]> CyberLeo.Net >> Repos - FreeBSD/releng/8.2.git/blob - sys/dev/sk/if_sk.c
Copy stable/8 to releng/8.2 in preparation for FreeBSD-8.2 release.
[FreeBSD/releng/8.2.git] / sys / dev / sk / if_sk.c
1 /*      $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
2
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  *      The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145
146 static struct sk_type sk_devs[] = {
147         {
148                 VENDORID_SK,
149                 DEVICEID_SK_V1,
150                 "SysKonnect Gigabit Ethernet (V1.0)"
151         },
152         {
153                 VENDORID_SK,
154                 DEVICEID_SK_V2,
155                 "SysKonnect Gigabit Ethernet (V2.0)"
156         },
157         {
158                 VENDORID_MARVELL,
159                 DEVICEID_SK_V2,
160                 "Marvell Gigabit Ethernet"
161         },
162         {
163                 VENDORID_MARVELL,
164                 DEVICEID_BELKIN_5005,
165                 "Belkin F5D5005 Gigabit Ethernet"
166         },
167         {
168                 VENDORID_3COM,
169                 DEVICEID_3COM_3C940,
170                 "3Com 3C940 Gigabit Ethernet"
171         },
172         {
173                 VENDORID_LINKSYS,
174                 DEVICEID_LINKSYS_EG1032,
175                 "Linksys EG1032 Gigabit Ethernet"
176         },
177         {
178                 VENDORID_DLINK,
179                 DEVICEID_DLINK_DGE530T_A1,
180                 "D-Link DGE-530T Gigabit Ethernet"
181         },
182         {
183                 VENDORID_DLINK,
184                 DEVICEID_DLINK_DGE530T_B1,
185                 "D-Link DGE-530T Gigabit Ethernet"
186         },
187         { 0, 0, NULL }
188 };
189
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static int sk_detach(device_t);
197 static int sk_probe(device_t);
198 static int sk_attach(device_t);
199 static void sk_tick(void *);
200 static void sk_yukon_tick(void *);
201 static void sk_intr(void *);
202 static void sk_intr_xmac(struct sk_if_softc *);
203 static void sk_intr_bcom(struct sk_if_softc *);
204 static void sk_intr_yukon(struct sk_if_softc *);
205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
207 static void sk_rxeof(struct sk_if_softc *);
208 static void sk_jumbo_rxeof(struct sk_if_softc *);
209 static void sk_txeof(struct sk_if_softc *);
210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
211 static int sk_encap(struct sk_if_softc *, struct mbuf **);
212 static void sk_start(struct ifnet *);
213 static void sk_start_locked(struct ifnet *);
214 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
215 static void sk_init(void *);
216 static void sk_init_locked(struct sk_if_softc *);
217 static void sk_init_xmac(struct sk_if_softc *);
218 static void sk_init_yukon(struct sk_if_softc *);
219 static void sk_stop(struct sk_if_softc *);
220 static void sk_watchdog(void *);
221 static int sk_ifmedia_upd(struct ifnet *);
222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
223 static void sk_reset(struct sk_softc *);
224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
226 static int sk_newbuf(struct sk_if_softc *, int);
227 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
229 static int sk_dma_alloc(struct sk_if_softc *);
230 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
231 static void sk_dma_free(struct sk_if_softc *);
232 static void sk_dma_jumbo_free(struct sk_if_softc *);
233 static int sk_init_rx_ring(struct sk_if_softc *);
234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
235 static void sk_init_tx_ring(struct sk_if_softc *);
236 static u_int32_t sk_win_read_4(struct sk_softc *, int);
237 static u_int16_t sk_win_read_2(struct sk_softc *, int);
238 static u_int8_t sk_win_read_1(struct sk_softc *, int);
239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
242
243 static int sk_miibus_readreg(device_t, int, int);
244 static int sk_miibus_writereg(device_t, int, int, int);
245 static void sk_miibus_statchg(device_t);
246
247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
249                                                 int);
250 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
251
252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
254                                                 int);
255 static void sk_marv_miibus_statchg(struct sk_if_softc *);
256
257 static uint32_t sk_xmchash(const uint8_t *);
258 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
259 static void sk_rxfilter(struct sk_if_softc *);
260 static void sk_rxfilter_genesis(struct sk_if_softc *);
261 static void sk_rxfilter_yukon(struct sk_if_softc *);
262
263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
265
266 /* Tunables. */
267 static int jumbo_disable = 0;
268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
269  
270 /*
271  * It seems that SK-NET GENESIS supports very simple checksum offload
272  * capability for Tx and I believe it can generate 0 checksum value for
273  * UDP packets in Tx as the hardware can't differenciate UDP packets from
274  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
275  * means sender didn't perforam checksum computation. For the safety I
276  * disabled UDP checksum offload capability at the moment. Alternatively
277  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
278  * offload routine.
279  */
280 #define SK_CSUM_FEATURES        (CSUM_TCP)
281
282 /*
283  * Note that we have newbus methods for both the GEnesis controller
284  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
285  * the miibus code is a child of the XMACs. We need to do it this way
286  * so that the miibus drivers can access the PHY registers on the
287  * right PHY. It's not quite what I had in mind, but it's the only
288  * design that achieves the desired effect.
289  */
290 static device_method_t skc_methods[] = {
291         /* Device interface */
292         DEVMETHOD(device_probe,         skc_probe),
293         DEVMETHOD(device_attach,        skc_attach),
294         DEVMETHOD(device_detach,        skc_detach),
295         DEVMETHOD(device_suspend,       skc_suspend),
296         DEVMETHOD(device_resume,        skc_resume),
297         DEVMETHOD(device_shutdown,      skc_shutdown),
298
299         /* bus interface */
300         DEVMETHOD(bus_print_child,      bus_generic_print_child),
301         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
302
303         { 0, 0 }
304 };
305
306 static driver_t skc_driver = {
307         "skc",
308         skc_methods,
309         sizeof(struct sk_softc)
310 };
311
312 static devclass_t skc_devclass;
313
314 static device_method_t sk_methods[] = {
315         /* Device interface */
316         DEVMETHOD(device_probe,         sk_probe),
317         DEVMETHOD(device_attach,        sk_attach),
318         DEVMETHOD(device_detach,        sk_detach),
319         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
320
321         /* bus interface */
322         DEVMETHOD(bus_print_child,      bus_generic_print_child),
323         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
324
325         /* MII interface */
326         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
327         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
328         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
329
330         { 0, 0 }
331 };
332
333 static driver_t sk_driver = {
334         "sk",
335         sk_methods,
336         sizeof(struct sk_if_softc)
337 };
338
339 static devclass_t sk_devclass;
340
341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
344
345 static struct resource_spec sk_res_spec_io[] = {
346         { SYS_RES_IOPORT,       PCIR_BAR(1),    RF_ACTIVE },
347         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
348         { -1,                   0,              0 }
349 };
350
351 static struct resource_spec sk_res_spec_mem[] = {
352         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
353         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
354         { -1,                   0,              0 }
355 };
356
357 #define SK_SETBIT(sc, reg, x)           \
358         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
359
360 #define SK_CLRBIT(sc, reg, x)           \
361         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
362
363 #define SK_WIN_SETBIT_4(sc, reg, x)     \
364         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
365
366 #define SK_WIN_CLRBIT_4(sc, reg, x)     \
367         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
368
369 #define SK_WIN_SETBIT_2(sc, reg, x)     \
370         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
371
372 #define SK_WIN_CLRBIT_2(sc, reg, x)     \
373         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
374
375 static u_int32_t
376 sk_win_read_4(sc, reg)
377         struct sk_softc         *sc;
378         int                     reg;
379 {
380 #ifdef SK_USEIOSPACE
381         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
382         return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
383 #else
384         return(CSR_READ_4(sc, reg));
385 #endif
386 }
387
388 static u_int16_t
389 sk_win_read_2(sc, reg)
390         struct sk_softc         *sc;
391         int                     reg;
392 {
393 #ifdef SK_USEIOSPACE
394         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395         return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
396 #else
397         return(CSR_READ_2(sc, reg));
398 #endif
399 }
400
401 static u_int8_t
402 sk_win_read_1(sc, reg)
403         struct sk_softc         *sc;
404         int                     reg;
405 {
406 #ifdef SK_USEIOSPACE
407         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408         return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
409 #else
410         return(CSR_READ_1(sc, reg));
411 #endif
412 }
413
414 static void
415 sk_win_write_4(sc, reg, val)
416         struct sk_softc         *sc;
417         int                     reg;
418         u_int32_t               val;
419 {
420 #ifdef SK_USEIOSPACE
421         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422         CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424         CSR_WRITE_4(sc, reg, val);
425 #endif
426         return;
427 }
428
429 static void
430 sk_win_write_2(sc, reg, val)
431         struct sk_softc         *sc;
432         int                     reg;
433         u_int32_t               val;
434 {
435 #ifdef SK_USEIOSPACE
436         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
437         CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
438 #else
439         CSR_WRITE_2(sc, reg, val);
440 #endif
441         return;
442 }
443
444 static void
445 sk_win_write_1(sc, reg, val)
446         struct sk_softc         *sc;
447         int                     reg;
448         u_int32_t               val;
449 {
450 #ifdef SK_USEIOSPACE
451         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
452         CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
453 #else
454         CSR_WRITE_1(sc, reg, val);
455 #endif
456         return;
457 }
458
459 static int
460 sk_miibus_readreg(dev, phy, reg)
461         device_t                dev;
462         int                     phy, reg;
463 {
464         struct sk_if_softc      *sc_if;
465         int                     v;
466
467         sc_if = device_get_softc(dev);
468
469         SK_IF_MII_LOCK(sc_if);
470         switch(sc_if->sk_softc->sk_type) {
471         case SK_GENESIS:
472                 v = sk_xmac_miibus_readreg(sc_if, phy, reg);
473                 break;
474         case SK_YUKON:
475         case SK_YUKON_LITE:
476         case SK_YUKON_LP:
477                 v = sk_marv_miibus_readreg(sc_if, phy, reg);
478                 break;
479         default:
480                 v = 0;
481                 break;
482         }
483         SK_IF_MII_UNLOCK(sc_if);
484
485         return (v);
486 }
487
488 static int
489 sk_miibus_writereg(dev, phy, reg, val)
490         device_t                dev;
491         int                     phy, reg, val;
492 {
493         struct sk_if_softc      *sc_if;
494         int                     v;
495
496         sc_if = device_get_softc(dev);
497
498         SK_IF_MII_LOCK(sc_if);
499         switch(sc_if->sk_softc->sk_type) {
500         case SK_GENESIS:
501                 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
502                 break;
503         case SK_YUKON:
504         case SK_YUKON_LITE:
505         case SK_YUKON_LP:
506                 v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
507                 break;
508         default:
509                 v = 0;
510                 break;
511         }
512         SK_IF_MII_UNLOCK(sc_if);
513
514         return (v);
515 }
516
517 static void
518 sk_miibus_statchg(dev)
519         device_t                dev;
520 {
521         struct sk_if_softc      *sc_if;
522
523         sc_if = device_get_softc(dev);
524
525         SK_IF_MII_LOCK(sc_if);
526         switch(sc_if->sk_softc->sk_type) {
527         case SK_GENESIS:
528                 sk_xmac_miibus_statchg(sc_if);
529                 break;
530         case SK_YUKON:
531         case SK_YUKON_LITE:
532         case SK_YUKON_LP:
533                 sk_marv_miibus_statchg(sc_if);
534                 break;
535         }
536         SK_IF_MII_UNLOCK(sc_if);
537
538         return;
539 }
540
541 static int
542 sk_xmac_miibus_readreg(sc_if, phy, reg)
543         struct sk_if_softc      *sc_if;
544         int                     phy, reg;
545 {
546         int                     i;
547
548         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
549         SK_XM_READ_2(sc_if, XM_PHY_DATA);
550         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
551                 for (i = 0; i < SK_TIMEOUT; i++) {
552                         DELAY(1);
553                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
554                             XM_MMUCMD_PHYDATARDY)
555                                 break;
556                 }
557
558                 if (i == SK_TIMEOUT) {
559                         if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
560                         return(0);
561                 }
562         }
563         DELAY(1);
564         i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
565
566         return(i);
567 }
568
569 static int
570 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
571         struct sk_if_softc      *sc_if;
572         int                     phy, reg, val;
573 {
574         int                     i;
575
576         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
577         for (i = 0; i < SK_TIMEOUT; i++) {
578                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
579                         break;
580         }
581
582         if (i == SK_TIMEOUT) {
583                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
584                 return (ETIMEDOUT);
585         }
586
587         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
588         for (i = 0; i < SK_TIMEOUT; i++) {
589                 DELAY(1);
590                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
591                         break;
592         }
593         if (i == SK_TIMEOUT)
594                 if_printf(sc_if->sk_ifp, "phy write timed out\n");
595
596         return(0);
597 }
598
599 static void
600 sk_xmac_miibus_statchg(sc_if)
601         struct sk_if_softc      *sc_if;
602 {
603         struct mii_data         *mii;
604
605         mii = device_get_softc(sc_if->sk_miibus);
606
607         /*
608          * If this is a GMII PHY, manually set the XMAC's
609          * duplex mode accordingly.
610          */
611         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
612                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
613                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
614                 } else {
615                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
616                 }
617         }
618 }
619
620 static int
621 sk_marv_miibus_readreg(sc_if, phy, reg)
622         struct sk_if_softc      *sc_if;
623         int                     phy, reg;
624 {
625         u_int16_t               val;
626         int                     i;
627
628         if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
629             sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
630                 return(0);
631         }
632
633         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
634                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
635
636         for (i = 0; i < SK_TIMEOUT; i++) {
637                 DELAY(1);
638                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
639                 if (val & YU_SMICR_READ_VALID)
640                         break;
641         }
642
643         if (i == SK_TIMEOUT) {
644                 if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
645                 return(0);
646         }
647
648         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
649
650         return(val);
651 }
652
653 static int
654 sk_marv_miibus_writereg(sc_if, phy, reg, val)
655         struct sk_if_softc      *sc_if;
656         int                     phy, reg, val;
657 {
658         int                     i;
659
660         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
661         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
662                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
663
664         for (i = 0; i < SK_TIMEOUT; i++) {
665                 DELAY(1);
666                 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
667                         break;
668         }
669         if (i == SK_TIMEOUT)
670                 if_printf(sc_if->sk_ifp, "phy write timeout\n");
671
672         return(0);
673 }
674
675 static void
676 sk_marv_miibus_statchg(sc_if)
677         struct sk_if_softc      *sc_if;
678 {
679         return;
680 }
681
682 #define HASH_BITS               6
683
684 static u_int32_t
685 sk_xmchash(addr)
686         const uint8_t *addr;
687 {
688         uint32_t crc;
689
690         /* Compute CRC for the address value. */
691         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
692
693         return (~crc & ((1 << HASH_BITS) - 1));
694 }
695
696 static void
697 sk_setfilt(sc_if, addr, slot)
698         struct sk_if_softc      *sc_if;
699         u_int16_t               *addr;
700         int                     slot;
701 {
702         int                     base;
703
704         base = XM_RXFILT_ENTRY(slot);
705
706         SK_XM_WRITE_2(sc_if, base, addr[0]);
707         SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
708         SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
709
710         return;
711 }
712
713 static void
714 sk_rxfilter(sc_if)
715         struct sk_if_softc      *sc_if;
716 {
717         struct sk_softc         *sc;
718
719         SK_IF_LOCK_ASSERT(sc_if);
720
721         sc = sc_if->sk_softc;
722         if (sc->sk_type == SK_GENESIS)
723                 sk_rxfilter_genesis(sc_if);
724         else
725                 sk_rxfilter_yukon(sc_if);
726 }
727
728 static void
729 sk_rxfilter_genesis(sc_if)
730         struct sk_if_softc      *sc_if;
731 {
732         struct ifnet            *ifp = sc_if->sk_ifp;
733         u_int32_t               hashes[2] = { 0, 0 }, mode;
734         int                     h = 0, i;
735         struct ifmultiaddr      *ifma;
736         u_int16_t               dummy[] = { 0, 0, 0 };
737         u_int16_t               maddr[(ETHER_ADDR_LEN+1)/2];
738
739         SK_IF_LOCK_ASSERT(sc_if);
740
741         mode = SK_XM_READ_4(sc_if, XM_MODE);
742         mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
743             XM_MODE_RX_USE_PERFECT);
744         /* First, zot all the existing perfect filters. */
745         for (i = 1; i < XM_RXFILT_MAX; i++)
746                 sk_setfilt(sc_if, dummy, i);
747
748         /* Now program new ones. */
749         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
750                 if (ifp->if_flags & IFF_ALLMULTI)
751                         mode |= XM_MODE_RX_USE_HASH;
752                 if (ifp->if_flags & IFF_PROMISC)
753                         mode |= XM_MODE_RX_PROMISC;
754                 hashes[0] = 0xFFFFFFFF;
755                 hashes[1] = 0xFFFFFFFF;
756         } else {
757                 i = 1;
758                 if_maddr_rlock(ifp);
759                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
760                     ifma_link) {
761                         if (ifma->ifma_addr->sa_family != AF_LINK)
762                                 continue;
763                         /*
764                          * Program the first XM_RXFILT_MAX multicast groups
765                          * into the perfect filter.
766                          */
767                         bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
768                             maddr, ETHER_ADDR_LEN);
769                         if (i < XM_RXFILT_MAX) {
770                                 sk_setfilt(sc_if, maddr, i);
771                                 mode |= XM_MODE_RX_USE_PERFECT;
772                                 i++;
773                                 continue;
774                         }
775                         h = sk_xmchash((const uint8_t *)maddr);
776                         if (h < 32)
777                                 hashes[0] |= (1 << h);
778                         else
779                                 hashes[1] |= (1 << (h - 32));
780                         mode |= XM_MODE_RX_USE_HASH;
781                 }
782                 if_maddr_runlock(ifp);
783         }
784
785         SK_XM_WRITE_4(sc_if, XM_MODE, mode);
786         SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
787         SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
788 }
789
790 static void
791 sk_rxfilter_yukon(sc_if)
792         struct sk_if_softc      *sc_if;
793 {
794         struct ifnet            *ifp;
795         u_int32_t               crc, hashes[2] = { 0, 0 }, mode;
796         struct ifmultiaddr      *ifma;
797
798         SK_IF_LOCK_ASSERT(sc_if);
799
800         ifp = sc_if->sk_ifp;
801         mode = SK_YU_READ_2(sc_if, YUKON_RCR);
802         if (ifp->if_flags & IFF_PROMISC)
803                 mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 
804         else if (ifp->if_flags & IFF_ALLMULTI) {
805                 mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; 
806                 hashes[0] = 0xFFFFFFFF;
807                 hashes[1] = 0xFFFFFFFF;
808         } else {
809                 mode |= YU_RCR_UFLEN;
810                 if_maddr_rlock(ifp);
811                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
812                         if (ifma->ifma_addr->sa_family != AF_LINK)
813                                 continue;
814                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
815                             ifma->ifma_addr), ETHER_ADDR_LEN);
816                         /* Just want the 6 least significant bits. */
817                         crc &= 0x3f;
818                         /* Set the corresponding bit in the hash table. */
819                         hashes[crc >> 5] |= 1 << (crc & 0x1f);
820                 }
821                 if_maddr_runlock(ifp);
822                 if (hashes[0] != 0 || hashes[1] != 0)
823                         mode |= YU_RCR_MUFLEN;
824         }
825
826         SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
827         SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
828         SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
829         SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
830         SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
831 }
832
833 static int
834 sk_init_rx_ring(sc_if)
835         struct sk_if_softc      *sc_if;
836 {
837         struct sk_ring_data     *rd;
838         bus_addr_t              addr;
839         u_int32_t               csum_start;
840         int                     i;
841
842         sc_if->sk_cdata.sk_rx_cons = 0;
843
844         csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
845             ETHER_HDR_LEN;
846         rd = &sc_if->sk_rdata;
847         bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
848         for (i = 0; i < SK_RX_RING_CNT; i++) {
849                 if (sk_newbuf(sc_if, i) != 0)
850                         return (ENOBUFS);
851                 if (i == (SK_RX_RING_CNT - 1))
852                         addr = SK_RX_RING_ADDR(sc_if, 0);
853                 else
854                         addr = SK_RX_RING_ADDR(sc_if, i + 1);
855                 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
856                 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
857         }
858
859         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
860             sc_if->sk_cdata.sk_rx_ring_map,
861             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
862
863         return(0);
864 }
865
866 static int
867 sk_init_jumbo_rx_ring(sc_if)
868         struct sk_if_softc      *sc_if;
869 {
870         struct sk_ring_data     *rd;
871         bus_addr_t              addr;
872         u_int32_t               csum_start;
873         int                     i;
874
875         sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
876
877         csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
878             ETHER_HDR_LEN;
879         rd = &sc_if->sk_rdata;
880         bzero(rd->sk_jumbo_rx_ring,
881             sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
882         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
883                 if (sk_jumbo_newbuf(sc_if, i) != 0)
884                         return (ENOBUFS);
885                 if (i == (SK_JUMBO_RX_RING_CNT - 1))
886                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
887                 else
888                         addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
889                 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
890                 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
891         }
892
893         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
894             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
895             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
896
897         return (0);
898 }
899
900 static void
901 sk_init_tx_ring(sc_if)
902         struct sk_if_softc      *sc_if;
903 {
904         struct sk_ring_data     *rd;
905         struct sk_txdesc        *txd;
906         bus_addr_t              addr;
907         int                     i;
908
909         STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
910         STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
911
912         sc_if->sk_cdata.sk_tx_prod = 0;
913         sc_if->sk_cdata.sk_tx_cons = 0;
914         sc_if->sk_cdata.sk_tx_cnt = 0;
915
916         rd = &sc_if->sk_rdata;
917         bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
918         for (i = 0; i < SK_TX_RING_CNT; i++) {
919                 if (i == (SK_TX_RING_CNT - 1))
920                         addr = SK_TX_RING_ADDR(sc_if, 0);
921                 else
922                         addr = SK_TX_RING_ADDR(sc_if, i + 1);
923                 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
924                 txd = &sc_if->sk_cdata.sk_txdesc[i];
925                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
926         }
927
928         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
929             sc_if->sk_cdata.sk_tx_ring_map,
930             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
931 }
932
933 static __inline void
934 sk_discard_rxbuf(sc_if, idx)
935         struct sk_if_softc      *sc_if;
936         int                     idx;
937 {
938         struct sk_rx_desc       *r;
939         struct sk_rxdesc        *rxd;
940         struct mbuf             *m;
941
942
943         r = &sc_if->sk_rdata.sk_rx_ring[idx];
944         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
945         m = rxd->rx_m;
946         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
947 }
948
949 static __inline void
950 sk_discard_jumbo_rxbuf(sc_if, idx)
951         struct sk_if_softc      *sc_if;
952         int                     idx;
953 {
954         struct sk_rx_desc       *r;
955         struct sk_rxdesc        *rxd;
956         struct mbuf             *m;
957
958         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
959         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
960         m = rxd->rx_m;
961         r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
962 }
963
964 static int
965 sk_newbuf(sc_if, idx)
966         struct sk_if_softc      *sc_if;
967         int                     idx;
968 {
969         struct sk_rx_desc       *r;
970         struct sk_rxdesc        *rxd;
971         struct mbuf             *m;
972         bus_dma_segment_t       segs[1];
973         bus_dmamap_t            map;
974         int                     nsegs;
975
976         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
977         if (m == NULL)
978                 return (ENOBUFS);
979         m->m_len = m->m_pkthdr.len = MCLBYTES;
980         m_adj(m, ETHER_ALIGN);
981
982         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
983             sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
984                 m_freem(m);
985                 return (ENOBUFS);
986         }
987         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
988
989         rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
990         if (rxd->rx_m != NULL) {
991                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
992                     BUS_DMASYNC_POSTREAD);
993                 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
994         }
995         map = rxd->rx_dmamap;
996         rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
997         sc_if->sk_cdata.sk_rx_sparemap = map;
998         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
999             BUS_DMASYNC_PREREAD);
1000         rxd->rx_m = m;
1001         r = &sc_if->sk_rdata.sk_rx_ring[idx];
1002         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1003         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1004         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1005
1006         return (0);
1007 }
1008
1009 static int
1010 sk_jumbo_newbuf(sc_if, idx)
1011         struct sk_if_softc      *sc_if;
1012         int                     idx;
1013 {
1014         struct sk_rx_desc       *r;
1015         struct sk_rxdesc        *rxd;
1016         struct mbuf             *m;
1017         bus_dma_segment_t       segs[1];
1018         bus_dmamap_t            map;
1019         int                     nsegs;
1020
1021         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1022         if (m == NULL)
1023                 return (ENOBUFS);
1024         if ((m->m_flags & M_EXT) == 0) {
1025                 m_freem(m);
1026                 return (ENOBUFS);
1027         }
1028         m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1029         /*
1030          * Adjust alignment so packet payload begins on a
1031          * longword boundary. Mandatory for Alpha, useful on
1032          * x86 too.
1033          */
1034         m_adj(m, ETHER_ALIGN);
1035
1036         if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1037             sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1038                 m_freem(m);
1039                 return (ENOBUFS);
1040         }
1041         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1042
1043         rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1044         if (rxd->rx_m != NULL) {
1045                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1046                     BUS_DMASYNC_POSTREAD);
1047                 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1048                     rxd->rx_dmamap);
1049         }
1050         map = rxd->rx_dmamap;
1051         rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1052         sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1053         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1054             BUS_DMASYNC_PREREAD);
1055         rxd->rx_m = m;
1056         r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1057         r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1058         r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1059         r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1060
1061         return (0);
1062 }
1063
1064 /*
1065  * Set media options.
1066  */
1067 static int
1068 sk_ifmedia_upd(ifp)
1069         struct ifnet            *ifp;
1070 {
1071         struct sk_if_softc      *sc_if = ifp->if_softc;
1072         struct mii_data         *mii;
1073
1074         mii = device_get_softc(sc_if->sk_miibus);
1075         sk_init(sc_if);
1076         mii_mediachg(mii);
1077
1078         return(0);
1079 }
1080
1081 /*
1082  * Report current media status.
1083  */
1084 static void
1085 sk_ifmedia_sts(ifp, ifmr)
1086         struct ifnet            *ifp;
1087         struct ifmediareq       *ifmr;
1088 {
1089         struct sk_if_softc      *sc_if;
1090         struct mii_data         *mii;
1091
1092         sc_if = ifp->if_softc;
1093         mii = device_get_softc(sc_if->sk_miibus);
1094
1095         mii_pollstat(mii);
1096         ifmr->ifm_active = mii->mii_media_active;
1097         ifmr->ifm_status = mii->mii_media_status;
1098
1099         return;
1100 }
1101
1102 static int
1103 sk_ioctl(ifp, command, data)
1104         struct ifnet            *ifp;
1105         u_long                  command;
1106         caddr_t                 data;
1107 {
1108         struct sk_if_softc      *sc_if = ifp->if_softc;
1109         struct ifreq            *ifr = (struct ifreq *) data;
1110         int                     error, mask;
1111         struct mii_data         *mii;
1112
1113         error = 0;
1114         switch(command) {
1115         case SIOCSIFMTU:
1116                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1117                         error = EINVAL;
1118                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1119                         if (sc_if->sk_jumbo_disable != 0 &&
1120                             ifr->ifr_mtu > SK_MAX_FRAMELEN)
1121                                 error = EINVAL;
1122                         else {
1123                                 SK_IF_LOCK(sc_if);
1124                                 ifp->if_mtu = ifr->ifr_mtu;
1125                                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1126                                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1127                                         sk_init_locked(sc_if);
1128                                 }
1129                                 SK_IF_UNLOCK(sc_if);
1130                         }
1131                 }
1132                 break;
1133         case SIOCSIFFLAGS:
1134                 SK_IF_LOCK(sc_if);
1135                 if (ifp->if_flags & IFF_UP) {
1136                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1137                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
1138                                     & (IFF_PROMISC | IFF_ALLMULTI))
1139                                         sk_rxfilter(sc_if);
1140                         } else
1141                                 sk_init_locked(sc_if);
1142                 } else {
1143                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1144                                 sk_stop(sc_if);
1145                 }
1146                 sc_if->sk_if_flags = ifp->if_flags;
1147                 SK_IF_UNLOCK(sc_if);
1148                 break;
1149         case SIOCADDMULTI:
1150         case SIOCDELMULTI:
1151                 SK_IF_LOCK(sc_if);
1152                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1153                         sk_rxfilter(sc_if);
1154                 SK_IF_UNLOCK(sc_if);
1155                 break;
1156         case SIOCGIFMEDIA:
1157         case SIOCSIFMEDIA:
1158                 mii = device_get_softc(sc_if->sk_miibus);
1159                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1160                 break;
1161         case SIOCSIFCAP:
1162                 SK_IF_LOCK(sc_if);
1163                 if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1164                         SK_IF_UNLOCK(sc_if);
1165                         break;
1166                 }
1167                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1168                 if ((mask & IFCAP_TXCSUM) != 0 &&
1169                     (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1170                         ifp->if_capenable ^= IFCAP_TXCSUM;
1171                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1172                                 ifp->if_hwassist |= SK_CSUM_FEATURES;
1173                         else
1174                                 ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1175                 }
1176                 if ((mask & IFCAP_RXCSUM) != 0 &&
1177                     (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 
1178                         ifp->if_capenable ^= IFCAP_RXCSUM;
1179                 SK_IF_UNLOCK(sc_if);
1180                 break;
1181         default:
1182                 error = ether_ioctl(ifp, command, data);
1183                 break;
1184         }
1185
1186         return (error);
1187 }
1188
1189 /*
1190  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1191  * IDs against our list and return a device name if we find a match.
1192  */
1193 static int
1194 skc_probe(dev)
1195         device_t                dev;
1196 {
1197         struct sk_type          *t = sk_devs;
1198
1199         while(t->sk_name != NULL) {
1200                 if ((pci_get_vendor(dev) == t->sk_vid) &&
1201                     (pci_get_device(dev) == t->sk_did)) {
1202                         /*
1203                          * Only attach to rev. 2 of the Linksys EG1032 adapter.
1204                          * Rev. 3 is supported by re(4).
1205                          */
1206                         if ((t->sk_vid == VENDORID_LINKSYS) &&
1207                                 (t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1208                                 (pci_get_subdevice(dev) !=
1209                                  SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1210                                 t++;
1211                                 continue;
1212                         }
1213                         device_set_desc(dev, t->sk_name);
1214                         return (BUS_PROBE_DEFAULT);
1215                 }
1216                 t++;
1217         }
1218
1219         return(ENXIO);
1220 }
1221
1222 /*
1223  * Force the GEnesis into reset, then bring it out of reset.
1224  */
1225 static void
1226 sk_reset(sc)
1227         struct sk_softc         *sc;
1228 {
1229
1230         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1231         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1232         if (SK_YUKON_FAMILY(sc->sk_type))
1233                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1234
1235         DELAY(1000);
1236         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1237         DELAY(2);
1238         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1239         if (SK_YUKON_FAMILY(sc->sk_type))
1240                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1241
1242         if (sc->sk_type == SK_GENESIS) {
1243                 /* Configure packet arbiter */
1244                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1245                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1246                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1247                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1248                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1249         }
1250
1251         /* Enable RAM interface */
1252         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1253
1254         /*
1255          * Configure interrupt moderation. The moderation timer
1256          * defers interrupts specified in the interrupt moderation
1257          * timer mask based on the timeout specified in the interrupt
1258          * moderation timer init register. Each bit in the timer
1259          * register represents one tick, so to specify a timeout in
1260          * microseconds, we have to multiply by the correct number of
1261          * ticks-per-microsecond.
1262          */
1263         switch (sc->sk_type) {
1264         case SK_GENESIS:
1265                 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1266                 break;
1267         default:
1268                 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1269                 break;
1270         }
1271         if (bootverbose)
1272                 device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1273                     sc->sk_int_mod);
1274         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1275             sc->sk_int_ticks));
1276         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1277             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1278         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1279
1280         return;
1281 }
1282
1283 static int
1284 sk_probe(dev)
1285         device_t                dev;
1286 {
1287         struct sk_softc         *sc;
1288
1289         sc = device_get_softc(device_get_parent(dev));
1290
1291         /*
1292          * Not much to do here. We always know there will be
1293          * at least one XMAC present, and if there are two,
1294          * skc_attach() will create a second device instance
1295          * for us.
1296          */
1297         switch (sc->sk_type) {
1298         case SK_GENESIS:
1299                 device_set_desc(dev, "XaQti Corp. XMAC II");
1300                 break;
1301         case SK_YUKON:
1302         case SK_YUKON_LITE:
1303         case SK_YUKON_LP:
1304                 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1305                 break;
1306         }
1307
1308         return (BUS_PROBE_DEFAULT);
1309 }
1310
1311 /*
1312  * Each XMAC chip is attached as a separate logical IP interface.
1313  * Single port cards will have only one logical interface of course.
1314  */
1315 static int
1316 sk_attach(dev)
1317         device_t                dev;
1318 {
1319         struct sk_softc         *sc;
1320         struct sk_if_softc      *sc_if;
1321         struct ifnet            *ifp;
1322         u_int32_t               r;
1323         int                     error, i, phy, port;
1324         u_char                  eaddr[6];
1325         u_char                  inv_mac[] = {0, 0, 0, 0, 0, 0};
1326
1327         if (dev == NULL)
1328                 return(EINVAL);
1329
1330         error = 0;
1331         sc_if = device_get_softc(dev);
1332         sc = device_get_softc(device_get_parent(dev));
1333         port = *(int *)device_get_ivars(dev);
1334
1335         sc_if->sk_if_dev = dev;
1336         sc_if->sk_port = port;
1337         sc_if->sk_softc = sc;
1338         sc->sk_if[port] = sc_if;
1339         if (port == SK_PORT_A)
1340                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1341         if (port == SK_PORT_B)
1342                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1343
1344         callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1345         callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1346
1347         if (sk_dma_alloc(sc_if) != 0) {
1348                 error = ENOMEM;
1349                 goto fail;
1350         }
1351         sk_dma_jumbo_alloc(sc_if);
1352
1353         ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1354         if (ifp == NULL) {
1355                 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1356                 error = ENOSPC;
1357                 goto fail;
1358         }
1359         ifp->if_softc = sc_if;
1360         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1361         ifp->if_mtu = ETHERMTU;
1362         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1363         /*
1364          * SK_GENESIS has a bug in checksum offload - From linux.
1365          */
1366         if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1367                 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1368                 ifp->if_hwassist = 0;
1369         } else {
1370                 ifp->if_capabilities = 0;
1371                 ifp->if_hwassist = 0;
1372         }
1373         ifp->if_capenable = ifp->if_capabilities;
1374         /*
1375          * Some revision of Yukon controller generates corrupted
1376          * frame when TX checksum offloading is enabled.  The
1377          * frame has a valid checksum value so payload might be
1378          * modified during TX checksum calculation. Disable TX
1379          * checksum offloading but give users chance to enable it
1380          * when they know their controller works without problems
1381          * with TX checksum offloading.
1382          */
1383         ifp->if_capenable &= ~IFCAP_TXCSUM;
1384         ifp->if_ioctl = sk_ioctl;
1385         ifp->if_start = sk_start;
1386         ifp->if_init = sk_init;
1387         IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1388         ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1389         IFQ_SET_READY(&ifp->if_snd);
1390
1391         /*
1392          * Get station address for this interface. Note that
1393          * dual port cards actually come with three station
1394          * addresses: one for each port, plus an extra. The
1395          * extra one is used by the SysKonnect driver software
1396          * as a 'virtual' station address for when both ports
1397          * are operating in failover mode. Currently we don't
1398          * use this extra address.
1399          */
1400         SK_IF_LOCK(sc_if);
1401         for (i = 0; i < ETHER_ADDR_LEN; i++)
1402                 eaddr[i] =
1403                     sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1404
1405         /* Verify whether the station address is invalid or not. */
1406         if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1407                 device_printf(sc_if->sk_if_dev,
1408                     "Generating random ethernet address\n");
1409                 r = arc4random();
1410                 /*
1411                  * Set OUI to convenient locally assigned address.  'b'
1412                  * is 0x62, which has the locally assigned bit set, and
1413                  * the broadcast/multicast bit clear.
1414                  */
1415                 eaddr[0] = 'b';
1416                 eaddr[1] = 's';
1417                 eaddr[2] = 'd';
1418                 eaddr[3] = (r >> 16) & 0xff;
1419                 eaddr[4] = (r >>  8) & 0xff;
1420                 eaddr[5] = (r >>  0) & 0xff;
1421         }
1422         /*
1423          * Set up RAM buffer addresses. The NIC will have a certain
1424          * amount of SRAM on it, somewhere between 512K and 2MB. We
1425          * need to divide this up a) between the transmitter and
1426          * receiver and b) between the two XMACs, if this is a
1427          * dual port NIC. Our algotithm is to divide up the memory
1428          * evenly so that everyone gets a fair share.
1429          *
1430          * Just to be contrary, Yukon2 appears to have separate memory
1431          * for each MAC.
1432          */
1433         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1434                 u_int32_t               chunk, val;
1435
1436                 chunk = sc->sk_ramsize / 2;
1437                 val = sc->sk_rboff / sizeof(u_int64_t);
1438                 sc_if->sk_rx_ramstart = val;
1439                 val += (chunk / sizeof(u_int64_t));
1440                 sc_if->sk_rx_ramend = val - 1;
1441                 sc_if->sk_tx_ramstart = val;
1442                 val += (chunk / sizeof(u_int64_t));
1443                 sc_if->sk_tx_ramend = val - 1;
1444         } else {
1445                 u_int32_t               chunk, val;
1446
1447                 chunk = sc->sk_ramsize / 4;
1448                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1449                     sizeof(u_int64_t);
1450                 sc_if->sk_rx_ramstart = val;
1451                 val += (chunk / sizeof(u_int64_t));
1452                 sc_if->sk_rx_ramend = val - 1;
1453                 sc_if->sk_tx_ramstart = val;
1454                 val += (chunk / sizeof(u_int64_t));
1455                 sc_if->sk_tx_ramend = val - 1;
1456         }
1457
1458         /* Read and save PHY type and set PHY address */
1459         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1460         if (!SK_YUKON_FAMILY(sc->sk_type)) {
1461                 switch(sc_if->sk_phytype) {
1462                 case SK_PHYTYPE_XMAC:
1463                         sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1464                         break;
1465                 case SK_PHYTYPE_BCOM:
1466                         sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1467                         break;
1468                 default:
1469                         device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1470                             sc_if->sk_phytype);
1471                         error = ENODEV;
1472                         SK_IF_UNLOCK(sc_if);
1473                         goto fail;
1474                 }
1475         } else {
1476                 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1477                     sc->sk_pmd != 'S') {
1478                         /* not initialized, punt */
1479                         sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1480                         sc->sk_coppertype = 1;
1481                 }
1482
1483                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1484
1485                 if (!(sc->sk_coppertype))
1486                         sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1487         }
1488
1489         /*
1490          * Call MI attach routine.  Can't hold locks when calling into ether_*.
1491          */
1492         SK_IF_UNLOCK(sc_if);
1493         ether_ifattach(ifp, eaddr);
1494         SK_IF_LOCK(sc_if);
1495
1496         /*
1497          * The hardware should be ready for VLAN_MTU by default:
1498          * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1499          * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1500          *
1501          */
1502         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1503         ifp->if_capenable |= IFCAP_VLAN_MTU;
1504         /*
1505          * Tell the upper layer(s) we support long frames.
1506          * Must appear after the call to ether_ifattach() because
1507          * ether_ifattach() sets ifi_hdrlen to the default value.
1508          */
1509         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1510
1511         /*
1512          * Do miibus setup.
1513          */
1514         phy = MII_PHY_ANY;
1515         switch (sc->sk_type) {
1516         case SK_GENESIS:
1517                 sk_init_xmac(sc_if);
1518                 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1519                         phy = 0;
1520                 break;
1521         case SK_YUKON:
1522         case SK_YUKON_LITE:
1523         case SK_YUKON_LP:
1524                 sk_init_yukon(sc_if);
1525                 phy = 0;
1526                 break;
1527         }
1528
1529         SK_IF_UNLOCK(sc_if);
1530         error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1531             sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1532         if (error != 0) {
1533                 device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1534                 ether_ifdetach(ifp);
1535                 goto fail;
1536         }
1537
1538 fail:
1539         if (error) {
1540                 /* Access should be ok even though lock has been dropped */
1541                 sc->sk_if[port] = NULL;
1542                 sk_detach(dev);
1543         }
1544
1545         return(error);
1546 }
1547
1548 /*
1549  * Attach the interface. Allocate softc structures, do ifmedia
1550  * setup and ethernet/BPF attach.
1551  */
1552 static int
1553 skc_attach(dev)
1554         device_t                dev;
1555 {
1556         struct sk_softc         *sc;
1557         int                     error = 0, *port;
1558         uint8_t                 skrs;
1559         const char              *pname = NULL;
1560         char                    *revstr;
1561
1562         sc = device_get_softc(dev);
1563         sc->sk_dev = dev;
1564
1565         mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1566             MTX_DEF);
1567         mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1568         /*
1569          * Map control/status registers.
1570          */
1571         pci_enable_busmaster(dev);
1572
1573         /* Allocate resources */
1574 #ifdef SK_USEIOSPACE
1575         sc->sk_res_spec = sk_res_spec_io;
1576 #else
1577         sc->sk_res_spec = sk_res_spec_mem;
1578 #endif
1579         error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1580         if (error) {
1581                 if (sc->sk_res_spec == sk_res_spec_mem)
1582                         sc->sk_res_spec = sk_res_spec_io;
1583                 else
1584                         sc->sk_res_spec = sk_res_spec_mem;
1585                 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1586                 if (error) {
1587                         device_printf(dev, "couldn't allocate %s resources\n",
1588                             sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1589                             "I/O");
1590                         goto fail;
1591                 }
1592         }
1593
1594         sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1595         sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1596
1597         /* Bail out if chip is not recognized. */
1598         if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1599                 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1600                     sc->sk_type, sc->sk_rev);
1601                 error = ENXIO;
1602                 goto fail;
1603         }
1604
1605         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1606                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1607                 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1608                 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1609                 "SK interrupt moderation");
1610
1611         /* Pull in device tunables. */
1612         sc->sk_int_mod = SK_IM_DEFAULT;
1613         error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1614                 "int_mod", &sc->sk_int_mod);
1615         if (error == 0) {
1616                 if (sc->sk_int_mod < SK_IM_MIN ||
1617                     sc->sk_int_mod > SK_IM_MAX) {
1618                         device_printf(dev, "int_mod value out of range; "
1619                             "using default: %d\n", SK_IM_DEFAULT);
1620                         sc->sk_int_mod = SK_IM_DEFAULT;
1621                 }
1622         }
1623
1624         /* Reset the adapter. */
1625         sk_reset(sc);
1626
1627         skrs = sk_win_read_1(sc, SK_EPROM0);
1628         if (sc->sk_type == SK_GENESIS) {
1629                 /* Read and save RAM size and RAMbuffer offset */
1630                 switch(skrs) {
1631                 case SK_RAMSIZE_512K_64:
1632                         sc->sk_ramsize = 0x80000;
1633                         sc->sk_rboff = SK_RBOFF_0;
1634                         break;
1635                 case SK_RAMSIZE_1024K_64:
1636                         sc->sk_ramsize = 0x100000;
1637                         sc->sk_rboff = SK_RBOFF_80000;
1638                         break;
1639                 case SK_RAMSIZE_1024K_128:
1640                         sc->sk_ramsize = 0x100000;
1641                         sc->sk_rboff = SK_RBOFF_0;
1642                         break;
1643                 case SK_RAMSIZE_2048K_128:
1644                         sc->sk_ramsize = 0x200000;
1645                         sc->sk_rboff = SK_RBOFF_0;
1646                         break;
1647                 default:
1648                         device_printf(dev, "unknown ram size: %d\n", skrs);
1649                         error = ENXIO;
1650                         goto fail;
1651                 }
1652         } else { /* SK_YUKON_FAMILY */
1653                 if (skrs == 0x00)
1654                         sc->sk_ramsize = 0x20000;
1655                 else
1656                         sc->sk_ramsize = skrs * (1<<12);
1657                 sc->sk_rboff = SK_RBOFF_0;
1658         }
1659
1660         /* Read and save physical media type */
1661          sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1662
1663          if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1664                  sc->sk_coppertype = 1;
1665          else
1666                  sc->sk_coppertype = 0;
1667
1668         /* Determine whether to name it with VPD PN or just make it up.
1669          * Marvell Yukon VPD PN seems to freqently be bogus. */
1670         switch (pci_get_device(dev)) {
1671         case DEVICEID_SK_V1:
1672         case DEVICEID_BELKIN_5005:
1673         case DEVICEID_3COM_3C940:
1674         case DEVICEID_LINKSYS_EG1032:
1675         case DEVICEID_DLINK_DGE530T_A1:
1676         case DEVICEID_DLINK_DGE530T_B1:
1677                 /* Stay with VPD PN. */
1678                 (void) pci_get_vpd_ident(dev, &pname);
1679                 break;
1680         case DEVICEID_SK_V2:
1681                 /* YUKON VPD PN might bear no resemblance to reality. */
1682                 switch (sc->sk_type) {
1683                 case SK_GENESIS:
1684                         /* Stay with VPD PN. */
1685                         (void) pci_get_vpd_ident(dev, &pname);
1686                         break;
1687                 case SK_YUKON:
1688                         pname = "Marvell Yukon Gigabit Ethernet";
1689                         break;
1690                 case SK_YUKON_LITE:
1691                         pname = "Marvell Yukon Lite Gigabit Ethernet";
1692                         break;
1693                 case SK_YUKON_LP:
1694                         pname = "Marvell Yukon LP Gigabit Ethernet";
1695                         break;
1696                 default:
1697                         pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1698                         break;
1699                 }
1700
1701                 /* Yukon Lite Rev. A0 needs special test. */
1702                 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1703                         u_int32_t far;
1704                         u_int8_t testbyte;
1705
1706                         /* Save flash address register before testing. */
1707                         far = sk_win_read_4(sc, SK_EP_ADDR);
1708
1709                         sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1710                         testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1711
1712                         if (testbyte != 0x00) {
1713                                 /* Yukon Lite Rev. A0 detected. */
1714                                 sc->sk_type = SK_YUKON_LITE;
1715                                 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1716                                 /* Restore flash address register. */
1717                                 sk_win_write_4(sc, SK_EP_ADDR, far);
1718                         }
1719                 }
1720                 break;
1721         default:
1722                 device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1723                         "chipver=%02x, rev=%x\n",
1724                         pci_get_vendor(dev), pci_get_device(dev),
1725                         sc->sk_type, sc->sk_rev);
1726                 error = ENXIO;
1727                 goto fail;
1728         }
1729
1730         if (sc->sk_type == SK_YUKON_LITE) {
1731                 switch (sc->sk_rev) {
1732                 case SK_YUKON_LITE_REV_A0:
1733                         revstr = "A0";
1734                         break;
1735                 case SK_YUKON_LITE_REV_A1:
1736                         revstr = "A1";
1737                         break;
1738                 case SK_YUKON_LITE_REV_A3:
1739                         revstr = "A3";
1740                         break;
1741                 default:
1742                         revstr = "";
1743                         break;
1744                 }
1745         } else {
1746                 revstr = "";
1747         }
1748
1749         /* Announce the product name and more VPD data if there. */
1750         if (pname != NULL)
1751                 device_printf(dev, "%s rev. %s(0x%x)\n",
1752                         pname, revstr, sc->sk_rev);
1753
1754         if (bootverbose) {
1755                 device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1756                 device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1757                 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1758                 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1759         }
1760
1761         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1762         if (sc->sk_devs[SK_PORT_A] == NULL) {
1763                 device_printf(dev, "failed to add child for PORT_A\n");
1764                 error = ENXIO;
1765                 goto fail;
1766         }
1767         port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1768         if (port == NULL) {
1769                 device_printf(dev, "failed to allocate memory for "
1770                     "ivars of PORT_A\n");
1771                 error = ENXIO;
1772                 goto fail;
1773         }
1774         *port = SK_PORT_A;
1775         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1776
1777         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1778                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1779                 if (sc->sk_devs[SK_PORT_B] == NULL) {
1780                         device_printf(dev, "failed to add child for PORT_B\n");
1781                         error = ENXIO;
1782                         goto fail;
1783                 }
1784                 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1785                 if (port == NULL) {
1786                         device_printf(dev, "failed to allocate memory for "
1787                             "ivars of PORT_B\n");
1788                         error = ENXIO;
1789                         goto fail;
1790                 }
1791                 *port = SK_PORT_B;
1792                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1793         }
1794
1795         /* Turn on the 'driver is loaded' LED. */
1796         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1797
1798         error = bus_generic_attach(dev);
1799         if (error) {
1800                 device_printf(dev, "failed to attach port(s)\n");
1801                 goto fail;
1802         }
1803
1804         /* Hook interrupt last to avoid having to lock softc */
1805         error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1806             NULL, sk_intr, sc, &sc->sk_intrhand);
1807
1808         if (error) {
1809                 device_printf(dev, "couldn't set up irq\n");
1810                 goto fail;
1811         }
1812
1813 fail:
1814         if (error)
1815                 skc_detach(dev);
1816
1817         return(error);
1818 }
1819
1820 /*
1821  * Shutdown hardware and free up resources. This can be called any
1822  * time after the mutex has been initialized. It is called in both
1823  * the error case in attach and the normal detach case so it needs
1824  * to be careful about only freeing resources that have actually been
1825  * allocated.
1826  */
1827 static int
1828 sk_detach(dev)
1829         device_t                dev;
1830 {
1831         struct sk_if_softc      *sc_if;
1832         struct ifnet            *ifp;
1833
1834         sc_if = device_get_softc(dev);
1835         KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1836             ("sk mutex not initialized in sk_detach"));
1837         SK_IF_LOCK(sc_if);
1838
1839         ifp = sc_if->sk_ifp;
1840         /* These should only be active if attach_xmac succeeded */
1841         if (device_is_attached(dev)) {
1842                 sk_stop(sc_if);
1843                 /* Can't hold locks while calling detach */
1844                 SK_IF_UNLOCK(sc_if);
1845                 callout_drain(&sc_if->sk_tick_ch);
1846                 callout_drain(&sc_if->sk_watchdog_ch);
1847                 ether_ifdetach(ifp);
1848                 SK_IF_LOCK(sc_if);
1849         }
1850         if (ifp)
1851                 if_free(ifp);
1852         /*
1853          * We're generally called from skc_detach() which is using
1854          * device_delete_child() to get to here. It's already trashed
1855          * miibus for us, so don't do it here or we'll panic.
1856          */
1857         /*
1858         if (sc_if->sk_miibus != NULL)
1859                 device_delete_child(dev, sc_if->sk_miibus);
1860         */
1861         bus_generic_detach(dev);
1862         sk_dma_jumbo_free(sc_if);
1863         sk_dma_free(sc_if);
1864         SK_IF_UNLOCK(sc_if);
1865
1866         return(0);
1867 }
1868
1869 static int
1870 skc_detach(dev)
1871         device_t                dev;
1872 {
1873         struct sk_softc         *sc;
1874
1875         sc = device_get_softc(dev);
1876         KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1877
1878         if (device_is_alive(dev)) {
1879                 if (sc->sk_devs[SK_PORT_A] != NULL) {
1880                         free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1881                         device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1882                 }
1883                 if (sc->sk_devs[SK_PORT_B] != NULL) {
1884                         free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1885                         device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1886                 }
1887                 bus_generic_detach(dev);
1888         }
1889
1890         if (sc->sk_intrhand)
1891                 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1892         bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1893
1894         mtx_destroy(&sc->sk_mii_mtx);
1895         mtx_destroy(&sc->sk_mtx);
1896
1897         return(0);
1898 }
1899
1900 struct sk_dmamap_arg {
1901         bus_addr_t      sk_busaddr;
1902 };
1903
1904 static void
1905 sk_dmamap_cb(arg, segs, nseg, error)
1906         void                    *arg;
1907         bus_dma_segment_t       *segs;
1908         int                     nseg;
1909         int                     error;
1910 {
1911         struct sk_dmamap_arg    *ctx;
1912
1913         if (error != 0)
1914                 return;
1915
1916         ctx = arg;
1917         ctx->sk_busaddr = segs[0].ds_addr;
1918 }
1919
1920 /*
1921  * Allocate jumbo buffer storage. The SysKonnect adapters support
1922  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1923  * use them in their drivers. In order for us to use them, we need
1924  * large 9K receive buffers, however standard mbuf clusters are only
1925  * 2048 bytes in size. Consequently, we need to allocate and manage
1926  * our own jumbo buffer pool. Fortunately, this does not require an
1927  * excessive amount of additional code.
1928  */
1929 static int
1930 sk_dma_alloc(sc_if)
1931         struct sk_if_softc      *sc_if;
1932 {
1933         struct sk_dmamap_arg    ctx;
1934         struct sk_txdesc        *txd;
1935         struct sk_rxdesc        *rxd;
1936         int                     error, i;
1937
1938         /* create parent tag */
1939         /*
1940          * XXX
1941          * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1942          * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1943          * However bz@ reported that it does not work on amd64 with > 4GB
1944          * RAM. Until we have more clues of the breakage, disable DAC mode
1945          * by limiting DMA address to be in 32bit address space.
1946          */
1947         error = bus_dma_tag_create(
1948                     bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1949                     1, 0,                       /* algnmnt, boundary */
1950                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1951                     BUS_SPACE_MAXADDR,          /* highaddr */
1952                     NULL, NULL,                 /* filter, filterarg */
1953                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1954                     0,                          /* nsegments */
1955                     BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1956                     0,                          /* flags */
1957                     NULL, NULL,                 /* lockfunc, lockarg */
1958                     &sc_if->sk_cdata.sk_parent_tag);
1959         if (error != 0) {
1960                 device_printf(sc_if->sk_if_dev,
1961                     "failed to create parent DMA tag\n");
1962                 goto fail;
1963         }
1964
1965         /* create tag for Tx ring */
1966         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1967                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1968                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1969                     BUS_SPACE_MAXADDR,          /* highaddr */
1970                     NULL, NULL,                 /* filter, filterarg */
1971                     SK_TX_RING_SZ,              /* maxsize */
1972                     1,                          /* nsegments */
1973                     SK_TX_RING_SZ,              /* maxsegsize */
1974                     0,                          /* flags */
1975                     NULL, NULL,                 /* lockfunc, lockarg */
1976                     &sc_if->sk_cdata.sk_tx_ring_tag);
1977         if (error != 0) {
1978                 device_printf(sc_if->sk_if_dev,
1979                     "failed to allocate Tx ring DMA tag\n");
1980                 goto fail;
1981         }
1982
1983         /* create tag for Rx ring */
1984         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1985                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
1986                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1987                     BUS_SPACE_MAXADDR,          /* highaddr */
1988                     NULL, NULL,                 /* filter, filterarg */
1989                     SK_RX_RING_SZ,              /* maxsize */
1990                     1,                          /* nsegments */
1991                     SK_RX_RING_SZ,              /* maxsegsize */
1992                     0,                          /* flags */
1993                     NULL, NULL,                 /* lockfunc, lockarg */
1994                     &sc_if->sk_cdata.sk_rx_ring_tag);
1995         if (error != 0) {
1996                 device_printf(sc_if->sk_if_dev,
1997                     "failed to allocate Rx ring DMA tag\n");
1998                 goto fail;
1999         }
2000
2001         /* create tag for Tx buffers */
2002         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2003                     1, 0,                       /* algnmnt, boundary */
2004                     BUS_SPACE_MAXADDR,          /* lowaddr */
2005                     BUS_SPACE_MAXADDR,          /* highaddr */
2006                     NULL, NULL,                 /* filter, filterarg */
2007                     MCLBYTES * SK_MAXTXSEGS,    /* maxsize */
2008                     SK_MAXTXSEGS,               /* nsegments */
2009                     MCLBYTES,                   /* maxsegsize */
2010                     0,                          /* flags */
2011                     NULL, NULL,                 /* lockfunc, lockarg */
2012                     &sc_if->sk_cdata.sk_tx_tag);
2013         if (error != 0) {
2014                 device_printf(sc_if->sk_if_dev,
2015                     "failed to allocate Tx DMA tag\n");
2016                 goto fail;
2017         }
2018
2019         /* create tag for Rx buffers */
2020         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2021                     1, 0,                       /* algnmnt, boundary */
2022                     BUS_SPACE_MAXADDR,          /* lowaddr */
2023                     BUS_SPACE_MAXADDR,          /* highaddr */
2024                     NULL, NULL,                 /* filter, filterarg */
2025                     MCLBYTES,                   /* maxsize */
2026                     1,                          /* nsegments */
2027                     MCLBYTES,                   /* maxsegsize */
2028                     0,                          /* flags */
2029                     NULL, NULL,                 /* lockfunc, lockarg */
2030                     &sc_if->sk_cdata.sk_rx_tag);
2031         if (error != 0) {
2032                 device_printf(sc_if->sk_if_dev,
2033                     "failed to allocate Rx DMA tag\n");
2034                 goto fail;
2035         }
2036
2037         /* allocate DMA'able memory and load the DMA map for Tx ring */
2038         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2039             (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2040             &sc_if->sk_cdata.sk_tx_ring_map);
2041         if (error != 0) {
2042                 device_printf(sc_if->sk_if_dev,
2043                     "failed to allocate DMA'able memory for Tx ring\n");
2044                 goto fail;
2045         }
2046
2047         ctx.sk_busaddr = 0;
2048         error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2049             sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2050             SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2051         if (error != 0) {
2052                 device_printf(sc_if->sk_if_dev,
2053                     "failed to load DMA'able memory for Tx ring\n");
2054                 goto fail;
2055         }
2056         sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2057
2058         /* allocate DMA'able memory and load the DMA map for Rx ring */
2059         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2060             (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2061             &sc_if->sk_cdata.sk_rx_ring_map);
2062         if (error != 0) {
2063                 device_printf(sc_if->sk_if_dev,
2064                     "failed to allocate DMA'able memory for Rx ring\n");
2065                 goto fail;
2066         }
2067
2068         ctx.sk_busaddr = 0;
2069         error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2070             sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2071             SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2072         if (error != 0) {
2073                 device_printf(sc_if->sk_if_dev,
2074                     "failed to load DMA'able memory for Rx ring\n");
2075                 goto fail;
2076         }
2077         sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2078
2079         /* create DMA maps for Tx buffers */
2080         for (i = 0; i < SK_TX_RING_CNT; i++) {
2081                 txd = &sc_if->sk_cdata.sk_txdesc[i];
2082                 txd->tx_m = NULL;
2083                 txd->tx_dmamap = NULL;
2084                 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2085                     &txd->tx_dmamap);
2086                 if (error != 0) {
2087                         device_printf(sc_if->sk_if_dev,
2088                             "failed to create Tx dmamap\n");
2089                         goto fail;
2090                 }
2091         }
2092
2093         /* create DMA maps for Rx buffers */
2094         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2095             &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2096                 device_printf(sc_if->sk_if_dev,
2097                     "failed to create spare Rx dmamap\n");
2098                 goto fail;
2099         }
2100         for (i = 0; i < SK_RX_RING_CNT; i++) {
2101                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2102                 rxd->rx_m = NULL;
2103                 rxd->rx_dmamap = NULL;
2104                 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2105                     &rxd->rx_dmamap);
2106                 if (error != 0) {
2107                         device_printf(sc_if->sk_if_dev,
2108                             "failed to create Rx dmamap\n");
2109                         goto fail;
2110                 }
2111         }
2112
2113 fail:
2114         return (error);
2115 }
2116
2117 static int
2118 sk_dma_jumbo_alloc(sc_if)
2119         struct sk_if_softc      *sc_if;
2120 {
2121         struct sk_dmamap_arg    ctx;
2122         struct sk_rxdesc        *jrxd;
2123         int                     error, i;
2124
2125         if (jumbo_disable != 0) {
2126                 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2127                 sc_if->sk_jumbo_disable = 1;
2128                 return (0);
2129         }
2130         /* create tag for jumbo Rx ring */
2131         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2132                     SK_RING_ALIGN, 0,           /* algnmnt, boundary */
2133                     BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
2134                     BUS_SPACE_MAXADDR,          /* highaddr */
2135                     NULL, NULL,                 /* filter, filterarg */
2136                     SK_JUMBO_RX_RING_SZ,        /* maxsize */
2137                     1,                          /* nsegments */
2138                     SK_JUMBO_RX_RING_SZ,        /* maxsegsize */
2139                     0,                          /* flags */
2140                     NULL, NULL,                 /* lockfunc, lockarg */
2141                     &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2142         if (error != 0) {
2143                 device_printf(sc_if->sk_if_dev,
2144                     "failed to allocate jumbo Rx ring DMA tag\n");
2145                 goto jumbo_fail;
2146         }
2147
2148         /* create tag for jumbo Rx buffers */
2149         error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2150                     1, 0,                       /* algnmnt, boundary */
2151                     BUS_SPACE_MAXADDR,          /* lowaddr */
2152                     BUS_SPACE_MAXADDR,          /* highaddr */
2153                     NULL, NULL,                 /* filter, filterarg */
2154                     MJUM9BYTES,                 /* maxsize */
2155                     1,                          /* nsegments */
2156                     MJUM9BYTES,                 /* maxsegsize */
2157                     0,                          /* flags */
2158                     NULL, NULL,                 /* lockfunc, lockarg */
2159                     &sc_if->sk_cdata.sk_jumbo_rx_tag);
2160         if (error != 0) {
2161                 device_printf(sc_if->sk_if_dev,
2162                     "failed to allocate jumbo Rx DMA tag\n");
2163                 goto jumbo_fail;
2164         }
2165
2166         /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2167         error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2168             (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
2169             BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2170         if (error != 0) {
2171                 device_printf(sc_if->sk_if_dev,
2172                     "failed to allocate DMA'able memory for jumbo Rx ring\n");
2173                 goto jumbo_fail;
2174         }
2175
2176         ctx.sk_busaddr = 0;
2177         error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2178             sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2179             sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2180             &ctx, BUS_DMA_NOWAIT);
2181         if (error != 0) {
2182                 device_printf(sc_if->sk_if_dev,
2183                     "failed to load DMA'able memory for jumbo Rx ring\n");
2184                 goto jumbo_fail;
2185         }
2186         sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2187
2188         /* create DMA maps for jumbo Rx buffers */
2189         if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2190             &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2191                 device_printf(sc_if->sk_if_dev,
2192                     "failed to create spare jumbo Rx dmamap\n");
2193                 goto jumbo_fail;
2194         }
2195         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2196                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2197                 jrxd->rx_m = NULL;
2198                 jrxd->rx_dmamap = NULL;
2199                 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2200                     &jrxd->rx_dmamap);
2201                 if (error != 0) {
2202                         device_printf(sc_if->sk_if_dev,
2203                             "failed to create jumbo Rx dmamap\n");
2204                         goto jumbo_fail;
2205                 }
2206         }
2207
2208         return (0);
2209
2210 jumbo_fail:
2211         sk_dma_jumbo_free(sc_if);
2212         device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2213             "resource shortage\n");
2214         sc_if->sk_jumbo_disable = 1;
2215         return (0);
2216 }
2217
2218 static void
2219 sk_dma_free(sc_if)
2220         struct sk_if_softc      *sc_if;
2221 {
2222         struct sk_txdesc        *txd;
2223         struct sk_rxdesc        *rxd;
2224         int                     i;
2225
2226         /* Tx ring */
2227         if (sc_if->sk_cdata.sk_tx_ring_tag) {
2228                 if (sc_if->sk_cdata.sk_tx_ring_map)
2229                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2230                             sc_if->sk_cdata.sk_tx_ring_map);
2231                 if (sc_if->sk_cdata.sk_tx_ring_map &&
2232                     sc_if->sk_rdata.sk_tx_ring)
2233                         bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2234                             sc_if->sk_rdata.sk_tx_ring,
2235                             sc_if->sk_cdata.sk_tx_ring_map);
2236                 sc_if->sk_rdata.sk_tx_ring = NULL;
2237                 sc_if->sk_cdata.sk_tx_ring_map = NULL;
2238                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2239                 sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2240         }
2241         /* Rx ring */
2242         if (sc_if->sk_cdata.sk_rx_ring_tag) {
2243                 if (sc_if->sk_cdata.sk_rx_ring_map)
2244                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2245                             sc_if->sk_cdata.sk_rx_ring_map);
2246                 if (sc_if->sk_cdata.sk_rx_ring_map &&
2247                     sc_if->sk_rdata.sk_rx_ring)
2248                         bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2249                             sc_if->sk_rdata.sk_rx_ring,
2250                             sc_if->sk_cdata.sk_rx_ring_map);
2251                 sc_if->sk_rdata.sk_rx_ring = NULL;
2252                 sc_if->sk_cdata.sk_rx_ring_map = NULL;
2253                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2254                 sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2255         }
2256         /* Tx buffers */
2257         if (sc_if->sk_cdata.sk_tx_tag) {
2258                 for (i = 0; i < SK_TX_RING_CNT; i++) {
2259                         txd = &sc_if->sk_cdata.sk_txdesc[i];
2260                         if (txd->tx_dmamap) {
2261                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2262                                     txd->tx_dmamap);
2263                                 txd->tx_dmamap = NULL;
2264                         }
2265                 }
2266                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2267                 sc_if->sk_cdata.sk_tx_tag = NULL;
2268         }
2269         /* Rx buffers */
2270         if (sc_if->sk_cdata.sk_rx_tag) {
2271                 for (i = 0; i < SK_RX_RING_CNT; i++) {
2272                         rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2273                         if (rxd->rx_dmamap) {
2274                                 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2275                                     rxd->rx_dmamap);
2276                                 rxd->rx_dmamap = NULL;
2277                         }
2278                 }
2279                 if (sc_if->sk_cdata.sk_rx_sparemap) {
2280                         bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2281                             sc_if->sk_cdata.sk_rx_sparemap);
2282                         sc_if->sk_cdata.sk_rx_sparemap = NULL;
2283                 }
2284                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2285                 sc_if->sk_cdata.sk_rx_tag = NULL;
2286         }
2287
2288         if (sc_if->sk_cdata.sk_parent_tag) {
2289                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2290                 sc_if->sk_cdata.sk_parent_tag = NULL;
2291         }
2292 }
2293
2294 static void
2295 sk_dma_jumbo_free(sc_if)
2296         struct sk_if_softc      *sc_if;
2297 {
2298         struct sk_rxdesc        *jrxd;
2299         int                     i;
2300
2301         /* jumbo Rx ring */
2302         if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2303                 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2304                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2305                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2306                 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2307                     sc_if->sk_rdata.sk_jumbo_rx_ring)
2308                         bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2309                             sc_if->sk_rdata.sk_jumbo_rx_ring,
2310                             sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2311                 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2312                 sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2313                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2314                 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2315         }
2316
2317         /* jumbo Rx buffers */
2318         if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2319                 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2320                         jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2321                         if (jrxd->rx_dmamap) {
2322                                 bus_dmamap_destroy(
2323                                     sc_if->sk_cdata.sk_jumbo_rx_tag,
2324                                     jrxd->rx_dmamap);
2325                                 jrxd->rx_dmamap = NULL;
2326                         }
2327                 }
2328                 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2329                         bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2330                             sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2331                         sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2332                 }
2333                 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2334                 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2335         }
2336 }
2337
2338 static void
2339 sk_txcksum(ifp, m, f)
2340         struct ifnet            *ifp;
2341         struct mbuf             *m;
2342         struct sk_tx_desc       *f;
2343 {
2344         struct ip               *ip;
2345         u_int16_t               offset;
2346         u_int8_t                *p;
2347
2348         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2349         for(; m && m->m_len == 0; m = m->m_next)
2350                 ;
2351         if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2352                 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2353                 /* checksum may be corrupted */
2354                 goto sendit;
2355         }
2356         if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2357                 if (m->m_len != ETHER_HDR_LEN) {
2358                         if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2359                             __func__);
2360                         /* checksum may be corrupted */
2361                         goto sendit;
2362                 }
2363                 for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2364                         ;
2365                 if (m == NULL) {
2366                         offset = sizeof(struct ip) + ETHER_HDR_LEN;
2367                         /* checksum may be corrupted */
2368                         goto sendit;
2369                 }
2370                 ip = mtod(m, struct ip *);
2371         } else {
2372                 p = mtod(m, u_int8_t *);
2373                 p += ETHER_HDR_LEN;
2374                 ip = (struct ip *)p;
2375         }
2376         offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2377
2378 sendit:
2379         f->sk_csum_startval = 0;
2380         f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2381             (offset << 16));
2382 }
2383
2384 static int
2385 sk_encap(sc_if, m_head)
2386         struct sk_if_softc      *sc_if;
2387         struct mbuf             **m_head;
2388 {
2389         struct sk_txdesc        *txd;
2390         struct sk_tx_desc       *f = NULL;
2391         struct mbuf             *m;
2392         bus_dma_segment_t       txsegs[SK_MAXTXSEGS];
2393         u_int32_t               cflags, frag, si, sk_ctl;
2394         int                     error, i, nseg;
2395
2396         SK_IF_LOCK_ASSERT(sc_if);
2397
2398         if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2399                 return (ENOBUFS);
2400
2401         error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2402             txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2403         if (error == EFBIG) {
2404                 m = m_defrag(*m_head, M_DONTWAIT);
2405                 if (m == NULL) {
2406                         m_freem(*m_head);
2407                         *m_head = NULL;
2408                         return (ENOMEM);
2409                 }
2410                 *m_head = m;
2411                 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2412                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2413                 if (error != 0) {
2414                         m_freem(*m_head);
2415                         *m_head = NULL;
2416                         return (error);
2417                 }
2418         } else if (error != 0)
2419                 return (error);
2420         if (nseg == 0) {
2421                 m_freem(*m_head);
2422                 *m_head = NULL;
2423                 return (EIO);
2424         }
2425         if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2426                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2427                 return (ENOBUFS);
2428         }
2429
2430         m = *m_head;
2431         if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2432                 cflags = SK_OPCODE_CSUM;
2433         else
2434                 cflags = SK_OPCODE_DEFAULT;
2435         si = frag = sc_if->sk_cdata.sk_tx_prod;
2436         for (i = 0; i < nseg; i++) {
2437                 f = &sc_if->sk_rdata.sk_tx_ring[frag];
2438                 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2439                 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2440                 sk_ctl = txsegs[i].ds_len | cflags;
2441                 if (i == 0) {
2442                         if (cflags == SK_OPCODE_CSUM)
2443                                 sk_txcksum(sc_if->sk_ifp, m, f);
2444                         sk_ctl |= SK_TXCTL_FIRSTFRAG;
2445                 } else
2446                         sk_ctl |= SK_TXCTL_OWN;
2447                 f->sk_ctl = htole32(sk_ctl);
2448                 sc_if->sk_cdata.sk_tx_cnt++;
2449                 SK_INC(frag, SK_TX_RING_CNT);
2450         }
2451         sc_if->sk_cdata.sk_tx_prod = frag;
2452
2453         /* set EOF on the last desciptor */
2454         frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2455         f = &sc_if->sk_rdata.sk_tx_ring[frag];
2456         f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2457
2458         /* turn the first descriptor ownership to NIC */
2459         f = &sc_if->sk_rdata.sk_tx_ring[si];
2460         f->sk_ctl |= htole32(SK_TXCTL_OWN);
2461
2462         STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2463         STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2464         txd->tx_m = m;
2465
2466         /* sync descriptors */
2467         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2468             BUS_DMASYNC_PREWRITE);
2469         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2470             sc_if->sk_cdata.sk_tx_ring_map,
2471             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2472
2473         return (0);
2474 }
2475
2476 static void
2477 sk_start(ifp)
2478         struct ifnet            *ifp;
2479 {
2480         struct sk_if_softc *sc_if;
2481
2482         sc_if = ifp->if_softc;
2483
2484         SK_IF_LOCK(sc_if);
2485         sk_start_locked(ifp);
2486         SK_IF_UNLOCK(sc_if);
2487
2488         return;
2489 }
2490
2491 static void
2492 sk_start_locked(ifp)
2493         struct ifnet            *ifp;
2494 {
2495         struct sk_softc         *sc;
2496         struct sk_if_softc      *sc_if;
2497         struct mbuf             *m_head;
2498         int                     enq;
2499
2500         sc_if = ifp->if_softc;
2501         sc = sc_if->sk_softc;
2502
2503         SK_IF_LOCK_ASSERT(sc_if);
2504
2505         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2506             sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2507                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2508                 if (m_head == NULL)
2509                         break;
2510
2511                 /*
2512                  * Pack the data into the transmit ring. If we
2513                  * don't have room, set the OACTIVE flag and wait
2514                  * for the NIC to drain the ring.
2515                  */
2516                 if (sk_encap(sc_if, &m_head)) {
2517                         if (m_head == NULL)
2518                                 break;
2519                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2520                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2521                         break;
2522                 }
2523
2524                 enq++;
2525                 /*
2526                  * If there's a BPF listener, bounce a copy of this frame
2527                  * to him.
2528                  */
2529                 BPF_MTAP(ifp, m_head);
2530         }
2531
2532         if (enq > 0) {
2533                 /* Transmit */
2534                 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2535
2536                 /* Set a timeout in case the chip goes out to lunch. */
2537                 sc_if->sk_watchdog_timer = 5;
2538         }
2539 }
2540
2541
2542 static void
2543 sk_watchdog(arg)
2544         void                    *arg;
2545 {
2546         struct sk_if_softc      *sc_if;
2547         struct ifnet            *ifp;
2548
2549         ifp = arg;
2550         sc_if = ifp->if_softc;
2551
2552         SK_IF_LOCK_ASSERT(sc_if);
2553
2554         if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2555                 goto done;
2556
2557         /*
2558          * Reclaim first as there is a possibility of losing Tx completion
2559          * interrupts.
2560          */
2561         sk_txeof(sc_if);
2562         if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2563                 if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2564                 ifp->if_oerrors++;
2565                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2566                 sk_init_locked(sc_if);
2567         }
2568
2569 done:
2570         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2571
2572         return;
2573 }
2574
2575 static int
2576 skc_shutdown(dev)
2577         device_t                dev;
2578 {
2579         struct sk_softc         *sc;
2580
2581         sc = device_get_softc(dev);
2582         SK_LOCK(sc);
2583
2584         /* Turn off the 'driver is loaded' LED. */
2585         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2586
2587         /*
2588          * Reset the GEnesis controller. Doing this should also
2589          * assert the resets on the attached XMAC(s).
2590          */
2591         sk_reset(sc);
2592         SK_UNLOCK(sc);
2593
2594         return (0);
2595 }
2596
2597 static int
2598 skc_suspend(dev)
2599         device_t                dev;
2600 {
2601         struct sk_softc         *sc;
2602         struct sk_if_softc      *sc_if0, *sc_if1;
2603         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2604
2605         sc = device_get_softc(dev);
2606
2607         SK_LOCK(sc);
2608
2609         sc_if0 = sc->sk_if[SK_PORT_A];
2610         sc_if1 = sc->sk_if[SK_PORT_B];
2611         if (sc_if0 != NULL)
2612                 ifp0 = sc_if0->sk_ifp;
2613         if (sc_if1 != NULL)
2614                 ifp1 = sc_if1->sk_ifp;
2615         if (ifp0 != NULL)
2616                 sk_stop(sc_if0);
2617         if (ifp1 != NULL)
2618                 sk_stop(sc_if1);
2619         sc->sk_suspended = 1;
2620
2621         SK_UNLOCK(sc);
2622
2623         return (0);
2624 }
2625
2626 static int
2627 skc_resume(dev)
2628         device_t                dev;
2629 {
2630         struct sk_softc         *sc;
2631         struct sk_if_softc      *sc_if0, *sc_if1;
2632         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2633
2634         sc = device_get_softc(dev);
2635
2636         SK_LOCK(sc);
2637
2638         sc_if0 = sc->sk_if[SK_PORT_A];
2639         sc_if1 = sc->sk_if[SK_PORT_B];
2640         if (sc_if0 != NULL)
2641                 ifp0 = sc_if0->sk_ifp;
2642         if (sc_if1 != NULL)
2643                 ifp1 = sc_if1->sk_ifp;
2644         if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2645                 sk_init_locked(sc_if0);
2646         if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2647                 sk_init_locked(sc_if1);
2648         sc->sk_suspended = 0;
2649
2650         SK_UNLOCK(sc);
2651
2652         return (0);
2653 }
2654
2655 /*
2656  * According to the data sheet from SK-NET GENESIS the hardware can compute
2657  * two Rx checksums at the same time(Each checksum start position is
2658  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2659  * does not work at least on my Yukon hardware. I tried every possible ways
2660  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2661  * checksum offload was disabled at the moment and only IP checksum offload
2662  * was enabled.
2663  * As nomral IP header size is 20 bytes I can't expect it would give an
2664  * increase in throughput. However it seems it doesn't hurt performance in
2665  * my testing. If there is a more detailed information for checksum secret
2666  * of the hardware in question please contact yongari@FreeBSD.org to add
2667  * TCP/UDP checksum offload support.
2668  */
2669 static __inline void
2670 sk_rxcksum(ifp, m, csum)
2671         struct ifnet            *ifp;
2672         struct mbuf             *m;
2673         u_int32_t               csum;
2674 {
2675         struct ether_header     *eh;
2676         struct ip               *ip;
2677         int32_t                 hlen, len, pktlen;
2678         u_int16_t               csum1, csum2, ipcsum;
2679
2680         pktlen = m->m_pkthdr.len;
2681         if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2682                 return;
2683         eh = mtod(m, struct ether_header *);
2684         if (eh->ether_type != htons(ETHERTYPE_IP))
2685                 return;
2686         ip = (struct ip *)(eh + 1);
2687         if (ip->ip_v != IPVERSION)
2688                 return;
2689         hlen = ip->ip_hl << 2;
2690         pktlen -= sizeof(struct ether_header);
2691         if (hlen < sizeof(struct ip))
2692                 return;
2693         if (ntohs(ip->ip_len) < hlen)
2694                 return;
2695         if (ntohs(ip->ip_len) != pktlen)
2696                 return;
2697
2698         csum1 = htons(csum & 0xffff);
2699         csum2 = htons((csum >> 16) & 0xffff);
2700         ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2701         /* checksum fixup for IP options */
2702         len = hlen - sizeof(struct ip);
2703         if (len > 0) {
2704                 /*
2705                  * If the second checksum value is correct we can compute IP
2706                  * checksum with simple math. Unfortunately the second checksum
2707                  * value is wrong so we can't verify the checksum from the
2708                  * value(It seems there is some magic here to get correct
2709                  * value). If the second checksum value is correct it also
2710                  * means we can get TCP/UDP checksum) here. However, it still
2711                  * needs pseudo header checksum calculation due to hardware
2712                  * limitations.
2713                  */
2714                 return;
2715         }
2716         m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2717         if (ipcsum == 0xffff)
2718                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2719 }
2720
2721 static __inline int
2722 sk_rxvalid(sc, stat, len)
2723         struct sk_softc         *sc;
2724         u_int32_t               stat, len;
2725 {
2726
2727         if (sc->sk_type == SK_GENESIS) {
2728                 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2729                     XM_RXSTAT_BYTES(stat) != len)
2730                         return (0);
2731         } else {
2732                 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2733                     YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2734                     YU_RXSTAT_JABBER)) != 0 ||
2735                     (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2736                     YU_RXSTAT_BYTES(stat) != len)
2737                         return (0);
2738         }
2739
2740         return (1);
2741 }
2742
2743 static void
2744 sk_rxeof(sc_if)
2745         struct sk_if_softc      *sc_if;
2746 {
2747         struct sk_softc         *sc;
2748         struct mbuf             *m;
2749         struct ifnet            *ifp;
2750         struct sk_rx_desc       *cur_rx;
2751         struct sk_rxdesc        *rxd;
2752         int                     cons, prog;
2753         u_int32_t               csum, rxstat, sk_ctl;
2754
2755         sc = sc_if->sk_softc;
2756         ifp = sc_if->sk_ifp;
2757
2758         SK_IF_LOCK_ASSERT(sc_if);
2759
2760         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2761             sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2762
2763         prog = 0;
2764         for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2765             prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2766                 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2767                 sk_ctl = le32toh(cur_rx->sk_ctl);
2768                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2769                         break;
2770                 rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2771                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2772
2773                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2774                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2775                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2776                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2777                     SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2778                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2779                         ifp->if_ierrors++;
2780                         sk_discard_rxbuf(sc_if, cons);
2781                         continue;
2782                 }
2783
2784                 m = rxd->rx_m;
2785                 csum = le32toh(cur_rx->sk_csum);
2786                 if (sk_newbuf(sc_if, cons) != 0) {
2787                         ifp->if_iqdrops++;
2788                         /* reuse old buffer */
2789                         sk_discard_rxbuf(sc_if, cons);
2790                         continue;
2791                 }
2792                 m->m_pkthdr.rcvif = ifp;
2793                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2794                 ifp->if_ipackets++;
2795                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2796                         sk_rxcksum(ifp, m, csum);
2797                 SK_IF_UNLOCK(sc_if);
2798                 (*ifp->if_input)(ifp, m);
2799                 SK_IF_LOCK(sc_if);
2800         }
2801
2802         if (prog > 0) {
2803                 sc_if->sk_cdata.sk_rx_cons = cons;
2804                 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2805                     sc_if->sk_cdata.sk_rx_ring_map,
2806                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2807         }
2808 }
2809
2810 static void
2811 sk_jumbo_rxeof(sc_if)
2812         struct sk_if_softc      *sc_if;
2813 {
2814         struct sk_softc         *sc;
2815         struct mbuf             *m;
2816         struct ifnet            *ifp;
2817         struct sk_rx_desc       *cur_rx;
2818         struct sk_rxdesc        *jrxd;
2819         int                     cons, prog;
2820         u_int32_t               csum, rxstat, sk_ctl;
2821
2822         sc = sc_if->sk_softc;
2823         ifp = sc_if->sk_ifp;
2824
2825         SK_IF_LOCK_ASSERT(sc_if);
2826
2827         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2828             sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2829
2830         prog = 0;
2831         for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2832             prog < SK_JUMBO_RX_RING_CNT;
2833             prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2834                 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2835                 sk_ctl = le32toh(cur_rx->sk_ctl);
2836                 if ((sk_ctl & SK_RXCTL_OWN) != 0)
2837                         break;
2838                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2839                 rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2840
2841                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2842                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2843                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2844                     SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2845                     SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2846                     sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2847                         ifp->if_ierrors++;
2848                         sk_discard_jumbo_rxbuf(sc_if, cons);
2849                         continue;
2850                 }
2851
2852                 m = jrxd->rx_m;
2853                 csum = le32toh(cur_rx->sk_csum);
2854                 if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2855                         ifp->if_iqdrops++;
2856                         /* reuse old buffer */
2857                         sk_discard_jumbo_rxbuf(sc_if, cons);
2858                         continue;
2859                 }
2860                 m->m_pkthdr.rcvif = ifp;
2861                 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2862                 ifp->if_ipackets++;
2863                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2864                         sk_rxcksum(ifp, m, csum);
2865                 SK_IF_UNLOCK(sc_if);
2866                 (*ifp->if_input)(ifp, m);
2867                 SK_IF_LOCK(sc_if);
2868         }
2869
2870         if (prog > 0) {
2871                 sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2872                 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2873                     sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2874                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2875         }
2876 }
2877
2878 static void
2879 sk_txeof(sc_if)
2880         struct sk_if_softc      *sc_if;
2881 {
2882         struct sk_softc         *sc;
2883         struct sk_txdesc        *txd;
2884         struct sk_tx_desc       *cur_tx;
2885         struct ifnet            *ifp;
2886         u_int32_t               idx, sk_ctl;
2887
2888         sc = sc_if->sk_softc;
2889         ifp = sc_if->sk_ifp;
2890
2891         txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2892         if (txd == NULL)
2893                 return;
2894         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2895             sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2896         /*
2897          * Go through our tx ring and free mbufs for those
2898          * frames that have been sent.
2899          */
2900         for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2901                 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2902                         break;
2903                 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2904                 sk_ctl = le32toh(cur_tx->sk_ctl);
2905                 if (sk_ctl & SK_TXCTL_OWN)
2906                         break;
2907                 sc_if->sk_cdata.sk_tx_cnt--;
2908                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2909                 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2910                         continue;
2911                 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2912                     BUS_DMASYNC_POSTWRITE);
2913                 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2914
2915                 ifp->if_opackets++;
2916                 m_freem(txd->tx_m);
2917                 txd->tx_m = NULL;
2918                 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2919                 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2920                 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2921         }
2922         sc_if->sk_cdata.sk_tx_cons = idx;
2923         sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2924
2925         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2926             sc_if->sk_cdata.sk_tx_ring_map,
2927             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2928 }
2929
2930 static void
2931 sk_tick(xsc_if)
2932         void                    *xsc_if;
2933 {
2934         struct sk_if_softc      *sc_if;
2935         struct mii_data         *mii;
2936         struct ifnet            *ifp;
2937         int                     i;
2938
2939         sc_if = xsc_if;
2940         ifp = sc_if->sk_ifp;
2941         mii = device_get_softc(sc_if->sk_miibus);
2942
2943         if (!(ifp->if_flags & IFF_UP))
2944                 return;
2945
2946         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2947                 sk_intr_bcom(sc_if);
2948                 return;
2949         }
2950
2951         /*
2952          * According to SysKonnect, the correct way to verify that
2953          * the link has come back up is to poll bit 0 of the GPIO
2954          * register three times. This pin has the signal from the
2955          * link_sync pin connected to it; if we read the same link
2956          * state 3 times in a row, we know the link is up.
2957          */
2958         for (i = 0; i < 3; i++) {
2959                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2960                         break;
2961         }
2962
2963         if (i != 3) {
2964                 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2965                 return;
2966         }
2967
2968         /* Turn the GP0 interrupt back on. */
2969         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2970         SK_XM_READ_2(sc_if, XM_ISR);
2971         mii_tick(mii);
2972         callout_stop(&sc_if->sk_tick_ch);
2973 }
2974
2975 static void
2976 sk_yukon_tick(xsc_if)
2977         void                    *xsc_if;
2978 {
2979         struct sk_if_softc      *sc_if;
2980         struct mii_data         *mii;
2981
2982         sc_if = xsc_if;
2983         mii = device_get_softc(sc_if->sk_miibus);
2984
2985         mii_tick(mii);
2986         callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2987 }
2988
2989 static void
2990 sk_intr_bcom(sc_if)
2991         struct sk_if_softc      *sc_if;
2992 {
2993         struct mii_data         *mii;
2994         struct ifnet            *ifp;
2995         int                     status;
2996         mii = device_get_softc(sc_if->sk_miibus);
2997         ifp = sc_if->sk_ifp;
2998
2999         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3000
3001         /*
3002          * Read the PHY interrupt register to make sure
3003          * we clear any pending interrupts.
3004          */
3005         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3006
3007         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3008                 sk_init_xmac(sc_if);
3009                 return;
3010         }
3011
3012         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3013                 int                     lstat;
3014                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3015                     BRGPHY_MII_AUXSTS);
3016
3017                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3018                         mii_mediachg(mii);
3019                         /* Turn off the link LED. */
3020                         SK_IF_WRITE_1(sc_if, 0,
3021                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
3022                         sc_if->sk_link = 0;
3023                 } else if (status & BRGPHY_ISR_LNK_CHG) {
3024                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3025                             BRGPHY_MII_IMR, 0xFF00);
3026                         mii_tick(mii);
3027                         sc_if->sk_link = 1;
3028                         /* Turn on the link LED. */
3029                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3030                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3031                             SK_LINKLED_BLINK_OFF);
3032                 } else {
3033                         mii_tick(mii);
3034                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3035                 }
3036         }
3037
3038         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3039
3040         return;
3041 }
3042
3043 static void
3044 sk_intr_xmac(sc_if)
3045         struct sk_if_softc      *sc_if;
3046 {
3047         struct sk_softc         *sc;
3048         u_int16_t               status;
3049
3050         sc = sc_if->sk_softc;
3051         status = SK_XM_READ_2(sc_if, XM_ISR);
3052
3053         /*
3054          * Link has gone down. Start MII tick timeout to
3055          * watch for link resync.
3056          */
3057         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3058                 if (status & XM_ISR_GP0_SET) {
3059                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3060                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3061                 }
3062
3063                 if (status & XM_ISR_AUTONEG_DONE) {
3064                         callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3065                 }
3066         }
3067
3068         if (status & XM_IMR_TX_UNDERRUN)
3069                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3070
3071         if (status & XM_IMR_RX_OVERRUN)
3072                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3073
3074         status = SK_XM_READ_2(sc_if, XM_ISR);
3075
3076         return;
3077 }
3078
3079 static void
3080 sk_intr_yukon(sc_if)
3081         struct sk_if_softc      *sc_if;
3082 {
3083         u_int8_t status;
3084
3085         status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3086         /* RX overrun */
3087         if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3088                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3089                     SK_RFCTL_RX_FIFO_OVER);
3090         }
3091         /* TX underrun */
3092         if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3093                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3094                     SK_TFCTL_TX_FIFO_UNDER);
3095         }
3096 }
3097
3098 static void
3099 sk_intr(xsc)
3100         void                    *xsc;
3101 {
3102         struct sk_softc         *sc = xsc;
3103         struct sk_if_softc      *sc_if0, *sc_if1;
3104         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
3105         u_int32_t               status;
3106
3107         SK_LOCK(sc);
3108
3109         status = CSR_READ_4(sc, SK_ISSR);
3110         if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3111                 goto done_locked;
3112
3113         sc_if0 = sc->sk_if[SK_PORT_A];
3114         sc_if1 = sc->sk_if[SK_PORT_B];
3115
3116         if (sc_if0 != NULL)
3117                 ifp0 = sc_if0->sk_ifp;
3118         if (sc_if1 != NULL)
3119                 ifp1 = sc_if1->sk_ifp;
3120
3121         for (; (status &= sc->sk_intrmask) != 0;) {
3122                 /* Handle receive interrupts first. */
3123                 if (status & SK_ISR_RX1_EOF) {
3124                         if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3125                                 sk_jumbo_rxeof(sc_if0);
3126                         else
3127                                 sk_rxeof(sc_if0);
3128                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3129                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3130                 }
3131                 if (status & SK_ISR_RX2_EOF) {
3132                         if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3133                                 sk_jumbo_rxeof(sc_if1);
3134                         else
3135                                 sk_rxeof(sc_if1);
3136                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3137                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3138                 }
3139
3140                 /* Then transmit interrupts. */
3141                 if (status & SK_ISR_TX1_S_EOF) {
3142                         sk_txeof(sc_if0);
3143                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3144                 }
3145                 if (status & SK_ISR_TX2_S_EOF) {
3146                         sk_txeof(sc_if1);
3147                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3148                 }
3149
3150                 /* Then MAC interrupts. */
3151                 if (status & SK_ISR_MAC1 &&
3152                     ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3153                         if (sc->sk_type == SK_GENESIS)
3154                                 sk_intr_xmac(sc_if0);
3155                         else
3156                                 sk_intr_yukon(sc_if0);
3157                 }
3158
3159                 if (status & SK_ISR_MAC2 &&
3160                     ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3161                         if (sc->sk_type == SK_GENESIS)
3162                                 sk_intr_xmac(sc_if1);
3163                         else
3164                                 sk_intr_yukon(sc_if1);
3165                 }
3166
3167                 if (status & SK_ISR_EXTERNAL_REG) {
3168                         if (ifp0 != NULL &&
3169                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3170                                 sk_intr_bcom(sc_if0);
3171                         if (ifp1 != NULL &&
3172                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3173                                 sk_intr_bcom(sc_if1);
3174                 }
3175                 status = CSR_READ_4(sc, SK_ISSR);
3176         }
3177
3178         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3179
3180         if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3181                 sk_start_locked(ifp0);
3182         if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3183                 sk_start_locked(ifp1);
3184
3185 done_locked:
3186         SK_UNLOCK(sc);
3187 }
3188
3189 static void
3190 sk_init_xmac(sc_if)
3191         struct sk_if_softc      *sc_if;
3192 {
3193         struct sk_softc         *sc;
3194         struct ifnet            *ifp;
3195         u_int16_t               eaddr[(ETHER_ADDR_LEN+1)/2];
3196         struct sk_bcom_hack     bhack[] = {
3197         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3198         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3199         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3200         { 0, 0 } };
3201
3202         SK_IF_LOCK_ASSERT(sc_if);
3203
3204         sc = sc_if->sk_softc;
3205         ifp = sc_if->sk_ifp;
3206
3207         /* Unreset the XMAC. */
3208         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3209         DELAY(1000);
3210
3211         /* Reset the XMAC's internal state. */
3212         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3213
3214         /* Save the XMAC II revision */
3215         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3216
3217         /*
3218          * Perform additional initialization for external PHYs,
3219          * namely for the 1000baseTX cards that use the XMAC's
3220          * GMII mode.
3221          */
3222         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3223                 int                     i = 0;
3224                 u_int32_t               val;
3225
3226                 /* Take PHY out of reset. */
3227                 val = sk_win_read_4(sc, SK_GPIO);
3228                 if (sc_if->sk_port == SK_PORT_A)
3229                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3230                 else
3231                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3232                 sk_win_write_4(sc, SK_GPIO, val);
3233
3234                 /* Enable GMII mode on the XMAC. */
3235                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3236
3237                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3238                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3239                 DELAY(10000);
3240                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3241                     BRGPHY_MII_IMR, 0xFFF0);
3242
3243                 /*
3244                  * Early versions of the BCM5400 apparently have
3245                  * a bug that requires them to have their reserved
3246                  * registers initialized to some magic values. I don't
3247                  * know what the numbers do, I'm just the messenger.
3248                  */
3249                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3250                     == 0x6041) {
3251                         while(bhack[i].reg) {
3252                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3253                                     bhack[i].reg, bhack[i].val);
3254                                 i++;
3255                         }
3256                 }
3257         }
3258
3259         /* Set station address */
3260         bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3261         SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3262         SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3263         SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3264         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3265
3266         if (ifp->if_flags & IFF_BROADCAST) {
3267                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3268         } else {
3269                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3270         }
3271
3272         /* We don't need the FCS appended to the packet. */
3273         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3274
3275         /* We want short frames padded to 60 bytes. */
3276         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3277
3278         /*
3279          * Enable the reception of all error frames. This is is
3280          * a necessary evil due to the design of the XMAC. The
3281          * XMAC's receive FIFO is only 8K in size, however jumbo
3282          * frames can be up to 9000 bytes in length. When bad
3283          * frame filtering is enabled, the XMAC's RX FIFO operates
3284          * in 'store and forward' mode. For this to work, the
3285          * entire frame has to fit into the FIFO, but that means
3286          * that jumbo frames larger than 8192 bytes will be
3287          * truncated. Disabling all bad frame filtering causes
3288          * the RX FIFO to operate in streaming mode, in which
3289          * case the XMAC will start transfering frames out of the
3290          * RX FIFO as soon as the FIFO threshold is reached.
3291          */
3292         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3293                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3294                     XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3295                     XM_MODE_RX_INRANGELEN);
3296                 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3297         } else
3298                 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3299
3300         /*
3301          * Bump up the transmit threshold. This helps hold off transmit
3302          * underruns when we're blasting traffic from both ports at once.
3303          */
3304         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3305
3306         /* Set Rx filter */
3307         sk_rxfilter_genesis(sc_if);
3308
3309         /* Clear and enable interrupts */
3310         SK_XM_READ_2(sc_if, XM_ISR);
3311         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3312                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3313         else
3314                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3315
3316         /* Configure MAC arbiter */
3317         switch(sc_if->sk_xmac_rev) {
3318         case XM_XMAC_REV_B2:
3319                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3320                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3321                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3322                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3323                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3324                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3325                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3326                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3327                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3328                 break;
3329         case XM_XMAC_REV_C1:
3330                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3331                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3332                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3333                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3334                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3335                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3336                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3337                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3338                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3339                 break;
3340         default:
3341                 break;
3342         }
3343         sk_win_write_2(sc, SK_MACARB_CTL,
3344             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3345
3346         sc_if->sk_link = 1;
3347
3348         return;
3349 }
3350
3351 static void
3352 sk_init_yukon(sc_if)
3353         struct sk_if_softc      *sc_if;
3354 {
3355         u_int32_t               phy, v;
3356         u_int16_t               reg;
3357         struct sk_softc         *sc;
3358         struct ifnet            *ifp;
3359         u_int8_t                *eaddr;
3360         int                     i;
3361
3362         SK_IF_LOCK_ASSERT(sc_if);
3363
3364         sc = sc_if->sk_softc;
3365         ifp = sc_if->sk_ifp;
3366
3367         if (sc->sk_type == SK_YUKON_LITE &&
3368             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3369                 /*
3370                  * Workaround code for COMA mode, set PHY reset.
3371                  * Otherwise it will not correctly take chip out of
3372                  * powerdown (coma)
3373                  */
3374                 v = sk_win_read_4(sc, SK_GPIO);
3375                 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3376                 sk_win_write_4(sc, SK_GPIO, v);
3377         }
3378
3379         /* GMAC and GPHY Reset */
3380         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3381         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3382         DELAY(1000);
3383
3384         if (sc->sk_type == SK_YUKON_LITE &&
3385             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3386                 /*
3387                  * Workaround code for COMA mode, clear PHY reset
3388                  */
3389                 v = sk_win_read_4(sc, SK_GPIO);
3390                 v |= SK_GPIO_DIR9;
3391                 v &= ~SK_GPIO_DAT9;
3392                 sk_win_write_4(sc, SK_GPIO, v);
3393         }
3394
3395         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3396                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3397
3398         if (sc->sk_coppertype)
3399                 phy |= SK_GPHY_COPPER;
3400         else
3401                 phy |= SK_GPHY_FIBER;
3402
3403         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3404         DELAY(1000);
3405         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3406         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3407                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3408
3409         /* unused read of the interrupt source register */
3410         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3411
3412         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3413
3414         /* MIB Counter Clear Mode set */
3415         reg |= YU_PAR_MIB_CLR;
3416         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3417
3418         /* MIB Counter Clear Mode clear */
3419         reg &= ~YU_PAR_MIB_CLR;
3420         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3421
3422         /* receive control reg */
3423         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3424
3425         /* transmit parameter register */
3426         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3427                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3428
3429         /* serial mode register */
3430         reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3431         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3432                 reg |= YU_SMR_MFL_JUMBO;
3433         SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3434
3435         /* Setup Yukon's station address */
3436         eaddr = IF_LLADDR(sc_if->sk_ifp);
3437         for (i = 0; i < 3; i++)
3438                 SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3439                     eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3440         /* Set GMAC source address of flow control. */
3441         for (i = 0; i < 3; i++)
3442                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3443                     eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3444         /* Set GMAC virtual address. */
3445         for (i = 0; i < 3; i++)
3446                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3447                     eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3448
3449         /* Set Rx filter */
3450         sk_rxfilter_yukon(sc_if);
3451
3452         /* enable interrupt mask for counter overflows */
3453         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3454         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3455         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3456
3457         /* Configure RX MAC FIFO Flush Mask */
3458         v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3459             YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3460             YU_RXSTAT_JABBER;
3461         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3462
3463         /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3464         if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3465                 v = SK_TFCTL_OPERATION_ON;
3466         else
3467                 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3468         /* Configure RX MAC FIFO */
3469         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3470         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3471
3472         /* Increase flush threshould to 64 bytes */
3473         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3474             SK_RFCTL_FIFO_THRESHOLD + 1);
3475
3476         /* Configure TX MAC FIFO */
3477         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3478         SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3479 }
3480
3481 /*
3482  * Note that to properly initialize any part of the GEnesis chip,
3483  * you first have to take it out of reset mode.
3484  */
3485 static void
3486 sk_init(xsc)
3487         void                    *xsc;
3488 {
3489         struct sk_if_softc      *sc_if = xsc;
3490
3491         SK_IF_LOCK(sc_if);
3492         sk_init_locked(sc_if);
3493         SK_IF_UNLOCK(sc_if);
3494
3495         return;
3496 }
3497
3498 static void
3499 sk_init_locked(sc_if)
3500         struct sk_if_softc      *sc_if;
3501 {
3502         struct sk_softc         *sc;
3503         struct ifnet            *ifp;
3504         struct mii_data         *mii;
3505         u_int16_t               reg;
3506         u_int32_t               imr;
3507         int                     error;
3508
3509         SK_IF_LOCK_ASSERT(sc_if);
3510
3511         ifp = sc_if->sk_ifp;
3512         sc = sc_if->sk_softc;
3513         mii = device_get_softc(sc_if->sk_miibus);
3514
3515         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3516                 return;
3517
3518         /* Cancel pending I/O and free all RX/TX buffers. */
3519         sk_stop(sc_if);
3520
3521         if (sc->sk_type == SK_GENESIS) {
3522                 /* Configure LINK_SYNC LED */
3523                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3524                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3525                         SK_LINKLED_LINKSYNC_ON);
3526
3527                 /* Configure RX LED */
3528                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3529                         SK_RXLEDCTL_COUNTER_START);
3530
3531                 /* Configure TX LED */
3532                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3533                         SK_TXLEDCTL_COUNTER_START);
3534         }
3535
3536         /*
3537          * Configure descriptor poll timer
3538          *
3539          * SK-NET GENESIS data sheet says that possibility of losing Start
3540          * transmit command due to CPU/cache related interim storage problems
3541          * under certain conditions. The document recommends a polling
3542          * mechanism to send a Start transmit command to initiate transfer
3543          * of ready descriptors regulary. To cope with this issue sk(4) now
3544          * enables descriptor poll timer to initiate descriptor processing
3545          * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3546          * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3547          * command instead of waiting for next descriptor polling time.
3548          * The same rule may apply to Rx side too but it seems that is not
3549          * needed at the moment.
3550          * Since sk(4) uses descriptor polling as a last resort there is no
3551          * need to set smaller polling time than maximum allowable one.
3552          */
3553         SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3554
3555         /* Configure I2C registers */
3556
3557         /* Configure XMAC(s) */
3558         switch (sc->sk_type) {
3559         case SK_GENESIS:
3560                 sk_init_xmac(sc_if);
3561                 break;
3562         case SK_YUKON:
3563         case SK_YUKON_LITE:
3564         case SK_YUKON_LP:
3565                 sk_init_yukon(sc_if);
3566                 break;
3567         }
3568         mii_mediachg(mii);
3569
3570         if (sc->sk_type == SK_GENESIS) {
3571                 /* Configure MAC FIFOs */
3572                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3573                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3574                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3575
3576                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3577                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3578                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3579         }
3580
3581         /* Configure transmit arbiter(s) */
3582         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3583             SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3584
3585         /* Configure RAMbuffers */
3586         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3587         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3588         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3589         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3590         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3591         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3592
3593         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3594         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3595         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3596         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3597         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3598         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3599         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3600
3601         /* Configure BMUs */
3602         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3603         if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3604                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3605                     SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3606                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3607                     SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3608         } else {
3609                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3610                     SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3611                 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3612                     SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3613         }
3614
3615         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3616         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3617             SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3618         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3619             SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3620
3621         /* Init descriptors */
3622         if (ifp->if_mtu > SK_MAX_FRAMELEN)
3623                 error = sk_init_jumbo_rx_ring(sc_if);
3624         else
3625                 error = sk_init_rx_ring(sc_if);
3626         if (error != 0) {
3627                 device_printf(sc_if->sk_if_dev,
3628                     "initialization failed: no memory for rx buffers\n");
3629                 sk_stop(sc_if);
3630                 return;
3631         }
3632         sk_init_tx_ring(sc_if);
3633
3634         /* Set interrupt moderation if changed via sysctl. */
3635         imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3636         if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3637                 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3638                     sc->sk_int_ticks));
3639                 if (bootverbose)
3640                         device_printf(sc_if->sk_if_dev,
3641                             "interrupt moderation is %d us.\n",
3642                             sc->sk_int_mod);
3643         }
3644
3645         /* Configure interrupt handling */
3646         CSR_READ_4(sc, SK_ISSR);
3647         if (sc_if->sk_port == SK_PORT_A)
3648                 sc->sk_intrmask |= SK_INTRS1;
3649         else
3650                 sc->sk_intrmask |= SK_INTRS2;
3651
3652         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3653
3654         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3655
3656         /* Start BMUs. */
3657         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3658
3659         switch(sc->sk_type) {
3660         case SK_GENESIS:
3661                 /* Enable XMACs TX and RX state machines */
3662                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3663                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3664                 break;
3665         case SK_YUKON:
3666         case SK_YUKON_LITE:
3667         case SK_YUKON_LP:
3668                 reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3669                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3670 #if 0
3671                 /* XXX disable 100Mbps and full duplex mode? */
3672                 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3673 #endif
3674                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3675         }
3676
3677         /* Activate descriptor polling timer */
3678         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3679         /* start transfer of Tx descriptors */
3680         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3681
3682         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3683         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3684
3685         switch (sc->sk_type) {
3686         case SK_YUKON:
3687         case SK_YUKON_LITE:
3688         case SK_YUKON_LP:
3689                 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3690                 break;
3691         }
3692
3693         callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3694
3695         return;
3696 }
3697
3698 static void
3699 sk_stop(sc_if)
3700         struct sk_if_softc      *sc_if;
3701 {
3702         int                     i;
3703         struct sk_softc         *sc;
3704         struct sk_txdesc        *txd;
3705         struct sk_rxdesc        *rxd;
3706         struct sk_rxdesc        *jrxd;
3707         struct ifnet            *ifp;
3708         u_int32_t               val;
3709
3710         SK_IF_LOCK_ASSERT(sc_if);
3711         sc = sc_if->sk_softc;
3712         ifp = sc_if->sk_ifp;
3713
3714         callout_stop(&sc_if->sk_tick_ch);
3715         callout_stop(&sc_if->sk_watchdog_ch);
3716
3717         /* stop Tx descriptor polling timer */
3718         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3719         /* stop transfer of Tx descriptors */
3720         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3721         for (i = 0; i < SK_TIMEOUT; i++) {
3722                 val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3723                 if ((val & SK_TXBMU_TX_STOP) == 0)
3724                         break;
3725                 DELAY(1);
3726         }
3727         if (i == SK_TIMEOUT)
3728                 device_printf(sc_if->sk_if_dev,
3729                     "can not stop transfer of Tx descriptor\n");
3730         /* stop transfer of Rx descriptors */
3731         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3732         for (i = 0; i < SK_TIMEOUT; i++) {
3733                 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3734                 if ((val & SK_RXBMU_RX_STOP) == 0)
3735                         break;
3736                 DELAY(1);
3737         }
3738         if (i == SK_TIMEOUT)
3739                 device_printf(sc_if->sk_if_dev,
3740                     "can not stop transfer of Rx descriptor\n");
3741
3742         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3743                 /* Put PHY back into reset. */
3744                 val = sk_win_read_4(sc, SK_GPIO);
3745                 if (sc_if->sk_port == SK_PORT_A) {
3746                         val |= SK_GPIO_DIR0;
3747                         val &= ~SK_GPIO_DAT0;
3748                 } else {
3749                         val |= SK_GPIO_DIR2;
3750                         val &= ~SK_GPIO_DAT2;
3751                 }
3752                 sk_win_write_4(sc, SK_GPIO, val);
3753         }
3754
3755         /* Turn off various components of this interface. */
3756         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3757         switch (sc->sk_type) {
3758         case SK_GENESIS:
3759                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3760                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3761                 break;
3762         case SK_YUKON:
3763         case SK_YUKON_LITE:
3764         case SK_YUKON_LP:
3765                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3766                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3767                 break;
3768         }
3769         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3770         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3771         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3772         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3773         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3774         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3775         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3776         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3777         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3778
3779         /* Disable interrupts */
3780         if (sc_if->sk_port == SK_PORT_A)
3781                 sc->sk_intrmask &= ~SK_INTRS1;
3782         else
3783                 sc->sk_intrmask &= ~SK_INTRS2;
3784         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3785
3786         SK_XM_READ_2(sc_if, XM_ISR);
3787         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3788
3789         /* Free RX and TX mbufs still in the queues. */
3790         for (i = 0; i < SK_RX_RING_CNT; i++) {
3791                 rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3792                 if (rxd->rx_m != NULL) {
3793                         bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3794                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3795                         bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3796                             rxd->rx_dmamap);
3797                         m_freem(rxd->rx_m);
3798                         rxd->rx_m = NULL;
3799                 }
3800         }
3801         for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3802                 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3803                 if (jrxd->rx_m != NULL) {
3804                         bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3805                             jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3806                         bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3807                             jrxd->rx_dmamap);
3808                         m_freem(jrxd->rx_m);
3809                         jrxd->rx_m = NULL;
3810                 }
3811         }
3812         for (i = 0; i < SK_TX_RING_CNT; i++) {
3813                 txd = &sc_if->sk_cdata.sk_txdesc[i];
3814                 if (txd->tx_m != NULL) {
3815                         bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3816                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3817                         bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3818                             txd->tx_dmamap);
3819                         m_freem(txd->tx_m);
3820                         txd->tx_m = NULL;
3821                 }
3822         }
3823
3824         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3825
3826         return;
3827 }
3828
3829 static int
3830 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3831 {
3832         int error, value;
3833
3834         if (!arg1)
3835                 return (EINVAL);
3836         value = *(int *)arg1;
3837         error = sysctl_handle_int(oidp, &value, 0, req);
3838         if (error || !req->newptr)
3839                 return (error);
3840         if (value < low || value > high)
3841                 return (EINVAL);
3842         *(int *)arg1 = value;
3843         return (0);
3844 }
3845
3846 static int
3847 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3848 {
3849         return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3850 }