]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Copy stable/8 to releng/8.2 in preparation for FreeBSD-8.2 release.
[FreeBSD/releng/8.2.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43
44 SYSCTL_DECL(_vfs_zfs);
45 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
46
47 /*
48  * Virtual device management.
49  */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52         &vdev_root_ops,
53         &vdev_raidz_ops,
54         &vdev_mirror_ops,
55         &vdev_replacing_ops,
56         &vdev_spare_ops,
57 #ifdef _KERNEL
58         &vdev_geom_ops,
59 #else
60         &vdev_disk_ops,
61 #endif
62         &vdev_file_ops,
63         &vdev_missing_ops,
64         NULL
65 };
66
67 /* maximum scrub/resilver I/O queue per leaf vdev */
68 int zfs_scrub_limit = 10;
69
70 TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
71 SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
72     "Maximum scrub/resilver I/O queue");
73
74 /*
75  * Given a vdev type, return the appropriate ops vector.
76  */
77 static vdev_ops_t *
78 vdev_getops(const char *type)
79 {
80         vdev_ops_t *ops, **opspp;
81
82         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
83                 if (strcmp(ops->vdev_op_type, type) == 0)
84                         break;
85
86         return (ops);
87 }
88
89 /*
90  * Default asize function: return the MAX of psize with the asize of
91  * all children.  This is what's used by anything other than RAID-Z.
92  */
93 uint64_t
94 vdev_default_asize(vdev_t *vd, uint64_t psize)
95 {
96         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
97         uint64_t csize;
98         uint64_t c;
99
100         for (c = 0; c < vd->vdev_children; c++) {
101                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
102                 asize = MAX(asize, csize);
103         }
104
105         return (asize);
106 }
107
108 /*
109  * Get the replaceable or attachable device size.
110  * If the parent is a mirror or raidz, the replaceable size is the minimum
111  * psize of all its children. For the rest, just return our own psize.
112  *
113  * e.g.
114  *                      psize   rsize
115  * root                 -       -
116  *      mirror/raidz    -       -
117  *          disk1       20g     20g
118  *          disk2       40g     20g
119  *      disk3           80g     80g
120  */
121 uint64_t
122 vdev_get_rsize(vdev_t *vd)
123 {
124         vdev_t *pvd, *cvd;
125         uint64_t c, rsize;
126
127         pvd = vd->vdev_parent;
128
129         /*
130          * If our parent is NULL or the root, just return our own psize.
131          */
132         if (pvd == NULL || pvd->vdev_parent == NULL)
133                 return (vd->vdev_psize);
134
135         rsize = 0;
136
137         for (c = 0; c < pvd->vdev_children; c++) {
138                 cvd = pvd->vdev_child[c];
139                 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
140         }
141
142         return (rsize);
143 }
144
145 vdev_t *
146 vdev_lookup_top(spa_t *spa, uint64_t vdev)
147 {
148         vdev_t *rvd = spa->spa_root_vdev;
149
150         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
151
152         if (vdev < rvd->vdev_children) {
153                 ASSERT(rvd->vdev_child[vdev] != NULL);
154                 return (rvd->vdev_child[vdev]);
155         }
156
157         return (NULL);
158 }
159
160 vdev_t *
161 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162 {
163         int c;
164         vdev_t *mvd;
165
166         if (vd->vdev_guid == guid)
167                 return (vd);
168
169         for (c = 0; c < vd->vdev_children; c++)
170                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171                     NULL)
172                         return (mvd);
173
174         return (NULL);
175 }
176
177 void
178 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179 {
180         size_t oldsize, newsize;
181         uint64_t id = cvd->vdev_id;
182         vdev_t **newchild;
183
184         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
185         ASSERT(cvd->vdev_parent == NULL);
186
187         cvd->vdev_parent = pvd;
188
189         if (pvd == NULL)
190                 return;
191
192         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194         oldsize = pvd->vdev_children * sizeof (vdev_t *);
195         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196         newsize = pvd->vdev_children * sizeof (vdev_t *);
197
198         newchild = kmem_zalloc(newsize, KM_SLEEP);
199         if (pvd->vdev_child != NULL) {
200                 bcopy(pvd->vdev_child, newchild, oldsize);
201                 kmem_free(pvd->vdev_child, oldsize);
202         }
203
204         pvd->vdev_child = newchild;
205         pvd->vdev_child[id] = cvd;
206
207         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210         /*
211          * Walk up all ancestors to update guid sum.
212          */
213         for (; pvd != NULL; pvd = pvd->vdev_parent)
214                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
215
216         if (cvd->vdev_ops->vdev_op_leaf)
217                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
218 }
219
220 void
221 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
222 {
223         int c;
224         uint_t id = cvd->vdev_id;
225
226         ASSERT(cvd->vdev_parent == pvd);
227
228         if (pvd == NULL)
229                 return;
230
231         ASSERT(id < pvd->vdev_children);
232         ASSERT(pvd->vdev_child[id] == cvd);
233
234         pvd->vdev_child[id] = NULL;
235         cvd->vdev_parent = NULL;
236
237         for (c = 0; c < pvd->vdev_children; c++)
238                 if (pvd->vdev_child[c])
239                         break;
240
241         if (c == pvd->vdev_children) {
242                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
243                 pvd->vdev_child = NULL;
244                 pvd->vdev_children = 0;
245         }
246
247         /*
248          * Walk up all ancestors to update guid sum.
249          */
250         for (; pvd != NULL; pvd = pvd->vdev_parent)
251                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
252
253         if (cvd->vdev_ops->vdev_op_leaf)
254                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
255 }
256
257 /*
258  * Remove any holes in the child array.
259  */
260 void
261 vdev_compact_children(vdev_t *pvd)
262 {
263         vdev_t **newchild, *cvd;
264         int oldc = pvd->vdev_children;
265         int newc, c;
266
267         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
268
269         for (c = newc = 0; c < oldc; c++)
270                 if (pvd->vdev_child[c])
271                         newc++;
272
273         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
274
275         for (c = newc = 0; c < oldc; c++) {
276                 if ((cvd = pvd->vdev_child[c]) != NULL) {
277                         newchild[newc] = cvd;
278                         cvd->vdev_id = newc++;
279                 }
280         }
281
282         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
283         pvd->vdev_child = newchild;
284         pvd->vdev_children = newc;
285 }
286
287 /*
288  * Allocate and minimally initialize a vdev_t.
289  */
290 static vdev_t *
291 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
292 {
293         vdev_t *vd;
294
295         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
296
297         if (spa->spa_root_vdev == NULL) {
298                 ASSERT(ops == &vdev_root_ops);
299                 spa->spa_root_vdev = vd;
300         }
301
302         if (guid == 0) {
303                 if (spa->spa_root_vdev == vd) {
304                         /*
305                          * The root vdev's guid will also be the pool guid,
306                          * which must be unique among all pools.
307                          */
308                         while (guid == 0 || spa_guid_exists(guid, 0))
309                                 guid = spa_get_random(-1ULL);
310                 } else {
311                         /*
312                          * Any other vdev's guid must be unique within the pool.
313                          */
314                         while (guid == 0 ||
315                             spa_guid_exists(spa_guid(spa), guid))
316                                 guid = spa_get_random(-1ULL);
317                 }
318                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
319         }
320
321         vd->vdev_spa = spa;
322         vd->vdev_id = id;
323         vd->vdev_guid = guid;
324         vd->vdev_guid_sum = guid;
325         vd->vdev_ops = ops;
326         vd->vdev_state = VDEV_STATE_CLOSED;
327
328         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
329         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
330         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
331         for (int t = 0; t < DTL_TYPES; t++) {
332                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
333                     &vd->vdev_dtl_lock);
334         }
335         txg_list_create(&vd->vdev_ms_list,
336             offsetof(struct metaslab, ms_txg_node));
337         txg_list_create(&vd->vdev_dtl_list,
338             offsetof(struct vdev, vdev_dtl_node));
339         vd->vdev_stat.vs_timestamp = gethrtime();
340         vdev_queue_init(vd);
341         vdev_cache_init(vd);
342
343         return (vd);
344 }
345
346 /*
347  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
348  * creating a new vdev or loading an existing one - the behavior is slightly
349  * different for each case.
350  */
351 int
352 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
353     int alloctype)
354 {
355         vdev_ops_t *ops;
356         char *type;
357         uint64_t guid = 0, islog, nparity;
358         vdev_t *vd;
359
360         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
361
362         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
363                 return (EINVAL);
364
365         if ((ops = vdev_getops(type)) == NULL)
366                 return (EINVAL);
367
368         /*
369          * If this is a load, get the vdev guid from the nvlist.
370          * Otherwise, vdev_alloc_common() will generate one for us.
371          */
372         if (alloctype == VDEV_ALLOC_LOAD) {
373                 uint64_t label_id;
374
375                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
376                     label_id != id)
377                         return (EINVAL);
378
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_SPARE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (EINVAL);
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (EINVAL);
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (ENOTSUP);
402
403         /*
404          * Set the nparity property for RAID-Z vdevs.
405          */
406         nparity = -1ULL;
407         if (ops == &vdev_raidz_ops) {
408                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
409                     &nparity) == 0) {
410                         /*
411                          * Currently, we can only support 2 parity devices.
412                          */
413                         if (nparity == 0 || nparity > 2)
414                                 return (EINVAL);
415                         /*
416                          * Older versions can only support 1 parity device.
417                          */
418                         if (nparity == 2 &&
419                             spa_version(spa) < SPA_VERSION_RAID6)
420                                 return (ENOTSUP);
421                 } else {
422                         /*
423                          * We require the parity to be specified for SPAs that
424                          * support multiple parity levels.
425                          */
426                         if (spa_version(spa) >= SPA_VERSION_RAID6)
427                                 return (EINVAL);
428                         /*
429                          * Otherwise, we default to 1 parity device for RAID-Z.
430                          */
431                         nparity = 1;
432                 }
433         } else {
434                 nparity = 0;
435         }
436         ASSERT(nparity != -1ULL);
437
438         vd = vdev_alloc_common(spa, id, guid, ops);
439
440         vd->vdev_islog = islog;
441         vd->vdev_nparity = nparity;
442
443         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
444                 vd->vdev_path = spa_strdup(vd->vdev_path);
445         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
446                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448             &vd->vdev_physpath) == 0)
449                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
450         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
451                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
452
453         /*
454          * Set the whole_disk property.  If it's not specified, leave the value
455          * as -1.
456          */
457         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
458             &vd->vdev_wholedisk) != 0)
459                 vd->vdev_wholedisk = -1ULL;
460
461         /*
462          * Look for the 'not present' flag.  This will only be set if the device
463          * was not present at the time of import.
464          */
465         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
466             &vd->vdev_not_present);
467
468         /*
469          * Get the alignment requirement.
470          */
471         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
472
473         /*
474          * If we're a top-level vdev, try to load the allocation parameters.
475          */
476         if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
477                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
478                     &vd->vdev_ms_array);
479                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
480                     &vd->vdev_ms_shift);
481                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
482                     &vd->vdev_asize);
483         }
484
485         /*
486          * If we're a leaf vdev, try to load the DTL object and other state.
487          */
488         if (vd->vdev_ops->vdev_op_leaf &&
489             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
490                 if (alloctype == VDEV_ALLOC_LOAD) {
491                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
492                             &vd->vdev_dtl_smo.smo_object);
493                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
494                             &vd->vdev_unspare);
495                 }
496                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
497                     &vd->vdev_offline);
498
499                 /*
500                  * When importing a pool, we want to ignore the persistent fault
501                  * state, as the diagnosis made on another system may not be
502                  * valid in the current context.
503                  */
504                 if (spa->spa_load_state == SPA_LOAD_OPEN) {
505                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
506                             &vd->vdev_faulted);
507                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
508                             &vd->vdev_degraded);
509                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
510                             &vd->vdev_removed);
511                 }
512         }
513
514         /*
515          * Add ourselves to the parent's list of children.
516          */
517         vdev_add_child(parent, vd);
518
519         *vdp = vd;
520
521         return (0);
522 }
523
524 void
525 vdev_free(vdev_t *vd)
526 {
527         int c;
528         spa_t *spa = vd->vdev_spa;
529
530         /*
531          * vdev_free() implies closing the vdev first.  This is simpler than
532          * trying to ensure complicated semantics for all callers.
533          */
534         vdev_close(vd);
535
536         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
537
538         /*
539          * Free all children.
540          */
541         for (c = 0; c < vd->vdev_children; c++)
542                 vdev_free(vd->vdev_child[c]);
543
544         ASSERT(vd->vdev_child == NULL);
545         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
546
547         /*
548          * Discard allocation state.
549          */
550         if (vd == vd->vdev_top)
551                 vdev_metaslab_fini(vd);
552
553         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
554         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
555         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
556
557         /*
558          * Remove this vdev from its parent's child list.
559          */
560         vdev_remove_child(vd->vdev_parent, vd);
561
562         ASSERT(vd->vdev_parent == NULL);
563
564         /*
565          * Clean up vdev structure.
566          */
567         vdev_queue_fini(vd);
568         vdev_cache_fini(vd);
569
570         if (vd->vdev_path)
571                 spa_strfree(vd->vdev_path);
572         if (vd->vdev_devid)
573                 spa_strfree(vd->vdev_devid);
574         if (vd->vdev_physpath)
575                 spa_strfree(vd->vdev_physpath);
576         if (vd->vdev_fru)
577                 spa_strfree(vd->vdev_fru);
578
579         if (vd->vdev_isspare)
580                 spa_spare_remove(vd);
581         if (vd->vdev_isl2cache)
582                 spa_l2cache_remove(vd);
583
584         txg_list_destroy(&vd->vdev_ms_list);
585         txg_list_destroy(&vd->vdev_dtl_list);
586
587         mutex_enter(&vd->vdev_dtl_lock);
588         for (int t = 0; t < DTL_TYPES; t++) {
589                 space_map_unload(&vd->vdev_dtl[t]);
590                 space_map_destroy(&vd->vdev_dtl[t]);
591         }
592         mutex_exit(&vd->vdev_dtl_lock);
593
594         mutex_destroy(&vd->vdev_dtl_lock);
595         mutex_destroy(&vd->vdev_stat_lock);
596         mutex_destroy(&vd->vdev_probe_lock);
597
598         if (vd == spa->spa_root_vdev)
599                 spa->spa_root_vdev = NULL;
600
601         kmem_free(vd, sizeof (vdev_t));
602 }
603
604 /*
605  * Transfer top-level vdev state from svd to tvd.
606  */
607 static void
608 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
609 {
610         spa_t *spa = svd->vdev_spa;
611         metaslab_t *msp;
612         vdev_t *vd;
613         int t;
614
615         ASSERT(tvd == tvd->vdev_top);
616
617         tvd->vdev_ms_array = svd->vdev_ms_array;
618         tvd->vdev_ms_shift = svd->vdev_ms_shift;
619         tvd->vdev_ms_count = svd->vdev_ms_count;
620
621         svd->vdev_ms_array = 0;
622         svd->vdev_ms_shift = 0;
623         svd->vdev_ms_count = 0;
624
625         tvd->vdev_mg = svd->vdev_mg;
626         tvd->vdev_ms = svd->vdev_ms;
627
628         svd->vdev_mg = NULL;
629         svd->vdev_ms = NULL;
630
631         if (tvd->vdev_mg != NULL)
632                 tvd->vdev_mg->mg_vd = tvd;
633
634         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
635         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
636         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
637
638         svd->vdev_stat.vs_alloc = 0;
639         svd->vdev_stat.vs_space = 0;
640         svd->vdev_stat.vs_dspace = 0;
641
642         for (t = 0; t < TXG_SIZE; t++) {
643                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
644                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
645                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
646                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
647                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
648                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
649         }
650
651         if (list_link_active(&svd->vdev_config_dirty_node)) {
652                 vdev_config_clean(svd);
653                 vdev_config_dirty(tvd);
654         }
655
656         if (list_link_active(&svd->vdev_state_dirty_node)) {
657                 vdev_state_clean(svd);
658                 vdev_state_dirty(tvd);
659         }
660
661         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
662         svd->vdev_deflate_ratio = 0;
663
664         tvd->vdev_islog = svd->vdev_islog;
665         svd->vdev_islog = 0;
666 }
667
668 static void
669 vdev_top_update(vdev_t *tvd, vdev_t *vd)
670 {
671         int c;
672
673         if (vd == NULL)
674                 return;
675
676         vd->vdev_top = tvd;
677
678         for (c = 0; c < vd->vdev_children; c++)
679                 vdev_top_update(tvd, vd->vdev_child[c]);
680 }
681
682 /*
683  * Add a mirror/replacing vdev above an existing vdev.
684  */
685 vdev_t *
686 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
687 {
688         spa_t *spa = cvd->vdev_spa;
689         vdev_t *pvd = cvd->vdev_parent;
690         vdev_t *mvd;
691
692         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
693
694         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
695
696         mvd->vdev_asize = cvd->vdev_asize;
697         mvd->vdev_ashift = cvd->vdev_ashift;
698         mvd->vdev_state = cvd->vdev_state;
699
700         vdev_remove_child(pvd, cvd);
701         vdev_add_child(pvd, mvd);
702         cvd->vdev_id = mvd->vdev_children;
703         vdev_add_child(mvd, cvd);
704         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
705
706         if (mvd == mvd->vdev_top)
707                 vdev_top_transfer(cvd, mvd);
708
709         return (mvd);
710 }
711
712 /*
713  * Remove a 1-way mirror/replacing vdev from the tree.
714  */
715 void
716 vdev_remove_parent(vdev_t *cvd)
717 {
718         vdev_t *mvd = cvd->vdev_parent;
719         vdev_t *pvd = mvd->vdev_parent;
720
721         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
722
723         ASSERT(mvd->vdev_children == 1);
724         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
725             mvd->vdev_ops == &vdev_replacing_ops ||
726             mvd->vdev_ops == &vdev_spare_ops);
727         cvd->vdev_ashift = mvd->vdev_ashift;
728
729         vdev_remove_child(mvd, cvd);
730         vdev_remove_child(pvd, mvd);
731
732         /*
733          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
734          * Otherwise, we could have detached an offline device, and when we
735          * go to import the pool we'll think we have two top-level vdevs,
736          * instead of a different version of the same top-level vdev.
737          */
738         if (mvd->vdev_top == mvd) {
739                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
740                 cvd->vdev_guid += guid_delta;
741                 cvd->vdev_guid_sum += guid_delta;
742         }
743         cvd->vdev_id = mvd->vdev_id;
744         vdev_add_child(pvd, cvd);
745         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
746
747         if (cvd == cvd->vdev_top)
748                 vdev_top_transfer(mvd, cvd);
749
750         ASSERT(mvd->vdev_children == 0);
751         vdev_free(mvd);
752 }
753
754 int
755 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
756 {
757         spa_t *spa = vd->vdev_spa;
758         objset_t *mos = spa->spa_meta_objset;
759         metaslab_class_t *mc;
760         uint64_t m;
761         uint64_t oldc = vd->vdev_ms_count;
762         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
763         metaslab_t **mspp;
764         int error;
765
766         if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
767                 return (0);
768
769         /*
770          * Compute the raidz-deflation ratio.  Note, we hard-code
771          * in 128k (1 << 17) because it is the current "typical" blocksize.
772          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
773          * or we will inconsistently account for existing bp's.
774          */
775         vd->vdev_deflate_ratio = (1 << 17) /
776             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
777
778         ASSERT(oldc <= newc);
779
780         if (vd->vdev_islog)
781                 mc = spa->spa_log_class;
782         else
783                 mc = spa->spa_normal_class;
784
785         if (vd->vdev_mg == NULL)
786                 vd->vdev_mg = metaslab_group_create(mc, vd);
787
788         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
789
790         if (oldc != 0) {
791                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
792                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
793         }
794
795         vd->vdev_ms = mspp;
796         vd->vdev_ms_count = newc;
797
798         for (m = oldc; m < newc; m++) {
799                 space_map_obj_t smo = { 0, 0, 0 };
800                 if (txg == 0) {
801                         uint64_t object = 0;
802                         error = dmu_read(mos, vd->vdev_ms_array,
803                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
804                             DMU_READ_PREFETCH);
805                         if (error)
806                                 return (error);
807                         if (object != 0) {
808                                 dmu_buf_t *db;
809                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
810                                 if (error)
811                                         return (error);
812                                 ASSERT3U(db->db_size, >=, sizeof (smo));
813                                 bcopy(db->db_data, &smo, sizeof (smo));
814                                 ASSERT3U(smo.smo_object, ==, object);
815                                 dmu_buf_rele(db, FTAG);
816                         }
817                 }
818                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
819                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
820         }
821
822         return (0);
823 }
824
825 void
826 vdev_metaslab_fini(vdev_t *vd)
827 {
828         uint64_t m;
829         uint64_t count = vd->vdev_ms_count;
830
831         if (vd->vdev_ms != NULL) {
832                 for (m = 0; m < count; m++)
833                         if (vd->vdev_ms[m] != NULL)
834                                 metaslab_fini(vd->vdev_ms[m]);
835                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
836                 vd->vdev_ms = NULL;
837         }
838 }
839
840 typedef struct vdev_probe_stats {
841         boolean_t       vps_readable;
842         boolean_t       vps_writeable;
843         int             vps_flags;
844 } vdev_probe_stats_t;
845
846 static void
847 vdev_probe_done(zio_t *zio)
848 {
849         spa_t *spa = zio->io_spa;
850         vdev_t *vd = zio->io_vd;
851         vdev_probe_stats_t *vps = zio->io_private;
852
853         ASSERT(vd->vdev_probe_zio != NULL);
854
855         if (zio->io_type == ZIO_TYPE_READ) {
856                 if (zio->io_error == 0)
857                         vps->vps_readable = 1;
858                 if (zio->io_error == 0 && spa_writeable(spa)) {
859                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
860                             zio->io_offset, zio->io_size, zio->io_data,
861                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
862                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
863                 } else {
864                         zio_buf_free(zio->io_data, zio->io_size);
865                 }
866         } else if (zio->io_type == ZIO_TYPE_WRITE) {
867                 if (zio->io_error == 0)
868                         vps->vps_writeable = 1;
869                 zio_buf_free(zio->io_data, zio->io_size);
870         } else if (zio->io_type == ZIO_TYPE_NULL) {
871                 zio_t *pio;
872
873                 vd->vdev_cant_read |= !vps->vps_readable;
874                 vd->vdev_cant_write |= !vps->vps_writeable;
875
876                 if (vdev_readable(vd) &&
877                     (vdev_writeable(vd) || !spa_writeable(spa))) {
878                         zio->io_error = 0;
879                 } else {
880                         ASSERT(zio->io_error != 0);
881                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
882                             spa, vd, NULL, 0, 0);
883                         zio->io_error = ENXIO;
884                 }
885
886                 mutex_enter(&vd->vdev_probe_lock);
887                 ASSERT(vd->vdev_probe_zio == zio);
888                 vd->vdev_probe_zio = NULL;
889                 mutex_exit(&vd->vdev_probe_lock);
890
891                 while ((pio = zio_walk_parents(zio)) != NULL)
892                         if (!vdev_accessible(vd, pio))
893                                 pio->io_error = ENXIO;
894
895                 kmem_free(vps, sizeof (*vps));
896         }
897 }
898
899 /*
900  * Determine whether this device is accessible by reading and writing
901  * to several known locations: the pad regions of each vdev label
902  * but the first (which we leave alone in case it contains a VTOC).
903  */
904 zio_t *
905 vdev_probe(vdev_t *vd, zio_t *zio)
906 {
907         spa_t *spa = vd->vdev_spa;
908         vdev_probe_stats_t *vps = NULL;
909         zio_t *pio;
910
911         ASSERT(vd->vdev_ops->vdev_op_leaf);
912
913         /*
914          * Don't probe the probe.
915          */
916         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
917                 return (NULL);
918
919         /*
920          * To prevent 'probe storms' when a device fails, we create
921          * just one probe i/o at a time.  All zios that want to probe
922          * this vdev will become parents of the probe io.
923          */
924         mutex_enter(&vd->vdev_probe_lock);
925
926         if ((pio = vd->vdev_probe_zio) == NULL) {
927                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
928
929                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
930                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
931                     ZIO_FLAG_TRYHARD;
932
933                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
934                         /*
935                          * vdev_cant_read and vdev_cant_write can only
936                          * transition from TRUE to FALSE when we have the
937                          * SCL_ZIO lock as writer; otherwise they can only
938                          * transition from FALSE to TRUE.  This ensures that
939                          * any zio looking at these values can assume that
940                          * failures persist for the life of the I/O.  That's
941                          * important because when a device has intermittent
942                          * connectivity problems, we want to ensure that
943                          * they're ascribed to the device (ENXIO) and not
944                          * the zio (EIO).
945                          *
946                          * Since we hold SCL_ZIO as writer here, clear both
947                          * values so the probe can reevaluate from first
948                          * principles.
949                          */
950                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
951                         vd->vdev_cant_read = B_FALSE;
952                         vd->vdev_cant_write = B_FALSE;
953                 }
954
955                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
956                     vdev_probe_done, vps,
957                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
958
959                 if (zio != NULL) {
960                         vd->vdev_probe_wanted = B_TRUE;
961                         spa_async_request(spa, SPA_ASYNC_PROBE);
962                 }
963         }
964
965         if (zio != NULL)
966                 zio_add_child(zio, pio);
967
968         mutex_exit(&vd->vdev_probe_lock);
969
970         if (vps == NULL) {
971                 ASSERT(zio != NULL);
972                 return (NULL);
973         }
974
975         for (int l = 1; l < VDEV_LABELS; l++) {
976                 zio_nowait(zio_read_phys(pio, vd,
977                     vdev_label_offset(vd->vdev_psize, l,
978                     offsetof(vdev_label_t, vl_pad2)),
979                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
980                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
981                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
982         }
983
984         if (zio == NULL)
985                 return (pio);
986
987         zio_nowait(pio);
988         return (NULL);
989 }
990
991 /*
992  * Prepare a virtual device for access.
993  */
994 int
995 vdev_open(vdev_t *vd)
996 {
997         spa_t *spa = vd->vdev_spa;
998         int error;
999         int c;
1000         uint64_t osize = 0;
1001         uint64_t asize, psize;
1002         uint64_t ashift = 0;
1003
1004         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1005
1006         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1007             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1008             vd->vdev_state == VDEV_STATE_OFFLINE);
1009
1010         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1011         vd->vdev_cant_read = B_FALSE;
1012         vd->vdev_cant_write = B_FALSE;
1013
1014         if (!vd->vdev_removed && vd->vdev_faulted) {
1015                 ASSERT(vd->vdev_children == 0);
1016                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1017                     VDEV_AUX_ERR_EXCEEDED);
1018                 return (ENXIO);
1019         } else if (vd->vdev_offline) {
1020                 ASSERT(vd->vdev_children == 0);
1021                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1022                 return (ENXIO);
1023         }
1024
1025         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1026
1027         if (zio_injection_enabled && error == 0)
1028                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1029
1030         if (error) {
1031                 if (vd->vdev_removed &&
1032                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1033                         vd->vdev_removed = B_FALSE;
1034
1035                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1036                     vd->vdev_stat.vs_aux);
1037                 return (error);
1038         }
1039
1040         vd->vdev_removed = B_FALSE;
1041
1042         if (vd->vdev_degraded) {
1043                 ASSERT(vd->vdev_children == 0);
1044                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1045                     VDEV_AUX_ERR_EXCEEDED);
1046         } else {
1047                 vd->vdev_state = VDEV_STATE_HEALTHY;
1048         }
1049
1050         for (c = 0; c < vd->vdev_children; c++)
1051                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1052                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1053                             VDEV_AUX_NONE);
1054                         break;
1055                 }
1056
1057         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1058
1059         if (vd->vdev_children == 0) {
1060                 if (osize < SPA_MINDEVSIZE) {
1061                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1062                             VDEV_AUX_TOO_SMALL);
1063                         return (EOVERFLOW);
1064                 }
1065                 psize = osize;
1066                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1067         } else {
1068                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1069                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1070                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1071                             VDEV_AUX_TOO_SMALL);
1072                         return (EOVERFLOW);
1073                 }
1074                 psize = 0;
1075                 asize = osize;
1076         }
1077
1078         vd->vdev_psize = psize;
1079
1080         if (vd->vdev_asize == 0) {
1081                 /*
1082                  * This is the first-ever open, so use the computed values.
1083                  * For testing purposes, a higher ashift can be requested.
1084                  */
1085                 vd->vdev_asize = asize;
1086                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1087         } else {
1088                 /*
1089                  * Make sure the alignment requirement hasn't increased.
1090                  */
1091                 if (ashift > vd->vdev_top->vdev_ashift) {
1092                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1093                             VDEV_AUX_BAD_LABEL);
1094                         return (EINVAL);
1095                 }
1096
1097                 /*
1098                  * Make sure the device hasn't shrunk.
1099                  */
1100                 if (asize < vd->vdev_asize) {
1101                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1102                             VDEV_AUX_BAD_LABEL);
1103                         return (EINVAL);
1104                 }
1105
1106                 /*
1107                  * If all children are healthy and the asize has increased,
1108                  * then we've experienced dynamic LUN growth.
1109                  */
1110                 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1111                     asize > vd->vdev_asize) {
1112                         vd->vdev_asize = asize;
1113                 }
1114         }
1115
1116         /*
1117          * Ensure we can issue some IO before declaring the
1118          * vdev open for business.
1119          */
1120         if (vd->vdev_ops->vdev_op_leaf &&
1121             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1122                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1123                     VDEV_AUX_IO_FAILURE);
1124                 return (error);
1125         }
1126
1127         /*
1128          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1129          * resilver.  But don't do this if we are doing a reopen for a scrub,
1130          * since this would just restart the scrub we are already doing.
1131          */
1132         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1133             vdev_resilver_needed(vd, NULL, NULL))
1134                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1135
1136         return (0);
1137 }
1138
1139 /*
1140  * Called once the vdevs are all opened, this routine validates the label
1141  * contents.  This needs to be done before vdev_load() so that we don't
1142  * inadvertently do repair I/Os to the wrong device.
1143  *
1144  * This function will only return failure if one of the vdevs indicates that it
1145  * has since been destroyed or exported.  This is only possible if
1146  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1147  * will be updated but the function will return 0.
1148  */
1149 int
1150 vdev_validate(vdev_t *vd)
1151 {
1152         spa_t *spa = vd->vdev_spa;
1153         int c;
1154         nvlist_t *label;
1155         uint64_t guid, top_guid;
1156         uint64_t state;
1157
1158         for (c = 0; c < vd->vdev_children; c++)
1159                 if (vdev_validate(vd->vdev_child[c]) != 0)
1160                         return (EBADF);
1161
1162         /*
1163          * If the device has already failed, or was marked offline, don't do
1164          * any further validation.  Otherwise, label I/O will fail and we will
1165          * overwrite the previous state.
1166          */
1167         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1168
1169                 if ((label = vdev_label_read_config(vd)) == NULL) {
1170                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1171                             VDEV_AUX_BAD_LABEL);
1172                         return (0);
1173                 }
1174
1175                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1176                     &guid) != 0 || guid != spa_guid(spa)) {
1177                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1178                             VDEV_AUX_CORRUPT_DATA);
1179                         nvlist_free(label);
1180                         return (0);
1181                 }
1182
1183                 /*
1184                  * If this vdev just became a top-level vdev because its
1185                  * sibling was detached, it will have adopted the parent's
1186                  * vdev guid -- but the label may or may not be on disk yet.
1187                  * Fortunately, either version of the label will have the
1188                  * same top guid, so if we're a top-level vdev, we can
1189                  * safely compare to that instead.
1190                  */
1191                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1192                     &guid) != 0 ||
1193                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1194                     &top_guid) != 0 ||
1195                     (vd->vdev_guid != guid &&
1196                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1197                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1198                             VDEV_AUX_CORRUPT_DATA);
1199                         nvlist_free(label);
1200                         return (0);
1201                 }
1202
1203                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1204                     &state) != 0) {
1205                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1206                             VDEV_AUX_CORRUPT_DATA);
1207                         nvlist_free(label);
1208                         return (0);
1209                 }
1210
1211                 nvlist_free(label);
1212
1213                 /*
1214                  * If spa->spa_load_verbatim is true, no need to check the
1215                  * state of the pool.
1216                  */
1217                 if (!spa->spa_load_verbatim &&
1218                     spa->spa_load_state == SPA_LOAD_OPEN &&
1219                     state != POOL_STATE_ACTIVE)
1220                         return (EBADF);
1221
1222                 /*
1223                  * If we were able to open and validate a vdev that was
1224                  * previously marked permanently unavailable, clear that state
1225                  * now.
1226                  */
1227                 if (vd->vdev_not_present)
1228                         vd->vdev_not_present = 0;
1229         }
1230
1231         return (0);
1232 }
1233
1234 /*
1235  * Close a virtual device.
1236  */
1237 void
1238 vdev_close(vdev_t *vd)
1239 {
1240         spa_t *spa = vd->vdev_spa;
1241
1242         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1243
1244         vd->vdev_ops->vdev_op_close(vd);
1245
1246         vdev_cache_purge(vd);
1247
1248         /*
1249          * We record the previous state before we close it, so  that if we are
1250          * doing a reopen(), we don't generate FMA ereports if we notice that
1251          * it's still faulted.
1252          */
1253         vd->vdev_prevstate = vd->vdev_state;
1254
1255         if (vd->vdev_offline)
1256                 vd->vdev_state = VDEV_STATE_OFFLINE;
1257         else
1258                 vd->vdev_state = VDEV_STATE_CLOSED;
1259         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1260 }
1261
1262 void
1263 vdev_reopen(vdev_t *vd)
1264 {
1265         spa_t *spa = vd->vdev_spa;
1266
1267         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1268
1269         vdev_close(vd);
1270         (void) vdev_open(vd);
1271
1272         /*
1273          * Call vdev_validate() here to make sure we have the same device.
1274          * Otherwise, a device with an invalid label could be successfully
1275          * opened in response to vdev_reopen().
1276          */
1277         if (vd->vdev_aux) {
1278                 (void) vdev_validate_aux(vd);
1279                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1280                     vd->vdev_aux == &spa->spa_l2cache &&
1281                     !l2arc_vdev_present(vd)) {
1282                         uint64_t size = vdev_get_rsize(vd);
1283                         l2arc_add_vdev(spa, vd,
1284                             VDEV_LABEL_START_SIZE,
1285                             size - VDEV_LABEL_START_SIZE);
1286                 }
1287         } else {
1288                 (void) vdev_validate(vd);
1289         }
1290
1291         /*
1292          * Reassess parent vdev's health.
1293          */
1294         vdev_propagate_state(vd);
1295 }
1296
1297 int
1298 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1299 {
1300         int error;
1301
1302         /*
1303          * Normally, partial opens (e.g. of a mirror) are allowed.
1304          * For a create, however, we want to fail the request if
1305          * there are any components we can't open.
1306          */
1307         error = vdev_open(vd);
1308
1309         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1310                 vdev_close(vd);
1311                 return (error ? error : ENXIO);
1312         }
1313
1314         /*
1315          * Recursively initialize all labels.
1316          */
1317         if ((error = vdev_label_init(vd, txg, isreplacing ?
1318             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1319                 vdev_close(vd);
1320                 return (error);
1321         }
1322
1323         return (0);
1324 }
1325
1326 /*
1327  * The is the latter half of vdev_create().  It is distinct because it
1328  * involves initiating transactions in order to do metaslab creation.
1329  * For creation, we want to try to create all vdevs at once and then undo it
1330  * if anything fails; this is much harder if we have pending transactions.
1331  */
1332 void
1333 vdev_init(vdev_t *vd, uint64_t txg)
1334 {
1335         /*
1336          * Aim for roughly 200 metaslabs per vdev.
1337          */
1338         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1339         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1340
1341         /*
1342          * Initialize the vdev's metaslabs.  This can't fail because
1343          * there's nothing to read when creating all new metaslabs.
1344          */
1345         VERIFY(vdev_metaslab_init(vd, txg) == 0);
1346 }
1347
1348 void
1349 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1350 {
1351         ASSERT(vd == vd->vdev_top);
1352         ASSERT(ISP2(flags));
1353
1354         if (flags & VDD_METASLAB)
1355                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1356
1357         if (flags & VDD_DTL)
1358                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1359
1360         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1361 }
1362
1363 /*
1364  * DTLs.
1365  *
1366  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1367  * the vdev has less than perfect replication.  There are three kinds of DTL:
1368  *
1369  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1370  *
1371  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1372  *
1373  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1374  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1375  *      txgs that was scrubbed.
1376  *
1377  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1378  *      persistent errors or just some device being offline.
1379  *      Unlike the other three, the DTL_OUTAGE map is not generally
1380  *      maintained; it's only computed when needed, typically to
1381  *      determine whether a device can be detached.
1382  *
1383  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1384  * either has the data or it doesn't.
1385  *
1386  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1387  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1388  * if any child is less than fully replicated, then so is its parent.
1389  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1390  * comprising only those txgs which appear in 'maxfaults' or more children;
1391  * those are the txgs we don't have enough replication to read.  For example,
1392  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1393  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1394  * two child DTL_MISSING maps.
1395  *
1396  * It should be clear from the above that to compute the DTLs and outage maps
1397  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1398  * Therefore, that is all we keep on disk.  When loading the pool, or after
1399  * a configuration change, we generate all other DTLs from first principles.
1400  */
1401 void
1402 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1403 {
1404         space_map_t *sm = &vd->vdev_dtl[t];
1405
1406         ASSERT(t < DTL_TYPES);
1407         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1408
1409         mutex_enter(sm->sm_lock);
1410         if (!space_map_contains(sm, txg, size))
1411                 space_map_add(sm, txg, size);
1412         mutex_exit(sm->sm_lock);
1413 }
1414
1415 boolean_t
1416 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1417 {
1418         space_map_t *sm = &vd->vdev_dtl[t];
1419         boolean_t dirty = B_FALSE;
1420
1421         ASSERT(t < DTL_TYPES);
1422         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1423
1424         mutex_enter(sm->sm_lock);
1425         if (sm->sm_space != 0)
1426                 dirty = space_map_contains(sm, txg, size);
1427         mutex_exit(sm->sm_lock);
1428
1429         return (dirty);
1430 }
1431
1432 boolean_t
1433 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1434 {
1435         space_map_t *sm = &vd->vdev_dtl[t];
1436         boolean_t empty;
1437
1438         mutex_enter(sm->sm_lock);
1439         empty = (sm->sm_space == 0);
1440         mutex_exit(sm->sm_lock);
1441
1442         return (empty);
1443 }
1444
1445 /*
1446  * Reassess DTLs after a config change or scrub completion.
1447  */
1448 void
1449 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1450 {
1451         spa_t *spa = vd->vdev_spa;
1452         avl_tree_t reftree;
1453         int minref;
1454
1455         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1456
1457         for (int c = 0; c < vd->vdev_children; c++)
1458                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1459                     scrub_txg, scrub_done);
1460
1461         if (vd == spa->spa_root_vdev)
1462                 return;
1463
1464         if (vd->vdev_ops->vdev_op_leaf) {
1465                 mutex_enter(&vd->vdev_dtl_lock);
1466                 if (scrub_txg != 0 &&
1467                     (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1468                         /* XXX should check scrub_done? */
1469                         /*
1470                          * We completed a scrub up to scrub_txg.  If we
1471                          * did it without rebooting, then the scrub dtl
1472                          * will be valid, so excise the old region and
1473                          * fold in the scrub dtl.  Otherwise, leave the
1474                          * dtl as-is if there was an error.
1475                          *
1476                          * There's little trick here: to excise the beginning
1477                          * of the DTL_MISSING map, we put it into a reference
1478                          * tree and then add a segment with refcnt -1 that
1479                          * covers the range [0, scrub_txg).  This means
1480                          * that each txg in that range has refcnt -1 or 0.
1481                          * We then add DTL_SCRUB with a refcnt of 2, so that
1482                          * entries in the range [0, scrub_txg) will have a
1483                          * positive refcnt -- either 1 or 2.  We then convert
1484                          * the reference tree into the new DTL_MISSING map.
1485                          */
1486                         space_map_ref_create(&reftree);
1487                         space_map_ref_add_map(&reftree,
1488                             &vd->vdev_dtl[DTL_MISSING], 1);
1489                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1490                         space_map_ref_add_map(&reftree,
1491                             &vd->vdev_dtl[DTL_SCRUB], 2);
1492                         space_map_ref_generate_map(&reftree,
1493                             &vd->vdev_dtl[DTL_MISSING], 1);
1494                         space_map_ref_destroy(&reftree);
1495                 }
1496                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1497                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1498                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1499                 if (scrub_done)
1500                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1501                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1502                 if (!vdev_readable(vd))
1503                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1504                 else
1505                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1506                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1507                 mutex_exit(&vd->vdev_dtl_lock);
1508
1509                 if (txg != 0)
1510                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1511                 return;
1512         }
1513
1514         mutex_enter(&vd->vdev_dtl_lock);
1515         for (int t = 0; t < DTL_TYPES; t++) {
1516                 /* account for child's outage in parent's missing map */
1517                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1518                 if (t == DTL_SCRUB)
1519                         continue;                       /* leaf vdevs only */
1520                 if (t == DTL_PARTIAL)
1521                         minref = 1;                     /* i.e. non-zero */
1522                 else if (vd->vdev_nparity != 0)
1523                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1524                 else
1525                         minref = vd->vdev_children;     /* any kind of mirror */
1526                 space_map_ref_create(&reftree);
1527                 for (int c = 0; c < vd->vdev_children; c++) {
1528                         vdev_t *cvd = vd->vdev_child[c];
1529                         mutex_enter(&cvd->vdev_dtl_lock);
1530                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1531                         mutex_exit(&cvd->vdev_dtl_lock);
1532                 }
1533                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1534                 space_map_ref_destroy(&reftree);
1535         }
1536         mutex_exit(&vd->vdev_dtl_lock);
1537 }
1538
1539 static int
1540 vdev_dtl_load(vdev_t *vd)
1541 {
1542         spa_t *spa = vd->vdev_spa;
1543         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1544         objset_t *mos = spa->spa_meta_objset;
1545         dmu_buf_t *db;
1546         int error;
1547
1548         ASSERT(vd->vdev_children == 0);
1549
1550         if (smo->smo_object == 0)
1551                 return (0);
1552
1553         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1554                 return (error);
1555
1556         ASSERT3U(db->db_size, >=, sizeof (*smo));
1557         bcopy(db->db_data, smo, sizeof (*smo));
1558         dmu_buf_rele(db, FTAG);
1559
1560         mutex_enter(&vd->vdev_dtl_lock);
1561         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1562             NULL, SM_ALLOC, smo, mos);
1563         mutex_exit(&vd->vdev_dtl_lock);
1564
1565         return (error);
1566 }
1567
1568 void
1569 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1570 {
1571         spa_t *spa = vd->vdev_spa;
1572         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1573         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1574         objset_t *mos = spa->spa_meta_objset;
1575         space_map_t smsync;
1576         kmutex_t smlock;
1577         dmu_buf_t *db;
1578         dmu_tx_t *tx;
1579
1580         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1581
1582         if (vd->vdev_detached) {
1583                 if (smo->smo_object != 0) {
1584                         int err = dmu_object_free(mos, smo->smo_object, tx);
1585                         ASSERT3U(err, ==, 0);
1586                         smo->smo_object = 0;
1587                 }
1588                 dmu_tx_commit(tx);
1589                 return;
1590         }
1591
1592         if (smo->smo_object == 0) {
1593                 ASSERT(smo->smo_objsize == 0);
1594                 ASSERT(smo->smo_alloc == 0);
1595                 smo->smo_object = dmu_object_alloc(mos,
1596                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1597                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1598                 ASSERT(smo->smo_object != 0);
1599                 vdev_config_dirty(vd->vdev_top);
1600         }
1601
1602         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1603
1604         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1605             &smlock);
1606
1607         mutex_enter(&smlock);
1608
1609         mutex_enter(&vd->vdev_dtl_lock);
1610         space_map_walk(sm, space_map_add, &smsync);
1611         mutex_exit(&vd->vdev_dtl_lock);
1612
1613         space_map_truncate(smo, mos, tx);
1614         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1615
1616         space_map_destroy(&smsync);
1617
1618         mutex_exit(&smlock);
1619         mutex_destroy(&smlock);
1620
1621         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1622         dmu_buf_will_dirty(db, tx);
1623         ASSERT3U(db->db_size, >=, sizeof (*smo));
1624         bcopy(smo, db->db_data, sizeof (*smo));
1625         dmu_buf_rele(db, FTAG);
1626
1627         dmu_tx_commit(tx);
1628 }
1629
1630 /*
1631  * Determine whether the specified vdev can be offlined/detached/removed
1632  * without losing data.
1633  */
1634 boolean_t
1635 vdev_dtl_required(vdev_t *vd)
1636 {
1637         spa_t *spa = vd->vdev_spa;
1638         vdev_t *tvd = vd->vdev_top;
1639         uint8_t cant_read = vd->vdev_cant_read;
1640         boolean_t required;
1641
1642         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1643
1644         if (vd == spa->spa_root_vdev || vd == tvd)
1645                 return (B_TRUE);
1646
1647         /*
1648          * Temporarily mark the device as unreadable, and then determine
1649          * whether this results in any DTL outages in the top-level vdev.
1650          * If not, we can safely offline/detach/remove the device.
1651          */
1652         vd->vdev_cant_read = B_TRUE;
1653         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1654         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1655         vd->vdev_cant_read = cant_read;
1656         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1657
1658         return (required);
1659 }
1660
1661 /*
1662  * Determine if resilver is needed, and if so the txg range.
1663  */
1664 boolean_t
1665 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1666 {
1667         boolean_t needed = B_FALSE;
1668         uint64_t thismin = UINT64_MAX;
1669         uint64_t thismax = 0;
1670
1671         if (vd->vdev_children == 0) {
1672                 mutex_enter(&vd->vdev_dtl_lock);
1673                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1674                     vdev_writeable(vd)) {
1675                         space_seg_t *ss;
1676
1677                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1678                         thismin = ss->ss_start - 1;
1679                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1680                         thismax = ss->ss_end;
1681                         needed = B_TRUE;
1682                 }
1683                 mutex_exit(&vd->vdev_dtl_lock);
1684         } else {
1685                 for (int c = 0; c < vd->vdev_children; c++) {
1686                         vdev_t *cvd = vd->vdev_child[c];
1687                         uint64_t cmin, cmax;
1688
1689                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1690                                 thismin = MIN(thismin, cmin);
1691                                 thismax = MAX(thismax, cmax);
1692                                 needed = B_TRUE;
1693                         }
1694                 }
1695         }
1696
1697         if (needed && minp) {
1698                 *minp = thismin;
1699                 *maxp = thismax;
1700         }
1701         return (needed);
1702 }
1703
1704 void
1705 vdev_load(vdev_t *vd)
1706 {
1707         /*
1708          * Recursively load all children.
1709          */
1710         for (int c = 0; c < vd->vdev_children; c++)
1711                 vdev_load(vd->vdev_child[c]);
1712
1713         /*
1714          * If this is a top-level vdev, initialize its metaslabs.
1715          */
1716         if (vd == vd->vdev_top &&
1717             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1718             vdev_metaslab_init(vd, 0) != 0))
1719                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1720                     VDEV_AUX_CORRUPT_DATA);
1721
1722         /*
1723          * If this is a leaf vdev, load its DTL.
1724          */
1725         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1726                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1727                     VDEV_AUX_CORRUPT_DATA);
1728 }
1729
1730 /*
1731  * The special vdev case is used for hot spares and l2cache devices.  Its
1732  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1733  * we make sure that we can open the underlying device, then try to read the
1734  * label, and make sure that the label is sane and that it hasn't been
1735  * repurposed to another pool.
1736  */
1737 int
1738 vdev_validate_aux(vdev_t *vd)
1739 {
1740         nvlist_t *label;
1741         uint64_t guid, version;
1742         uint64_t state;
1743
1744         if (!vdev_readable(vd))
1745                 return (0);
1746
1747         if ((label = vdev_label_read_config(vd)) == NULL) {
1748                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1749                     VDEV_AUX_CORRUPT_DATA);
1750                 return (-1);
1751         }
1752
1753         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1754             version > SPA_VERSION ||
1755             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1756             guid != vd->vdev_guid ||
1757             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1758                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1759                     VDEV_AUX_CORRUPT_DATA);
1760                 nvlist_free(label);
1761                 return (-1);
1762         }
1763
1764         /*
1765          * We don't actually check the pool state here.  If it's in fact in
1766          * use by another pool, we update this fact on the fly when requested.
1767          */
1768         nvlist_free(label);
1769         return (0);
1770 }
1771
1772 void
1773 vdev_sync_done(vdev_t *vd, uint64_t txg)
1774 {
1775         metaslab_t *msp;
1776         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
1777
1778         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1779                 metaslab_sync_done(msp, txg);
1780
1781         if (reassess)
1782                 metaslab_sync_reassess(vd->vdev_mg);
1783 }
1784
1785 void
1786 vdev_sync(vdev_t *vd, uint64_t txg)
1787 {
1788         spa_t *spa = vd->vdev_spa;
1789         vdev_t *lvd;
1790         metaslab_t *msp;
1791         dmu_tx_t *tx;
1792
1793         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1794                 ASSERT(vd == vd->vdev_top);
1795                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1796                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1797                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1798                 ASSERT(vd->vdev_ms_array != 0);
1799                 vdev_config_dirty(vd);
1800                 dmu_tx_commit(tx);
1801         }
1802
1803         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1804                 metaslab_sync(msp, txg);
1805                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1806         }
1807
1808         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1809                 vdev_dtl_sync(lvd, txg);
1810
1811         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1812 }
1813
1814 uint64_t
1815 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1816 {
1817         return (vd->vdev_ops->vdev_op_asize(vd, psize));
1818 }
1819
1820 /*
1821  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1822  * not be opened, and no I/O is attempted.
1823  */
1824 int
1825 vdev_fault(spa_t *spa, uint64_t guid)
1826 {
1827         vdev_t *vd;
1828
1829         spa_vdev_state_enter(spa);
1830
1831         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1832                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1833
1834         if (!vd->vdev_ops->vdev_op_leaf)
1835                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1836
1837         /*
1838          * Faulted state takes precedence over degraded.
1839          */
1840         vd->vdev_faulted = 1ULL;
1841         vd->vdev_degraded = 0ULL;
1842         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1843
1844         /*
1845          * If marking the vdev as faulted cause the top-level vdev to become
1846          * unavailable, then back off and simply mark the vdev as degraded
1847          * instead.
1848          */
1849         if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1850                 vd->vdev_degraded = 1ULL;
1851                 vd->vdev_faulted = 0ULL;
1852
1853                 /*
1854                  * If we reopen the device and it's not dead, only then do we
1855                  * mark it degraded.
1856                  */
1857                 vdev_reopen(vd);
1858
1859                 if (vdev_readable(vd)) {
1860                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1861                             VDEV_AUX_ERR_EXCEEDED);
1862                 }
1863         }
1864
1865         return (spa_vdev_state_exit(spa, vd, 0));
1866 }
1867
1868 /*
1869  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1870  * user that something is wrong.  The vdev continues to operate as normal as far
1871  * as I/O is concerned.
1872  */
1873 int
1874 vdev_degrade(spa_t *spa, uint64_t guid)
1875 {
1876         vdev_t *vd;
1877
1878         spa_vdev_state_enter(spa);
1879
1880         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1881                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1882
1883         if (!vd->vdev_ops->vdev_op_leaf)
1884                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1885
1886         /*
1887          * If the vdev is already faulted, then don't do anything.
1888          */
1889         if (vd->vdev_faulted || vd->vdev_degraded)
1890                 return (spa_vdev_state_exit(spa, NULL, 0));
1891
1892         vd->vdev_degraded = 1ULL;
1893         if (!vdev_is_dead(vd))
1894                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1895                     VDEV_AUX_ERR_EXCEEDED);
1896
1897         return (spa_vdev_state_exit(spa, vd, 0));
1898 }
1899
1900 /*
1901  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1902  * any attached spare device should be detached when the device finishes
1903  * resilvering.  Second, the online should be treated like a 'test' online case,
1904  * so no FMA events are generated if the device fails to open.
1905  */
1906 int
1907 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1908 {
1909         vdev_t *vd;
1910
1911         spa_vdev_state_enter(spa);
1912
1913         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1914                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1915
1916         if (!vd->vdev_ops->vdev_op_leaf)
1917                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1918
1919         vd->vdev_offline = B_FALSE;
1920         vd->vdev_tmpoffline = B_FALSE;
1921         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1922         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1923         vdev_reopen(vd->vdev_top);
1924         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1925
1926         if (newstate)
1927                 *newstate = vd->vdev_state;
1928         if ((flags & ZFS_ONLINE_UNSPARE) &&
1929             !vdev_is_dead(vd) && vd->vdev_parent &&
1930             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1931             vd->vdev_parent->vdev_child[0] == vd)
1932                 vd->vdev_unspare = B_TRUE;
1933
1934         return (spa_vdev_state_exit(spa, vd, 0));
1935 }
1936
1937 int
1938 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1939 {
1940         vdev_t *vd, *tvd;
1941         int error;
1942
1943         spa_vdev_state_enter(spa);
1944
1945         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1946                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1947
1948         if (!vd->vdev_ops->vdev_op_leaf)
1949                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1950
1951         tvd = vd->vdev_top;
1952
1953         /*
1954          * If the device isn't already offline, try to offline it.
1955          */
1956         if (!vd->vdev_offline) {
1957                 /*
1958                  * If this device has the only valid copy of some data,
1959                  * don't allow it to be offlined. Log devices are always
1960                  * expendable.
1961                  */
1962                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1963                     vdev_dtl_required(vd))
1964                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1965
1966                 /*
1967                  * Offline this device and reopen its top-level vdev.
1968                  * If the top-level vdev is a log device then just offline
1969                  * it. Otherwise, if this action results in the top-level
1970                  * vdev becoming unusable, undo it and fail the request.
1971                  */
1972                 vd->vdev_offline = B_TRUE;
1973                 vdev_reopen(tvd);
1974
1975                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1976                     vdev_is_dead(tvd)) {
1977                         vd->vdev_offline = B_FALSE;
1978                         vdev_reopen(tvd);
1979                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1980                 }
1981         }
1982
1983         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1984
1985         if (!tvd->vdev_islog || !vdev_is_dead(tvd))
1986                 return (spa_vdev_state_exit(spa, vd, 0));
1987
1988         (void) spa_vdev_state_exit(spa, vd, 0);
1989
1990         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1991             NULL, DS_FIND_CHILDREN);
1992         if (error) {
1993                 (void) vdev_online(spa, guid, 0, NULL);
1994                 return (error);
1995         }
1996         /*
1997          * If we successfully offlined the log device then we need to
1998          * sync out the current txg so that the "stubby" block can be
1999          * removed by zil_sync().
2000          */
2001         txg_wait_synced(spa->spa_dsl_pool, 0);
2002         return (0);
2003 }
2004
2005 /*
2006  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2007  * vdev_offline(), we assume the spa config is locked.  We also clear all
2008  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2009  */
2010 void
2011 vdev_clear(spa_t *spa, vdev_t *vd)
2012 {
2013         vdev_t *rvd = spa->spa_root_vdev;
2014
2015         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2016
2017         if (vd == NULL)
2018                 vd = rvd;
2019
2020         vd->vdev_stat.vs_read_errors = 0;
2021         vd->vdev_stat.vs_write_errors = 0;
2022         vd->vdev_stat.vs_checksum_errors = 0;
2023
2024         for (int c = 0; c < vd->vdev_children; c++)
2025                 vdev_clear(spa, vd->vdev_child[c]);
2026
2027         /*
2028          * If we're in the FAULTED state or have experienced failed I/O, then
2029          * clear the persistent state and attempt to reopen the device.  We
2030          * also mark the vdev config dirty, so that the new faulted state is
2031          * written out to disk.
2032          */
2033         if (vd->vdev_faulted || vd->vdev_degraded ||
2034             !vdev_readable(vd) || !vdev_writeable(vd)) {
2035
2036                 vd->vdev_faulted = vd->vdev_degraded = 0;
2037                 vd->vdev_cant_read = B_FALSE;
2038                 vd->vdev_cant_write = B_FALSE;
2039
2040                 vdev_reopen(vd);
2041
2042                 if (vd != rvd)
2043                         vdev_state_dirty(vd->vdev_top);
2044
2045                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2046                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2047
2048                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2049         }
2050 }
2051
2052 boolean_t
2053 vdev_is_dead(vdev_t *vd)
2054 {
2055         return (vd->vdev_state < VDEV_STATE_DEGRADED);
2056 }
2057
2058 boolean_t
2059 vdev_readable(vdev_t *vd)
2060 {
2061         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2062 }
2063
2064 boolean_t
2065 vdev_writeable(vdev_t *vd)
2066 {
2067         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2068 }
2069
2070 boolean_t
2071 vdev_allocatable(vdev_t *vd)
2072 {
2073         uint64_t state = vd->vdev_state;
2074
2075         /*
2076          * We currently allow allocations from vdevs which may be in the
2077          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2078          * fails to reopen then we'll catch it later when we're holding
2079          * the proper locks.  Note that we have to get the vdev state
2080          * in a local variable because although it changes atomically,
2081          * we're asking two separate questions about it.
2082          */
2083         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2084             !vd->vdev_cant_write);
2085 }
2086
2087 boolean_t
2088 vdev_accessible(vdev_t *vd, zio_t *zio)
2089 {
2090         ASSERT(zio->io_vd == vd);
2091
2092         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2093                 return (B_FALSE);
2094
2095         if (zio->io_type == ZIO_TYPE_READ)
2096                 return (!vd->vdev_cant_read);
2097
2098         if (zio->io_type == ZIO_TYPE_WRITE)
2099                 return (!vd->vdev_cant_write);
2100
2101         return (B_TRUE);
2102 }
2103
2104 /*
2105  * Get statistics for the given vdev.
2106  */
2107 void
2108 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2109 {
2110         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2111
2112         mutex_enter(&vd->vdev_stat_lock);
2113         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2114         vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2115         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2116         vs->vs_state = vd->vdev_state;
2117         vs->vs_rsize = vdev_get_rsize(vd);
2118         mutex_exit(&vd->vdev_stat_lock);
2119
2120         /*
2121          * If we're getting stats on the root vdev, aggregate the I/O counts
2122          * over all top-level vdevs (i.e. the direct children of the root).
2123          */
2124         if (vd == rvd) {
2125                 for (int c = 0; c < rvd->vdev_children; c++) {
2126                         vdev_t *cvd = rvd->vdev_child[c];
2127                         vdev_stat_t *cvs = &cvd->vdev_stat;
2128
2129                         mutex_enter(&vd->vdev_stat_lock);
2130                         for (int t = 0; t < ZIO_TYPES; t++) {
2131                                 vs->vs_ops[t] += cvs->vs_ops[t];
2132                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2133                         }
2134                         vs->vs_scrub_examined += cvs->vs_scrub_examined;
2135                         mutex_exit(&vd->vdev_stat_lock);
2136                 }
2137         }
2138 }
2139
2140 void
2141 vdev_clear_stats(vdev_t *vd)
2142 {
2143         mutex_enter(&vd->vdev_stat_lock);
2144         vd->vdev_stat.vs_space = 0;
2145         vd->vdev_stat.vs_dspace = 0;
2146         vd->vdev_stat.vs_alloc = 0;
2147         mutex_exit(&vd->vdev_stat_lock);
2148 }
2149
2150 void
2151 vdev_stat_update(zio_t *zio, uint64_t psize)
2152 {
2153         spa_t *spa = zio->io_spa;
2154         vdev_t *rvd = spa->spa_root_vdev;
2155         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2156         vdev_t *pvd;
2157         uint64_t txg = zio->io_txg;
2158         vdev_stat_t *vs = &vd->vdev_stat;
2159         zio_type_t type = zio->io_type;
2160         int flags = zio->io_flags;
2161
2162         /*
2163          * If this i/o is a gang leader, it didn't do any actual work.
2164          */
2165         if (zio->io_gang_tree)
2166                 return;
2167
2168         if (zio->io_error == 0) {
2169                 /*
2170                  * If this is a root i/o, don't count it -- we've already
2171                  * counted the top-level vdevs, and vdev_get_stats() will
2172                  * aggregate them when asked.  This reduces contention on
2173                  * the root vdev_stat_lock and implicitly handles blocks
2174                  * that compress away to holes, for which there is no i/o.
2175                  * (Holes never create vdev children, so all the counters
2176                  * remain zero, which is what we want.)
2177                  *
2178                  * Note: this only applies to successful i/o (io_error == 0)
2179                  * because unlike i/o counts, errors are not additive.
2180                  * When reading a ditto block, for example, failure of
2181                  * one top-level vdev does not imply a root-level error.
2182                  */
2183                 if (vd == rvd)
2184                         return;
2185
2186                 ASSERT(vd == zio->io_vd);
2187
2188                 if (flags & ZIO_FLAG_IO_BYPASS)
2189                         return;
2190
2191                 mutex_enter(&vd->vdev_stat_lock);
2192
2193                 if (flags & ZIO_FLAG_IO_REPAIR) {
2194                         if (flags & ZIO_FLAG_SCRUB_THREAD)
2195                                 vs->vs_scrub_repaired += psize;
2196                         if (flags & ZIO_FLAG_SELF_HEAL)
2197                                 vs->vs_self_healed += psize;
2198                 }
2199
2200                 vs->vs_ops[type]++;
2201                 vs->vs_bytes[type] += psize;
2202
2203                 mutex_exit(&vd->vdev_stat_lock);
2204                 return;
2205         }
2206
2207         if (flags & ZIO_FLAG_SPECULATIVE)
2208                 return;
2209
2210         /*
2211          * If this is an I/O error that is going to be retried, then ignore the
2212          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2213          * hard errors, when in reality they can happen for any number of
2214          * innocuous reasons (bus resets, MPxIO link failure, etc).
2215          */
2216         if (zio->io_error == EIO &&
2217             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2218                 return;
2219
2220         mutex_enter(&vd->vdev_stat_lock);
2221         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2222                 if (zio->io_error == ECKSUM)
2223                         vs->vs_checksum_errors++;
2224                 else
2225                         vs->vs_read_errors++;
2226         }
2227         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2228                 vs->vs_write_errors++;
2229         mutex_exit(&vd->vdev_stat_lock);
2230
2231         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2232             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2233             (flags & ZIO_FLAG_SCRUB_THREAD))) {
2234                 /*
2235                  * This is either a normal write (not a repair), or it's a
2236                  * repair induced by the scrub thread.  In the normal case,
2237                  * we commit the DTL change in the same txg as the block
2238                  * was born.  In the scrub-induced repair case, we know that
2239                  * scrubs run in first-pass syncing context, so we commit
2240                  * the DTL change in spa->spa_syncing_txg.
2241                  *
2242                  * We currently do not make DTL entries for failed spontaneous
2243                  * self-healing writes triggered by normal (non-scrubbing)
2244                  * reads, because we have no transactional context in which to
2245                  * do so -- and it's not clear that it'd be desirable anyway.
2246                  */
2247                 if (vd->vdev_ops->vdev_op_leaf) {
2248                         uint64_t commit_txg = txg;
2249                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2250                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2251                                 ASSERT(spa_sync_pass(spa) == 1);
2252                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2253                                 commit_txg = spa->spa_syncing_txg;
2254                         }
2255                         ASSERT(commit_txg >= spa->spa_syncing_txg);
2256                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2257                                 return;
2258                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2259                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2260                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2261                 }
2262                 if (vd != rvd)
2263                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2264         }
2265 }
2266
2267 void
2268 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2269 {
2270         int c;
2271         vdev_stat_t *vs = &vd->vdev_stat;
2272
2273         for (c = 0; c < vd->vdev_children; c++)
2274                 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2275
2276         mutex_enter(&vd->vdev_stat_lock);
2277
2278         if (type == POOL_SCRUB_NONE) {
2279                 /*
2280                  * Update completion and end time.  Leave everything else alone
2281                  * so we can report what happened during the previous scrub.
2282                  */
2283                 vs->vs_scrub_complete = complete;
2284                 vs->vs_scrub_end = gethrestime_sec();
2285         } else {
2286                 vs->vs_scrub_type = type;
2287                 vs->vs_scrub_complete = 0;
2288                 vs->vs_scrub_examined = 0;
2289                 vs->vs_scrub_repaired = 0;
2290                 vs->vs_scrub_start = gethrestime_sec();
2291                 vs->vs_scrub_end = 0;
2292         }
2293
2294         mutex_exit(&vd->vdev_stat_lock);
2295 }
2296
2297 /*
2298  * Update the in-core space usage stats for this vdev and the root vdev.
2299  */
2300 void
2301 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2302     boolean_t update_root)
2303 {
2304         int64_t dspace_delta = space_delta;
2305         spa_t *spa = vd->vdev_spa;
2306         vdev_t *rvd = spa->spa_root_vdev;
2307
2308         ASSERT(vd == vd->vdev_top);
2309
2310         /*
2311          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2312          * factor.  We must calculate this here and not at the root vdev
2313          * because the root vdev's psize-to-asize is simply the max of its
2314          * childrens', thus not accurate enough for us.
2315          */
2316         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2317         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2318         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2319             vd->vdev_deflate_ratio;
2320
2321         mutex_enter(&vd->vdev_stat_lock);
2322         vd->vdev_stat.vs_space += space_delta;
2323         vd->vdev_stat.vs_alloc += alloc_delta;
2324         vd->vdev_stat.vs_dspace += dspace_delta;
2325         mutex_exit(&vd->vdev_stat_lock);
2326
2327         if (update_root) {
2328                 ASSERT(rvd == vd->vdev_parent);
2329                 ASSERT(vd->vdev_ms_count != 0);
2330
2331                 /*
2332                  * Don't count non-normal (e.g. intent log) space as part of
2333                  * the pool's capacity.
2334                  */
2335                 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2336                         return;
2337
2338                 mutex_enter(&rvd->vdev_stat_lock);
2339                 rvd->vdev_stat.vs_space += space_delta;
2340                 rvd->vdev_stat.vs_alloc += alloc_delta;
2341                 rvd->vdev_stat.vs_dspace += dspace_delta;
2342                 mutex_exit(&rvd->vdev_stat_lock);
2343         }
2344 }
2345
2346 /*
2347  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2348  * so that it will be written out next time the vdev configuration is synced.
2349  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2350  */
2351 void
2352 vdev_config_dirty(vdev_t *vd)
2353 {
2354         spa_t *spa = vd->vdev_spa;
2355         vdev_t *rvd = spa->spa_root_vdev;
2356         int c;
2357
2358         /*
2359          * If this is an aux vdev (as with l2cache and spare devices), then we
2360          * update the vdev config manually and set the sync flag.
2361          */
2362         if (vd->vdev_aux != NULL) {
2363                 spa_aux_vdev_t *sav = vd->vdev_aux;
2364                 nvlist_t **aux;
2365                 uint_t naux;
2366
2367                 for (c = 0; c < sav->sav_count; c++) {
2368                         if (sav->sav_vdevs[c] == vd)
2369                                 break;
2370                 }
2371
2372                 if (c == sav->sav_count) {
2373                         /*
2374                          * We're being removed.  There's nothing more to do.
2375                          */
2376                         ASSERT(sav->sav_sync == B_TRUE);
2377                         return;
2378                 }
2379
2380                 sav->sav_sync = B_TRUE;
2381
2382                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2383                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2384                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2385                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2386                 }
2387
2388                 ASSERT(c < naux);
2389
2390                 /*
2391                  * Setting the nvlist in the middle if the array is a little
2392                  * sketchy, but it will work.
2393                  */
2394                 nvlist_free(aux[c]);
2395                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2396
2397                 return;
2398         }
2399
2400         /*
2401          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2402          * must either hold SCL_CONFIG as writer, or must be the sync thread
2403          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2404          * so this is sufficient to ensure mutual exclusion.
2405          */
2406         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2407             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2408             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2409
2410         if (vd == rvd) {
2411                 for (c = 0; c < rvd->vdev_children; c++)
2412                         vdev_config_dirty(rvd->vdev_child[c]);
2413         } else {
2414                 ASSERT(vd == vd->vdev_top);
2415
2416                 if (!list_link_active(&vd->vdev_config_dirty_node))
2417                         list_insert_head(&spa->spa_config_dirty_list, vd);
2418         }
2419 }
2420
2421 void
2422 vdev_config_clean(vdev_t *vd)
2423 {
2424         spa_t *spa = vd->vdev_spa;
2425
2426         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2427             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2428             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2429
2430         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2431         list_remove(&spa->spa_config_dirty_list, vd);
2432 }
2433
2434 /*
2435  * Mark a top-level vdev's state as dirty, so that the next pass of
2436  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2437  * the state changes from larger config changes because they require
2438  * much less locking, and are often needed for administrative actions.
2439  */
2440 void
2441 vdev_state_dirty(vdev_t *vd)
2442 {
2443         spa_t *spa = vd->vdev_spa;
2444
2445         ASSERT(vd == vd->vdev_top);
2446
2447         /*
2448          * The state list is protected by the SCL_STATE lock.  The caller
2449          * must either hold SCL_STATE as writer, or must be the sync thread
2450          * (which holds SCL_STATE as reader).  There's only one sync thread,
2451          * so this is sufficient to ensure mutual exclusion.
2452          */
2453         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2454             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2455             spa_config_held(spa, SCL_STATE, RW_READER)));
2456
2457         if (!list_link_active(&vd->vdev_state_dirty_node))
2458                 list_insert_head(&spa->spa_state_dirty_list, vd);
2459 }
2460
2461 void
2462 vdev_state_clean(vdev_t *vd)
2463 {
2464         spa_t *spa = vd->vdev_spa;
2465
2466         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2467             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2468             spa_config_held(spa, SCL_STATE, RW_READER)));
2469
2470         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2471         list_remove(&spa->spa_state_dirty_list, vd);
2472 }
2473
2474 /*
2475  * Propagate vdev state up from children to parent.
2476  */
2477 void
2478 vdev_propagate_state(vdev_t *vd)
2479 {
2480         spa_t *spa = vd->vdev_spa;
2481         vdev_t *rvd = spa->spa_root_vdev;
2482         int degraded = 0, faulted = 0;
2483         int corrupted = 0;
2484         int c;
2485         vdev_t *child;
2486
2487         if (vd->vdev_children > 0) {
2488                 for (c = 0; c < vd->vdev_children; c++) {
2489                         child = vd->vdev_child[c];
2490
2491                         if (!vdev_readable(child) ||
2492                             (!vdev_writeable(child) && spa_writeable(spa))) {
2493                                 /*
2494                                  * Root special: if there is a top-level log
2495                                  * device, treat the root vdev as if it were
2496                                  * degraded.
2497                                  */
2498                                 if (child->vdev_islog && vd == rvd)
2499                                         degraded++;
2500                                 else
2501                                         faulted++;
2502                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2503                                 degraded++;
2504                         }
2505
2506                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2507                                 corrupted++;
2508                 }
2509
2510                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2511
2512                 /*
2513                  * Root special: if there is a top-level vdev that cannot be
2514                  * opened due to corrupted metadata, then propagate the root
2515                  * vdev's aux state as 'corrupt' rather than 'insufficient
2516                  * replicas'.
2517                  */
2518                 if (corrupted && vd == rvd &&
2519                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2520                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2521                             VDEV_AUX_CORRUPT_DATA);
2522         }
2523
2524         if (vd->vdev_parent)
2525                 vdev_propagate_state(vd->vdev_parent);
2526 }
2527
2528 /*
2529  * Set a vdev's state.  If this is during an open, we don't update the parent
2530  * state, because we're in the process of opening children depth-first.
2531  * Otherwise, we propagate the change to the parent.
2532  *
2533  * If this routine places a device in a faulted state, an appropriate ereport is
2534  * generated.
2535  */
2536 void
2537 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2538 {
2539         uint64_t save_state;
2540         spa_t *spa = vd->vdev_spa;
2541
2542         if (state == vd->vdev_state) {
2543                 vd->vdev_stat.vs_aux = aux;
2544                 return;
2545         }
2546
2547         save_state = vd->vdev_state;
2548
2549         vd->vdev_state = state;
2550         vd->vdev_stat.vs_aux = aux;
2551
2552         /*
2553          * If we are setting the vdev state to anything but an open state, then
2554          * always close the underlying device.  Otherwise, we keep accessible
2555          * but invalid devices open forever.  We don't call vdev_close() itself,
2556          * because that implies some extra checks (offline, etc) that we don't
2557          * want here.  This is limited to leaf devices, because otherwise
2558          * closing the device will affect other children.
2559          */
2560         if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2561                 vd->vdev_ops->vdev_op_close(vd);
2562
2563         if (vd->vdev_removed &&
2564             state == VDEV_STATE_CANT_OPEN &&
2565             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2566                 /*
2567                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2568                  * device was previously marked removed and someone attempted to
2569                  * reopen it.  If this failed due to a nonexistent device, then
2570                  * keep the device in the REMOVED state.  We also let this be if
2571                  * it is one of our special test online cases, which is only
2572                  * attempting to online the device and shouldn't generate an FMA
2573                  * fault.
2574                  */
2575                 vd->vdev_state = VDEV_STATE_REMOVED;
2576                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2577         } else if (state == VDEV_STATE_REMOVED) {
2578                 /*
2579                  * Indicate to the ZFS DE that this device has been removed, and
2580                  * any recent errors should be ignored.
2581                  */
2582                 zfs_post_remove(spa, vd);
2583                 vd->vdev_removed = B_TRUE;
2584         } else if (state == VDEV_STATE_CANT_OPEN) {
2585                 /*
2586                  * If we fail to open a vdev during an import, we mark it as
2587                  * "not available", which signifies that it was never there to
2588                  * begin with.  Failure to open such a device is not considered
2589                  * an error.
2590                  */
2591                 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2592                     vd->vdev_ops->vdev_op_leaf)
2593                         vd->vdev_not_present = 1;
2594
2595                 /*
2596                  * Post the appropriate ereport.  If the 'prevstate' field is
2597                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2598                  * that this is part of a vdev_reopen().  In this case, we don't
2599                  * want to post the ereport if the device was already in the
2600                  * CANT_OPEN state beforehand.
2601                  *
2602                  * If the 'checkremove' flag is set, then this is an attempt to
2603                  * online the device in response to an insertion event.  If we
2604                  * hit this case, then we have detected an insertion event for a
2605                  * faulted or offline device that wasn't in the removed state.
2606                  * In this scenario, we don't post an ereport because we are
2607                  * about to replace the device, or attempt an online with
2608                  * vdev_forcefault, which will generate the fault for us.
2609                  */
2610                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2611                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2612                     vd != spa->spa_root_vdev) {
2613                         const char *class;
2614
2615                         switch (aux) {
2616                         case VDEV_AUX_OPEN_FAILED:
2617                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2618                                 break;
2619                         case VDEV_AUX_CORRUPT_DATA:
2620                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2621                                 break;
2622                         case VDEV_AUX_NO_REPLICAS:
2623                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2624                                 break;
2625                         case VDEV_AUX_BAD_GUID_SUM:
2626                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2627                                 break;
2628                         case VDEV_AUX_TOO_SMALL:
2629                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2630                                 break;
2631                         case VDEV_AUX_BAD_LABEL:
2632                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2633                                 break;
2634                         case VDEV_AUX_IO_FAILURE:
2635                                 class = FM_EREPORT_ZFS_IO_FAILURE;
2636                                 break;
2637                         default:
2638                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2639                         }
2640
2641                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2642                 }
2643
2644                 /* Erase any notion of persistent removed state */
2645                 vd->vdev_removed = B_FALSE;
2646         } else {
2647                 vd->vdev_removed = B_FALSE;
2648         }
2649
2650         if (!isopen && vd->vdev_parent)
2651                 vdev_propagate_state(vd->vdev_parent);
2652 }
2653
2654 /*
2655  * Check the vdev configuration to ensure that it's capable of supporting
2656  * a root pool.
2657  *
2658  * On Solaris, we do not support RAID-Z or partial configuration.  In
2659  * addition, only a single top-level vdev is allowed and none of the
2660  * leaves can be wholedisks.
2661  *
2662  * For FreeBSD, we can boot from any configuration. There is a
2663  * limitation that the boot filesystem must be either uncompressed or
2664  * compresses with lzjb compression but I'm not sure how to enforce
2665  * that here.
2666  */
2667 boolean_t
2668 vdev_is_bootable(vdev_t *vd)
2669 {
2670 #ifdef sun
2671         if (!vd->vdev_ops->vdev_op_leaf) {
2672                 char *vdev_type = vd->vdev_ops->vdev_op_type;
2673
2674                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2675                     vd->vdev_children > 1) {
2676                         return (B_FALSE);
2677                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2678                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2679                         return (B_FALSE);
2680                 }
2681         } else if (vd->vdev_wholedisk == 1) {
2682                 return (B_FALSE);
2683         }
2684
2685         for (c = 0; c < vd->vdev_children; c++) {
2686                 if (!vdev_is_bootable(vd->vdev_child[c]))
2687                         return (B_FALSE);
2688         }
2689 #endif  /* sun */
2690         return (B_TRUE);
2691 }
2692
2693 void
2694 vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2695 {
2696         uint_t c, children;
2697         nvlist_t **child;
2698         uint64_t val;
2699         spa_t *spa = vd->vdev_spa;
2700
2701         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2702             &child, &children) == 0) {
2703                 for (c = 0; c < children; c++)
2704                         vdev_load_log_state(vd->vdev_child[c], child[c]);
2705         }
2706
2707         if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2708             ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2709
2710                 /*
2711                  * It would be nice to call vdev_offline()
2712                  * directly but the pool isn't fully loaded and
2713                  * the txg threads have not been started yet.
2714                  */
2715                 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2716                 vd->vdev_offline = val;
2717                 vdev_reopen(vd->vdev_top);
2718                 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
2719         }
2720 }