &Other) const { return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID; } }; /// Specify the number of cycles allowed after instruction issue before a /// particular use operand reads its registers. This effectively reduces the /// write's latency. Here we allow negative cycles for corner cases where /// latency increases. This rule only applies when the entry's WriteResource /// matches the write's WriteResource. /// /// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by /// WriteResourceIdx. struct MCReadAdvanceEntry { unsigned UseIdx; unsigned WriteResourceID; int Cycles; bool operator==(const MCReadAdvanceEntry &Other) const { return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID && Cycles == Other.Cycles; } }; /// Summarize the scheduling resources required for an instruction of a /// particular scheduling class. /// /// Defined as an aggregate struct for creating tables with initializer lists. struct MCSchedClassDesc { static const unsigned short InvalidNumMicroOps = UINT16_MAX; static const unsigned short VariantNumMicroOps = UINT16_MAX - 1; #ifndef NDEBUG const char* Name; #endif unsigned short NumMicroOps; bool BeginGroup; bool EndGroup; unsigned WriteProcResIdx; // First index into WriteProcResTable. unsigned NumWriteProcResEntries; unsigned WriteLatencyIdx; // First index into WriteLatencyTable. unsigned NumWriteLatencyEntries; unsigned ReadAdvanceIdx; // First index into ReadAdvanceTable. unsigned NumReadAdvanceEntries; bool isValid() const { return NumMicroOps != InvalidNumMicroOps; } bool isVariant() const { return NumMicroOps == VariantNumMicroOps; } }; /// Machine model for scheduling, bundling, and heuristics. /// /// The machine model directly provides basic information about the /// microarchitecture to the scheduler in the form of properties. It also /// optionally refers to scheduler resource tables and itinerary /// tables. Scheduler resource tables model the latency and cost for each /// instruction type. Itinerary tables are an independant mechanism that /// provides a detailed reservation table describing each cycle of instruction /// execution. Subtargets may define any or all of the above categories of data /// depending on the type of CPU and selected scheduler. class MCSchedModel { public: static MCSchedModel DefaultSchedModel; // For unknown processors. // IssueWidth is the maximum number of instructions that may be scheduled in // the same per-cycle group. unsigned IssueWidth; static const unsigned DefaultIssueWidth = 1; // MinLatency is the minimum latency between a register write // followed by a data dependent read. This determines which // instructions may be scheduled in the same per-cycle group. This // is distinct from *expected* latency, which determines the likely // critical path but does not guarantee a pipeline // hazard. MinLatency can always be overridden by the number of // InstrStage cycles. // // (-1) Standard in-order processor. // Use InstrItinerary OperandCycles as MinLatency. // If no OperandCycles exist, then use the cycle of the last InstrStage. // // (0) Out-of-order processor, or in-order with bundled dependencies. // RAW dependencies may be dispatched in the same cycle. // Optional InstrItinerary OperandCycles provides expected latency. // // (>0) In-order processor with variable latencies. // Use the greater of this value or the cycle of the last InstrStage. // Optional InstrItinerary OperandCycles provides expected latency. // TODO: can't yet specify both min and expected latency per operand. int MinLatency; static const int DefaultMinLatency = -1; // LoadLatency is the expected latency of load instructions. // // If MinLatency >= 0, this may be overriden for individual load opcodes by // InstrItinerary OperandCycles. unsigned LoadLatency; static const unsigned DefaultLoadLatency = 4; // HighLatency is the expected latency of "very high latency" operations. // See TargetInstrInfo::isHighLatencyDef(). // By default, this is set to an arbitrarily high number of cycles // likely to have some impact on scheduling heuristics. // If MinLatency >= 0, this may be overriden by InstrItinData OperandCycles. unsigned HighLatency; static const unsigned DefaultHighLatency = 10; // ILPWindow is the number of cycles that the scheduler effectively ignores // before attempting to hide latency. This should be zero for in-order cpus to // always hide expected latency. For out-of-order cpus, it may be tweaked as // desired to roughly approximate instruction buffers. The actual threshold is // not very important for an OOO processor, as long as it isn't too high. A // nonzero value helps avoid rescheduling to hide latency when its is fairly // obviously useless and makes register pressure heuristics more effective. unsigned ILPWindow; static const unsigned DefaultILPWindow = 0; // MispredictPenalty is the typical number of extra cycles the processor // takes to recover from a branch misprediction. unsigned MispredictPenalty; static const unsigned DefaultMispredictPenalty = 10; private: unsigned ProcID; const MCProcResourceDesc *ProcResourceTable; const MCSchedClassDesc *SchedClassTable; unsigned NumProcResourceKinds; unsigned NumSchedClasses; // Instruction itinerary tables used by InstrItineraryData. friend class InstrItineraryData; const InstrItinerary *InstrItineraries; public: // Default's must be specified as static const literals so that tablegenerated // target code can use it in static initializers. The defaults need to be // initialized in this default ctor because some clients directly instantiate // MCSchedModel instead of using a generated itinerary. MCSchedModel(): IssueWidth(DefaultIssueWidth), MinLatency(DefaultMinLatency), LoadLatency(DefaultLoadLatency), HighLatency(DefaultHighLatency), ILPWindow(DefaultILPWindow), MispredictPenalty(DefaultMispredictPenalty), ProcID(0), ProcResourceTable(0), SchedClassTable(0), NumProcResourceKinds(0), NumSchedClasses(0), InstrItineraries(0) { (void)NumProcResourceKinds; (void)NumSchedClasses; } // Table-gen driven ctor. MCSchedModel(unsigned iw, int ml, unsigned ll, unsigned hl, unsigned ilp, unsigned mp, unsigned pi, const MCProcResourceDesc *pr, const MCSchedClassDesc *sc, unsigned npr, unsigned nsc, const InstrItinerary *ii): IssueWidth(iw), MinLatency(ml), LoadLatency(ll), HighLatency(hl), ILPWindow(ilp), MispredictPenalty(mp), ProcID(pi), ProcResourceTable(pr), SchedClassTable(sc), NumProcResourceKinds(npr), NumSchedClasses(nsc), InstrItineraries(ii) {} unsigned getProcessorID() const { return ProcID; } /// Does this machine model include instruction-level scheduling. bool hasInstrSchedModel() const { return SchedClassTable; } unsigned getNumProcResourceKinds() const { return NumProcResourceKinds; } const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const { assert(hasInstrSchedModel() && "No scheduling machine model"); assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx"); return &ProcResourceTable[ProcResourceIdx]; } const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const { assert(hasInstrSchedModel() && "No scheduling machine model"); assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx"); return &SchedClassTable[SchedClassIdx]; } }; } // End llvm namespace #endif