]> CyberLeo.Net >> Repos - FreeBSD/releng/9.1.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaInit.cpp
Copy stable/9 to releng/9.1 as part of the 9.1-RELEASE release process.
[FreeBSD/releng/9.1.git] / contrib / llvm / tools / clang / lib / Sema / SemaInit.cpp
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34
35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71
72     return 0;
73   }
74
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77
78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81
82   return IsStringInit(init, arrayType, Context);
83 }
84
85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                             Sema &S) {
87   // Get the length of the string as parsed.
88   uint64_t StrLength =
89     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90
91
92   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93     // C99 6.7.8p14. We have an array of character type with unknown size
94     // being initialized to a string literal.
95     llvm::APSInt ConstVal(32);
96     ConstVal = StrLength;
97     // Return a new array type (C99 6.7.8p22).
98     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
99                                            ConstVal,
100                                            ArrayType::Normal, 0);
101     return;
102   }
103
104   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
105
106   // We have an array of character type with known size.  However,
107   // the size may be smaller or larger than the string we are initializing.
108   // FIXME: Avoid truncation for 64-bit length strings.
109   if (S.getLangOpts().CPlusPlus) {
110     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
111       // For Pascal strings it's OK to strip off the terminating null character,
112       // so the example below is valid:
113       //
114       // unsigned char a[2] = "\pa";
115       if (SL->isPascal())
116         StrLength--;
117     }
118   
119     // [dcl.init.string]p2
120     if (StrLength > CAT->getSize().getZExtValue())
121       S.Diag(Str->getLocStart(),
122              diag::err_initializer_string_for_char_array_too_long)
123         << Str->getSourceRange();
124   } else {
125     // C99 6.7.8p14.
126     if (StrLength-1 > CAT->getSize().getZExtValue())
127       S.Diag(Str->getLocStart(),
128              diag::warn_initializer_string_for_char_array_too_long)
129         << Str->getSourceRange();
130   }
131
132   // Set the type to the actual size that we are initializing.  If we have
133   // something like:
134   //   char x[1] = "foo";
135   // then this will set the string literal's type to char[1].
136   Str->setType(DeclT);
137 }
138
139 //===----------------------------------------------------------------------===//
140 // Semantic checking for initializer lists.
141 //===----------------------------------------------------------------------===//
142
143 /// @brief Semantic checking for initializer lists.
144 ///
145 /// The InitListChecker class contains a set of routines that each
146 /// handle the initialization of a certain kind of entity, e.g.,
147 /// arrays, vectors, struct/union types, scalars, etc. The
148 /// InitListChecker itself performs a recursive walk of the subobject
149 /// structure of the type to be initialized, while stepping through
150 /// the initializer list one element at a time. The IList and Index
151 /// parameters to each of the Check* routines contain the active
152 /// (syntactic) initializer list and the index into that initializer
153 /// list that represents the current initializer. Each routine is
154 /// responsible for moving that Index forward as it consumes elements.
155 ///
156 /// Each Check* routine also has a StructuredList/StructuredIndex
157 /// arguments, which contains the current "structured" (semantic)
158 /// initializer list and the index into that initializer list where we
159 /// are copying initializers as we map them over to the semantic
160 /// list. Once we have completed our recursive walk of the subobject
161 /// structure, we will have constructed a full semantic initializer
162 /// list.
163 ///
164 /// C99 designators cause changes in the initializer list traversal,
165 /// because they make the initialization "jump" into a specific
166 /// subobject and then continue the initialization from that
167 /// point. CheckDesignatedInitializer() recursively steps into the
168 /// designated subobject and manages backing out the recursion to
169 /// initialize the subobjects after the one designated.
170 namespace {
171 class InitListChecker {
172   Sema &SemaRef;
173   bool hadError;
174   bool VerifyOnly; // no diagnostics, no structure building
175   bool AllowBraceElision;
176   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
177   InitListExpr *FullyStructuredList;
178
179   void CheckImplicitInitList(const InitializedEntity &Entity,
180                              InitListExpr *ParentIList, QualType T,
181                              unsigned &Index, InitListExpr *StructuredList,
182                              unsigned &StructuredIndex);
183   void CheckExplicitInitList(const InitializedEntity &Entity,
184                              InitListExpr *IList, QualType &T,
185                              unsigned &Index, InitListExpr *StructuredList,
186                              unsigned &StructuredIndex,
187                              bool TopLevelObject = false);
188   void CheckListElementTypes(const InitializedEntity &Entity,
189                              InitListExpr *IList, QualType &DeclType,
190                              bool SubobjectIsDesignatorContext,
191                              unsigned &Index,
192                              InitListExpr *StructuredList,
193                              unsigned &StructuredIndex,
194                              bool TopLevelObject = false);
195   void CheckSubElementType(const InitializedEntity &Entity,
196                            InitListExpr *IList, QualType ElemType,
197                            unsigned &Index,
198                            InitListExpr *StructuredList,
199                            unsigned &StructuredIndex);
200   void CheckComplexType(const InitializedEntity &Entity,
201                         InitListExpr *IList, QualType DeclType,
202                         unsigned &Index,
203                         InitListExpr *StructuredList,
204                         unsigned &StructuredIndex);
205   void CheckScalarType(const InitializedEntity &Entity,
206                        InitListExpr *IList, QualType DeclType,
207                        unsigned &Index,
208                        InitListExpr *StructuredList,
209                        unsigned &StructuredIndex);
210   void CheckReferenceType(const InitializedEntity &Entity,
211                           InitListExpr *IList, QualType DeclType,
212                           unsigned &Index,
213                           InitListExpr *StructuredList,
214                           unsigned &StructuredIndex);
215   void CheckVectorType(const InitializedEntity &Entity,
216                        InitListExpr *IList, QualType DeclType, unsigned &Index,
217                        InitListExpr *StructuredList,
218                        unsigned &StructuredIndex);
219   void CheckStructUnionTypes(const InitializedEntity &Entity,
220                              InitListExpr *IList, QualType DeclType,
221                              RecordDecl::field_iterator Field,
222                              bool SubobjectIsDesignatorContext, unsigned &Index,
223                              InitListExpr *StructuredList,
224                              unsigned &StructuredIndex,
225                              bool TopLevelObject = false);
226   void CheckArrayType(const InitializedEntity &Entity,
227                       InitListExpr *IList, QualType &DeclType,
228                       llvm::APSInt elementIndex,
229                       bool SubobjectIsDesignatorContext, unsigned &Index,
230                       InitListExpr *StructuredList,
231                       unsigned &StructuredIndex);
232   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
233                                   InitListExpr *IList, DesignatedInitExpr *DIE,
234                                   unsigned DesigIdx,
235                                   QualType &CurrentObjectType,
236                                   RecordDecl::field_iterator *NextField,
237                                   llvm::APSInt *NextElementIndex,
238                                   unsigned &Index,
239                                   InitListExpr *StructuredList,
240                                   unsigned &StructuredIndex,
241                                   bool FinishSubobjectInit,
242                                   bool TopLevelObject);
243   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
244                                            QualType CurrentObjectType,
245                                            InitListExpr *StructuredList,
246                                            unsigned StructuredIndex,
247                                            SourceRange InitRange);
248   void UpdateStructuredListElement(InitListExpr *StructuredList,
249                                    unsigned &StructuredIndex,
250                                    Expr *expr);
251   int numArrayElements(QualType DeclType);
252   int numStructUnionElements(QualType DeclType);
253
254   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
255                                const InitializedEntity &ParentEntity,
256                                InitListExpr *ILE, bool &RequiresSecondPass);
257   void FillInValueInitializations(const InitializedEntity &Entity,
258                                   InitListExpr *ILE, bool &RequiresSecondPass);
259   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
260                               Expr *InitExpr, FieldDecl *Field,
261                               bool TopLevelObject);
262   void CheckValueInitializable(const InitializedEntity &Entity);
263
264 public:
265   InitListChecker(Sema &S, const InitializedEntity &Entity,
266                   InitListExpr *IL, QualType &T, bool VerifyOnly,
267                   bool AllowBraceElision);
268   bool HadError() { return hadError; }
269
270   // @brief Retrieves the fully-structured initializer list used for
271   // semantic analysis and code generation.
272   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
273 };
274 } // end anonymous namespace
275
276 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
277   assert(VerifyOnly &&
278          "CheckValueInitializable is only inteded for verification mode.");
279
280   SourceLocation Loc;
281   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
282                                                             true);
283   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
284   if (InitSeq.Failed())
285     hadError = true;
286 }
287
288 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
289                                         const InitializedEntity &ParentEntity,
290                                               InitListExpr *ILE,
291                                               bool &RequiresSecondPass) {
292   SourceLocation Loc = ILE->getLocStart();
293   unsigned NumInits = ILE->getNumInits();
294   InitializedEntity MemberEntity
295     = InitializedEntity::InitializeMember(Field, &ParentEntity);
296   if (Init >= NumInits || !ILE->getInit(Init)) {
297     // FIXME: We probably don't need to handle references
298     // specially here, since value-initialization of references is
299     // handled in InitializationSequence.
300     if (Field->getType()->isReferenceType()) {
301       // C++ [dcl.init.aggr]p9:
302       //   If an incomplete or empty initializer-list leaves a
303       //   member of reference type uninitialized, the program is
304       //   ill-formed.
305       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
306         << Field->getType()
307         << ILE->getSyntacticForm()->getSourceRange();
308       SemaRef.Diag(Field->getLocation(),
309                    diag::note_uninit_reference_member);
310       hadError = true;
311       return;
312     }
313
314     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
315                                                               true);
316     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
317     if (!InitSeq) {
318       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
319       hadError = true;
320       return;
321     }
322
323     ExprResult MemberInit
324       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
325     if (MemberInit.isInvalid()) {
326       hadError = true;
327       return;
328     }
329
330     if (hadError) {
331       // Do nothing
332     } else if (Init < NumInits) {
333       ILE->setInit(Init, MemberInit.takeAs<Expr>());
334     } else if (InitSeq.isConstructorInitialization()) {
335       // Value-initialization requires a constructor call, so
336       // extend the initializer list to include the constructor
337       // call and make a note that we'll need to take another pass
338       // through the initializer list.
339       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
340       RequiresSecondPass = true;
341     }
342   } else if (InitListExpr *InnerILE
343                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
344     FillInValueInitializations(MemberEntity, InnerILE,
345                                RequiresSecondPass);
346 }
347
348 /// Recursively replaces NULL values within the given initializer list
349 /// with expressions that perform value-initialization of the
350 /// appropriate type.
351 void
352 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
353                                             InitListExpr *ILE,
354                                             bool &RequiresSecondPass) {
355   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
356          "Should not have void type");
357   SourceLocation Loc = ILE->getLocStart();
358   if (ILE->getSyntacticForm())
359     Loc = ILE->getSyntacticForm()->getLocStart();
360
361   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
362     if (RType->getDecl()->isUnion() &&
363         ILE->getInitializedFieldInUnion())
364       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
365                               Entity, ILE, RequiresSecondPass);
366     else {
367       unsigned Init = 0;
368       for (RecordDecl::field_iterator
369              Field = RType->getDecl()->field_begin(),
370              FieldEnd = RType->getDecl()->field_end();
371            Field != FieldEnd; ++Field) {
372         if (Field->isUnnamedBitfield())
373           continue;
374
375         if (hadError)
376           return;
377
378         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
379         if (hadError)
380           return;
381
382         ++Init;
383
384         // Only look at the first initialization of a union.
385         if (RType->getDecl()->isUnion())
386           break;
387       }
388     }
389
390     return;
391   }
392
393   QualType ElementType;
394
395   InitializedEntity ElementEntity = Entity;
396   unsigned NumInits = ILE->getNumInits();
397   unsigned NumElements = NumInits;
398   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
399     ElementType = AType->getElementType();
400     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
401       NumElements = CAType->getSize().getZExtValue();
402     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
403                                                          0, Entity);
404   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
405     ElementType = VType->getElementType();
406     NumElements = VType->getNumElements();
407     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
408                                                          0, Entity);
409   } else
410     ElementType = ILE->getType();
411
412
413   for (unsigned Init = 0; Init != NumElements; ++Init) {
414     if (hadError)
415       return;
416
417     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
418         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
419       ElementEntity.setElementIndex(Init);
420
421     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
422     if (!InitExpr && !ILE->hasArrayFiller()) {
423       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
424                                                                 true);
425       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
426       if (!InitSeq) {
427         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
428         hadError = true;
429         return;
430       }
431
432       ExprResult ElementInit
433         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
434       if (ElementInit.isInvalid()) {
435         hadError = true;
436         return;
437       }
438
439       if (hadError) {
440         // Do nothing
441       } else if (Init < NumInits) {
442         // For arrays, just set the expression used for value-initialization
443         // of the "holes" in the array.
444         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
445           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
446         else
447           ILE->setInit(Init, ElementInit.takeAs<Expr>());
448       } else {
449         // For arrays, just set the expression used for value-initialization
450         // of the rest of elements and exit.
451         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
452           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
453           return;
454         }
455
456         if (InitSeq.isConstructorInitialization()) {
457           // Value-initialization requires a constructor call, so
458           // extend the initializer list to include the constructor
459           // call and make a note that we'll need to take another pass
460           // through the initializer list.
461           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
462           RequiresSecondPass = true;
463         }
464       }
465     } else if (InitListExpr *InnerILE
466                  = dyn_cast_or_null<InitListExpr>(InitExpr))
467       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
468   }
469 }
470
471
472 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
473                                  InitListExpr *IL, QualType &T,
474                                  bool VerifyOnly, bool AllowBraceElision)
475   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
476   hadError = false;
477
478   unsigned newIndex = 0;
479   unsigned newStructuredIndex = 0;
480   FullyStructuredList
481     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
482   CheckExplicitInitList(Entity, IL, T, newIndex,
483                         FullyStructuredList, newStructuredIndex,
484                         /*TopLevelObject=*/true);
485
486   if (!hadError && !VerifyOnly) {
487     bool RequiresSecondPass = false;
488     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
489     if (RequiresSecondPass && !hadError)
490       FillInValueInitializations(Entity, FullyStructuredList,
491                                  RequiresSecondPass);
492   }
493 }
494
495 int InitListChecker::numArrayElements(QualType DeclType) {
496   // FIXME: use a proper constant
497   int maxElements = 0x7FFFFFFF;
498   if (const ConstantArrayType *CAT =
499         SemaRef.Context.getAsConstantArrayType(DeclType)) {
500     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
501   }
502   return maxElements;
503 }
504
505 int InitListChecker::numStructUnionElements(QualType DeclType) {
506   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
507   int InitializableMembers = 0;
508   for (RecordDecl::field_iterator
509          Field = structDecl->field_begin(),
510          FieldEnd = structDecl->field_end();
511        Field != FieldEnd; ++Field) {
512     if (!Field->isUnnamedBitfield())
513       ++InitializableMembers;
514   }
515   if (structDecl->isUnion())
516     return std::min(InitializableMembers, 1);
517   return InitializableMembers - structDecl->hasFlexibleArrayMember();
518 }
519
520 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
521                                             InitListExpr *ParentIList,
522                                             QualType T, unsigned &Index,
523                                             InitListExpr *StructuredList,
524                                             unsigned &StructuredIndex) {
525   int maxElements = 0;
526
527   if (T->isArrayType())
528     maxElements = numArrayElements(T);
529   else if (T->isRecordType())
530     maxElements = numStructUnionElements(T);
531   else if (T->isVectorType())
532     maxElements = T->getAs<VectorType>()->getNumElements();
533   else
534     llvm_unreachable("CheckImplicitInitList(): Illegal type");
535
536   if (maxElements == 0) {
537     if (!VerifyOnly)
538       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
539                    diag::err_implicit_empty_initializer);
540     ++Index;
541     hadError = true;
542     return;
543   }
544
545   // Build a structured initializer list corresponding to this subobject.
546   InitListExpr *StructuredSubobjectInitList
547     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
548                                  StructuredIndex,
549           SourceRange(ParentIList->getInit(Index)->getLocStart(),
550                       ParentIList->getSourceRange().getEnd()));
551   unsigned StructuredSubobjectInitIndex = 0;
552
553   // Check the element types and build the structural subobject.
554   unsigned StartIndex = Index;
555   CheckListElementTypes(Entity, ParentIList, T,
556                         /*SubobjectIsDesignatorContext=*/false, Index,
557                         StructuredSubobjectInitList,
558                         StructuredSubobjectInitIndex);
559
560   if (VerifyOnly) {
561     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
562       hadError = true;
563   } else {
564     StructuredSubobjectInitList->setType(T);
565
566     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
567     // Update the structured sub-object initializer so that it's ending
568     // range corresponds with the end of the last initializer it used.
569     if (EndIndex < ParentIList->getNumInits()) {
570       SourceLocation EndLoc
571         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
572       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
573     }
574
575     // Complain about missing braces.
576     if (T->isArrayType() || T->isRecordType()) {
577       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
578                     AllowBraceElision ? diag::warn_missing_braces :
579                                         diag::err_missing_braces)
580         << StructuredSubobjectInitList->getSourceRange()
581         << FixItHint::CreateInsertion(
582               StructuredSubobjectInitList->getLocStart(), "{")
583         << FixItHint::CreateInsertion(
584               SemaRef.PP.getLocForEndOfToken(
585                                       StructuredSubobjectInitList->getLocEnd()),
586               "}");
587       if (!AllowBraceElision)
588         hadError = true;
589     }
590   }
591 }
592
593 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
594                                             InitListExpr *IList, QualType &T,
595                                             unsigned &Index,
596                                             InitListExpr *StructuredList,
597                                             unsigned &StructuredIndex,
598                                             bool TopLevelObject) {
599   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
600   if (!VerifyOnly) {
601     SyntacticToSemantic[IList] = StructuredList;
602     StructuredList->setSyntacticForm(IList);
603   }
604   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
605                         Index, StructuredList, StructuredIndex, TopLevelObject);
606   if (!VerifyOnly) {
607     QualType ExprTy = T;
608     if (!ExprTy->isArrayType())
609       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
610     IList->setType(ExprTy);
611     StructuredList->setType(ExprTy);
612   }
613   if (hadError)
614     return;
615
616   if (Index < IList->getNumInits()) {
617     // We have leftover initializers
618     if (VerifyOnly) {
619       if (SemaRef.getLangOpts().CPlusPlus ||
620           (SemaRef.getLangOpts().OpenCL &&
621            IList->getType()->isVectorType())) {
622         hadError = true;
623       }
624       return;
625     }
626
627     if (StructuredIndex == 1 &&
628         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
629       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
630       if (SemaRef.getLangOpts().CPlusPlus) {
631         DK = diag::err_excess_initializers_in_char_array_initializer;
632         hadError = true;
633       }
634       // Special-case
635       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
636         << IList->getInit(Index)->getSourceRange();
637     } else if (!T->isIncompleteType()) {
638       // Don't complain for incomplete types, since we'll get an error
639       // elsewhere
640       QualType CurrentObjectType = StructuredList->getType();
641       int initKind =
642         CurrentObjectType->isArrayType()? 0 :
643         CurrentObjectType->isVectorType()? 1 :
644         CurrentObjectType->isScalarType()? 2 :
645         CurrentObjectType->isUnionType()? 3 :
646         4;
647
648       unsigned DK = diag::warn_excess_initializers;
649       if (SemaRef.getLangOpts().CPlusPlus) {
650         DK = diag::err_excess_initializers;
651         hadError = true;
652       }
653       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
654         DK = diag::err_excess_initializers;
655         hadError = true;
656       }
657
658       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
659         << initKind << IList->getInit(Index)->getSourceRange();
660     }
661   }
662
663   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
664       !TopLevelObject)
665     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
666       << IList->getSourceRange()
667       << FixItHint::CreateRemoval(IList->getLocStart())
668       << FixItHint::CreateRemoval(IList->getLocEnd());
669 }
670
671 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
672                                             InitListExpr *IList,
673                                             QualType &DeclType,
674                                             bool SubobjectIsDesignatorContext,
675                                             unsigned &Index,
676                                             InitListExpr *StructuredList,
677                                             unsigned &StructuredIndex,
678                                             bool TopLevelObject) {
679   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
680     // Explicitly braced initializer for complex type can be real+imaginary
681     // parts.
682     CheckComplexType(Entity, IList, DeclType, Index,
683                      StructuredList, StructuredIndex);
684   } else if (DeclType->isScalarType()) {
685     CheckScalarType(Entity, IList, DeclType, Index,
686                     StructuredList, StructuredIndex);
687   } else if (DeclType->isVectorType()) {
688     CheckVectorType(Entity, IList, DeclType, Index,
689                     StructuredList, StructuredIndex);
690   } else if (DeclType->isAggregateType()) {
691     if (DeclType->isRecordType()) {
692       RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693       CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694                             SubobjectIsDesignatorContext, Index,
695                             StructuredList, StructuredIndex,
696                             TopLevelObject);
697     } else if (DeclType->isArrayType()) {
698       llvm::APSInt Zero(
699                       SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700                       false);
701       CheckArrayType(Entity, IList, DeclType, Zero,
702                      SubobjectIsDesignatorContext, Index,
703                      StructuredList, StructuredIndex);
704     } else
705       llvm_unreachable("Aggregate that isn't a structure or array?!");
706   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
707     // This type is invalid, issue a diagnostic.
708     ++Index;
709     if (!VerifyOnly)
710       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
711         << DeclType;
712     hadError = true;
713   } else if (DeclType->isRecordType()) {
714     // C++ [dcl.init]p14:
715     //   [...] If the class is an aggregate (8.5.1), and the initializer
716     //   is a brace-enclosed list, see 8.5.1.
717     //
718     // Note: 8.5.1 is handled below; here, we diagnose the case where
719     // we have an initializer list and a destination type that is not
720     // an aggregate.
721     // FIXME: In C++0x, this is yet another form of initialization.
722     if (!VerifyOnly)
723       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
724         << DeclType << IList->getSourceRange();
725     hadError = true;
726   } else if (DeclType->isReferenceType()) {
727     CheckReferenceType(Entity, IList, DeclType, Index,
728                        StructuredList, StructuredIndex);
729   } else if (DeclType->isObjCObjectType()) {
730     if (!VerifyOnly)
731       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
732         << DeclType;
733     hadError = true;
734   } else {
735     if (!VerifyOnly)
736       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
737         << DeclType;
738     hadError = true;
739   }
740 }
741
742 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
743                                           InitListExpr *IList,
744                                           QualType ElemType,
745                                           unsigned &Index,
746                                           InitListExpr *StructuredList,
747                                           unsigned &StructuredIndex) {
748   Expr *expr = IList->getInit(Index);
749   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
750     unsigned newIndex = 0;
751     unsigned newStructuredIndex = 0;
752     InitListExpr *newStructuredList
753       = getStructuredSubobjectInit(IList, Index, ElemType,
754                                    StructuredList, StructuredIndex,
755                                    SubInitList->getSourceRange());
756     CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
757                           newStructuredList, newStructuredIndex);
758     ++StructuredIndex;
759     ++Index;
760     return;
761   } else if (ElemType->isScalarType()) {
762     return CheckScalarType(Entity, IList, ElemType, Index,
763                            StructuredList, StructuredIndex);
764   } else if (ElemType->isReferenceType()) {
765     return CheckReferenceType(Entity, IList, ElemType, Index,
766                               StructuredList, StructuredIndex);
767   }
768
769   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
770     // arrayType can be incomplete if we're initializing a flexible
771     // array member.  There's nothing we can do with the completed
772     // type here, though.
773
774     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
775       if (!VerifyOnly) {
776         CheckStringInit(Str, ElemType, arrayType, SemaRef);
777         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
778       }
779       ++Index;
780       return;
781     }
782
783     // Fall through for subaggregate initialization.
784
785   } else if (SemaRef.getLangOpts().CPlusPlus) {
786     // C++ [dcl.init.aggr]p12:
787     //   All implicit type conversions (clause 4) are considered when
788     //   initializing the aggregate member with an initializer from
789     //   an initializer-list. If the initializer can initialize a
790     //   member, the member is initialized. [...]
791
792     // FIXME: Better EqualLoc?
793     InitializationKind Kind =
794       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
795     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
796
797     if (Seq) {
798       if (!VerifyOnly) {
799         ExprResult Result =
800           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
801         if (Result.isInvalid())
802           hadError = true;
803
804         UpdateStructuredListElement(StructuredList, StructuredIndex,
805                                     Result.takeAs<Expr>());
806       }
807       ++Index;
808       return;
809     }
810
811     // Fall through for subaggregate initialization
812   } else {
813     // C99 6.7.8p13:
814     //
815     //   The initializer for a structure or union object that has
816     //   automatic storage duration shall be either an initializer
817     //   list as described below, or a single expression that has
818     //   compatible structure or union type. In the latter case, the
819     //   initial value of the object, including unnamed members, is
820     //   that of the expression.
821     ExprResult ExprRes = SemaRef.Owned(expr);
822     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
823         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
824                                                  !VerifyOnly)
825           == Sema::Compatible) {
826       if (ExprRes.isInvalid())
827         hadError = true;
828       else {
829         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
830               if (ExprRes.isInvalid())
831                 hadError = true;
832       }
833       UpdateStructuredListElement(StructuredList, StructuredIndex,
834                                   ExprRes.takeAs<Expr>());
835       ++Index;
836       return;
837     }
838     ExprRes.release();
839     // Fall through for subaggregate initialization
840   }
841
842   // C++ [dcl.init.aggr]p12:
843   //
844   //   [...] Otherwise, if the member is itself a non-empty
845   //   subaggregate, brace elision is assumed and the initializer is
846   //   considered for the initialization of the first member of
847   //   the subaggregate.
848   if (!SemaRef.getLangOpts().OpenCL && 
849       (ElemType->isAggregateType() || ElemType->isVectorType())) {
850     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
851                           StructuredIndex);
852     ++StructuredIndex;
853   } else {
854     if (!VerifyOnly) {
855       // We cannot initialize this element, so let
856       // PerformCopyInitialization produce the appropriate diagnostic.
857       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
858                                         SemaRef.Owned(expr),
859                                         /*TopLevelOfInitList=*/true);
860     }
861     hadError = true;
862     ++Index;
863     ++StructuredIndex;
864   }
865 }
866
867 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
868                                        InitListExpr *IList, QualType DeclType,
869                                        unsigned &Index,
870                                        InitListExpr *StructuredList,
871                                        unsigned &StructuredIndex) {
872   assert(Index == 0 && "Index in explicit init list must be zero");
873
874   // As an extension, clang supports complex initializers, which initialize
875   // a complex number component-wise.  When an explicit initializer list for
876   // a complex number contains two two initializers, this extension kicks in:
877   // it exepcts the initializer list to contain two elements convertible to
878   // the element type of the complex type. The first element initializes
879   // the real part, and the second element intitializes the imaginary part.
880
881   if (IList->getNumInits() != 2)
882     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
883                            StructuredIndex);
884
885   // This is an extension in C.  (The builtin _Complex type does not exist
886   // in the C++ standard.)
887   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
888     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
889       << IList->getSourceRange();
890
891   // Initialize the complex number.
892   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
893   InitializedEntity ElementEntity =
894     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
895
896   for (unsigned i = 0; i < 2; ++i) {
897     ElementEntity.setElementIndex(Index);
898     CheckSubElementType(ElementEntity, IList, elementType, Index,
899                         StructuredList, StructuredIndex);
900   }
901 }
902
903
904 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
905                                       InitListExpr *IList, QualType DeclType,
906                                       unsigned &Index,
907                                       InitListExpr *StructuredList,
908                                       unsigned &StructuredIndex) {
909   if (Index >= IList->getNumInits()) {
910     if (!VerifyOnly)
911       SemaRef.Diag(IList->getLocStart(),
912                    SemaRef.getLangOpts().CPlusPlus0x ?
913                      diag::warn_cxx98_compat_empty_scalar_initializer :
914                      diag::err_empty_scalar_initializer)
915         << IList->getSourceRange();
916     hadError = !SemaRef.getLangOpts().CPlusPlus0x;
917     ++Index;
918     ++StructuredIndex;
919     return;
920   }
921
922   Expr *expr = IList->getInit(Index);
923   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
924     if (!VerifyOnly)
925       SemaRef.Diag(SubIList->getLocStart(),
926                    diag::warn_many_braces_around_scalar_init)
927         << SubIList->getSourceRange();
928
929     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
930                     StructuredIndex);
931     return;
932   } else if (isa<DesignatedInitExpr>(expr)) {
933     if (!VerifyOnly)
934       SemaRef.Diag(expr->getLocStart(),
935                    diag::err_designator_for_scalar_init)
936         << DeclType << expr->getSourceRange();
937     hadError = true;
938     ++Index;
939     ++StructuredIndex;
940     return;
941   }
942
943   if (VerifyOnly) {
944     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
945       hadError = true;
946     ++Index;
947     return;
948   }
949
950   ExprResult Result =
951     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
952                                       SemaRef.Owned(expr),
953                                       /*TopLevelOfInitList=*/true);
954
955   Expr *ResultExpr = 0;
956
957   if (Result.isInvalid())
958     hadError = true; // types weren't compatible.
959   else {
960     ResultExpr = Result.takeAs<Expr>();
961
962     if (ResultExpr != expr) {
963       // The type was promoted, update initializer list.
964       IList->setInit(Index, ResultExpr);
965     }
966   }
967   if (hadError)
968     ++StructuredIndex;
969   else
970     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
971   ++Index;
972 }
973
974 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
975                                          InitListExpr *IList, QualType DeclType,
976                                          unsigned &Index,
977                                          InitListExpr *StructuredList,
978                                          unsigned &StructuredIndex) {
979   if (Index >= IList->getNumInits()) {
980     // FIXME: It would be wonderful if we could point at the actual member. In
981     // general, it would be useful to pass location information down the stack,
982     // so that we know the location (or decl) of the "current object" being
983     // initialized.
984     if (!VerifyOnly)
985       SemaRef.Diag(IList->getLocStart(),
986                     diag::err_init_reference_member_uninitialized)
987         << DeclType
988         << IList->getSourceRange();
989     hadError = true;
990     ++Index;
991     ++StructuredIndex;
992     return;
993   }
994
995   Expr *expr = IList->getInit(Index);
996   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus0x) {
997     if (!VerifyOnly)
998       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
999         << DeclType << IList->getSourceRange();
1000     hadError = true;
1001     ++Index;
1002     ++StructuredIndex;
1003     return;
1004   }
1005
1006   if (VerifyOnly) {
1007     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1008       hadError = true;
1009     ++Index;
1010     return;
1011   }
1012
1013   ExprResult Result =
1014     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1015                                       SemaRef.Owned(expr),
1016                                       /*TopLevelOfInitList=*/true);
1017
1018   if (Result.isInvalid())
1019     hadError = true;
1020
1021   expr = Result.takeAs<Expr>();
1022   IList->setInit(Index, expr);
1023
1024   if (hadError)
1025     ++StructuredIndex;
1026   else
1027     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1028   ++Index;
1029 }
1030
1031 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1032                                       InitListExpr *IList, QualType DeclType,
1033                                       unsigned &Index,
1034                                       InitListExpr *StructuredList,
1035                                       unsigned &StructuredIndex) {
1036   const VectorType *VT = DeclType->getAs<VectorType>();
1037   unsigned maxElements = VT->getNumElements();
1038   unsigned numEltsInit = 0;
1039   QualType elementType = VT->getElementType();
1040
1041   if (Index >= IList->getNumInits()) {
1042     // Make sure the element type can be value-initialized.
1043     if (VerifyOnly)
1044       CheckValueInitializable(
1045           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1046     return;
1047   }
1048
1049   if (!SemaRef.getLangOpts().OpenCL) {
1050     // If the initializing element is a vector, try to copy-initialize
1051     // instead of breaking it apart (which is doomed to failure anyway).
1052     Expr *Init = IList->getInit(Index);
1053     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1054       if (VerifyOnly) {
1055         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1056           hadError = true;
1057         ++Index;
1058         return;
1059       }
1060
1061       ExprResult Result =
1062         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1063                                           SemaRef.Owned(Init),
1064                                           /*TopLevelOfInitList=*/true);
1065
1066       Expr *ResultExpr = 0;
1067       if (Result.isInvalid())
1068         hadError = true; // types weren't compatible.
1069       else {
1070         ResultExpr = Result.takeAs<Expr>();
1071
1072         if (ResultExpr != Init) {
1073           // The type was promoted, update initializer list.
1074           IList->setInit(Index, ResultExpr);
1075         }
1076       }
1077       if (hadError)
1078         ++StructuredIndex;
1079       else
1080         UpdateStructuredListElement(StructuredList, StructuredIndex,
1081                                     ResultExpr);
1082       ++Index;
1083       return;
1084     }
1085
1086     InitializedEntity ElementEntity =
1087       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1088
1089     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1090       // Don't attempt to go past the end of the init list
1091       if (Index >= IList->getNumInits()) {
1092         if (VerifyOnly)
1093           CheckValueInitializable(ElementEntity);
1094         break;
1095       }
1096
1097       ElementEntity.setElementIndex(Index);
1098       CheckSubElementType(ElementEntity, IList, elementType, Index,
1099                           StructuredList, StructuredIndex);
1100     }
1101     return;
1102   }
1103
1104   InitializedEntity ElementEntity =
1105     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1106
1107   // OpenCL initializers allows vectors to be constructed from vectors.
1108   for (unsigned i = 0; i < maxElements; ++i) {
1109     // Don't attempt to go past the end of the init list
1110     if (Index >= IList->getNumInits())
1111       break;
1112
1113     ElementEntity.setElementIndex(Index);
1114
1115     QualType IType = IList->getInit(Index)->getType();
1116     if (!IType->isVectorType()) {
1117       CheckSubElementType(ElementEntity, IList, elementType, Index,
1118                           StructuredList, StructuredIndex);
1119       ++numEltsInit;
1120     } else {
1121       QualType VecType;
1122       const VectorType *IVT = IType->getAs<VectorType>();
1123       unsigned numIElts = IVT->getNumElements();
1124
1125       if (IType->isExtVectorType())
1126         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1127       else
1128         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1129                                                 IVT->getVectorKind());
1130       CheckSubElementType(ElementEntity, IList, VecType, Index,
1131                           StructuredList, StructuredIndex);
1132       numEltsInit += numIElts;
1133     }
1134   }
1135
1136   // OpenCL requires all elements to be initialized.
1137   if (numEltsInit != maxElements) {
1138     if (!VerifyOnly)
1139       SemaRef.Diag(IList->getLocStart(),
1140                    diag::err_vector_incorrect_num_initializers)
1141         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1142     hadError = true;
1143   }
1144 }
1145
1146 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1147                                      InitListExpr *IList, QualType &DeclType,
1148                                      llvm::APSInt elementIndex,
1149                                      bool SubobjectIsDesignatorContext,
1150                                      unsigned &Index,
1151                                      InitListExpr *StructuredList,
1152                                      unsigned &StructuredIndex) {
1153   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1154
1155   // Check for the special-case of initializing an array with a string.
1156   if (Index < IList->getNumInits()) {
1157     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1158                                  SemaRef.Context)) {
1159       // We place the string literal directly into the resulting
1160       // initializer list. This is the only place where the structure
1161       // of the structured initializer list doesn't match exactly,
1162       // because doing so would involve allocating one character
1163       // constant for each string.
1164       if (!VerifyOnly) {
1165         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1166         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1167         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1168       }
1169       ++Index;
1170       return;
1171     }
1172   }
1173   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1174     // Check for VLAs; in standard C it would be possible to check this
1175     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1176     // them in all sorts of strange places).
1177     if (!VerifyOnly)
1178       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1179                     diag::err_variable_object_no_init)
1180         << VAT->getSizeExpr()->getSourceRange();
1181     hadError = true;
1182     ++Index;
1183     ++StructuredIndex;
1184     return;
1185   }
1186
1187   // We might know the maximum number of elements in advance.
1188   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1189                            elementIndex.isUnsigned());
1190   bool maxElementsKnown = false;
1191   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1192     maxElements = CAT->getSize();
1193     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1194     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1195     maxElementsKnown = true;
1196   }
1197
1198   QualType elementType = arrayType->getElementType();
1199   while (Index < IList->getNumInits()) {
1200     Expr *Init = IList->getInit(Index);
1201     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1202       // If we're not the subobject that matches up with the '{' for
1203       // the designator, we shouldn't be handling the
1204       // designator. Return immediately.
1205       if (!SubobjectIsDesignatorContext)
1206         return;
1207
1208       // Handle this designated initializer. elementIndex will be
1209       // updated to be the next array element we'll initialize.
1210       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1211                                      DeclType, 0, &elementIndex, Index,
1212                                      StructuredList, StructuredIndex, true,
1213                                      false)) {
1214         hadError = true;
1215         continue;
1216       }
1217
1218       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1219         maxElements = maxElements.extend(elementIndex.getBitWidth());
1220       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1221         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1222       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1223
1224       // If the array is of incomplete type, keep track of the number of
1225       // elements in the initializer.
1226       if (!maxElementsKnown && elementIndex > maxElements)
1227         maxElements = elementIndex;
1228
1229       continue;
1230     }
1231
1232     // If we know the maximum number of elements, and we've already
1233     // hit it, stop consuming elements in the initializer list.
1234     if (maxElementsKnown && elementIndex == maxElements)
1235       break;
1236
1237     InitializedEntity ElementEntity =
1238       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1239                                            Entity);
1240     // Check this element.
1241     CheckSubElementType(ElementEntity, IList, elementType, Index,
1242                         StructuredList, StructuredIndex);
1243     ++elementIndex;
1244
1245     // If the array is of incomplete type, keep track of the number of
1246     // elements in the initializer.
1247     if (!maxElementsKnown && elementIndex > maxElements)
1248       maxElements = elementIndex;
1249   }
1250   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1251     // If this is an incomplete array type, the actual type needs to
1252     // be calculated here.
1253     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1254     if (maxElements == Zero) {
1255       // Sizing an array implicitly to zero is not allowed by ISO C,
1256       // but is supported by GNU.
1257       SemaRef.Diag(IList->getLocStart(),
1258                     diag::ext_typecheck_zero_array_size);
1259     }
1260
1261     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1262                                                      ArrayType::Normal, 0);
1263   }
1264   if (!hadError && VerifyOnly) {
1265     // Check if there are any members of the array that get value-initialized.
1266     // If so, check if doing that is possible.
1267     // FIXME: This needs to detect holes left by designated initializers too.
1268     if (maxElementsKnown && elementIndex < maxElements)
1269       CheckValueInitializable(InitializedEntity::InitializeElement(
1270                                                   SemaRef.Context, 0, Entity));
1271   }
1272 }
1273
1274 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1275                                              Expr *InitExpr,
1276                                              FieldDecl *Field,
1277                                              bool TopLevelObject) {
1278   // Handle GNU flexible array initializers.
1279   unsigned FlexArrayDiag;
1280   if (isa<InitListExpr>(InitExpr) &&
1281       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1282     // Empty flexible array init always allowed as an extension
1283     FlexArrayDiag = diag::ext_flexible_array_init;
1284   } else if (SemaRef.getLangOpts().CPlusPlus) {
1285     // Disallow flexible array init in C++; it is not required for gcc
1286     // compatibility, and it needs work to IRGen correctly in general.
1287     FlexArrayDiag = diag::err_flexible_array_init;
1288   } else if (!TopLevelObject) {
1289     // Disallow flexible array init on non-top-level object
1290     FlexArrayDiag = diag::err_flexible_array_init;
1291   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1292     // Disallow flexible array init on anything which is not a variable.
1293     FlexArrayDiag = diag::err_flexible_array_init;
1294   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1295     // Disallow flexible array init on local variables.
1296     FlexArrayDiag = diag::err_flexible_array_init;
1297   } else {
1298     // Allow other cases.
1299     FlexArrayDiag = diag::ext_flexible_array_init;
1300   }
1301
1302   if (!VerifyOnly) {
1303     SemaRef.Diag(InitExpr->getLocStart(),
1304                  FlexArrayDiag)
1305       << InitExpr->getLocStart();
1306     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1307       << Field;
1308   }
1309
1310   return FlexArrayDiag != diag::ext_flexible_array_init;
1311 }
1312
1313 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1314                                             InitListExpr *IList,
1315                                             QualType DeclType,
1316                                             RecordDecl::field_iterator Field,
1317                                             bool SubobjectIsDesignatorContext,
1318                                             unsigned &Index,
1319                                             InitListExpr *StructuredList,
1320                                             unsigned &StructuredIndex,
1321                                             bool TopLevelObject) {
1322   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1323
1324   // If the record is invalid, some of it's members are invalid. To avoid
1325   // confusion, we forgo checking the intializer for the entire record.
1326   if (structDecl->isInvalidDecl()) {
1327     hadError = true;
1328     return;
1329   }
1330
1331   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1332     // Value-initialize the first named member of the union.
1333     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1334     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1335          Field != FieldEnd; ++Field) {
1336       if (Field->getDeclName()) {
1337         if (VerifyOnly)
1338           CheckValueInitializable(
1339               InitializedEntity::InitializeMember(*Field, &Entity));
1340         else
1341           StructuredList->setInitializedFieldInUnion(*Field);
1342         break;
1343       }
1344     }
1345     return;
1346   }
1347
1348   // If structDecl is a forward declaration, this loop won't do
1349   // anything except look at designated initializers; That's okay,
1350   // because an error should get printed out elsewhere. It might be
1351   // worthwhile to skip over the rest of the initializer, though.
1352   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1353   RecordDecl::field_iterator FieldEnd = RD->field_end();
1354   bool InitializedSomething = false;
1355   bool CheckForMissingFields = true;
1356   while (Index < IList->getNumInits()) {
1357     Expr *Init = IList->getInit(Index);
1358
1359     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1360       // If we're not the subobject that matches up with the '{' for
1361       // the designator, we shouldn't be handling the
1362       // designator. Return immediately.
1363       if (!SubobjectIsDesignatorContext)
1364         return;
1365
1366       // Handle this designated initializer. Field will be updated to
1367       // the next field that we'll be initializing.
1368       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1369                                      DeclType, &Field, 0, Index,
1370                                      StructuredList, StructuredIndex,
1371                                      true, TopLevelObject))
1372         hadError = true;
1373
1374       InitializedSomething = true;
1375
1376       // Disable check for missing fields when designators are used.
1377       // This matches gcc behaviour.
1378       CheckForMissingFields = false;
1379       continue;
1380     }
1381
1382     if (Field == FieldEnd) {
1383       // We've run out of fields. We're done.
1384       break;
1385     }
1386
1387     // We've already initialized a member of a union. We're done.
1388     if (InitializedSomething && DeclType->isUnionType())
1389       break;
1390
1391     // If we've hit the flexible array member at the end, we're done.
1392     if (Field->getType()->isIncompleteArrayType())
1393       break;
1394
1395     if (Field->isUnnamedBitfield()) {
1396       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1397       ++Field;
1398       continue;
1399     }
1400
1401     // Make sure we can use this declaration.
1402     bool InvalidUse;
1403     if (VerifyOnly)
1404       InvalidUse = !SemaRef.CanUseDecl(*Field);
1405     else
1406       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1407                                           IList->getInit(Index)->getLocStart());
1408     if (InvalidUse) {
1409       ++Index;
1410       ++Field;
1411       hadError = true;
1412       continue;
1413     }
1414
1415     InitializedEntity MemberEntity =
1416       InitializedEntity::InitializeMember(*Field, &Entity);
1417     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1418                         StructuredList, StructuredIndex);
1419     InitializedSomething = true;
1420
1421     if (DeclType->isUnionType() && !VerifyOnly) {
1422       // Initialize the first field within the union.
1423       StructuredList->setInitializedFieldInUnion(*Field);
1424     }
1425
1426     ++Field;
1427   }
1428
1429   // Emit warnings for missing struct field initializers.
1430   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1431       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1432       !DeclType->isUnionType()) {
1433     // It is possible we have one or more unnamed bitfields remaining.
1434     // Find first (if any) named field and emit warning.
1435     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1436          it != end; ++it) {
1437       if (!it->isUnnamedBitfield()) {
1438         SemaRef.Diag(IList->getSourceRange().getEnd(),
1439                      diag::warn_missing_field_initializers) << it->getName();
1440         break;
1441       }
1442     }
1443   }
1444
1445   // Check that any remaining fields can be value-initialized.
1446   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1447       !Field->getType()->isIncompleteArrayType()) {
1448     // FIXME: Should check for holes left by designated initializers too.
1449     for (; Field != FieldEnd && !hadError; ++Field) {
1450       if (!Field->isUnnamedBitfield())
1451         CheckValueInitializable(
1452             InitializedEntity::InitializeMember(*Field, &Entity));
1453     }
1454   }
1455
1456   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1457       Index >= IList->getNumInits())
1458     return;
1459
1460   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1461                              TopLevelObject)) {
1462     hadError = true;
1463     ++Index;
1464     return;
1465   }
1466
1467   InitializedEntity MemberEntity =
1468     InitializedEntity::InitializeMember(*Field, &Entity);
1469
1470   if (isa<InitListExpr>(IList->getInit(Index)))
1471     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1472                         StructuredList, StructuredIndex);
1473   else
1474     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1475                           StructuredList, StructuredIndex);
1476 }
1477
1478 /// \brief Expand a field designator that refers to a member of an
1479 /// anonymous struct or union into a series of field designators that
1480 /// refers to the field within the appropriate subobject.
1481 ///
1482 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1483                                            DesignatedInitExpr *DIE,
1484                                            unsigned DesigIdx,
1485                                            IndirectFieldDecl *IndirectField) {
1486   typedef DesignatedInitExpr::Designator Designator;
1487
1488   // Build the replacement designators.
1489   SmallVector<Designator, 4> Replacements;
1490   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1491        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1492     if (PI + 1 == PE)
1493       Replacements.push_back(Designator((IdentifierInfo *)0,
1494                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1495                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1496     else
1497       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1498                                         SourceLocation()));
1499     assert(isa<FieldDecl>(*PI));
1500     Replacements.back().setField(cast<FieldDecl>(*PI));
1501   }
1502
1503   // Expand the current designator into the set of replacement
1504   // designators, so we have a full subobject path down to where the
1505   // member of the anonymous struct/union is actually stored.
1506   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1507                         &Replacements[0] + Replacements.size());
1508 }
1509
1510 /// \brief Given an implicit anonymous field, search the IndirectField that
1511 ///  corresponds to FieldName.
1512 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1513                                                  IdentifierInfo *FieldName) {
1514   assert(AnonField->isAnonymousStructOrUnion());
1515   Decl *NextDecl = AnonField->getNextDeclInContext();
1516   while (IndirectFieldDecl *IF = 
1517           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1518     if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1519       return IF;
1520     NextDecl = NextDecl->getNextDeclInContext();
1521   }
1522   return 0;
1523 }
1524
1525 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1526                                                    DesignatedInitExpr *DIE) {
1527   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1528   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1529   for (unsigned I = 0; I < NumIndexExprs; ++I)
1530     IndexExprs[I] = DIE->getSubExpr(I + 1);
1531   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1532                                     DIE->size(), IndexExprs.data(),
1533                                     NumIndexExprs, DIE->getEqualOrColonLoc(),
1534                                     DIE->usesGNUSyntax(), DIE->getInit());
1535 }
1536
1537 namespace {
1538
1539 // Callback to only accept typo corrections that are for field members of
1540 // the given struct or union.
1541 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1542  public:
1543   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1544       : Record(RD) {}
1545
1546   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1547     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1548     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1549   }
1550
1551  private:
1552   RecordDecl *Record;
1553 };
1554
1555 }
1556
1557 /// @brief Check the well-formedness of a C99 designated initializer.
1558 ///
1559 /// Determines whether the designated initializer @p DIE, which
1560 /// resides at the given @p Index within the initializer list @p
1561 /// IList, is well-formed for a current object of type @p DeclType
1562 /// (C99 6.7.8). The actual subobject that this designator refers to
1563 /// within the current subobject is returned in either
1564 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1565 ///
1566 /// @param IList  The initializer list in which this designated
1567 /// initializer occurs.
1568 ///
1569 /// @param DIE The designated initializer expression.
1570 ///
1571 /// @param DesigIdx  The index of the current designator.
1572 ///
1573 /// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1574 /// into which the designation in @p DIE should refer.
1575 ///
1576 /// @param NextField  If non-NULL and the first designator in @p DIE is
1577 /// a field, this will be set to the field declaration corresponding
1578 /// to the field named by the designator.
1579 ///
1580 /// @param NextElementIndex  If non-NULL and the first designator in @p
1581 /// DIE is an array designator or GNU array-range designator, this
1582 /// will be set to the last index initialized by this designator.
1583 ///
1584 /// @param Index  Index into @p IList where the designated initializer
1585 /// @p DIE occurs.
1586 ///
1587 /// @param StructuredList  The initializer list expression that
1588 /// describes all of the subobject initializers in the order they'll
1589 /// actually be initialized.
1590 ///
1591 /// @returns true if there was an error, false otherwise.
1592 bool
1593 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1594                                             InitListExpr *IList,
1595                                             DesignatedInitExpr *DIE,
1596                                             unsigned DesigIdx,
1597                                             QualType &CurrentObjectType,
1598                                           RecordDecl::field_iterator *NextField,
1599                                             llvm::APSInt *NextElementIndex,
1600                                             unsigned &Index,
1601                                             InitListExpr *StructuredList,
1602                                             unsigned &StructuredIndex,
1603                                             bool FinishSubobjectInit,
1604                                             bool TopLevelObject) {
1605   if (DesigIdx == DIE->size()) {
1606     // Check the actual initialization for the designated object type.
1607     bool prevHadError = hadError;
1608
1609     // Temporarily remove the designator expression from the
1610     // initializer list that the child calls see, so that we don't try
1611     // to re-process the designator.
1612     unsigned OldIndex = Index;
1613     IList->setInit(OldIndex, DIE->getInit());
1614
1615     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1616                         StructuredList, StructuredIndex);
1617
1618     // Restore the designated initializer expression in the syntactic
1619     // form of the initializer list.
1620     if (IList->getInit(OldIndex) != DIE->getInit())
1621       DIE->setInit(IList->getInit(OldIndex));
1622     IList->setInit(OldIndex, DIE);
1623
1624     return hadError && !prevHadError;
1625   }
1626
1627   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1628   bool IsFirstDesignator = (DesigIdx == 0);
1629   if (!VerifyOnly) {
1630     assert((IsFirstDesignator || StructuredList) &&
1631            "Need a non-designated initializer list to start from");
1632
1633     // Determine the structural initializer list that corresponds to the
1634     // current subobject.
1635     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1636       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1637                                    StructuredList, StructuredIndex,
1638                                    SourceRange(D->getStartLocation(),
1639                                                DIE->getSourceRange().getEnd()));
1640     assert(StructuredList && "Expected a structured initializer list");
1641   }
1642
1643   if (D->isFieldDesignator()) {
1644     // C99 6.7.8p7:
1645     //
1646     //   If a designator has the form
1647     //
1648     //      . identifier
1649     //
1650     //   then the current object (defined below) shall have
1651     //   structure or union type and the identifier shall be the
1652     //   name of a member of that type.
1653     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1654     if (!RT) {
1655       SourceLocation Loc = D->getDotLoc();
1656       if (Loc.isInvalid())
1657         Loc = D->getFieldLoc();
1658       if (!VerifyOnly)
1659         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1660           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1661       ++Index;
1662       return true;
1663     }
1664
1665     // Note: we perform a linear search of the fields here, despite
1666     // the fact that we have a faster lookup method, because we always
1667     // need to compute the field's index.
1668     FieldDecl *KnownField = D->getField();
1669     IdentifierInfo *FieldName = D->getFieldName();
1670     unsigned FieldIndex = 0;
1671     RecordDecl::field_iterator
1672       Field = RT->getDecl()->field_begin(),
1673       FieldEnd = RT->getDecl()->field_end();
1674     for (; Field != FieldEnd; ++Field) {
1675       if (Field->isUnnamedBitfield())
1676         continue;
1677
1678       // If we find a field representing an anonymous field, look in the
1679       // IndirectFieldDecl that follow for the designated initializer.
1680       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1681         if (IndirectFieldDecl *IF =
1682             FindIndirectFieldDesignator(*Field, FieldName)) {
1683           // In verify mode, don't modify the original.
1684           if (VerifyOnly)
1685             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1686           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1687           D = DIE->getDesignator(DesigIdx);
1688           break;
1689         }
1690       }
1691       if (KnownField && KnownField == *Field)
1692         break;
1693       if (FieldName && FieldName == Field->getIdentifier())
1694         break;
1695
1696       ++FieldIndex;
1697     }
1698
1699     if (Field == FieldEnd) {
1700       if (VerifyOnly) {
1701         ++Index;
1702         return true; // No typo correction when just trying this out.
1703       }
1704
1705       // There was no normal field in the struct with the designated
1706       // name. Perform another lookup for this name, which may find
1707       // something that we can't designate (e.g., a member function),
1708       // may find nothing, or may find a member of an anonymous
1709       // struct/union.
1710       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1711       FieldDecl *ReplacementField = 0;
1712       if (Lookup.first == Lookup.second) {
1713         // Name lookup didn't find anything. Determine whether this
1714         // was a typo for another field name.
1715         FieldInitializerValidatorCCC Validator(RT->getDecl());
1716         TypoCorrection Corrected = SemaRef.CorrectTypo(
1717             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1718             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1719             RT->getDecl());
1720         if (Corrected) {
1721           std::string CorrectedStr(
1722               Corrected.getAsString(SemaRef.getLangOpts()));
1723           std::string CorrectedQuotedStr(
1724               Corrected.getQuoted(SemaRef.getLangOpts()));
1725           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1726           SemaRef.Diag(D->getFieldLoc(),
1727                        diag::err_field_designator_unknown_suggest)
1728             << FieldName << CurrentObjectType << CorrectedQuotedStr
1729             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1730           SemaRef.Diag(ReplacementField->getLocation(),
1731                        diag::note_previous_decl) << CorrectedQuotedStr;
1732           hadError = true;
1733         } else {
1734           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1735             << FieldName << CurrentObjectType;
1736           ++Index;
1737           return true;
1738         }
1739       }
1740
1741       if (!ReplacementField) {
1742         // Name lookup found something, but it wasn't a field.
1743         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1744           << FieldName;
1745         SemaRef.Diag((*Lookup.first)->getLocation(),
1746                       diag::note_field_designator_found);
1747         ++Index;
1748         return true;
1749       }
1750
1751       if (!KnownField) {
1752         // The replacement field comes from typo correction; find it
1753         // in the list of fields.
1754         FieldIndex = 0;
1755         Field = RT->getDecl()->field_begin();
1756         for (; Field != FieldEnd; ++Field) {
1757           if (Field->isUnnamedBitfield())
1758             continue;
1759
1760           if (ReplacementField == *Field ||
1761               Field->getIdentifier() == ReplacementField->getIdentifier())
1762             break;
1763
1764           ++FieldIndex;
1765         }
1766       }
1767     }
1768
1769     // All of the fields of a union are located at the same place in
1770     // the initializer list.
1771     if (RT->getDecl()->isUnion()) {
1772       FieldIndex = 0;
1773       if (!VerifyOnly)
1774         StructuredList->setInitializedFieldInUnion(*Field);
1775     }
1776
1777     // Make sure we can use this declaration.
1778     bool InvalidUse;
1779     if (VerifyOnly)
1780       InvalidUse = !SemaRef.CanUseDecl(*Field);
1781     else
1782       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1783     if (InvalidUse) {
1784       ++Index;
1785       return true;
1786     }
1787
1788     if (!VerifyOnly) {
1789       // Update the designator with the field declaration.
1790       D->setField(*Field);
1791
1792       // Make sure that our non-designated initializer list has space
1793       // for a subobject corresponding to this field.
1794       if (FieldIndex >= StructuredList->getNumInits())
1795         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1796     }
1797
1798     // This designator names a flexible array member.
1799     if (Field->getType()->isIncompleteArrayType()) {
1800       bool Invalid = false;
1801       if ((DesigIdx + 1) != DIE->size()) {
1802         // We can't designate an object within the flexible array
1803         // member (because GCC doesn't allow it).
1804         if (!VerifyOnly) {
1805           DesignatedInitExpr::Designator *NextD
1806             = DIE->getDesignator(DesigIdx + 1);
1807           SemaRef.Diag(NextD->getStartLocation(),
1808                         diag::err_designator_into_flexible_array_member)
1809             << SourceRange(NextD->getStartLocation(),
1810                            DIE->getSourceRange().getEnd());
1811           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1812             << *Field;
1813         }
1814         Invalid = true;
1815       }
1816
1817       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1818           !isa<StringLiteral>(DIE->getInit())) {
1819         // The initializer is not an initializer list.
1820         if (!VerifyOnly) {
1821           SemaRef.Diag(DIE->getInit()->getLocStart(),
1822                         diag::err_flexible_array_init_needs_braces)
1823             << DIE->getInit()->getSourceRange();
1824           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1825             << *Field;
1826         }
1827         Invalid = true;
1828       }
1829
1830       // Check GNU flexible array initializer.
1831       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1832                                              TopLevelObject))
1833         Invalid = true;
1834
1835       if (Invalid) {
1836         ++Index;
1837         return true;
1838       }
1839
1840       // Initialize the array.
1841       bool prevHadError = hadError;
1842       unsigned newStructuredIndex = FieldIndex;
1843       unsigned OldIndex = Index;
1844       IList->setInit(Index, DIE->getInit());
1845
1846       InitializedEntity MemberEntity =
1847         InitializedEntity::InitializeMember(*Field, &Entity);
1848       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1849                           StructuredList, newStructuredIndex);
1850
1851       IList->setInit(OldIndex, DIE);
1852       if (hadError && !prevHadError) {
1853         ++Field;
1854         ++FieldIndex;
1855         if (NextField)
1856           *NextField = Field;
1857         StructuredIndex = FieldIndex;
1858         return true;
1859       }
1860     } else {
1861       // Recurse to check later designated subobjects.
1862       QualType FieldType = (*Field)->getType();
1863       unsigned newStructuredIndex = FieldIndex;
1864
1865       InitializedEntity MemberEntity =
1866         InitializedEntity::InitializeMember(*Field, &Entity);
1867       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1868                                      FieldType, 0, 0, Index,
1869                                      StructuredList, newStructuredIndex,
1870                                      true, false))
1871         return true;
1872     }
1873
1874     // Find the position of the next field to be initialized in this
1875     // subobject.
1876     ++Field;
1877     ++FieldIndex;
1878
1879     // If this the first designator, our caller will continue checking
1880     // the rest of this struct/class/union subobject.
1881     if (IsFirstDesignator) {
1882       if (NextField)
1883         *NextField = Field;
1884       StructuredIndex = FieldIndex;
1885       return false;
1886     }
1887
1888     if (!FinishSubobjectInit)
1889       return false;
1890
1891     // We've already initialized something in the union; we're done.
1892     if (RT->getDecl()->isUnion())
1893       return hadError;
1894
1895     // Check the remaining fields within this class/struct/union subobject.
1896     bool prevHadError = hadError;
1897
1898     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1899                           StructuredList, FieldIndex);
1900     return hadError && !prevHadError;
1901   }
1902
1903   // C99 6.7.8p6:
1904   //
1905   //   If a designator has the form
1906   //
1907   //      [ constant-expression ]
1908   //
1909   //   then the current object (defined below) shall have array
1910   //   type and the expression shall be an integer constant
1911   //   expression. If the array is of unknown size, any
1912   //   nonnegative value is valid.
1913   //
1914   // Additionally, cope with the GNU extension that permits
1915   // designators of the form
1916   //
1917   //      [ constant-expression ... constant-expression ]
1918   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1919   if (!AT) {
1920     if (!VerifyOnly)
1921       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1922         << CurrentObjectType;
1923     ++Index;
1924     return true;
1925   }
1926
1927   Expr *IndexExpr = 0;
1928   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1929   if (D->isArrayDesignator()) {
1930     IndexExpr = DIE->getArrayIndex(*D);
1931     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1932     DesignatedEndIndex = DesignatedStartIndex;
1933   } else {
1934     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1935
1936     DesignatedStartIndex =
1937       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1938     DesignatedEndIndex =
1939       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1940     IndexExpr = DIE->getArrayRangeEnd(*D);
1941
1942     // Codegen can't handle evaluating array range designators that have side
1943     // effects, because we replicate the AST value for each initialized element.
1944     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1945     // elements with something that has a side effect, so codegen can emit an
1946     // "error unsupported" error instead of miscompiling the app.
1947     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1948         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1949       FullyStructuredList->sawArrayRangeDesignator();
1950   }
1951
1952   if (isa<ConstantArrayType>(AT)) {
1953     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1954     DesignatedStartIndex
1955       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1956     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1957     DesignatedEndIndex
1958       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1959     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1960     if (DesignatedEndIndex >= MaxElements) {
1961       if (!VerifyOnly)
1962         SemaRef.Diag(IndexExpr->getLocStart(),
1963                       diag::err_array_designator_too_large)
1964           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1965           << IndexExpr->getSourceRange();
1966       ++Index;
1967       return true;
1968     }
1969   } else {
1970     // Make sure the bit-widths and signedness match.
1971     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1972       DesignatedEndIndex
1973         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1974     else if (DesignatedStartIndex.getBitWidth() <
1975              DesignatedEndIndex.getBitWidth())
1976       DesignatedStartIndex
1977         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1978     DesignatedStartIndex.setIsUnsigned(true);
1979     DesignatedEndIndex.setIsUnsigned(true);
1980   }
1981
1982   // Make sure that our non-designated initializer list has space
1983   // for a subobject corresponding to this array element.
1984   if (!VerifyOnly &&
1985       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1986     StructuredList->resizeInits(SemaRef.Context,
1987                                 DesignatedEndIndex.getZExtValue() + 1);
1988
1989   // Repeatedly perform subobject initializations in the range
1990   // [DesignatedStartIndex, DesignatedEndIndex].
1991
1992   // Move to the next designator
1993   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1994   unsigned OldIndex = Index;
1995
1996   InitializedEntity ElementEntity =
1997     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1998
1999   while (DesignatedStartIndex <= DesignatedEndIndex) {
2000     // Recurse to check later designated subobjects.
2001     QualType ElementType = AT->getElementType();
2002     Index = OldIndex;
2003
2004     ElementEntity.setElementIndex(ElementIndex);
2005     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2006                                    ElementType, 0, 0, Index,
2007                                    StructuredList, ElementIndex,
2008                                    (DesignatedStartIndex == DesignatedEndIndex),
2009                                    false))
2010       return true;
2011
2012     // Move to the next index in the array that we'll be initializing.
2013     ++DesignatedStartIndex;
2014     ElementIndex = DesignatedStartIndex.getZExtValue();
2015   }
2016
2017   // If this the first designator, our caller will continue checking
2018   // the rest of this array subobject.
2019   if (IsFirstDesignator) {
2020     if (NextElementIndex)
2021       *NextElementIndex = DesignatedStartIndex;
2022     StructuredIndex = ElementIndex;
2023     return false;
2024   }
2025
2026   if (!FinishSubobjectInit)
2027     return false;
2028
2029   // Check the remaining elements within this array subobject.
2030   bool prevHadError = hadError;
2031   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2032                  /*SubobjectIsDesignatorContext=*/false, Index,
2033                  StructuredList, ElementIndex);
2034   return hadError && !prevHadError;
2035 }
2036
2037 // Get the structured initializer list for a subobject of type
2038 // @p CurrentObjectType.
2039 InitListExpr *
2040 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2041                                             QualType CurrentObjectType,
2042                                             InitListExpr *StructuredList,
2043                                             unsigned StructuredIndex,
2044                                             SourceRange InitRange) {
2045   if (VerifyOnly)
2046     return 0; // No structured list in verification-only mode.
2047   Expr *ExistingInit = 0;
2048   if (!StructuredList)
2049     ExistingInit = SyntacticToSemantic.lookup(IList);
2050   else if (StructuredIndex < StructuredList->getNumInits())
2051     ExistingInit = StructuredList->getInit(StructuredIndex);
2052
2053   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2054     return Result;
2055
2056   if (ExistingInit) {
2057     // We are creating an initializer list that initializes the
2058     // subobjects of the current object, but there was already an
2059     // initialization that completely initialized the current
2060     // subobject, e.g., by a compound literal:
2061     //
2062     // struct X { int a, b; };
2063     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2064     //
2065     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2066     // designated initializer re-initializes the whole
2067     // subobject [0], overwriting previous initializers.
2068     SemaRef.Diag(InitRange.getBegin(),
2069                  diag::warn_subobject_initializer_overrides)
2070       << InitRange;
2071     SemaRef.Diag(ExistingInit->getLocStart(),
2072                   diag::note_previous_initializer)
2073       << /*FIXME:has side effects=*/0
2074       << ExistingInit->getSourceRange();
2075   }
2076
2077   InitListExpr *Result
2078     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2079                                          InitRange.getBegin(), 0, 0,
2080                                          InitRange.getEnd());
2081
2082   QualType ResultType = CurrentObjectType;
2083   if (!ResultType->isArrayType())
2084     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2085   Result->setType(ResultType);
2086
2087   // Pre-allocate storage for the structured initializer list.
2088   unsigned NumElements = 0;
2089   unsigned NumInits = 0;
2090   bool GotNumInits = false;
2091   if (!StructuredList) {
2092     NumInits = IList->getNumInits();
2093     GotNumInits = true;
2094   } else if (Index < IList->getNumInits()) {
2095     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2096       NumInits = SubList->getNumInits();
2097       GotNumInits = true;
2098     }
2099   }
2100
2101   if (const ArrayType *AType
2102       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2103     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2104       NumElements = CAType->getSize().getZExtValue();
2105       // Simple heuristic so that we don't allocate a very large
2106       // initializer with many empty entries at the end.
2107       if (GotNumInits && NumElements > NumInits)
2108         NumElements = 0;
2109     }
2110   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2111     NumElements = VType->getNumElements();
2112   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2113     RecordDecl *RDecl = RType->getDecl();
2114     if (RDecl->isUnion())
2115       NumElements = 1;
2116     else
2117       NumElements = std::distance(RDecl->field_begin(),
2118                                   RDecl->field_end());
2119   }
2120
2121   Result->reserveInits(SemaRef.Context, NumElements);
2122
2123   // Link this new initializer list into the structured initializer
2124   // lists.
2125   if (StructuredList)
2126     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2127   else {
2128     Result->setSyntacticForm(IList);
2129     SyntacticToSemantic[IList] = Result;
2130   }
2131
2132   return Result;
2133 }
2134
2135 /// Update the initializer at index @p StructuredIndex within the
2136 /// structured initializer list to the value @p expr.
2137 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2138                                                   unsigned &StructuredIndex,
2139                                                   Expr *expr) {
2140   // No structured initializer list to update
2141   if (!StructuredList)
2142     return;
2143
2144   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2145                                                   StructuredIndex, expr)) {
2146     // This initializer overwrites a previous initializer. Warn.
2147     SemaRef.Diag(expr->getLocStart(),
2148                   diag::warn_initializer_overrides)
2149       << expr->getSourceRange();
2150     SemaRef.Diag(PrevInit->getLocStart(),
2151                   diag::note_previous_initializer)
2152       << /*FIXME:has side effects=*/0
2153       << PrevInit->getSourceRange();
2154   }
2155
2156   ++StructuredIndex;
2157 }
2158
2159 /// Check that the given Index expression is a valid array designator
2160 /// value. This is essentially just a wrapper around
2161 /// VerifyIntegerConstantExpression that also checks for negative values
2162 /// and produces a reasonable diagnostic if there is a
2163 /// failure. Returns the index expression, possibly with an implicit cast
2164 /// added, on success.  If everything went okay, Value will receive the
2165 /// value of the constant expression.
2166 static ExprResult
2167 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2168   SourceLocation Loc = Index->getLocStart();
2169
2170   // Make sure this is an integer constant expression.
2171   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2172   if (Result.isInvalid())
2173     return Result;
2174
2175   if (Value.isSigned() && Value.isNegative())
2176     return S.Diag(Loc, diag::err_array_designator_negative)
2177       << Value.toString(10) << Index->getSourceRange();
2178
2179   Value.setIsUnsigned(true);
2180   return Result;
2181 }
2182
2183 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2184                                             SourceLocation Loc,
2185                                             bool GNUSyntax,
2186                                             ExprResult Init) {
2187   typedef DesignatedInitExpr::Designator ASTDesignator;
2188
2189   bool Invalid = false;
2190   SmallVector<ASTDesignator, 32> Designators;
2191   SmallVector<Expr *, 32> InitExpressions;
2192
2193   // Build designators and check array designator expressions.
2194   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2195     const Designator &D = Desig.getDesignator(Idx);
2196     switch (D.getKind()) {
2197     case Designator::FieldDesignator:
2198       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2199                                           D.getFieldLoc()));
2200       break;
2201
2202     case Designator::ArrayDesignator: {
2203       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2204       llvm::APSInt IndexValue;
2205       if (!Index->isTypeDependent() && !Index->isValueDependent())
2206         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2207       if (!Index)
2208         Invalid = true;
2209       else {
2210         Designators.push_back(ASTDesignator(InitExpressions.size(),
2211                                             D.getLBracketLoc(),
2212                                             D.getRBracketLoc()));
2213         InitExpressions.push_back(Index);
2214       }
2215       break;
2216     }
2217
2218     case Designator::ArrayRangeDesignator: {
2219       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2220       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2221       llvm::APSInt StartValue;
2222       llvm::APSInt EndValue;
2223       bool StartDependent = StartIndex->isTypeDependent() ||
2224                             StartIndex->isValueDependent();
2225       bool EndDependent = EndIndex->isTypeDependent() ||
2226                           EndIndex->isValueDependent();
2227       if (!StartDependent)
2228         StartIndex =
2229             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2230       if (!EndDependent)
2231         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2232
2233       if (!StartIndex || !EndIndex)
2234         Invalid = true;
2235       else {
2236         // Make sure we're comparing values with the same bit width.
2237         if (StartDependent || EndDependent) {
2238           // Nothing to compute.
2239         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2240           EndValue = EndValue.extend(StartValue.getBitWidth());
2241         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2242           StartValue = StartValue.extend(EndValue.getBitWidth());
2243
2244         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2245           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2246             << StartValue.toString(10) << EndValue.toString(10)
2247             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2248           Invalid = true;
2249         } else {
2250           Designators.push_back(ASTDesignator(InitExpressions.size(),
2251                                               D.getLBracketLoc(),
2252                                               D.getEllipsisLoc(),
2253                                               D.getRBracketLoc()));
2254           InitExpressions.push_back(StartIndex);
2255           InitExpressions.push_back(EndIndex);
2256         }
2257       }
2258       break;
2259     }
2260     }
2261   }
2262
2263   if (Invalid || Init.isInvalid())
2264     return ExprError();
2265
2266   // Clear out the expressions within the designation.
2267   Desig.ClearExprs(*this);
2268
2269   DesignatedInitExpr *DIE
2270     = DesignatedInitExpr::Create(Context,
2271                                  Designators.data(), Designators.size(),
2272                                  InitExpressions.data(), InitExpressions.size(),
2273                                  Loc, GNUSyntax, Init.takeAs<Expr>());
2274
2275   if (!getLangOpts().C99)
2276     Diag(DIE->getLocStart(), diag::ext_designated_init)
2277       << DIE->getSourceRange();
2278
2279   return Owned(DIE);
2280 }
2281
2282 //===----------------------------------------------------------------------===//
2283 // Initialization entity
2284 //===----------------------------------------------------------------------===//
2285
2286 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2287                                      const InitializedEntity &Parent)
2288   : Parent(&Parent), Index(Index)
2289 {
2290   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2291     Kind = EK_ArrayElement;
2292     Type = AT->getElementType();
2293   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2294     Kind = EK_VectorElement;
2295     Type = VT->getElementType();
2296   } else {
2297     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2298     assert(CT && "Unexpected type");
2299     Kind = EK_ComplexElement;
2300     Type = CT->getElementType();
2301   }
2302 }
2303
2304 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2305                                                     CXXBaseSpecifier *Base,
2306                                                     bool IsInheritedVirtualBase)
2307 {
2308   InitializedEntity Result;
2309   Result.Kind = EK_Base;
2310   Result.Base = reinterpret_cast<uintptr_t>(Base);
2311   if (IsInheritedVirtualBase)
2312     Result.Base |= 0x01;
2313
2314   Result.Type = Base->getType();
2315   return Result;
2316 }
2317
2318 DeclarationName InitializedEntity::getName() const {
2319   switch (getKind()) {
2320   case EK_Parameter: {
2321     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2322     return (D ? D->getDeclName() : DeclarationName());
2323   }
2324
2325   case EK_Variable:
2326   case EK_Member:
2327     return VariableOrMember->getDeclName();
2328
2329   case EK_LambdaCapture:
2330     return Capture.Var->getDeclName();
2331       
2332   case EK_Result:
2333   case EK_Exception:
2334   case EK_New:
2335   case EK_Temporary:
2336   case EK_Base:
2337   case EK_Delegating:
2338   case EK_ArrayElement:
2339   case EK_VectorElement:
2340   case EK_ComplexElement:
2341   case EK_BlockElement:
2342     return DeclarationName();
2343   }
2344
2345   llvm_unreachable("Invalid EntityKind!");
2346 }
2347
2348 DeclaratorDecl *InitializedEntity::getDecl() const {
2349   switch (getKind()) {
2350   case EK_Variable:
2351   case EK_Member:
2352     return VariableOrMember;
2353
2354   case EK_Parameter:
2355     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2356
2357   case EK_Result:
2358   case EK_Exception:
2359   case EK_New:
2360   case EK_Temporary:
2361   case EK_Base:
2362   case EK_Delegating:
2363   case EK_ArrayElement:
2364   case EK_VectorElement:
2365   case EK_ComplexElement:
2366   case EK_BlockElement:
2367   case EK_LambdaCapture:
2368     return 0;
2369   }
2370
2371   llvm_unreachable("Invalid EntityKind!");
2372 }
2373
2374 bool InitializedEntity::allowsNRVO() const {
2375   switch (getKind()) {
2376   case EK_Result:
2377   case EK_Exception:
2378     return LocAndNRVO.NRVO;
2379
2380   case EK_Variable:
2381   case EK_Parameter:
2382   case EK_Member:
2383   case EK_New:
2384   case EK_Temporary:
2385   case EK_Base:
2386   case EK_Delegating:
2387   case EK_ArrayElement:
2388   case EK_VectorElement:
2389   case EK_ComplexElement:
2390   case EK_BlockElement:
2391   case EK_LambdaCapture:
2392     break;
2393   }
2394
2395   return false;
2396 }
2397
2398 //===----------------------------------------------------------------------===//
2399 // Initialization sequence
2400 //===----------------------------------------------------------------------===//
2401
2402 void InitializationSequence::Step::Destroy() {
2403   switch (Kind) {
2404   case SK_ResolveAddressOfOverloadedFunction:
2405   case SK_CastDerivedToBaseRValue:
2406   case SK_CastDerivedToBaseXValue:
2407   case SK_CastDerivedToBaseLValue:
2408   case SK_BindReference:
2409   case SK_BindReferenceToTemporary:
2410   case SK_ExtraneousCopyToTemporary:
2411   case SK_UserConversion:
2412   case SK_QualificationConversionRValue:
2413   case SK_QualificationConversionXValue:
2414   case SK_QualificationConversionLValue:
2415   case SK_ListInitialization:
2416   case SK_ListConstructorCall:
2417   case SK_UnwrapInitList:
2418   case SK_RewrapInitList:
2419   case SK_ConstructorInitialization:
2420   case SK_ZeroInitialization:
2421   case SK_CAssignment:
2422   case SK_StringInit:
2423   case SK_ObjCObjectConversion:
2424   case SK_ArrayInit:
2425   case SK_ParenthesizedArrayInit:
2426   case SK_PassByIndirectCopyRestore:
2427   case SK_PassByIndirectRestore:
2428   case SK_ProduceObjCObject:
2429   case SK_StdInitializerList:
2430     break;
2431
2432   case SK_ConversionSequence:
2433     delete ICS;
2434   }
2435 }
2436
2437 bool InitializationSequence::isDirectReferenceBinding() const {
2438   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2439 }
2440
2441 bool InitializationSequence::isAmbiguous() const {
2442   if (!Failed())
2443     return false;
2444
2445   switch (getFailureKind()) {
2446   case FK_TooManyInitsForReference:
2447   case FK_ArrayNeedsInitList:
2448   case FK_ArrayNeedsInitListOrStringLiteral:
2449   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2450   case FK_NonConstLValueReferenceBindingToTemporary:
2451   case FK_NonConstLValueReferenceBindingToUnrelated:
2452   case FK_RValueReferenceBindingToLValue:
2453   case FK_ReferenceInitDropsQualifiers:
2454   case FK_ReferenceInitFailed:
2455   case FK_ConversionFailed:
2456   case FK_ConversionFromPropertyFailed:
2457   case FK_TooManyInitsForScalar:
2458   case FK_ReferenceBindingToInitList:
2459   case FK_InitListBadDestinationType:
2460   case FK_DefaultInitOfConst:
2461   case FK_Incomplete:
2462   case FK_ArrayTypeMismatch:
2463   case FK_NonConstantArrayInit:
2464   case FK_ListInitializationFailed:
2465   case FK_VariableLengthArrayHasInitializer:
2466   case FK_PlaceholderType:
2467   case FK_InitListElementCopyFailure:
2468   case FK_ExplicitConstructor:
2469     return false;
2470
2471   case FK_ReferenceInitOverloadFailed:
2472   case FK_UserConversionOverloadFailed:
2473   case FK_ConstructorOverloadFailed:
2474   case FK_ListConstructorOverloadFailed:
2475     return FailedOverloadResult == OR_Ambiguous;
2476   }
2477
2478   llvm_unreachable("Invalid EntityKind!");
2479 }
2480
2481 bool InitializationSequence::isConstructorInitialization() const {
2482   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2483 }
2484
2485 void
2486 InitializationSequence
2487 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2488                                    DeclAccessPair Found,
2489                                    bool HadMultipleCandidates) {
2490   Step S;
2491   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2492   S.Type = Function->getType();
2493   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2494   S.Function.Function = Function;
2495   S.Function.FoundDecl = Found;
2496   Steps.push_back(S);
2497 }
2498
2499 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2500                                                       ExprValueKind VK) {
2501   Step S;
2502   switch (VK) {
2503   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2504   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2505   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2506   }
2507   S.Type = BaseType;
2508   Steps.push_back(S);
2509 }
2510
2511 void InitializationSequence::AddReferenceBindingStep(QualType T,
2512                                                      bool BindingTemporary) {
2513   Step S;
2514   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2515   S.Type = T;
2516   Steps.push_back(S);
2517 }
2518
2519 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2520   Step S;
2521   S.Kind = SK_ExtraneousCopyToTemporary;
2522   S.Type = T;
2523   Steps.push_back(S);
2524 }
2525
2526 void
2527 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2528                                               DeclAccessPair FoundDecl,
2529                                               QualType T,
2530                                               bool HadMultipleCandidates) {
2531   Step S;
2532   S.Kind = SK_UserConversion;
2533   S.Type = T;
2534   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2535   S.Function.Function = Function;
2536   S.Function.FoundDecl = FoundDecl;
2537   Steps.push_back(S);
2538 }
2539
2540 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2541                                                             ExprValueKind VK) {
2542   Step S;
2543   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2544   switch (VK) {
2545   case VK_RValue:
2546     S.Kind = SK_QualificationConversionRValue;
2547     break;
2548   case VK_XValue:
2549     S.Kind = SK_QualificationConversionXValue;
2550     break;
2551   case VK_LValue:
2552     S.Kind = SK_QualificationConversionLValue;
2553     break;
2554   }
2555   S.Type = Ty;
2556   Steps.push_back(S);
2557 }
2558
2559 void InitializationSequence::AddConversionSequenceStep(
2560                                        const ImplicitConversionSequence &ICS,
2561                                                        QualType T) {
2562   Step S;
2563   S.Kind = SK_ConversionSequence;
2564   S.Type = T;
2565   S.ICS = new ImplicitConversionSequence(ICS);
2566   Steps.push_back(S);
2567 }
2568
2569 void InitializationSequence::AddListInitializationStep(QualType T) {
2570   Step S;
2571   S.Kind = SK_ListInitialization;
2572   S.Type = T;
2573   Steps.push_back(S);
2574 }
2575
2576 void
2577 InitializationSequence
2578 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2579                                    AccessSpecifier Access,
2580                                    QualType T,
2581                                    bool HadMultipleCandidates,
2582                                    bool FromInitList, bool AsInitList) {
2583   Step S;
2584   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2585                                        : SK_ConstructorInitialization;
2586   S.Type = T;
2587   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2588   S.Function.Function = Constructor;
2589   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2590   Steps.push_back(S);
2591 }
2592
2593 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2594   Step S;
2595   S.Kind = SK_ZeroInitialization;
2596   S.Type = T;
2597   Steps.push_back(S);
2598 }
2599
2600 void InitializationSequence::AddCAssignmentStep(QualType T) {
2601   Step S;
2602   S.Kind = SK_CAssignment;
2603   S.Type = T;
2604   Steps.push_back(S);
2605 }
2606
2607 void InitializationSequence::AddStringInitStep(QualType T) {
2608   Step S;
2609   S.Kind = SK_StringInit;
2610   S.Type = T;
2611   Steps.push_back(S);
2612 }
2613
2614 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2615   Step S;
2616   S.Kind = SK_ObjCObjectConversion;
2617   S.Type = T;
2618   Steps.push_back(S);
2619 }
2620
2621 void InitializationSequence::AddArrayInitStep(QualType T) {
2622   Step S;
2623   S.Kind = SK_ArrayInit;
2624   S.Type = T;
2625   Steps.push_back(S);
2626 }
2627
2628 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2629   Step S;
2630   S.Kind = SK_ParenthesizedArrayInit;
2631   S.Type = T;
2632   Steps.push_back(S);
2633 }
2634
2635 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2636                                                               bool shouldCopy) {
2637   Step s;
2638   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2639                        : SK_PassByIndirectRestore);
2640   s.Type = type;
2641   Steps.push_back(s);
2642 }
2643
2644 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2645   Step S;
2646   S.Kind = SK_ProduceObjCObject;
2647   S.Type = T;
2648   Steps.push_back(S);
2649 }
2650
2651 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2652   Step S;
2653   S.Kind = SK_StdInitializerList;
2654   S.Type = T;
2655   Steps.push_back(S);
2656 }
2657
2658 void InitializationSequence::RewrapReferenceInitList(QualType T,
2659                                                      InitListExpr *Syntactic) {
2660   assert(Syntactic->getNumInits() == 1 &&
2661          "Can only rewrap trivial init lists.");
2662   Step S;
2663   S.Kind = SK_UnwrapInitList;
2664   S.Type = Syntactic->getInit(0)->getType();
2665   Steps.insert(Steps.begin(), S);
2666
2667   S.Kind = SK_RewrapInitList;
2668   S.Type = T;
2669   S.WrappingSyntacticList = Syntactic;
2670   Steps.push_back(S);
2671 }
2672
2673 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2674                                                 OverloadingResult Result) {
2675   setSequenceKind(FailedSequence);
2676   this->Failure = Failure;
2677   this->FailedOverloadResult = Result;
2678 }
2679
2680 //===----------------------------------------------------------------------===//
2681 // Attempt initialization
2682 //===----------------------------------------------------------------------===//
2683
2684 static void MaybeProduceObjCObject(Sema &S,
2685                                    InitializationSequence &Sequence,
2686                                    const InitializedEntity &Entity) {
2687   if (!S.getLangOpts().ObjCAutoRefCount) return;
2688
2689   /// When initializing a parameter, produce the value if it's marked
2690   /// __attribute__((ns_consumed)).
2691   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2692     if (!Entity.isParameterConsumed())
2693       return;
2694
2695     assert(Entity.getType()->isObjCRetainableType() &&
2696            "consuming an object of unretainable type?");
2697     Sequence.AddProduceObjCObjectStep(Entity.getType());
2698
2699   /// When initializing a return value, if the return type is a
2700   /// retainable type, then returns need to immediately retain the
2701   /// object.  If an autorelease is required, it will be done at the
2702   /// last instant.
2703   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2704     if (!Entity.getType()->isObjCRetainableType())
2705       return;
2706
2707     Sequence.AddProduceObjCObjectStep(Entity.getType());
2708   }
2709 }
2710
2711 /// \brief When initializing from init list via constructor, deal with the
2712 /// empty init list and std::initializer_list special cases.
2713 ///
2714 /// \return True if this was a special case, false otherwise.
2715 static bool TryListConstructionSpecialCases(Sema &S,
2716                                             InitListExpr *List,
2717                                             CXXRecordDecl *DestRecordDecl,
2718                                             QualType DestType,
2719                                             InitializationSequence &Sequence) {
2720   // C++11 [dcl.init.list]p3:
2721   //   List-initialization of an object or reference of type T is defined as
2722   //   follows:
2723   //   - If T is an aggregate, aggregate initialization is performed.
2724   if (DestType->isAggregateType())
2725     return false;
2726
2727   //   - Otherwise, if the initializer list has no elements and T is a class
2728   //     type with a default constructor, the object is value-initialized.
2729   if (List->getNumInits() == 0) {
2730     if (CXXConstructorDecl *DefaultConstructor =
2731             S.LookupDefaultConstructor(DestRecordDecl)) {
2732       if (DefaultConstructor->isDeleted() ||
2733           S.isFunctionConsideredUnavailable(DefaultConstructor)) {
2734         // Fake an overload resolution failure.
2735         OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2736         DeclAccessPair FoundDecl = DeclAccessPair::make(DefaultConstructor,
2737                                               DefaultConstructor->getAccess());
2738         if (FunctionTemplateDecl *ConstructorTmpl =
2739                 dyn_cast<FunctionTemplateDecl>(DefaultConstructor))
2740           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2741                                          /*ExplicitArgs*/ 0,
2742                                          ArrayRef<Expr*>(), CandidateSet,
2743                                          /*SuppressUserConversions*/ false);
2744         else
2745           S.AddOverloadCandidate(DefaultConstructor, FoundDecl,
2746                                  ArrayRef<Expr*>(), CandidateSet,
2747                                  /*SuppressUserConversions*/ false);
2748         Sequence.SetOverloadFailure(
2749                        InitializationSequence::FK_ListConstructorOverloadFailed,
2750                        OR_Deleted);
2751       } else
2752         Sequence.AddConstructorInitializationStep(DefaultConstructor,
2753                                                 DefaultConstructor->getAccess(),
2754                                                   DestType,
2755                                                   /*MultipleCandidates=*/false,
2756                                                   /*FromInitList=*/true,
2757                                                   /*AsInitList=*/false);
2758       return true;
2759     }
2760   }
2761
2762   //   - Otherwise, if T is a specialization of std::initializer_list, [...]
2763   QualType E;
2764   if (S.isStdInitializerList(DestType, &E)) {
2765     // Check that each individual element can be copy-constructed. But since we
2766     // have no place to store further information, we'll recalculate everything
2767     // later.
2768     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2769         S.Context.getConstantArrayType(E,
2770             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2771                         List->getNumInits()),
2772             ArrayType::Normal, 0));
2773     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2774         0, HiddenArray);
2775     for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2776       Element.setElementIndex(i);
2777       if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2778         Sequence.SetFailed(
2779             InitializationSequence::FK_InitListElementCopyFailure);
2780         return true;
2781       }
2782     }
2783     Sequence.AddStdInitializerListConstructionStep(DestType);
2784     return true;
2785   }
2786
2787   // Not a special case.
2788   return false;
2789 }
2790
2791 static OverloadingResult
2792 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2793                            Expr **Args, unsigned NumArgs,
2794                            OverloadCandidateSet &CandidateSet,
2795                            DeclContext::lookup_iterator Con,
2796                            DeclContext::lookup_iterator ConEnd,
2797                            OverloadCandidateSet::iterator &Best,
2798                            bool CopyInitializing, bool AllowExplicit,
2799                            bool OnlyListConstructors, bool InitListSyntax) {
2800   CandidateSet.clear();
2801
2802   for (; Con != ConEnd; ++Con) {
2803     NamedDecl *D = *Con;
2804     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2805     bool SuppressUserConversions = false;
2806
2807     // Find the constructor (which may be a template).
2808     CXXConstructorDecl *Constructor = 0;
2809     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2810     if (ConstructorTmpl)
2811       Constructor = cast<CXXConstructorDecl>(
2812                                            ConstructorTmpl->getTemplatedDecl());
2813     else {
2814       Constructor = cast<CXXConstructorDecl>(D);
2815
2816       // If we're performing copy initialization using a copy constructor, we
2817       // suppress user-defined conversions on the arguments. We do the same for
2818       // move constructors.
2819       if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2820           Constructor->isCopyOrMoveConstructor())
2821         SuppressUserConversions = true;
2822     }
2823
2824     if (!Constructor->isInvalidDecl() &&
2825         (AllowExplicit || !Constructor->isExplicit()) &&
2826         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2827       if (ConstructorTmpl)
2828         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2829                                        /*ExplicitArgs*/ 0,
2830                                        llvm::makeArrayRef(Args, NumArgs),
2831                                        CandidateSet, SuppressUserConversions);
2832       else {
2833         // C++ [over.match.copy]p1:
2834         //   - When initializing a temporary to be bound to the first parameter 
2835         //     of a constructor that takes a reference to possibly cv-qualified 
2836         //     T as its first argument, called with a single argument in the 
2837         //     context of direct-initialization, explicit conversion functions
2838         //     are also considered.
2839         bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 
2840                                  NumArgs == 1 &&
2841                                  Constructor->isCopyOrMoveConstructor();
2842         S.AddOverloadCandidate(Constructor, FoundDecl,
2843                                llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2844                                SuppressUserConversions,
2845                                /*PartialOverloading=*/false,
2846                                /*AllowExplicit=*/AllowExplicitConv);
2847       }
2848     }
2849   }
2850
2851   // Perform overload resolution and return the result.
2852   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2853 }
2854
2855 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2856 /// enumerates the constructors of the initialized entity and performs overload
2857 /// resolution to select the best.
2858 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2859 /// class type.
2860 static void TryConstructorInitialization(Sema &S,
2861                                          const InitializedEntity &Entity,
2862                                          const InitializationKind &Kind,
2863                                          Expr **Args, unsigned NumArgs,
2864                                          QualType DestType,
2865                                          InitializationSequence &Sequence,
2866                                          bool InitListSyntax = false) {
2867   assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2868          "InitListSyntax must come with a single initializer list argument.");
2869
2870   // Check constructor arguments for self reference.
2871   if (DeclaratorDecl *DD = Entity.getDecl())
2872     // Parameters arguments are occassionially constructed with itself,
2873     // for instance, in recursive functions.  Skip them.
2874     if (!isa<ParmVarDecl>(DD))
2875       for (unsigned i = 0; i < NumArgs; ++i)
2876         S.CheckSelfReference(DD, Args[i]);
2877
2878   // The type we're constructing needs to be complete.
2879   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2880     Sequence.setIncompleteTypeFailure(DestType);
2881     return;
2882   }
2883
2884   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2885   assert(DestRecordType && "Constructor initialization requires record type");
2886   CXXRecordDecl *DestRecordDecl
2887     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2888
2889   if (InitListSyntax &&
2890       TryListConstructionSpecialCases(S, cast<InitListExpr>(Args[0]),
2891                                       DestRecordDecl, DestType, Sequence))
2892     return;
2893
2894   // Build the candidate set directly in the initialization sequence
2895   // structure, so that it will persist if we fail.
2896   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2897
2898   // Determine whether we are allowed to call explicit constructors or
2899   // explicit conversion operators.
2900   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2901   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2902
2903   //   - Otherwise, if T is a class type, constructors are considered. The
2904   //     applicable constructors are enumerated, and the best one is chosen
2905   //     through overload resolution.
2906   DeclContext::lookup_iterator ConStart, ConEnd;
2907   llvm::tie(ConStart, ConEnd) = S.LookupConstructors(DestRecordDecl);
2908
2909   OverloadingResult Result = OR_No_Viable_Function;
2910   OverloadCandidateSet::iterator Best;
2911   bool AsInitializerList = false;
2912
2913   // C++11 [over.match.list]p1:
2914   //   When objects of non-aggregate type T are list-initialized, overload
2915   //   resolution selects the constructor in two phases:
2916   //   - Initially, the candidate functions are the initializer-list
2917   //     constructors of the class T and the argument list consists of the
2918   //     initializer list as a single argument.
2919   if (InitListSyntax) {
2920     AsInitializerList = true;
2921     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2922                                         CandidateSet, ConStart, ConEnd, Best,
2923                                         CopyInitialization, AllowExplicit,
2924                                         /*OnlyListConstructor=*/true,
2925                                         InitListSyntax);
2926
2927     // Time to unwrap the init list.
2928     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2929     Args = ILE->getInits();
2930     NumArgs = ILE->getNumInits();
2931   }
2932
2933   // C++11 [over.match.list]p1:
2934   //   - If no viable initializer-list constructor is found, overload resolution
2935   //     is performed again, where the candidate functions are all the
2936   //     constructors of the class T nad the argument list consists of the
2937   //     elements of the initializer list.
2938   if (Result == OR_No_Viable_Function) {
2939     AsInitializerList = false;
2940     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2941                                         CandidateSet, ConStart, ConEnd, Best,
2942                                         CopyInitialization, AllowExplicit,
2943                                         /*OnlyListConstructors=*/false,
2944                                         InitListSyntax);
2945   }
2946   if (Result) {
2947     Sequence.SetOverloadFailure(InitListSyntax ?
2948                       InitializationSequence::FK_ListConstructorOverloadFailed :
2949                       InitializationSequence::FK_ConstructorOverloadFailed,
2950                                 Result);
2951     return;
2952   }
2953
2954   // C++0x [dcl.init]p6:
2955   //   If a program calls for the default initialization of an object
2956   //   of a const-qualified type T, T shall be a class type with a
2957   //   user-provided default constructor.
2958   if (Kind.getKind() == InitializationKind::IK_Default &&
2959       Entity.getType().isConstQualified() &&
2960       cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2961     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2962     return;
2963   }
2964
2965   // C++11 [over.match.list]p1:
2966   //   In copy-list-initialization, if an explicit constructor is chosen, the
2967   //   initializer is ill-formed.
2968   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2969   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2970     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2971     return;
2972   }
2973
2974   // Add the constructor initialization step. Any cv-qualification conversion is
2975   // subsumed by the initialization.
2976   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2977   Sequence.AddConstructorInitializationStep(CtorDecl,
2978                                             Best->FoundDecl.getAccess(),
2979                                             DestType, HadMultipleCandidates,
2980                                             InitListSyntax, AsInitializerList);
2981 }
2982
2983 static bool
2984 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2985                                              Expr *Initializer,
2986                                              QualType &SourceType,
2987                                              QualType &UnqualifiedSourceType,
2988                                              QualType UnqualifiedTargetType,
2989                                              InitializationSequence &Sequence) {
2990   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2991         S.Context.OverloadTy) {
2992     DeclAccessPair Found;
2993     bool HadMultipleCandidates = false;
2994     if (FunctionDecl *Fn
2995         = S.ResolveAddressOfOverloadedFunction(Initializer,
2996                                                UnqualifiedTargetType,
2997                                                false, Found,
2998                                                &HadMultipleCandidates)) {
2999       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3000                                                 HadMultipleCandidates);
3001       SourceType = Fn->getType();
3002       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3003     } else if (!UnqualifiedTargetType->isRecordType()) {
3004       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3005       return true;
3006     }
3007   }
3008   return false;
3009 }
3010
3011 static void TryReferenceInitializationCore(Sema &S,
3012                                            const InitializedEntity &Entity,
3013                                            const InitializationKind &Kind,
3014                                            Expr *Initializer,
3015                                            QualType cv1T1, QualType T1,
3016                                            Qualifiers T1Quals,
3017                                            QualType cv2T2, QualType T2,
3018                                            Qualifiers T2Quals,
3019                                            InitializationSequence &Sequence);
3020
3021 static void TryListInitialization(Sema &S,
3022                                   const InitializedEntity &Entity,
3023                                   const InitializationKind &Kind,
3024                                   InitListExpr *InitList,
3025                                   InitializationSequence &Sequence);
3026
3027 /// \brief Attempt list initialization of a reference.
3028 static void TryReferenceListInitialization(Sema &S,
3029                                            const InitializedEntity &Entity,
3030                                            const InitializationKind &Kind,
3031                                            InitListExpr *InitList,
3032                                            InitializationSequence &Sequence)
3033 {
3034   // First, catch C++03 where this isn't possible.
3035   if (!S.getLangOpts().CPlusPlus0x) {
3036     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3037     return;
3038   }
3039
3040   QualType DestType = Entity.getType();
3041   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3042   Qualifiers T1Quals;
3043   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3044
3045   // Reference initialization via an initializer list works thus:
3046   // If the initializer list consists of a single element that is
3047   // reference-related to the referenced type, bind directly to that element
3048   // (possibly creating temporaries).
3049   // Otherwise, initialize a temporary with the initializer list and
3050   // bind to that.
3051   if (InitList->getNumInits() == 1) {
3052     Expr *Initializer = InitList->getInit(0);
3053     QualType cv2T2 = Initializer->getType();
3054     Qualifiers T2Quals;
3055     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3056
3057     // If this fails, creating a temporary wouldn't work either.
3058     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3059                                                      T1, Sequence))
3060       return;
3061
3062     SourceLocation DeclLoc = Initializer->getLocStart();
3063     bool dummy1, dummy2, dummy3;
3064     Sema::ReferenceCompareResult RefRelationship
3065       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3066                                        dummy2, dummy3);
3067     if (RefRelationship >= Sema::Ref_Related) {
3068       // Try to bind the reference here.
3069       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3070                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3071       if (Sequence)
3072         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3073       return;
3074     }
3075   }
3076
3077   // Not reference-related. Create a temporary and bind to that.
3078   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3079
3080   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3081   if (Sequence) {
3082     if (DestType->isRValueReferenceType() ||
3083         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3084       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3085     else
3086       Sequence.SetFailed(
3087           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3088   }
3089 }
3090
3091 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3092 static void TryListInitialization(Sema &S,
3093                                   const InitializedEntity &Entity,
3094                                   const InitializationKind &Kind,
3095                                   InitListExpr *InitList,
3096                                   InitializationSequence &Sequence) {
3097   QualType DestType = Entity.getType();
3098
3099   // C++ doesn't allow scalar initialization with more than one argument.
3100   // But C99 complex numbers are scalars and it makes sense there.
3101   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3102       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3103     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3104     return;
3105   }
3106   if (DestType->isReferenceType()) {
3107     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3108     return;
3109   }
3110   if (DestType->isRecordType()) {
3111     if (S.RequireCompleteType(InitList->getLocStart(), DestType, S.PDiag())) {
3112       Sequence.setIncompleteTypeFailure(DestType);
3113       return;
3114     }
3115
3116     if (!DestType->isAggregateType()) {
3117       if (S.getLangOpts().CPlusPlus0x) {
3118         Expr *Arg = InitList;
3119         // A direct-initializer is not list-syntax, i.e. there's no special
3120         // treatment of "A a({1, 2});".
3121         TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType, 
3122                                      Sequence,
3123                                Kind.getKind() != InitializationKind::IK_Direct);
3124       } else
3125         Sequence.SetFailed(
3126             InitializationSequence::FK_InitListBadDestinationType);
3127       return;
3128     }
3129   }
3130
3131   InitListChecker CheckInitList(S, Entity, InitList,
3132           DestType, /*VerifyOnly=*/true,
3133           Kind.getKind() != InitializationKind::IK_DirectList ||
3134             !S.getLangOpts().CPlusPlus0x);
3135   if (CheckInitList.HadError()) {
3136     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3137     return;
3138   }
3139
3140   // Add the list initialization step with the built init list.
3141   Sequence.AddListInitializationStep(DestType);
3142 }
3143
3144 /// \brief Try a reference initialization that involves calling a conversion
3145 /// function.
3146 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3147                                              const InitializedEntity &Entity,
3148                                              const InitializationKind &Kind,
3149                                              Expr *Initializer,
3150                                              bool AllowRValues,
3151                                              InitializationSequence &Sequence) {
3152   QualType DestType = Entity.getType();
3153   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3154   QualType T1 = cv1T1.getUnqualifiedType();
3155   QualType cv2T2 = Initializer->getType();
3156   QualType T2 = cv2T2.getUnqualifiedType();
3157
3158   bool DerivedToBase;
3159   bool ObjCConversion;
3160   bool ObjCLifetimeConversion;
3161   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3162                                          T1, T2, DerivedToBase,
3163                                          ObjCConversion,
3164                                          ObjCLifetimeConversion) &&
3165          "Must have incompatible references when binding via conversion");
3166   (void)DerivedToBase;
3167   (void)ObjCConversion;
3168   (void)ObjCLifetimeConversion;
3169   
3170   // Build the candidate set directly in the initialization sequence
3171   // structure, so that it will persist if we fail.
3172   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3173   CandidateSet.clear();
3174
3175   // Determine whether we are allowed to call explicit constructors or
3176   // explicit conversion operators.
3177   bool AllowExplicit = Kind.AllowExplicit();
3178   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3179   
3180   const RecordType *T1RecordType = 0;
3181   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3182       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3183     // The type we're converting to is a class type. Enumerate its constructors
3184     // to see if there is a suitable conversion.
3185     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3186
3187     DeclContext::lookup_iterator Con, ConEnd;
3188     for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3189          Con != ConEnd; ++Con) {
3190       NamedDecl *D = *Con;
3191       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3192
3193       // Find the constructor (which may be a template).
3194       CXXConstructorDecl *Constructor = 0;
3195       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3196       if (ConstructorTmpl)
3197         Constructor = cast<CXXConstructorDecl>(
3198                                          ConstructorTmpl->getTemplatedDecl());
3199       else
3200         Constructor = cast<CXXConstructorDecl>(D);
3201
3202       if (!Constructor->isInvalidDecl() &&
3203           Constructor->isConvertingConstructor(AllowExplicit)) {
3204         if (ConstructorTmpl)
3205           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3206                                          /*ExplicitArgs*/ 0,
3207                                          Initializer, CandidateSet,
3208                                          /*SuppressUserConversions=*/true);
3209         else
3210           S.AddOverloadCandidate(Constructor, FoundDecl,
3211                                  Initializer, CandidateSet,
3212                                  /*SuppressUserConversions=*/true);
3213       }
3214     }
3215   }
3216   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3217     return OR_No_Viable_Function;
3218
3219   const RecordType *T2RecordType = 0;
3220   if ((T2RecordType = T2->getAs<RecordType>()) &&
3221       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3222     // The type we're converting from is a class type, enumerate its conversion
3223     // functions.
3224     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3225
3226     const UnresolvedSetImpl *Conversions
3227       = T2RecordDecl->getVisibleConversionFunctions();
3228     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3229            E = Conversions->end(); I != E; ++I) {
3230       NamedDecl *D = *I;
3231       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3232       if (isa<UsingShadowDecl>(D))
3233         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3234
3235       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3236       CXXConversionDecl *Conv;
3237       if (ConvTemplate)
3238         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3239       else
3240         Conv = cast<CXXConversionDecl>(D);
3241
3242       // If the conversion function doesn't return a reference type,
3243       // it can't be considered for this conversion unless we're allowed to
3244       // consider rvalues.
3245       // FIXME: Do we need to make sure that we only consider conversion
3246       // candidates with reference-compatible results? That might be needed to
3247       // break recursion.
3248       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3249           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3250         if (ConvTemplate)
3251           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3252                                            ActingDC, Initializer,
3253                                            DestType, CandidateSet);
3254         else
3255           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3256                                    Initializer, DestType, CandidateSet);
3257       }
3258     }
3259   }
3260   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3261     return OR_No_Viable_Function;
3262
3263   SourceLocation DeclLoc = Initializer->getLocStart();
3264
3265   // Perform overload resolution. If it fails, return the failed result.
3266   OverloadCandidateSet::iterator Best;
3267   if (OverloadingResult Result
3268         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3269     return Result;
3270
3271   FunctionDecl *Function = Best->Function;
3272
3273   // This is the overload that will actually be used for the initialization, so
3274   // mark it as used.
3275   S.MarkFunctionReferenced(DeclLoc, Function);
3276
3277   // Compute the returned type of the conversion.
3278   if (isa<CXXConversionDecl>(Function))
3279     T2 = Function->getResultType();
3280   else
3281     T2 = cv1T1;
3282
3283   // Add the user-defined conversion step.
3284   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3285   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3286                                  T2.getNonLValueExprType(S.Context),
3287                                  HadMultipleCandidates);
3288
3289   // Determine whether we need to perform derived-to-base or
3290   // cv-qualification adjustments.
3291   ExprValueKind VK = VK_RValue;
3292   if (T2->isLValueReferenceType())
3293     VK = VK_LValue;
3294   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3295     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3296
3297   bool NewDerivedToBase = false;
3298   bool NewObjCConversion = false;
3299   bool NewObjCLifetimeConversion = false;
3300   Sema::ReferenceCompareResult NewRefRelationship
3301     = S.CompareReferenceRelationship(DeclLoc, T1,
3302                                      T2.getNonLValueExprType(S.Context),
3303                                      NewDerivedToBase, NewObjCConversion,
3304                                      NewObjCLifetimeConversion);
3305   if (NewRefRelationship == Sema::Ref_Incompatible) {
3306     // If the type we've converted to is not reference-related to the
3307     // type we're looking for, then there is another conversion step
3308     // we need to perform to produce a temporary of the right type
3309     // that we'll be binding to.
3310     ImplicitConversionSequence ICS;
3311     ICS.setStandard();
3312     ICS.Standard = Best->FinalConversion;
3313     T2 = ICS.Standard.getToType(2);
3314     Sequence.AddConversionSequenceStep(ICS, T2);
3315   } else if (NewDerivedToBase)
3316     Sequence.AddDerivedToBaseCastStep(
3317                                 S.Context.getQualifiedType(T1,
3318                                   T2.getNonReferenceType().getQualifiers()),
3319                                       VK);
3320   else if (NewObjCConversion)
3321     Sequence.AddObjCObjectConversionStep(
3322                                 S.Context.getQualifiedType(T1,
3323                                   T2.getNonReferenceType().getQualifiers()));
3324
3325   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3326     Sequence.AddQualificationConversionStep(cv1T1, VK);
3327
3328   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3329   return OR_Success;
3330 }
3331
3332 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3333                                            const InitializedEntity &Entity,
3334                                            Expr *CurInitExpr);
3335
3336 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3337 static void TryReferenceInitialization(Sema &S,
3338                                        const InitializedEntity &Entity,
3339                                        const InitializationKind &Kind,
3340                                        Expr *Initializer,
3341                                        InitializationSequence &Sequence) {
3342   QualType DestType = Entity.getType();
3343   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3344   Qualifiers T1Quals;
3345   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3346   QualType cv2T2 = Initializer->getType();
3347   Qualifiers T2Quals;
3348   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3349
3350   // If the initializer is the address of an overloaded function, try
3351   // to resolve the overloaded function. If all goes well, T2 is the
3352   // type of the resulting function.
3353   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3354                                                    T1, Sequence))
3355     return;
3356
3357   // Delegate everything else to a subfunction.
3358   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3359                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3360 }
3361
3362 /// \brief Reference initialization without resolving overloaded functions.
3363 static void TryReferenceInitializationCore(Sema &S,
3364                                            const InitializedEntity &Entity,
3365                                            const InitializationKind &Kind,
3366                                            Expr *Initializer,
3367                                            QualType cv1T1, QualType T1,
3368                                            Qualifiers T1Quals,
3369                                            QualType cv2T2, QualType T2,
3370                                            Qualifiers T2Quals,
3371                                            InitializationSequence &Sequence) {
3372   QualType DestType = Entity.getType();
3373   SourceLocation DeclLoc = Initializer->getLocStart();
3374   // Compute some basic properties of the types and the initializer.
3375   bool isLValueRef = DestType->isLValueReferenceType();
3376   bool isRValueRef = !isLValueRef;
3377   bool DerivedToBase = false;
3378   bool ObjCConversion = false;
3379   bool ObjCLifetimeConversion = false;
3380   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3381   Sema::ReferenceCompareResult RefRelationship
3382     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3383                                      ObjCConversion, ObjCLifetimeConversion);
3384
3385   // C++0x [dcl.init.ref]p5:
3386   //   A reference to type "cv1 T1" is initialized by an expression of type
3387   //   "cv2 T2" as follows:
3388   //
3389   //     - If the reference is an lvalue reference and the initializer
3390   //       expression
3391   // Note the analogous bullet points for rvlaue refs to functions. Because
3392   // there are no function rvalues in C++, rvalue refs to functions are treated
3393   // like lvalue refs.
3394   OverloadingResult ConvOvlResult = OR_Success;
3395   bool T1Function = T1->isFunctionType();
3396   if (isLValueRef || T1Function) {
3397     if (InitCategory.isLValue() &&
3398         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3399          (Kind.isCStyleOrFunctionalCast() &&
3400           RefRelationship == Sema::Ref_Related))) {
3401       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3402       //     reference-compatible with "cv2 T2," or
3403       //
3404       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3405       // bit-field when we're determining whether the reference initialization
3406       // can occur. However, we do pay attention to whether it is a bit-field
3407       // to decide whether we're actually binding to a temporary created from
3408       // the bit-field.
3409       if (DerivedToBase)
3410         Sequence.AddDerivedToBaseCastStep(
3411                          S.Context.getQualifiedType(T1, T2Quals),
3412                          VK_LValue);
3413       else if (ObjCConversion)
3414         Sequence.AddObjCObjectConversionStep(
3415                                      S.Context.getQualifiedType(T1, T2Quals));
3416
3417       if (T1Quals != T2Quals)
3418         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3419       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3420         (Initializer->getBitField() || Initializer->refersToVectorElement());
3421       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3422       return;
3423     }
3424
3425     //     - has a class type (i.e., T2 is a class type), where T1 is not
3426     //       reference-related to T2, and can be implicitly converted to an
3427     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3428     //       with "cv3 T3" (this conversion is selected by enumerating the
3429     //       applicable conversion functions (13.3.1.6) and choosing the best
3430     //       one through overload resolution (13.3)),
3431     // If we have an rvalue ref to function type here, the rhs must be
3432     // an rvalue.
3433     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3434         (isLValueRef || InitCategory.isRValue())) {
3435       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3436                                                        Initializer,
3437                                                    /*AllowRValues=*/isRValueRef,
3438                                                        Sequence);
3439       if (ConvOvlResult == OR_Success)
3440         return;
3441       if (ConvOvlResult != OR_No_Viable_Function) {
3442         Sequence.SetOverloadFailure(
3443                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3444                                     ConvOvlResult);
3445       }
3446     }
3447   }
3448
3449   //     - Otherwise, the reference shall be an lvalue reference to a
3450   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3451   //       shall be an rvalue reference.
3452   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3453     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3454       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3455     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3456       Sequence.SetOverloadFailure(
3457                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3458                                   ConvOvlResult);
3459     else
3460       Sequence.SetFailed(InitCategory.isLValue()
3461         ? (RefRelationship == Sema::Ref_Related
3462              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3463              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3464         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3465
3466     return;
3467   }
3468
3469   //    - If the initializer expression
3470   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3471   //        "cv1 T1" is reference-compatible with "cv2 T2"
3472   // Note: functions are handled below.
3473   if (!T1Function &&
3474       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3475        (Kind.isCStyleOrFunctionalCast() &&
3476         RefRelationship == Sema::Ref_Related)) &&
3477       (InitCategory.isXValue() ||
3478        (InitCategory.isPRValue() && T2->isRecordType()) ||
3479        (InitCategory.isPRValue() && T2->isArrayType()))) {
3480     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3481     if (InitCategory.isPRValue() && T2->isRecordType()) {
3482       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3483       // compiler the freedom to perform a copy here or bind to the
3484       // object, while C++0x requires that we bind directly to the
3485       // object. Hence, we always bind to the object without making an
3486       // extra copy. However, in C++03 requires that we check for the
3487       // presence of a suitable copy constructor:
3488       //
3489       //   The constructor that would be used to make the copy shall
3490       //   be callable whether or not the copy is actually done.
3491       if (!S.getLangOpts().CPlusPlus0x && !S.getLangOpts().MicrosoftExt)
3492         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3493       else if (S.getLangOpts().CPlusPlus0x)
3494         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3495     }
3496
3497     if (DerivedToBase)
3498       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3499                                         ValueKind);
3500     else if (ObjCConversion)
3501       Sequence.AddObjCObjectConversionStep(
3502                                        S.Context.getQualifiedType(T1, T2Quals));
3503
3504     if (T1Quals != T2Quals)
3505       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3506     Sequence.AddReferenceBindingStep(cv1T1,
3507                                  /*bindingTemporary=*/InitCategory.isPRValue());
3508     return;
3509   }
3510
3511   //       - has a class type (i.e., T2 is a class type), where T1 is not
3512   //         reference-related to T2, and can be implicitly converted to an
3513   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3514   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3515   if (T2->isRecordType()) {
3516     if (RefRelationship == Sema::Ref_Incompatible) {
3517       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3518                                                        Kind, Initializer,
3519                                                        /*AllowRValues=*/true,
3520                                                        Sequence);
3521       if (ConvOvlResult)
3522         Sequence.SetOverloadFailure(
3523                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3524                                     ConvOvlResult);
3525
3526       return;
3527     }
3528
3529     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3530     return;
3531   }
3532
3533   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3534   //        from the initializer expression using the rules for a non-reference
3535   //        copy initialization (8.5). The reference is then bound to the
3536   //        temporary. [...]
3537
3538   // Determine whether we are allowed to call explicit constructors or
3539   // explicit conversion operators.
3540   bool AllowExplicit = Kind.AllowExplicit();
3541
3542   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3543
3544   ImplicitConversionSequence ICS
3545     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3546                               /*SuppressUserConversions*/ false,
3547                               AllowExplicit,
3548                               /*FIXME:InOverloadResolution=*/false,
3549                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3550                               /*AllowObjCWritebackConversion=*/false);
3551   
3552   if (ICS.isBad()) {
3553     // FIXME: Use the conversion function set stored in ICS to turn
3554     // this into an overloading ambiguity diagnostic. However, we need
3555     // to keep that set as an OverloadCandidateSet rather than as some
3556     // other kind of set.
3557     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3558       Sequence.SetOverloadFailure(
3559                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3560                                   ConvOvlResult);
3561     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3562       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3563     else
3564       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3565     return;
3566   } else {
3567     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3568   }
3569
3570   //        [...] If T1 is reference-related to T2, cv1 must be the
3571   //        same cv-qualification as, or greater cv-qualification
3572   //        than, cv2; otherwise, the program is ill-formed.
3573   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3574   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3575   if (RefRelationship == Sema::Ref_Related &&
3576       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3577     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3578     return;
3579   }
3580
3581   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3582   //   reference, the initializer expression shall not be an lvalue.
3583   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3584       InitCategory.isLValue()) {
3585     Sequence.SetFailed(
3586                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3587     return;
3588   }
3589
3590   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3591   return;
3592 }
3593
3594 /// \brief Attempt character array initialization from a string literal
3595 /// (C++ [dcl.init.string], C99 6.7.8).
3596 static void TryStringLiteralInitialization(Sema &S,
3597                                            const InitializedEntity &Entity,
3598                                            const InitializationKind &Kind,
3599                                            Expr *Initializer,
3600                                        InitializationSequence &Sequence) {
3601   Sequence.AddStringInitStep(Entity.getType());
3602 }
3603
3604 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3605 static void TryValueInitialization(Sema &S,
3606                                    const InitializedEntity &Entity,
3607                                    const InitializationKind &Kind,
3608                                    InitializationSequence &Sequence) {
3609   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3610   //
3611   //   To value-initialize an object of type T means:
3612   QualType T = Entity.getType();
3613
3614   //     -- if T is an array type, then each element is value-initialized;
3615   T = S.Context.getBaseElementType(T);
3616
3617   if (const RecordType *RT = T->getAs<RecordType>()) {
3618     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3619       // C++98:
3620       // -- if T is a class type (clause 9) with a user-declared
3621       //    constructor (12.1), then the default constructor for T is
3622       //    called (and the initialization is ill-formed if T has no
3623       //    accessible default constructor);
3624       if (!S.getLangOpts().CPlusPlus0x) {
3625         if (ClassDecl->hasUserDeclaredConstructor())
3626           // FIXME: we really want to refer to a single subobject of the array,
3627           // but Entity doesn't have a way to capture that (yet).
3628           return TryConstructorInitialization(S, Entity, Kind, 0, 0,
3629                                               T, Sequence);
3630       } else {
3631         // C++11:
3632         // -- if T is a class type (clause 9) with either no default constructor
3633         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3634         //    or deleted, then the object is default-initialized;
3635         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3636         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3637           return TryConstructorInitialization(S, Entity, Kind, 0, 0,
3638                                               T, Sequence);
3639       }
3640
3641       // -- if T is a (possibly cv-qualified) non-union class type without a
3642       //    user-provided or deleted default constructor, then the object is
3643       //    zero-initialized and, if T has a non-trivial default constructor,
3644       //    default-initialized;
3645       if ((ClassDecl->getTagKind() == TTK_Class ||
3646            ClassDecl->getTagKind() == TTK_Struct)) {
3647         Sequence.AddZeroInitializationStep(Entity.getType());
3648         return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3649       }
3650     }
3651   }
3652
3653   Sequence.AddZeroInitializationStep(Entity.getType());
3654 }
3655
3656 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3657 static void TryDefaultInitialization(Sema &S,
3658                                      const InitializedEntity &Entity,
3659                                      const InitializationKind &Kind,
3660                                      InitializationSequence &Sequence) {
3661   assert(Kind.getKind() == InitializationKind::IK_Default);
3662
3663   // C++ [dcl.init]p6:
3664   //   To default-initialize an object of type T means:
3665   //     - if T is an array type, each element is default-initialized;
3666   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3667          
3668   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3669   //       constructor for T is called (and the initialization is ill-formed if
3670   //       T has no accessible default constructor);
3671   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3672     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3673     return;
3674   }
3675
3676   //     - otherwise, no initialization is performed.
3677
3678   //   If a program calls for the default initialization of an object of
3679   //   a const-qualified type T, T shall be a class type with a user-provided
3680   //   default constructor.
3681   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3682     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3683     return;
3684   }
3685
3686   // If the destination type has a lifetime property, zero-initialize it.
3687   if (DestType.getQualifiers().hasObjCLifetime()) {
3688     Sequence.AddZeroInitializationStep(Entity.getType());
3689     return;
3690   }
3691 }
3692
3693 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3694 /// which enumerates all conversion functions and performs overload resolution
3695 /// to select the best.
3696 static void TryUserDefinedConversion(Sema &S,
3697                                      const InitializedEntity &Entity,
3698                                      const InitializationKind &Kind,
3699                                      Expr *Initializer,
3700                                      InitializationSequence &Sequence) {
3701   QualType DestType = Entity.getType();
3702   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3703   QualType SourceType = Initializer->getType();
3704   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3705          "Must have a class type to perform a user-defined conversion");
3706
3707   // Build the candidate set directly in the initialization sequence
3708   // structure, so that it will persist if we fail.
3709   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3710   CandidateSet.clear();
3711
3712   // Determine whether we are allowed to call explicit constructors or
3713   // explicit conversion operators.
3714   bool AllowExplicit = Kind.AllowExplicit();
3715
3716   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3717     // The type we're converting to is a class type. Enumerate its constructors
3718     // to see if there is a suitable conversion.
3719     CXXRecordDecl *DestRecordDecl
3720       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3721
3722     // Try to complete the type we're converting to.
3723     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3724       DeclContext::lookup_iterator Con, ConEnd;
3725       for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3726            Con != ConEnd; ++Con) {
3727         NamedDecl *D = *Con;
3728         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3729
3730         // Find the constructor (which may be a template).
3731         CXXConstructorDecl *Constructor = 0;
3732         FunctionTemplateDecl *ConstructorTmpl
3733           = dyn_cast<FunctionTemplateDecl>(D);
3734         if (ConstructorTmpl)
3735           Constructor = cast<CXXConstructorDecl>(
3736                                            ConstructorTmpl->getTemplatedDecl());
3737         else
3738           Constructor = cast<CXXConstructorDecl>(D);
3739
3740         if (!Constructor->isInvalidDecl() &&
3741             Constructor->isConvertingConstructor(AllowExplicit)) {
3742           if (ConstructorTmpl)
3743             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3744                                            /*ExplicitArgs*/ 0,
3745                                            Initializer, CandidateSet,
3746                                            /*SuppressUserConversions=*/true);
3747           else
3748             S.AddOverloadCandidate(Constructor, FoundDecl,
3749                                    Initializer, CandidateSet,
3750                                    /*SuppressUserConversions=*/true);
3751         }
3752       }
3753     }
3754   }
3755
3756   SourceLocation DeclLoc = Initializer->getLocStart();
3757
3758   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3759     // The type we're converting from is a class type, enumerate its conversion
3760     // functions.
3761
3762     // We can only enumerate the conversion functions for a complete type; if
3763     // the type isn't complete, simply skip this step.
3764     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3765       CXXRecordDecl *SourceRecordDecl
3766         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3767
3768       const UnresolvedSetImpl *Conversions
3769         = SourceRecordDecl->getVisibleConversionFunctions();
3770       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3771            E = Conversions->end();
3772            I != E; ++I) {
3773         NamedDecl *D = *I;
3774         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3775         if (isa<UsingShadowDecl>(D))
3776           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3777
3778         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3779         CXXConversionDecl *Conv;
3780         if (ConvTemplate)
3781           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3782         else
3783           Conv = cast<CXXConversionDecl>(D);
3784
3785         if (AllowExplicit || !Conv->isExplicit()) {
3786           if (ConvTemplate)
3787             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3788                                              ActingDC, Initializer, DestType,
3789                                              CandidateSet);
3790           else
3791             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3792                                      Initializer, DestType, CandidateSet);
3793         }
3794       }
3795     }
3796   }
3797
3798   // Perform overload resolution. If it fails, return the failed result.
3799   OverloadCandidateSet::iterator Best;
3800   if (OverloadingResult Result
3801         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3802     Sequence.SetOverloadFailure(
3803                         InitializationSequence::FK_UserConversionOverloadFailed,
3804                                 Result);
3805     return;
3806   }
3807
3808   FunctionDecl *Function = Best->Function;
3809   S.MarkFunctionReferenced(DeclLoc, Function);
3810   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3811
3812   if (isa<CXXConstructorDecl>(Function)) {
3813     // Add the user-defined conversion step. Any cv-qualification conversion is
3814     // subsumed by the initialization. Per DR5, the created temporary is of the
3815     // cv-unqualified type of the destination.
3816     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3817                                    DestType.getUnqualifiedType(),
3818                                    HadMultipleCandidates);
3819     return;
3820   }
3821
3822   // Add the user-defined conversion step that calls the conversion function.
3823   QualType ConvType = Function->getCallResultType();
3824   if (ConvType->getAs<RecordType>()) {
3825     // If we're converting to a class type, there may be an copy of
3826     // the resulting temporary object (possible to create an object of
3827     // a base class type). That copy is not a separate conversion, so
3828     // we just make a note of the actual destination type (possibly a
3829     // base class of the type returned by the conversion function) and
3830     // let the user-defined conversion step handle the conversion.
3831     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3832                                    HadMultipleCandidates);
3833     return;
3834   }
3835
3836   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3837                                  HadMultipleCandidates);
3838
3839   // If the conversion following the call to the conversion function
3840   // is interesting, add it as a separate step.
3841   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3842       Best->FinalConversion.Third) {
3843     ImplicitConversionSequence ICS;
3844     ICS.setStandard();
3845     ICS.Standard = Best->FinalConversion;
3846     Sequence.AddConversionSequenceStep(ICS, DestType);
3847   }
3848 }
3849
3850 /// The non-zero enum values here are indexes into diagnostic alternatives.
3851 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3852
3853 /// Determines whether this expression is an acceptable ICR source.
3854 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3855                                          bool isAddressOf) {
3856   // Skip parens.
3857   e = e->IgnoreParens();
3858
3859   // Skip address-of nodes.
3860   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3861     if (op->getOpcode() == UO_AddrOf)
3862       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3863
3864   // Skip certain casts.
3865   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3866     switch (ce->getCastKind()) {
3867     case CK_Dependent:
3868     case CK_BitCast:
3869     case CK_LValueBitCast:
3870     case CK_NoOp:
3871       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3872
3873     case CK_ArrayToPointerDecay:
3874       return IIK_nonscalar;
3875
3876     case CK_NullToPointer:
3877       return IIK_okay;
3878
3879     default:
3880       break;
3881     }
3882
3883   // If we have a declaration reference, it had better be a local variable.
3884   } else if (isa<DeclRefExpr>(e)) {
3885     if (!isAddressOf) return IIK_nonlocal;
3886
3887     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3888     if (!var) return IIK_nonlocal;
3889
3890     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3891
3892   // If we have a conditional operator, check both sides.
3893   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3894     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3895       return iik;
3896
3897     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3898
3899   // These are never scalar.
3900   } else if (isa<ArraySubscriptExpr>(e)) {
3901     return IIK_nonscalar;
3902
3903   // Otherwise, it needs to be a null pointer constant.
3904   } else {
3905     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3906             ? IIK_okay : IIK_nonlocal);
3907   }
3908
3909   return IIK_nonlocal;
3910 }
3911
3912 /// Check whether the given expression is a valid operand for an
3913 /// indirect copy/restore.
3914 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3915   assert(src->isRValue());
3916
3917   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3918   if (iik == IIK_okay) return;
3919
3920   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3921     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3922     << src->getSourceRange();
3923 }
3924
3925 /// \brief Determine whether we have compatible array types for the
3926 /// purposes of GNU by-copy array initialization.
3927 static bool hasCompatibleArrayTypes(ASTContext &Context,
3928                                     const ArrayType *Dest, 
3929                                     const ArrayType *Source) {
3930   // If the source and destination array types are equivalent, we're
3931   // done.
3932   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3933     return true;
3934
3935   // Make sure that the element types are the same.
3936   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3937     return false;
3938
3939   // The only mismatch we allow is when the destination is an
3940   // incomplete array type and the source is a constant array type.
3941   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3942 }
3943
3944 static bool tryObjCWritebackConversion(Sema &S,
3945                                        InitializationSequence &Sequence,
3946                                        const InitializedEntity &Entity,
3947                                        Expr *Initializer) {
3948   bool ArrayDecay = false;
3949   QualType ArgType = Initializer->getType();
3950   QualType ArgPointee;
3951   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3952     ArrayDecay = true;
3953     ArgPointee = ArgArrayType->getElementType();
3954     ArgType = S.Context.getPointerType(ArgPointee);
3955   }
3956       
3957   // Handle write-back conversion.
3958   QualType ConvertedArgType;
3959   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3960                                    ConvertedArgType))
3961     return false;
3962
3963   // We should copy unless we're passing to an argument explicitly
3964   // marked 'out'.
3965   bool ShouldCopy = true;
3966   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3967     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3968
3969   // Do we need an lvalue conversion?
3970   if (ArrayDecay || Initializer->isGLValue()) {
3971     ImplicitConversionSequence ICS;
3972     ICS.setStandard();
3973     ICS.Standard.setAsIdentityConversion();
3974
3975     QualType ResultType;
3976     if (ArrayDecay) {
3977       ICS.Standard.First = ICK_Array_To_Pointer;
3978       ResultType = S.Context.getPointerType(ArgPointee);
3979     } else {
3980       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3981       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3982     }
3983           
3984     Sequence.AddConversionSequenceStep(ICS, ResultType);
3985   }
3986         
3987   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3988   return true;
3989 }
3990
3991 InitializationSequence::InitializationSequence(Sema &S,
3992                                                const InitializedEntity &Entity,
3993                                                const InitializationKind &Kind,
3994                                                Expr **Args,
3995                                                unsigned NumArgs)
3996     : FailedCandidateSet(Kind.getLocation()) {
3997   ASTContext &Context = S.Context;
3998
3999   // C++0x [dcl.init]p16:
4000   //   The semantics of initializers are as follows. The destination type is
4001   //   the type of the object or reference being initialized and the source
4002   //   type is the type of the initializer expression. The source type is not
4003   //   defined when the initializer is a braced-init-list or when it is a
4004   //   parenthesized list of expressions.
4005   QualType DestType = Entity.getType();
4006
4007   if (DestType->isDependentType() ||
4008       Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
4009     SequenceKind = DependentSequence;
4010     return;
4011   }
4012
4013   // Almost everything is a normal sequence.
4014   setSequenceKind(NormalSequence);
4015
4016   for (unsigned I = 0; I != NumArgs; ++I)
4017     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4018       // FIXME: should we be doing this here?
4019       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4020       if (result.isInvalid()) {
4021         SetFailed(FK_PlaceholderType);
4022         return;
4023       }
4024       Args[I] = result.take();
4025     }
4026
4027
4028   QualType SourceType;
4029   Expr *Initializer = 0;
4030   if (NumArgs == 1) {
4031     Initializer = Args[0];
4032     if (!isa<InitListExpr>(Initializer))
4033       SourceType = Initializer->getType();
4034   }
4035
4036   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4037   //       object is list-initialized (8.5.4).
4038   if (Kind.getKind() != InitializationKind::IK_Direct) {
4039     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4040       TryListInitialization(S, Entity, Kind, InitList, *this);
4041       return;
4042     }
4043   }
4044
4045   //     - If the destination type is a reference type, see 8.5.3.
4046   if (DestType->isReferenceType()) {
4047     // C++0x [dcl.init.ref]p1:
4048     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4049     //   (8.3.2), shall be initialized by an object, or function, of type T or
4050     //   by an object that can be converted into a T.
4051     // (Therefore, multiple arguments are not permitted.)
4052     if (NumArgs != 1)
4053       SetFailed(FK_TooManyInitsForReference);
4054     else
4055       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4056     return;
4057   }
4058
4059   //     - If the initializer is (), the object is value-initialized.
4060   if (Kind.getKind() == InitializationKind::IK_Value ||
4061       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4062     TryValueInitialization(S, Entity, Kind, *this);
4063     return;
4064   }
4065
4066   // Handle default initialization.
4067   if (Kind.getKind() == InitializationKind::IK_Default) {
4068     TryDefaultInitialization(S, Entity, Kind, *this);
4069     return;
4070   }
4071
4072   //     - If the destination type is an array of characters, an array of
4073   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4074   //       initializer is a string literal, see 8.5.2.
4075   //     - Otherwise, if the destination type is an array, the program is
4076   //       ill-formed.
4077   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4078     if (Initializer && isa<VariableArrayType>(DestAT)) {
4079       SetFailed(FK_VariableLengthArrayHasInitializer);
4080       return;
4081     }
4082
4083     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4084       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4085       return;
4086     }
4087
4088     // Note: as an GNU C extension, we allow initialization of an
4089     // array from a compound literal that creates an array of the same
4090     // type, so long as the initializer has no side effects.
4091     if (!S.getLangOpts().CPlusPlus && Initializer &&
4092         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4093         Initializer->getType()->isArrayType()) {
4094       const ArrayType *SourceAT
4095         = Context.getAsArrayType(Initializer->getType());
4096       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4097         SetFailed(FK_ArrayTypeMismatch);
4098       else if (Initializer->HasSideEffects(S.Context))
4099         SetFailed(FK_NonConstantArrayInit);
4100       else {
4101         AddArrayInitStep(DestType);
4102       }
4103     }
4104     // Note: as a GNU C++ extension, we allow initialization of a
4105     // class member from a parenthesized initializer list.
4106     else if (S.getLangOpts().CPlusPlus &&
4107              Entity.getKind() == InitializedEntity::EK_Member &&
4108              Initializer && isa<InitListExpr>(Initializer)) {
4109       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4110                             *this);
4111       AddParenthesizedArrayInitStep(DestType);
4112     } else if (DestAT->getElementType()->isAnyCharacterType())
4113       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4114     else
4115       SetFailed(FK_ArrayNeedsInitList);
4116
4117     return;
4118   }
4119
4120   // Determine whether we should consider writeback conversions for 
4121   // Objective-C ARC.
4122   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4123     Entity.getKind() == InitializedEntity::EK_Parameter;
4124
4125   // We're at the end of the line for C: it's either a write-back conversion
4126   // or it's a C assignment. There's no need to check anything else.
4127   if (!S.getLangOpts().CPlusPlus) {
4128     // If allowed, check whether this is an Objective-C writeback conversion.
4129     if (allowObjCWritebackConversion &&
4130         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4131       return;
4132     }
4133     
4134     // Handle initialization in C
4135     AddCAssignmentStep(DestType);
4136     MaybeProduceObjCObject(S, *this, Entity);
4137     return;
4138   }
4139
4140   assert(S.getLangOpts().CPlusPlus);
4141       
4142   //     - If the destination type is a (possibly cv-qualified) class type:
4143   if (DestType->isRecordType()) {
4144     //     - If the initialization is direct-initialization, or if it is
4145     //       copy-initialization where the cv-unqualified version of the
4146     //       source type is the same class as, or a derived class of, the
4147     //       class of the destination, constructors are considered. [...]
4148     if (Kind.getKind() == InitializationKind::IK_Direct ||
4149         (Kind.getKind() == InitializationKind::IK_Copy &&
4150          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4151           S.IsDerivedFrom(SourceType, DestType))))
4152       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4153                                    Entity.getType(), *this);
4154     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4155     //       user-defined conversion sequences that can convert from the source
4156     //       type to the destination type or (when a conversion function is
4157     //       used) to a derived class thereof are enumerated as described in
4158     //       13.3.1.4, and the best one is chosen through overload resolution
4159     //       (13.3).
4160     else
4161       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4162     return;
4163   }
4164
4165   if (NumArgs > 1) {
4166     SetFailed(FK_TooManyInitsForScalar);
4167     return;
4168   }
4169   assert(NumArgs == 1 && "Zero-argument case handled above");
4170
4171   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4172   //      type, conversion functions are considered.
4173   if (!SourceType.isNull() && SourceType->isRecordType()) {
4174     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4175     MaybeProduceObjCObject(S, *this, Entity);
4176     return;
4177   }
4178
4179   //    - Otherwise, the initial value of the object being initialized is the
4180   //      (possibly converted) value of the initializer expression. Standard
4181   //      conversions (Clause 4) will be used, if necessary, to convert the
4182   //      initializer expression to the cv-unqualified version of the
4183   //      destination type; no user-defined conversions are considered.
4184       
4185   ImplicitConversionSequence ICS
4186     = S.TryImplicitConversion(Initializer, Entity.getType(),
4187                               /*SuppressUserConversions*/true,
4188                               /*AllowExplicitConversions*/ false,
4189                               /*InOverloadResolution*/ false,
4190                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4191                               allowObjCWritebackConversion);
4192       
4193   if (ICS.isStandard() && 
4194       ICS.Standard.Second == ICK_Writeback_Conversion) {
4195     // Objective-C ARC writeback conversion.
4196     
4197     // We should copy unless we're passing to an argument explicitly
4198     // marked 'out'.
4199     bool ShouldCopy = true;
4200     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4201       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4202     
4203     // If there was an lvalue adjustment, add it as a separate conversion.
4204     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4205         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4206       ImplicitConversionSequence LvalueICS;
4207       LvalueICS.setStandard();
4208       LvalueICS.Standard.setAsIdentityConversion();
4209       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4210       LvalueICS.Standard.First = ICS.Standard.First;
4211       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4212     }
4213     
4214     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4215   } else if (ICS.isBad()) {
4216     DeclAccessPair dap;
4217     if (Initializer->getType() == Context.OverloadTy && 
4218           !S.ResolveAddressOfOverloadedFunction(Initializer
4219                       , DestType, false, dap))
4220       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4221     else
4222       SetFailed(InitializationSequence::FK_ConversionFailed);
4223   } else {
4224     AddConversionSequenceStep(ICS, Entity.getType());
4225
4226     MaybeProduceObjCObject(S, *this, Entity);
4227   }
4228 }
4229
4230 InitializationSequence::~InitializationSequence() {
4231   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4232                                           StepEnd = Steps.end();
4233        Step != StepEnd; ++Step)
4234     Step->Destroy();
4235 }
4236
4237 //===----------------------------------------------------------------------===//
4238 // Perform initialization
4239 //===----------------------------------------------------------------------===//
4240 static Sema::AssignmentAction
4241 getAssignmentAction(const InitializedEntity &Entity) {
4242   switch(Entity.getKind()) {
4243   case InitializedEntity::EK_Variable:
4244   case InitializedEntity::EK_New:
4245   case InitializedEntity::EK_Exception:
4246   case InitializedEntity::EK_Base:
4247   case InitializedEntity::EK_Delegating:
4248     return Sema::AA_Initializing;
4249
4250   case InitializedEntity::EK_Parameter:
4251     if (Entity.getDecl() &&
4252         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4253       return Sema::AA_Sending;
4254
4255     return Sema::AA_Passing;
4256
4257   case InitializedEntity::EK_Result:
4258     return Sema::AA_Returning;
4259
4260   case InitializedEntity::EK_Temporary:
4261     // FIXME: Can we tell apart casting vs. converting?
4262     return Sema::AA_Casting;
4263
4264   case InitializedEntity::EK_Member:
4265   case InitializedEntity::EK_ArrayElement:
4266   case InitializedEntity::EK_VectorElement:
4267   case InitializedEntity::EK_ComplexElement:
4268   case InitializedEntity::EK_BlockElement:
4269   case InitializedEntity::EK_LambdaCapture:
4270     return Sema::AA_Initializing;
4271   }
4272
4273   llvm_unreachable("Invalid EntityKind!");
4274 }
4275
4276 /// \brief Whether we should binding a created object as a temporary when
4277 /// initializing the given entity.
4278 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4279   switch (Entity.getKind()) {
4280   case InitializedEntity::EK_ArrayElement:
4281   case InitializedEntity::EK_Member:
4282   case InitializedEntity::EK_Result:
4283   case InitializedEntity::EK_New:
4284   case InitializedEntity::EK_Variable:
4285   case InitializedEntity::EK_Base:
4286   case InitializedEntity::EK_Delegating:
4287   case InitializedEntity::EK_VectorElement:
4288   case InitializedEntity::EK_ComplexElement:
4289   case InitializedEntity::EK_Exception:
4290   case InitializedEntity::EK_BlockElement:
4291   case InitializedEntity::EK_LambdaCapture:
4292     return false;
4293
4294   case InitializedEntity::EK_Parameter:
4295   case InitializedEntity::EK_Temporary:
4296     return true;
4297   }
4298
4299   llvm_unreachable("missed an InitializedEntity kind?");
4300 }
4301
4302 /// \brief Whether the given entity, when initialized with an object
4303 /// created for that initialization, requires destruction.
4304 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4305   switch (Entity.getKind()) {
4306     case InitializedEntity::EK_Member:
4307     case InitializedEntity::EK_Result:
4308     case InitializedEntity::EK_New:
4309     case InitializedEntity::EK_Base:
4310     case InitializedEntity::EK_Delegating:
4311     case InitializedEntity::EK_VectorElement:
4312     case InitializedEntity::EK_ComplexElement:
4313     case InitializedEntity::EK_BlockElement:
4314     case InitializedEntity::EK_LambdaCapture:
4315       return false;
4316
4317     case InitializedEntity::EK_Variable:
4318     case InitializedEntity::EK_Parameter:
4319     case InitializedEntity::EK_Temporary:
4320     case InitializedEntity::EK_ArrayElement:
4321     case InitializedEntity::EK_Exception:
4322       return true;
4323   }
4324
4325   llvm_unreachable("missed an InitializedEntity kind?");
4326 }
4327
4328 /// \brief Look for copy and move constructors and constructor templates, for
4329 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4330 static void LookupCopyAndMoveConstructors(Sema &S,
4331                                           OverloadCandidateSet &CandidateSet,
4332                                           CXXRecordDecl *Class,
4333                                           Expr *CurInitExpr) {
4334   DeclContext::lookup_iterator Con, ConEnd;
4335   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4336        Con != ConEnd; ++Con) {
4337     CXXConstructorDecl *Constructor = 0;
4338
4339     if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4340       // Handle copy/moveconstructors, only.
4341       if (!Constructor || Constructor->isInvalidDecl() ||
4342           !Constructor->isCopyOrMoveConstructor() ||
4343           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4344         continue;
4345
4346       DeclAccessPair FoundDecl
4347         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4348       S.AddOverloadCandidate(Constructor, FoundDecl,
4349                              CurInitExpr, CandidateSet);
4350       continue;
4351     }
4352
4353     // Handle constructor templates.
4354     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4355     if (ConstructorTmpl->isInvalidDecl())
4356       continue;
4357
4358     Constructor = cast<CXXConstructorDecl>(
4359                                          ConstructorTmpl->getTemplatedDecl());
4360     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4361       continue;
4362
4363     // FIXME: Do we need to limit this to copy-constructor-like
4364     // candidates?
4365     DeclAccessPair FoundDecl
4366       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4367     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4368                                    CurInitExpr, CandidateSet, true);
4369   }
4370 }
4371
4372 /// \brief Get the location at which initialization diagnostics should appear.
4373 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4374                                            Expr *Initializer) {
4375   switch (Entity.getKind()) {
4376   case InitializedEntity::EK_Result:
4377     return Entity.getReturnLoc();
4378
4379   case InitializedEntity::EK_Exception:
4380     return Entity.getThrowLoc();
4381
4382   case InitializedEntity::EK_Variable:
4383     return Entity.getDecl()->getLocation();
4384
4385   case InitializedEntity::EK_LambdaCapture:
4386     return Entity.getCaptureLoc();
4387       
4388   case InitializedEntity::EK_ArrayElement:
4389   case InitializedEntity::EK_Member:
4390   case InitializedEntity::EK_Parameter:
4391   case InitializedEntity::EK_Temporary:
4392   case InitializedEntity::EK_New:
4393   case InitializedEntity::EK_Base:
4394   case InitializedEntity::EK_Delegating:
4395   case InitializedEntity::EK_VectorElement:
4396   case InitializedEntity::EK_ComplexElement:
4397   case InitializedEntity::EK_BlockElement:
4398     return Initializer->getLocStart();
4399   }
4400   llvm_unreachable("missed an InitializedEntity kind?");
4401 }
4402
4403 /// \brief Make a (potentially elidable) temporary copy of the object
4404 /// provided by the given initializer by calling the appropriate copy
4405 /// constructor.
4406 ///
4407 /// \param S The Sema object used for type-checking.
4408 ///
4409 /// \param T The type of the temporary object, which must either be
4410 /// the type of the initializer expression or a superclass thereof.
4411 ///
4412 /// \param Enter The entity being initialized.
4413 ///
4414 /// \param CurInit The initializer expression.
4415 ///
4416 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4417 /// is permitted in C++03 (but not C++0x) when binding a reference to
4418 /// an rvalue.
4419 ///
4420 /// \returns An expression that copies the initializer expression into
4421 /// a temporary object, or an error expression if a copy could not be
4422 /// created.
4423 static ExprResult CopyObject(Sema &S,
4424                              QualType T,
4425                              const InitializedEntity &Entity,
4426                              ExprResult CurInit,
4427                              bool IsExtraneousCopy) {
4428   // Determine which class type we're copying to.
4429   Expr *CurInitExpr = (Expr *)CurInit.get();
4430   CXXRecordDecl *Class = 0;
4431   if (const RecordType *Record = T->getAs<RecordType>())
4432     Class = cast<CXXRecordDecl>(Record->getDecl());
4433   if (!Class)
4434     return move(CurInit);
4435
4436   // C++0x [class.copy]p32:
4437   //   When certain criteria are met, an implementation is allowed to
4438   //   omit the copy/move construction of a class object, even if the
4439   //   copy/move constructor and/or destructor for the object have
4440   //   side effects. [...]
4441   //     - when a temporary class object that has not been bound to a
4442   //       reference (12.2) would be copied/moved to a class object
4443   //       with the same cv-unqualified type, the copy/move operation
4444   //       can be omitted by constructing the temporary object
4445   //       directly into the target of the omitted copy/move
4446   //
4447   // Note that the other three bullets are handled elsewhere. Copy
4448   // elision for return statements and throw expressions are handled as part
4449   // of constructor initialization, while copy elision for exception handlers
4450   // is handled by the run-time.
4451   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4452   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4453
4454   // Make sure that the type we are copying is complete.
4455   if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
4456     return move(CurInit);
4457
4458   // Perform overload resolution using the class's copy/move constructors.
4459   // Only consider constructors and constructor templates. Per
4460   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4461   // is direct-initialization.
4462   OverloadCandidateSet CandidateSet(Loc);
4463   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4464
4465   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4466
4467   OverloadCandidateSet::iterator Best;
4468   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4469   case OR_Success:
4470     break;
4471
4472   case OR_No_Viable_Function:
4473     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4474            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4475            : diag::err_temp_copy_no_viable)
4476       << (int)Entity.getKind() << CurInitExpr->getType()
4477       << CurInitExpr->getSourceRange();
4478     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4479     if (!IsExtraneousCopy || S.isSFINAEContext())
4480       return ExprError();
4481     return move(CurInit);
4482
4483   case OR_Ambiguous:
4484     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4485       << (int)Entity.getKind() << CurInitExpr->getType()
4486       << CurInitExpr->getSourceRange();
4487     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4488     return ExprError();
4489
4490   case OR_Deleted:
4491     S.Diag(Loc, diag::err_temp_copy_deleted)
4492       << (int)Entity.getKind() << CurInitExpr->getType()
4493       << CurInitExpr->getSourceRange();
4494     S.NoteDeletedFunction(Best->Function);
4495     return ExprError();
4496   }
4497
4498   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4499   ASTOwningVector<Expr*> ConstructorArgs(S);
4500   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4501
4502   S.CheckConstructorAccess(Loc, Constructor, Entity,
4503                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4504
4505   if (IsExtraneousCopy) {
4506     // If this is a totally extraneous copy for C++03 reference
4507     // binding purposes, just return the original initialization
4508     // expression. We don't generate an (elided) copy operation here
4509     // because doing so would require us to pass down a flag to avoid
4510     // infinite recursion, where each step adds another extraneous,
4511     // elidable copy.
4512
4513     // Instantiate the default arguments of any extra parameters in
4514     // the selected copy constructor, as if we were going to create a
4515     // proper call to the copy constructor.
4516     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4517       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4518       if (S.RequireCompleteType(Loc, Parm->getType(),
4519                                 S.PDiag(diag::err_call_incomplete_argument)))
4520         break;
4521
4522       // Build the default argument expression; we don't actually care
4523       // if this succeeds or not, because this routine will complain
4524       // if there was a problem.
4525       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4526     }
4527
4528     return S.Owned(CurInitExpr);
4529   }
4530
4531   S.MarkFunctionReferenced(Loc, Constructor);
4532
4533   // Determine the arguments required to actually perform the
4534   // constructor call (we might have derived-to-base conversions, or
4535   // the copy constructor may have default arguments).
4536   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4537                                 Loc, ConstructorArgs))
4538     return ExprError();
4539
4540   // Actually perform the constructor call.
4541   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4542                                     move_arg(ConstructorArgs),
4543                                     HadMultipleCandidates,
4544                                     /*ZeroInit*/ false,
4545                                     CXXConstructExpr::CK_Complete,
4546                                     SourceRange());
4547
4548   // If we're supposed to bind temporaries, do so.
4549   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4550     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4551   return move(CurInit);
4552 }
4553
4554 /// \brief Check whether elidable copy construction for binding a reference to
4555 /// a temporary would have succeeded if we were building in C++98 mode, for
4556 /// -Wc++98-compat.
4557 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4558                                            const InitializedEntity &Entity,
4559                                            Expr *CurInitExpr) {
4560   assert(S.getLangOpts().CPlusPlus0x);
4561
4562   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4563   if (!Record)
4564     return;
4565
4566   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4567   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4568         == DiagnosticsEngine::Ignored)
4569     return;
4570
4571   // Find constructors which would have been considered.
4572   OverloadCandidateSet CandidateSet(Loc);
4573   LookupCopyAndMoveConstructors(
4574       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4575
4576   // Perform overload resolution.
4577   OverloadCandidateSet::iterator Best;
4578   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4579
4580   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4581     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4582     << CurInitExpr->getSourceRange();
4583
4584   switch (OR) {
4585   case OR_Success:
4586     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4587                              Entity, Best->FoundDecl.getAccess(), Diag);
4588     // FIXME: Check default arguments as far as that's possible.
4589     break;
4590
4591   case OR_No_Viable_Function:
4592     S.Diag(Loc, Diag);
4593     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4594     break;
4595
4596   case OR_Ambiguous:
4597     S.Diag(Loc, Diag);
4598     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4599     break;
4600
4601   case OR_Deleted:
4602     S.Diag(Loc, Diag);
4603     S.NoteDeletedFunction(Best->Function);
4604     break;
4605   }
4606 }
4607
4608 void InitializationSequence::PrintInitLocationNote(Sema &S,
4609                                               const InitializedEntity &Entity) {
4610   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4611     if (Entity.getDecl()->getLocation().isInvalid())
4612       return;
4613
4614     if (Entity.getDecl()->getDeclName())
4615       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4616         << Entity.getDecl()->getDeclName();
4617     else
4618       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4619   }
4620 }
4621
4622 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4623   return s.Kind == InitializationSequence::SK_BindReference ||
4624          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4625 }
4626
4627 static ExprResult
4628 PerformConstructorInitialization(Sema &S,
4629                                  const InitializedEntity &Entity,
4630                                  const InitializationKind &Kind,
4631                                  MultiExprArg Args,
4632                                  const InitializationSequence::Step& Step,
4633                                  bool &ConstructorInitRequiresZeroInit) {
4634   unsigned NumArgs = Args.size();
4635   CXXConstructorDecl *Constructor
4636     = cast<CXXConstructorDecl>(Step.Function.Function);
4637   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4638
4639   // Build a call to the selected constructor.
4640   ASTOwningVector<Expr*> ConstructorArgs(S);
4641   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4642                          ? Kind.getEqualLoc()
4643                          : Kind.getLocation();
4644
4645   if (Kind.getKind() == InitializationKind::IK_Default) {
4646     // Force even a trivial, implicit default constructor to be
4647     // semantically checked. We do this explicitly because we don't build
4648     // the definition for completely trivial constructors.
4649     assert(Constructor->getParent() && "No parent class for constructor.");
4650     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4651         Constructor->isTrivial() && !Constructor->isUsed(false))
4652       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4653   }
4654
4655   ExprResult CurInit = S.Owned((Expr *)0);
4656
4657   // C++ [over.match.copy]p1:
4658   //   - When initializing a temporary to be bound to the first parameter 
4659   //     of a constructor that takes a reference to possibly cv-qualified 
4660   //     T as its first argument, called with a single argument in the 
4661   //     context of direct-initialization, explicit conversion functions
4662   //     are also considered.
4663   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4664                            Args.size() == 1 && 
4665                            Constructor->isCopyOrMoveConstructor();
4666
4667   // Determine the arguments required to actually perform the constructor
4668   // call.
4669   if (S.CompleteConstructorCall(Constructor, move(Args),
4670                                 Loc, ConstructorArgs,
4671                                 AllowExplicitConv))
4672     return ExprError();
4673
4674
4675   if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4676       (Kind.getKind() == InitializationKind::IK_DirectList ||
4677        (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4678         (Kind.getKind() == InitializationKind::IK_Direct ||
4679          Kind.getKind() == InitializationKind::IK_Value)))) {
4680     // An explicitly-constructed temporary, e.g., X(1, 2).
4681     unsigned NumExprs = ConstructorArgs.size();
4682     Expr **Exprs = (Expr **)ConstructorArgs.take();
4683     S.MarkFunctionReferenced(Loc, Constructor);
4684     S.DiagnoseUseOfDecl(Constructor, Loc);
4685
4686     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4687     if (!TSInfo)
4688       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4689     SourceRange ParenRange;
4690     if (Kind.getKind() != InitializationKind::IK_DirectList)
4691       ParenRange = Kind.getParenRange();
4692
4693     CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4694                                                              Constructor,
4695                                                              TSInfo,
4696                                                              Exprs,
4697                                                              NumExprs,
4698                                                              ParenRange,
4699                                                      HadMultipleCandidates,
4700                                          ConstructorInitRequiresZeroInit));
4701   } else {
4702     CXXConstructExpr::ConstructionKind ConstructKind =
4703       CXXConstructExpr::CK_Complete;
4704
4705     if (Entity.getKind() == InitializedEntity::EK_Base) {
4706       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4707         CXXConstructExpr::CK_VirtualBase :
4708         CXXConstructExpr::CK_NonVirtualBase;
4709     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4710       ConstructKind = CXXConstructExpr::CK_Delegating;
4711     }
4712
4713     // Only get the parenthesis range if it is a direct construction.
4714     SourceRange parenRange =
4715         Kind.getKind() == InitializationKind::IK_Direct ?
4716         Kind.getParenRange() : SourceRange();
4717
4718     // If the entity allows NRVO, mark the construction as elidable
4719     // unconditionally.
4720     if (Entity.allowsNRVO())
4721       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4722                                         Constructor, /*Elidable=*/true,
4723                                         move_arg(ConstructorArgs),
4724                                         HadMultipleCandidates,
4725                                         ConstructorInitRequiresZeroInit,
4726                                         ConstructKind,
4727                                         parenRange);
4728     else
4729       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4730                                         Constructor,
4731                                         move_arg(ConstructorArgs),
4732                                         HadMultipleCandidates,
4733                                         ConstructorInitRequiresZeroInit,
4734                                         ConstructKind,
4735                                         parenRange);
4736   }
4737   if (CurInit.isInvalid())
4738     return ExprError();
4739
4740   // Only check access if all of that succeeded.
4741   S.CheckConstructorAccess(Loc, Constructor, Entity,
4742                            Step.Function.FoundDecl.getAccess());
4743   S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4744
4745   if (shouldBindAsTemporary(Entity))
4746     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4747
4748   return move(CurInit);
4749 }
4750
4751 ExprResult
4752 InitializationSequence::Perform(Sema &S,
4753                                 const InitializedEntity &Entity,
4754                                 const InitializationKind &Kind,
4755                                 MultiExprArg Args,
4756                                 QualType *ResultType) {
4757   if (Failed()) {
4758     unsigned NumArgs = Args.size();
4759     Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
4760     return ExprError();
4761   }
4762
4763   if (getKind() == DependentSequence) {
4764     // If the declaration is a non-dependent, incomplete array type
4765     // that has an initializer, then its type will be completed once
4766     // the initializer is instantiated.
4767     if (ResultType && !Entity.getType()->isDependentType() &&
4768         Args.size() == 1) {
4769       QualType DeclType = Entity.getType();
4770       if (const IncompleteArrayType *ArrayT
4771                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4772         // FIXME: We don't currently have the ability to accurately
4773         // compute the length of an initializer list without
4774         // performing full type-checking of the initializer list
4775         // (since we have to determine where braces are implicitly
4776         // introduced and such).  So, we fall back to making the array
4777         // type a dependently-sized array type with no specified
4778         // bound.
4779         if (isa<InitListExpr>((Expr *)Args.get()[0])) {
4780           SourceRange Brackets;
4781
4782           // Scavange the location of the brackets from the entity, if we can.
4783           if (DeclaratorDecl *DD = Entity.getDecl()) {
4784             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4785               TypeLoc TL = TInfo->getTypeLoc();
4786               if (IncompleteArrayTypeLoc *ArrayLoc
4787                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4788               Brackets = ArrayLoc->getBracketsRange();
4789             }
4790           }
4791
4792           *ResultType
4793             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4794                                                    /*NumElts=*/0,
4795                                                    ArrayT->getSizeModifier(),
4796                                        ArrayT->getIndexTypeCVRQualifiers(),
4797                                                    Brackets);
4798         }
4799
4800       }
4801     }
4802     if (Kind.getKind() == InitializationKind::IK_Direct &&
4803         !Kind.isExplicitCast()) {
4804       // Rebuild the ParenListExpr.
4805       SourceRange ParenRange = Kind.getParenRange();
4806       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4807                                   move(Args));
4808     }
4809     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4810            Kind.isExplicitCast() || 
4811            Kind.getKind() == InitializationKind::IK_DirectList);
4812     return ExprResult(Args.release()[0]);
4813   }
4814
4815   // No steps means no initialization.
4816   if (Steps.empty())
4817     return S.Owned((Expr *)0);
4818
4819   QualType DestType = Entity.getType().getNonReferenceType();
4820   // FIXME: Ugly hack around the fact that Entity.getType() is not
4821   // the same as Entity.getDecl()->getType() in cases involving type merging,
4822   //  and we want latter when it makes sense.
4823   if (ResultType)
4824     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4825                                      Entity.getType();
4826
4827   ExprResult CurInit = S.Owned((Expr *)0);
4828
4829   // For initialization steps that start with a single initializer,
4830   // grab the only argument out the Args and place it into the "current"
4831   // initializer.
4832   switch (Steps.front().Kind) {
4833   case SK_ResolveAddressOfOverloadedFunction:
4834   case SK_CastDerivedToBaseRValue:
4835   case SK_CastDerivedToBaseXValue:
4836   case SK_CastDerivedToBaseLValue:
4837   case SK_BindReference:
4838   case SK_BindReferenceToTemporary:
4839   case SK_ExtraneousCopyToTemporary:
4840   case SK_UserConversion:
4841   case SK_QualificationConversionLValue:
4842   case SK_QualificationConversionXValue:
4843   case SK_QualificationConversionRValue:
4844   case SK_ConversionSequence:
4845   case SK_ListConstructorCall:
4846   case SK_ListInitialization:
4847   case SK_UnwrapInitList:
4848   case SK_RewrapInitList:
4849   case SK_CAssignment:
4850   case SK_StringInit:
4851   case SK_ObjCObjectConversion:
4852   case SK_ArrayInit:
4853   case SK_ParenthesizedArrayInit:
4854   case SK_PassByIndirectCopyRestore:
4855   case SK_PassByIndirectRestore:
4856   case SK_ProduceObjCObject:
4857   case SK_StdInitializerList: {
4858     assert(Args.size() == 1);
4859     CurInit = Args.get()[0];
4860     if (!CurInit.get()) return ExprError();
4861     break;
4862   }
4863
4864   case SK_ConstructorInitialization:
4865   case SK_ZeroInitialization:
4866     break;
4867   }
4868
4869   // Walk through the computed steps for the initialization sequence,
4870   // performing the specified conversions along the way.
4871   bool ConstructorInitRequiresZeroInit = false;
4872   for (step_iterator Step = step_begin(), StepEnd = step_end();
4873        Step != StepEnd; ++Step) {
4874     if (CurInit.isInvalid())
4875       return ExprError();
4876
4877     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4878
4879     switch (Step->Kind) {
4880     case SK_ResolveAddressOfOverloadedFunction:
4881       // Overload resolution determined which function invoke; update the
4882       // initializer to reflect that choice.
4883       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4884       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4885       CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4886                                                  Step->Function.FoundDecl,
4887                                                  Step->Function.Function);
4888       break;
4889
4890     case SK_CastDerivedToBaseRValue:
4891     case SK_CastDerivedToBaseXValue:
4892     case SK_CastDerivedToBaseLValue: {
4893       // We have a derived-to-base cast that produces either an rvalue or an
4894       // lvalue. Perform that cast.
4895
4896       CXXCastPath BasePath;
4897
4898       // Casts to inaccessible base classes are allowed with C-style casts.
4899       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4900       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4901                                          CurInit.get()->getLocStart(),
4902                                          CurInit.get()->getSourceRange(),
4903                                          &BasePath, IgnoreBaseAccess))
4904         return ExprError();
4905
4906       if (S.BasePathInvolvesVirtualBase(BasePath)) {
4907         QualType T = SourceType;
4908         if (const PointerType *Pointer = T->getAs<PointerType>())
4909           T = Pointer->getPointeeType();
4910         if (const RecordType *RecordTy = T->getAs<RecordType>())
4911           S.MarkVTableUsed(CurInit.get()->getLocStart(),
4912                            cast<CXXRecordDecl>(RecordTy->getDecl()));
4913       }
4914
4915       ExprValueKind VK =
4916           Step->Kind == SK_CastDerivedToBaseLValue ?
4917               VK_LValue :
4918               (Step->Kind == SK_CastDerivedToBaseXValue ?
4919                    VK_XValue :
4920                    VK_RValue);
4921       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4922                                                  Step->Type,
4923                                                  CK_DerivedToBase,
4924                                                  CurInit.get(),
4925                                                  &BasePath, VK));
4926       break;
4927     }
4928
4929     case SK_BindReference:
4930       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4931         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4932         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4933           << Entity.getType().isVolatileQualified()
4934           << BitField->getDeclName()
4935           << CurInit.get()->getSourceRange();
4936         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4937         return ExprError();
4938       }
4939
4940       if (CurInit.get()->refersToVectorElement()) {
4941         // References cannot bind to vector elements.
4942         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4943           << Entity.getType().isVolatileQualified()
4944           << CurInit.get()->getSourceRange();
4945         PrintInitLocationNote(S, Entity);
4946         return ExprError();
4947       }
4948
4949       // Reference binding does not have any corresponding ASTs.
4950
4951       // Check exception specifications
4952       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4953         return ExprError();
4954
4955       break;
4956
4957     case SK_BindReferenceToTemporary:
4958       // Check exception specifications
4959       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4960         return ExprError();
4961
4962       // Materialize the temporary into memory.
4963       CurInit = new (S.Context) MaterializeTemporaryExpr(
4964                                          Entity.getType().getNonReferenceType(),
4965                                                          CurInit.get(),
4966                                      Entity.getType()->isLValueReferenceType());
4967
4968       // If we're binding to an Objective-C object that has lifetime, we
4969       // need cleanups.
4970       if (S.getLangOpts().ObjCAutoRefCount &&
4971           CurInit.get()->getType()->isObjCLifetimeType())
4972         S.ExprNeedsCleanups = true;
4973             
4974       break;
4975
4976     case SK_ExtraneousCopyToTemporary:
4977       CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4978                            /*IsExtraneousCopy=*/true);
4979       break;
4980
4981     case SK_UserConversion: {
4982       // We have a user-defined conversion that invokes either a constructor
4983       // or a conversion function.
4984       CastKind CastKind;
4985       bool IsCopy = false;
4986       FunctionDecl *Fn = Step->Function.Function;
4987       DeclAccessPair FoundFn = Step->Function.FoundDecl;
4988       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
4989       bool CreatedObject = false;
4990       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4991         // Build a call to the selected constructor.
4992         ASTOwningVector<Expr*> ConstructorArgs(S);
4993         SourceLocation Loc = CurInit.get()->getLocStart();
4994         CurInit.release(); // Ownership transferred into MultiExprArg, below.
4995
4996         // Determine the arguments required to actually perform the constructor
4997         // call.
4998         Expr *Arg = CurInit.get();
4999         if (S.CompleteConstructorCall(Constructor,
5000                                       MultiExprArg(&Arg, 1),
5001                                       Loc, ConstructorArgs))
5002           return ExprError();
5003
5004         // Build an expression that constructs a temporary.
5005         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5006                                           move_arg(ConstructorArgs),
5007                                           HadMultipleCandidates,
5008                                           /*ZeroInit*/ false,
5009                                           CXXConstructExpr::CK_Complete,
5010                                           SourceRange());
5011         if (CurInit.isInvalid())
5012           return ExprError();
5013
5014         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5015                                  FoundFn.getAccess());
5016         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5017
5018         CastKind = CK_ConstructorConversion;
5019         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5020         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5021             S.IsDerivedFrom(SourceType, Class))
5022           IsCopy = true;
5023
5024         CreatedObject = true;
5025       } else {
5026         // Build a call to the conversion function.
5027         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5028         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5029                                     FoundFn);
5030         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5031
5032         // FIXME: Should we move this initialization into a separate
5033         // derived-to-base conversion? I believe the answer is "no", because
5034         // we don't want to turn off access control here for c-style casts.
5035         ExprResult CurInitExprRes =
5036           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5037                                                 FoundFn, Conversion);
5038         if(CurInitExprRes.isInvalid())
5039           return ExprError();
5040         CurInit = move(CurInitExprRes);
5041
5042         // Build the actual call to the conversion function.
5043         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5044                                            HadMultipleCandidates);
5045         if (CurInit.isInvalid() || !CurInit.get())
5046           return ExprError();
5047
5048         CastKind = CK_UserDefinedConversion;
5049
5050         CreatedObject = Conversion->getResultType()->isRecordType();
5051       }
5052
5053       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5054       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5055
5056       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5057         QualType T = CurInit.get()->getType();
5058         if (const RecordType *Record = T->getAs<RecordType>()) {
5059           CXXDestructorDecl *Destructor
5060             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5061           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5062                                   S.PDiag(diag::err_access_dtor_temp) << T);
5063           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5064           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5065         }
5066       }
5067
5068       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5069                                                  CurInit.get()->getType(),
5070                                                  CastKind, CurInit.get(), 0,
5071                                                 CurInit.get()->getValueKind()));
5072       if (MaybeBindToTemp)
5073         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5074       if (RequiresCopy)
5075         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5076                              move(CurInit), /*IsExtraneousCopy=*/false);
5077       break;
5078     }
5079
5080     case SK_QualificationConversionLValue:
5081     case SK_QualificationConversionXValue:
5082     case SK_QualificationConversionRValue: {
5083       // Perform a qualification conversion; these can never go wrong.
5084       ExprValueKind VK =
5085           Step->Kind == SK_QualificationConversionLValue ?
5086               VK_LValue :
5087               (Step->Kind == SK_QualificationConversionXValue ?
5088                    VK_XValue :
5089                    VK_RValue);
5090       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5091       break;
5092     }
5093
5094     case SK_ConversionSequence: {
5095       Sema::CheckedConversionKind CCK 
5096         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5097         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5098         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5099         : Sema::CCK_ImplicitConversion;
5100       ExprResult CurInitExprRes =
5101         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5102                                     getAssignmentAction(Entity), CCK);
5103       if (CurInitExprRes.isInvalid())
5104         return ExprError();
5105       CurInit = move(CurInitExprRes);
5106       break;
5107     }
5108
5109     case SK_ListInitialization: {
5110       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5111       // Hack: We must pass *ResultType if available in order to set the type
5112       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5113       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5114       // temporary, not a reference, so we should pass Ty.
5115       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5116       // Since this step is never used for a reference directly, we explicitly
5117       // unwrap references here and rewrap them afterwards.
5118       // We also need to create a InitializeTemporary entity for this.
5119       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5120       bool IsTemporary = Entity.getType()->isReferenceType();
5121       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5122       InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5123           InitList, Ty, /*VerifyOnly=*/false,
5124           Kind.getKind() != InitializationKind::IK_DirectList ||
5125             !S.getLangOpts().CPlusPlus0x);
5126       if (PerformInitList.HadError())
5127         return ExprError();
5128
5129       if (ResultType) {
5130         if ((*ResultType)->isRValueReferenceType())
5131           Ty = S.Context.getRValueReferenceType(Ty);
5132         else if ((*ResultType)->isLValueReferenceType())
5133           Ty = S.Context.getLValueReferenceType(Ty,
5134             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5135         *ResultType = Ty;
5136       }
5137
5138       InitListExpr *StructuredInitList =
5139           PerformInitList.getFullyStructuredList();
5140       CurInit.release();
5141       CurInit = S.Owned(StructuredInitList);
5142       break;
5143     }
5144
5145     case SK_ListConstructorCall: {
5146       // When an initializer list is passed for a parameter of type "reference
5147       // to object", we don't get an EK_Temporary entity, but instead an
5148       // EK_Parameter entity with reference type.
5149       // FIXME: This is a hack. What we really should do is create a user
5150       // conversion step for this case, but this makes it considerably more
5151       // complicated. For now, this will do.
5152       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5153                                         Entity.getType().getNonReferenceType());
5154       bool UseTemporary = Entity.getType()->isReferenceType();
5155       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5156       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5157       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5158                                                                    Entity,
5159                                                  Kind, move(Arg), *Step,
5160                                                ConstructorInitRequiresZeroInit);
5161       break;
5162     }
5163
5164     case SK_UnwrapInitList:
5165       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5166       break;
5167
5168     case SK_RewrapInitList: {
5169       Expr *E = CurInit.take();
5170       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5171       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5172           Syntactic->getLBraceLoc(), &E, 1, Syntactic->getRBraceLoc());
5173       ILE->setSyntacticForm(Syntactic);
5174       ILE->setType(E->getType());
5175       ILE->setValueKind(E->getValueKind());
5176       CurInit = S.Owned(ILE);
5177       break;
5178     }
5179
5180     case SK_ConstructorInitialization: {
5181       // When an initializer list is passed for a parameter of type "reference
5182       // to object", we don't get an EK_Temporary entity, but instead an
5183       // EK_Parameter entity with reference type.
5184       // FIXME: This is a hack. What we really should do is create a user
5185       // conversion step for this case, but this makes it considerably more
5186       // complicated. For now, this will do.
5187       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5188                                         Entity.getType().getNonReferenceType());
5189       bool UseTemporary = Entity.getType()->isReferenceType();
5190       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5191                                                                  : Entity,
5192                                                  Kind, move(Args), *Step,
5193                                                ConstructorInitRequiresZeroInit);
5194       break;
5195     }
5196
5197     case SK_ZeroInitialization: {
5198       step_iterator NextStep = Step;
5199       ++NextStep;
5200       if (NextStep != StepEnd &&
5201           NextStep->Kind == SK_ConstructorInitialization) {
5202         // The need for zero-initialization is recorded directly into
5203         // the call to the object's constructor within the next step.
5204         ConstructorInitRequiresZeroInit = true;
5205       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5206                  S.getLangOpts().CPlusPlus &&
5207                  !Kind.isImplicitValueInit()) {
5208         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5209         if (!TSInfo)
5210           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5211                                                     Kind.getRange().getBegin());
5212
5213         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5214                               TSInfo->getType().getNonLValueExprType(S.Context),
5215                                                                  TSInfo,
5216                                                     Kind.getRange().getEnd()));
5217       } else {
5218         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5219       }
5220       break;
5221     }
5222
5223     case SK_CAssignment: {
5224       QualType SourceType = CurInit.get()->getType();
5225       ExprResult Result = move(CurInit);
5226       Sema::AssignConvertType ConvTy =
5227         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5228       if (Result.isInvalid())
5229         return ExprError();
5230       CurInit = move(Result);
5231
5232       // If this is a call, allow conversion to a transparent union.
5233       ExprResult CurInitExprRes = move(CurInit);
5234       if (ConvTy != Sema::Compatible &&
5235           Entity.getKind() == InitializedEntity::EK_Parameter &&
5236           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5237             == Sema::Compatible)
5238         ConvTy = Sema::Compatible;
5239       if (CurInitExprRes.isInvalid())
5240         return ExprError();
5241       CurInit = move(CurInitExprRes);
5242
5243       bool Complained;
5244       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5245                                      Step->Type, SourceType,
5246                                      CurInit.get(),
5247                                      getAssignmentAction(Entity),
5248                                      &Complained)) {
5249         PrintInitLocationNote(S, Entity);
5250         return ExprError();
5251       } else if (Complained)
5252         PrintInitLocationNote(S, Entity);
5253       break;
5254     }
5255
5256     case SK_StringInit: {
5257       QualType Ty = Step->Type;
5258       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5259                       S.Context.getAsArrayType(Ty), S);
5260       break;
5261     }
5262
5263     case SK_ObjCObjectConversion:
5264       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5265                           CK_ObjCObjectLValueCast,
5266                           CurInit.get()->getValueKind());
5267       break;
5268
5269     case SK_ArrayInit:
5270       // Okay: we checked everything before creating this step. Note that
5271       // this is a GNU extension.
5272       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5273         << Step->Type << CurInit.get()->getType()
5274         << CurInit.get()->getSourceRange();
5275
5276       // If the destination type is an incomplete array type, update the
5277       // type accordingly.
5278       if (ResultType) {
5279         if (const IncompleteArrayType *IncompleteDest
5280                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5281           if (const ConstantArrayType *ConstantSource
5282                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5283             *ResultType = S.Context.getConstantArrayType(
5284                                              IncompleteDest->getElementType(),
5285                                              ConstantSource->getSize(),
5286                                              ArrayType::Normal, 0);
5287           }
5288         }
5289       }
5290       break;
5291
5292     case SK_ParenthesizedArrayInit:
5293       // Okay: we checked everything before creating this step. Note that
5294       // this is a GNU extension.
5295       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5296         << CurInit.get()->getSourceRange();
5297       break;
5298
5299     case SK_PassByIndirectCopyRestore:
5300     case SK_PassByIndirectRestore:
5301       checkIndirectCopyRestoreSource(S, CurInit.get());
5302       CurInit = S.Owned(new (S.Context)
5303                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5304                                 Step->Kind == SK_PassByIndirectCopyRestore));
5305       break;
5306
5307     case SK_ProduceObjCObject:
5308       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5309                                                  CK_ARCProduceObject,
5310                                                  CurInit.take(), 0, VK_RValue));
5311       break;
5312
5313     case SK_StdInitializerList: {
5314       QualType Dest = Step->Type;
5315       QualType E;
5316       bool Success = S.isStdInitializerList(Dest, &E);
5317       (void)Success;
5318       assert(Success && "Destination type changed?");
5319
5320       // If the element type has a destructor, check it.
5321       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5322         if (!RD->hasIrrelevantDestructor()) {
5323           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5324             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5325             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5326                                     S.PDiag(diag::err_access_dtor_temp) << E);
5327             S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5328           }
5329         }
5330       }
5331
5332       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5333       unsigned NumInits = ILE->getNumInits();
5334       SmallVector<Expr*, 16> Converted(NumInits);
5335       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5336           S.Context.getConstantArrayType(E,
5337               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5338                           NumInits),
5339               ArrayType::Normal, 0));
5340       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5341           0, HiddenArray);
5342       for (unsigned i = 0; i < NumInits; ++i) {
5343         Element.setElementIndex(i);
5344         ExprResult Init = S.Owned(ILE->getInit(i));
5345         ExprResult Res = S.PerformCopyInitialization(Element,
5346                                                      Init.get()->getExprLoc(),
5347                                                      Init);
5348         assert(!Res.isInvalid() && "Result changed since try phase.");
5349         Converted[i] = Res.take();
5350       }
5351       InitListExpr *Semantic = new (S.Context)
5352           InitListExpr(S.Context, ILE->getLBraceLoc(),
5353                        Converted.data(), NumInits, ILE->getRBraceLoc());
5354       Semantic->setSyntacticForm(ILE);
5355       Semantic->setType(Dest);
5356       Semantic->setInitializesStdInitializerList();
5357       CurInit = S.Owned(Semantic);
5358       break;
5359     }
5360     }
5361   }
5362
5363   // Diagnose non-fatal problems with the completed initialization.
5364   if (Entity.getKind() == InitializedEntity::EK_Member &&
5365       cast<FieldDecl>(Entity.getDecl())->isBitField())
5366     S.CheckBitFieldInitialization(Kind.getLocation(),
5367                                   cast<FieldDecl>(Entity.getDecl()),
5368                                   CurInit.get());
5369
5370   return move(CurInit);
5371 }
5372
5373 //===----------------------------------------------------------------------===//
5374 // Diagnose initialization failures
5375 //===----------------------------------------------------------------------===//
5376 bool InitializationSequence::Diagnose(Sema &S,
5377                                       const InitializedEntity &Entity,
5378                                       const InitializationKind &Kind,
5379                                       Expr **Args, unsigned NumArgs) {
5380   if (!Failed())
5381     return false;
5382
5383   QualType DestType = Entity.getType();
5384   switch (Failure) {
5385   case FK_TooManyInitsForReference:
5386     // FIXME: Customize for the initialized entity?
5387     if (NumArgs == 0)
5388       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5389         << DestType.getNonReferenceType();
5390     else  // FIXME: diagnostic below could be better!
5391       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5392         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5393     break;
5394
5395   case FK_ArrayNeedsInitList:
5396   case FK_ArrayNeedsInitListOrStringLiteral:
5397     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5398       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5399     break;
5400
5401   case FK_ArrayTypeMismatch:
5402   case FK_NonConstantArrayInit:
5403     S.Diag(Kind.getLocation(), 
5404            (Failure == FK_ArrayTypeMismatch
5405               ? diag::err_array_init_different_type
5406               : diag::err_array_init_non_constant_array))
5407       << DestType.getNonReferenceType()
5408       << Args[0]->getType()
5409       << Args[0]->getSourceRange();
5410     break;
5411
5412   case FK_VariableLengthArrayHasInitializer:
5413     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5414       << Args[0]->getSourceRange();
5415     break;
5416
5417   case FK_AddressOfOverloadFailed: {
5418     DeclAccessPair Found;
5419     S.ResolveAddressOfOverloadedFunction(Args[0],
5420                                          DestType.getNonReferenceType(),
5421                                          true,
5422                                          Found);
5423     break;
5424   }
5425
5426   case FK_ReferenceInitOverloadFailed:
5427   case FK_UserConversionOverloadFailed:
5428     switch (FailedOverloadResult) {
5429     case OR_Ambiguous:
5430       if (Failure == FK_UserConversionOverloadFailed)
5431         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5432           << Args[0]->getType() << DestType
5433           << Args[0]->getSourceRange();
5434       else
5435         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5436           << DestType << Args[0]->getType()
5437           << Args[0]->getSourceRange();
5438
5439       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5440                                         llvm::makeArrayRef(Args, NumArgs));
5441       break;
5442
5443     case OR_No_Viable_Function:
5444       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5445         << Args[0]->getType() << DestType.getNonReferenceType()
5446         << Args[0]->getSourceRange();
5447       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5448                                         llvm::makeArrayRef(Args, NumArgs));
5449       break;
5450
5451     case OR_Deleted: {
5452       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5453         << Args[0]->getType() << DestType.getNonReferenceType()
5454         << Args[0]->getSourceRange();
5455       OverloadCandidateSet::iterator Best;
5456       OverloadingResult Ovl
5457         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5458                                                 true);
5459       if (Ovl == OR_Deleted) {
5460         S.NoteDeletedFunction(Best->Function);
5461       } else {
5462         llvm_unreachable("Inconsistent overload resolution?");
5463       }
5464       break;
5465     }
5466
5467     case OR_Success:
5468       llvm_unreachable("Conversion did not fail!");
5469     }
5470     break;
5471
5472   case FK_NonConstLValueReferenceBindingToTemporary:
5473     if (isa<InitListExpr>(Args[0])) {
5474       S.Diag(Kind.getLocation(),
5475              diag::err_lvalue_reference_bind_to_initlist)
5476       << DestType.getNonReferenceType().isVolatileQualified()
5477       << DestType.getNonReferenceType()
5478       << Args[0]->getSourceRange();
5479       break;
5480     }
5481     // Intentional fallthrough
5482
5483   case FK_NonConstLValueReferenceBindingToUnrelated:
5484     S.Diag(Kind.getLocation(),
5485            Failure == FK_NonConstLValueReferenceBindingToTemporary
5486              ? diag::err_lvalue_reference_bind_to_temporary
5487              : diag::err_lvalue_reference_bind_to_unrelated)
5488       << DestType.getNonReferenceType().isVolatileQualified()
5489       << DestType.getNonReferenceType()
5490       << Args[0]->getType()
5491       << Args[0]->getSourceRange();
5492     break;
5493
5494   case FK_RValueReferenceBindingToLValue:
5495     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5496       << DestType.getNonReferenceType() << Args[0]->getType()
5497       << Args[0]->getSourceRange();
5498     break;
5499
5500   case FK_ReferenceInitDropsQualifiers:
5501     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5502       << DestType.getNonReferenceType()
5503       << Args[0]->getType()
5504       << Args[0]->getSourceRange();
5505     break;
5506
5507   case FK_ReferenceInitFailed:
5508     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5509       << DestType.getNonReferenceType()
5510       << Args[0]->isLValue()
5511       << Args[0]->getType()
5512       << Args[0]->getSourceRange();
5513     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5514         Args[0]->getType()->isObjCObjectPointerType())
5515       S.EmitRelatedResultTypeNote(Args[0]);
5516     break;
5517
5518   case FK_ConversionFailed: {
5519     QualType FromType = Args[0]->getType();
5520     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5521       << (int)Entity.getKind()
5522       << DestType
5523       << Args[0]->isLValue()
5524       << FromType
5525       << Args[0]->getSourceRange();
5526     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5527     S.Diag(Kind.getLocation(), PDiag);
5528     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5529         Args[0]->getType()->isObjCObjectPointerType())
5530       S.EmitRelatedResultTypeNote(Args[0]);
5531     break;
5532   }
5533
5534   case FK_ConversionFromPropertyFailed:
5535     // No-op. This error has already been reported.
5536     break;
5537
5538   case FK_TooManyInitsForScalar: {
5539     SourceRange R;
5540
5541     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5542       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5543                       InitList->getLocEnd());
5544     else
5545       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5546
5547     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5548     if (Kind.isCStyleOrFunctionalCast())
5549       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5550         << R;
5551     else
5552       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5553         << /*scalar=*/2 << R;
5554     break;
5555   }
5556
5557   case FK_ReferenceBindingToInitList:
5558     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5559       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5560     break;
5561
5562   case FK_InitListBadDestinationType:
5563     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5564       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5565     break;
5566
5567   case FK_ListConstructorOverloadFailed:
5568   case FK_ConstructorOverloadFailed: {
5569     SourceRange ArgsRange;
5570     if (NumArgs)
5571       ArgsRange = SourceRange(Args[0]->getLocStart(),
5572                               Args[NumArgs - 1]->getLocEnd());
5573
5574     if (Failure == FK_ListConstructorOverloadFailed) {
5575       assert(NumArgs == 1 && "List construction from other than 1 argument.");
5576       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5577       Args = InitList->getInits();
5578       NumArgs = InitList->getNumInits();
5579     }
5580
5581     // FIXME: Using "DestType" for the entity we're printing is probably
5582     // bad.
5583     switch (FailedOverloadResult) {
5584       case OR_Ambiguous:
5585         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5586           << DestType << ArgsRange;
5587         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5588                                           llvm::makeArrayRef(Args, NumArgs));
5589         break;
5590
5591       case OR_No_Viable_Function:
5592         if (Kind.getKind() == InitializationKind::IK_Default &&
5593             (Entity.getKind() == InitializedEntity::EK_Base ||
5594              Entity.getKind() == InitializedEntity::EK_Member) &&
5595             isa<CXXConstructorDecl>(S.CurContext)) {
5596           // This is implicit default initialization of a member or
5597           // base within a constructor. If no viable function was
5598           // found, notify the user that she needs to explicitly
5599           // initialize this base/member.
5600           CXXConstructorDecl *Constructor
5601             = cast<CXXConstructorDecl>(S.CurContext);
5602           if (Entity.getKind() == InitializedEntity::EK_Base) {
5603             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5604               << Constructor->isImplicit()
5605               << S.Context.getTypeDeclType(Constructor->getParent())
5606               << /*base=*/0
5607               << Entity.getType();
5608
5609             RecordDecl *BaseDecl
5610               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5611                                                                   ->getDecl();
5612             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5613               << S.Context.getTagDeclType(BaseDecl);
5614           } else {
5615             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5616               << Constructor->isImplicit()
5617               << S.Context.getTypeDeclType(Constructor->getParent())
5618               << /*member=*/1
5619               << Entity.getName();
5620             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5621
5622             if (const RecordType *Record
5623                                  = Entity.getType()->getAs<RecordType>())
5624               S.Diag(Record->getDecl()->getLocation(),
5625                      diag::note_previous_decl)
5626                 << S.Context.getTagDeclType(Record->getDecl());
5627           }
5628           break;
5629         }
5630
5631         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5632           << DestType << ArgsRange;
5633         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5634                                           llvm::makeArrayRef(Args, NumArgs));
5635         break;
5636
5637       case OR_Deleted: {
5638         OverloadCandidateSet::iterator Best;
5639         OverloadingResult Ovl
5640           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5641         if (Ovl != OR_Deleted) {
5642           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5643             << true << DestType << ArgsRange;
5644           llvm_unreachable("Inconsistent overload resolution?");
5645           break;
5646         }
5647        
5648         // If this is a defaulted or implicitly-declared function, then
5649         // it was implicitly deleted. Make it clear that the deletion was
5650         // implicit.
5651         if (S.isImplicitlyDeleted(Best->Function))
5652           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5653             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5654             << DestType << ArgsRange;
5655         else
5656           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5657             << true << DestType << ArgsRange;
5658
5659         S.NoteDeletedFunction(Best->Function);
5660         break;
5661       }
5662
5663       case OR_Success:
5664         llvm_unreachable("Conversion did not fail!");
5665     }
5666   }
5667   break;
5668
5669   case FK_DefaultInitOfConst:
5670     if (Entity.getKind() == InitializedEntity::EK_Member &&
5671         isa<CXXConstructorDecl>(S.CurContext)) {
5672       // This is implicit default-initialization of a const member in
5673       // a constructor. Complain that it needs to be explicitly
5674       // initialized.
5675       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5676       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5677         << Constructor->isImplicit()
5678         << S.Context.getTypeDeclType(Constructor->getParent())
5679         << /*const=*/1
5680         << Entity.getName();
5681       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5682         << Entity.getName();
5683     } else {
5684       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5685         << DestType << (bool)DestType->getAs<RecordType>();
5686     }
5687     break;
5688
5689   case FK_Incomplete:
5690     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5691                           diag::err_init_incomplete_type);
5692     break;
5693
5694   case FK_ListInitializationFailed: {
5695     // Run the init list checker again to emit diagnostics.
5696     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5697     QualType DestType = Entity.getType();
5698     InitListChecker DiagnoseInitList(S, Entity, InitList,
5699             DestType, /*VerifyOnly=*/false,
5700             Kind.getKind() != InitializationKind::IK_DirectList ||
5701               !S.getLangOpts().CPlusPlus0x);
5702     assert(DiagnoseInitList.HadError() &&
5703            "Inconsistent init list check result.");
5704     break;
5705   }
5706
5707   case FK_PlaceholderType: {
5708     // FIXME: Already diagnosed!
5709     break;
5710   }
5711
5712   case FK_InitListElementCopyFailure: {
5713     // Try to perform all copies again.
5714     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5715     unsigned NumInits = InitList->getNumInits();
5716     QualType DestType = Entity.getType();
5717     QualType E;
5718     bool Success = S.isStdInitializerList(DestType, &E);
5719     (void)Success;
5720     assert(Success && "Where did the std::initializer_list go?");
5721     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5722         S.Context.getConstantArrayType(E,
5723             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5724                         NumInits),
5725             ArrayType::Normal, 0));
5726     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5727         0, HiddenArray);
5728     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5729     // where the init list type is wrong, e.g.
5730     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5731     // FIXME: Emit a note if we hit the limit?
5732     int ErrorCount = 0;
5733     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5734       Element.setElementIndex(i);
5735       ExprResult Init = S.Owned(InitList->getInit(i));
5736       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5737            .isInvalid())
5738         ++ErrorCount;
5739     }
5740     break;
5741   }
5742
5743   case FK_ExplicitConstructor: {
5744     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5745       << Args[0]->getSourceRange();
5746     OverloadCandidateSet::iterator Best;
5747     OverloadingResult Ovl
5748       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5749     (void)Ovl;
5750     assert(Ovl == OR_Success && "Inconsistent overload resolution");
5751     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5752     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5753     break;
5754   }
5755   }
5756
5757   PrintInitLocationNote(S, Entity);
5758   return true;
5759 }
5760
5761 void InitializationSequence::dump(raw_ostream &OS) const {
5762   switch (SequenceKind) {
5763   case FailedSequence: {
5764     OS << "Failed sequence: ";
5765     switch (Failure) {
5766     case FK_TooManyInitsForReference:
5767       OS << "too many initializers for reference";
5768       break;
5769
5770     case FK_ArrayNeedsInitList:
5771       OS << "array requires initializer list";
5772       break;
5773
5774     case FK_ArrayNeedsInitListOrStringLiteral:
5775       OS << "array requires initializer list or string literal";
5776       break;
5777
5778     case FK_ArrayTypeMismatch:
5779       OS << "array type mismatch";
5780       break;
5781
5782     case FK_NonConstantArrayInit:
5783       OS << "non-constant array initializer";
5784       break;
5785
5786     case FK_AddressOfOverloadFailed:
5787       OS << "address of overloaded function failed";
5788       break;
5789
5790     case FK_ReferenceInitOverloadFailed:
5791       OS << "overload resolution for reference initialization failed";
5792       break;
5793
5794     case FK_NonConstLValueReferenceBindingToTemporary:
5795       OS << "non-const lvalue reference bound to temporary";
5796       break;
5797
5798     case FK_NonConstLValueReferenceBindingToUnrelated:
5799       OS << "non-const lvalue reference bound to unrelated type";
5800       break;
5801
5802     case FK_RValueReferenceBindingToLValue:
5803       OS << "rvalue reference bound to an lvalue";
5804       break;
5805
5806     case FK_ReferenceInitDropsQualifiers:
5807       OS << "reference initialization drops qualifiers";
5808       break;
5809
5810     case FK_ReferenceInitFailed:
5811       OS << "reference initialization failed";
5812       break;
5813
5814     case FK_ConversionFailed:
5815       OS << "conversion failed";
5816       break;
5817
5818     case FK_ConversionFromPropertyFailed:
5819       OS << "conversion from property failed";
5820       break;
5821
5822     case FK_TooManyInitsForScalar:
5823       OS << "too many initializers for scalar";
5824       break;
5825
5826     case FK_ReferenceBindingToInitList:
5827       OS << "referencing binding to initializer list";
5828       break;
5829
5830     case FK_InitListBadDestinationType:
5831       OS << "initializer list for non-aggregate, non-scalar type";
5832       break;
5833
5834     case FK_UserConversionOverloadFailed:
5835       OS << "overloading failed for user-defined conversion";
5836       break;
5837
5838     case FK_ConstructorOverloadFailed:
5839       OS << "constructor overloading failed";
5840       break;
5841
5842     case FK_DefaultInitOfConst:
5843       OS << "default initialization of a const variable";
5844       break;
5845
5846     case FK_Incomplete:
5847       OS << "initialization of incomplete type";
5848       break;
5849
5850     case FK_ListInitializationFailed:
5851       OS << "list initialization checker failure";
5852       break;
5853
5854     case FK_VariableLengthArrayHasInitializer:
5855       OS << "variable length array has an initializer";
5856       break;
5857
5858     case FK_PlaceholderType:
5859       OS << "initializer expression isn't contextually valid";
5860       break;
5861
5862     case FK_ListConstructorOverloadFailed:
5863       OS << "list constructor overloading failed";
5864       break;
5865
5866     case FK_InitListElementCopyFailure:
5867       OS << "copy construction of initializer list element failed";
5868       break;
5869
5870     case FK_ExplicitConstructor:
5871       OS << "list copy initialization chose explicit constructor";
5872       break;
5873     }
5874     OS << '\n';
5875     return;
5876   }
5877
5878   case DependentSequence:
5879     OS << "Dependent sequence\n";
5880     return;
5881
5882   case NormalSequence:
5883     OS << "Normal sequence: ";
5884     break;
5885   }
5886
5887   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5888     if (S != step_begin()) {
5889       OS << " -> ";
5890     }
5891
5892     switch (S->Kind) {
5893     case SK_ResolveAddressOfOverloadedFunction:
5894       OS << "resolve address of overloaded function";
5895       break;
5896
5897     case SK_CastDerivedToBaseRValue:
5898       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5899       break;
5900
5901     case SK_CastDerivedToBaseXValue:
5902       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5903       break;
5904
5905     case SK_CastDerivedToBaseLValue:
5906       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5907       break;
5908
5909     case SK_BindReference:
5910       OS << "bind reference to lvalue";
5911       break;
5912
5913     case SK_BindReferenceToTemporary:
5914       OS << "bind reference to a temporary";
5915       break;
5916
5917     case SK_ExtraneousCopyToTemporary:
5918       OS << "extraneous C++03 copy to temporary";
5919       break;
5920
5921     case SK_UserConversion:
5922       OS << "user-defined conversion via " << *S->Function.Function;
5923       break;
5924
5925     case SK_QualificationConversionRValue:
5926       OS << "qualification conversion (rvalue)";
5927       break;
5928
5929     case SK_QualificationConversionXValue:
5930       OS << "qualification conversion (xvalue)";
5931       break;
5932
5933     case SK_QualificationConversionLValue:
5934       OS << "qualification conversion (lvalue)";
5935       break;
5936
5937     case SK_ConversionSequence:
5938       OS << "implicit conversion sequence (";
5939       S->ICS->DebugPrint(); // FIXME: use OS
5940       OS << ")";
5941       break;
5942
5943     case SK_ListInitialization:
5944       OS << "list aggregate initialization";
5945       break;
5946
5947     case SK_ListConstructorCall:
5948       OS << "list initialization via constructor";
5949       break;
5950
5951     case SK_UnwrapInitList:
5952       OS << "unwrap reference initializer list";
5953       break;
5954
5955     case SK_RewrapInitList:
5956       OS << "rewrap reference initializer list";
5957       break;
5958
5959     case SK_ConstructorInitialization:
5960       OS << "constructor initialization";
5961       break;
5962
5963     case SK_ZeroInitialization:
5964       OS << "zero initialization";
5965       break;
5966
5967     case SK_CAssignment:
5968       OS << "C assignment";
5969       break;
5970
5971     case SK_StringInit:
5972       OS << "string initialization";
5973       break;
5974
5975     case SK_ObjCObjectConversion:
5976       OS << "Objective-C object conversion";
5977       break;
5978
5979     case SK_ArrayInit:
5980       OS << "array initialization";
5981       break;
5982
5983     case SK_ParenthesizedArrayInit:
5984       OS << "parenthesized array initialization";
5985       break;
5986
5987     case SK_PassByIndirectCopyRestore:
5988       OS << "pass by indirect copy and restore";
5989       break;
5990
5991     case SK_PassByIndirectRestore:
5992       OS << "pass by indirect restore";
5993       break;
5994
5995     case SK_ProduceObjCObject:
5996       OS << "Objective-C object retension";
5997       break;
5998
5999     case SK_StdInitializerList:
6000       OS << "std::initializer_list from initializer list";
6001       break;
6002     }
6003   }
6004 }
6005
6006 void InitializationSequence::dump() const {
6007   dump(llvm::errs());
6008 }
6009
6010 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6011                                         QualType EntityType,
6012                                         const Expr *PreInit,
6013                                         const Expr *PostInit) {
6014   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6015     return;
6016
6017   // A narrowing conversion can only appear as the final implicit conversion in
6018   // an initialization sequence.
6019   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6020   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6021     return;
6022
6023   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6024   const StandardConversionSequence *SCS = 0;
6025   switch (ICS.getKind()) {
6026   case ImplicitConversionSequence::StandardConversion:
6027     SCS = &ICS.Standard;
6028     break;
6029   case ImplicitConversionSequence::UserDefinedConversion:
6030     SCS = &ICS.UserDefined.After;
6031     break;
6032   case ImplicitConversionSequence::AmbiguousConversion:
6033   case ImplicitConversionSequence::EllipsisConversion:
6034   case ImplicitConversionSequence::BadConversion:
6035     return;
6036   }
6037
6038   // Determine the type prior to the narrowing conversion. If a conversion
6039   // operator was used, this may be different from both the type of the entity
6040   // and of the pre-initialization expression.
6041   QualType PreNarrowingType = PreInit->getType();
6042   if (Seq.step_begin() + 1 != Seq.step_end())
6043     PreNarrowingType = Seq.step_end()[-2].Type;
6044
6045   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6046   APValue ConstantValue;
6047   QualType ConstantType;
6048   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6049                                 ConstantType)) {
6050   case NK_Not_Narrowing:
6051     // No narrowing occurred.
6052     return;
6053
6054   case NK_Type_Narrowing:
6055     // This was a floating-to-integer conversion, which is always considered a
6056     // narrowing conversion even if the value is a constant and can be
6057     // represented exactly as an integer.
6058     S.Diag(PostInit->getLocStart(),
6059            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x? 
6060              diag::warn_init_list_type_narrowing
6061            : S.isSFINAEContext()?
6062              diag::err_init_list_type_narrowing_sfinae
6063            : diag::err_init_list_type_narrowing)
6064       << PostInit->getSourceRange()
6065       << PreNarrowingType.getLocalUnqualifiedType()
6066       << EntityType.getLocalUnqualifiedType();
6067     break;
6068
6069   case NK_Constant_Narrowing:
6070     // A constant value was narrowed.
6071     S.Diag(PostInit->getLocStart(),
6072            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x? 
6073              diag::warn_init_list_constant_narrowing
6074            : S.isSFINAEContext()?
6075              diag::err_init_list_constant_narrowing_sfinae
6076            : diag::err_init_list_constant_narrowing)
6077       << PostInit->getSourceRange()
6078       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6079       << EntityType.getLocalUnqualifiedType();
6080     break;
6081
6082   case NK_Variable_Narrowing:
6083     // A variable's value may have been narrowed.
6084     S.Diag(PostInit->getLocStart(),
6085            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x? 
6086              diag::warn_init_list_variable_narrowing
6087            : S.isSFINAEContext()?
6088              diag::err_init_list_variable_narrowing_sfinae
6089            : diag::err_init_list_variable_narrowing)
6090       << PostInit->getSourceRange()
6091       << PreNarrowingType.getLocalUnqualifiedType()
6092       << EntityType.getLocalUnqualifiedType();
6093     break;
6094   }
6095
6096   SmallString<128> StaticCast;
6097   llvm::raw_svector_ostream OS(StaticCast);
6098   OS << "static_cast<";
6099   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6100     // It's important to use the typedef's name if there is one so that the
6101     // fixit doesn't break code using types like int64_t.
6102     //
6103     // FIXME: This will break if the typedef requires qualification.  But
6104     // getQualifiedNameAsString() includes non-machine-parsable components.
6105     OS << *TT->getDecl();
6106   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6107     OS << BT->getName(S.getLangOpts());
6108   else {
6109     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6110     // with a broken cast.
6111     return;
6112   }
6113   OS << ">(";
6114   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6115     << PostInit->getSourceRange()
6116     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6117     << FixItHint::CreateInsertion(
6118       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6119 }
6120
6121 //===----------------------------------------------------------------------===//
6122 // Initialization helper functions
6123 //===----------------------------------------------------------------------===//
6124 bool
6125 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6126                                    ExprResult Init) {
6127   if (Init.isInvalid())
6128     return false;
6129
6130   Expr *InitE = Init.get();
6131   assert(InitE && "No initialization expression");
6132
6133   InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
6134                                                            SourceLocation());
6135   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6136   return !Seq.Failed();
6137 }
6138
6139 ExprResult
6140 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6141                                 SourceLocation EqualLoc,
6142                                 ExprResult Init,
6143                                 bool TopLevelOfInitList,
6144                                 bool AllowExplicit) {
6145   if (Init.isInvalid())
6146     return ExprError();
6147
6148   Expr *InitE = Init.get();
6149   assert(InitE && "No initialization expression?");
6150
6151   if (EqualLoc.isInvalid())
6152     EqualLoc = InitE->getLocStart();
6153
6154   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6155                                                            EqualLoc,
6156                                                            AllowExplicit);
6157   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6158   Init.release();
6159
6160   ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6161
6162   if (!Result.isInvalid() && TopLevelOfInitList)
6163     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6164                                 InitE, Result.get());
6165
6166   return Result;
6167 }