]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / BasicAliasAnalysis.cpp
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62
63 #define DEBUG_TYPE "basicaa"
64
65 using namespace llvm;
66
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(false));
70
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // GetUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
107       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
108     return true;
109
110   // Otherwise this analysis result remains valid.
111   return false;
112 }
113
114 //===----------------------------------------------------------------------===//
115 // Useful predicates
116 //===----------------------------------------------------------------------===//
117
118 /// Returns true if the pointer is to a function-local object that never
119 /// escapes from the function.
120 static bool isNonEscapingLocalObject(
121     const Value *V,
122     SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
123   SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
124   if (IsCapturedCache) {
125     bool Inserted;
126     std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
127     if (!Inserted)
128       // Found cached result, return it!
129       return CacheIt->second;
130   }
131
132   // If this is a local allocation, check to see if it escapes.
133   if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
134     // Set StoreCaptures to True so that we can assume in our callers that the
135     // pointer is not the result of a load instruction. Currently
136     // PointerMayBeCaptured doesn't have any special analysis for the
137     // StoreCaptures=false case; if it did, our callers could be refined to be
138     // more precise.
139     auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
140     if (IsCapturedCache)
141       CacheIt->second = Ret;
142     return Ret;
143   }
144
145   // If this is an argument that corresponds to a byval or noalias argument,
146   // then it has not escaped before entering the function.  Check if it escapes
147   // inside the function.
148   if (const Argument *A = dyn_cast<Argument>(V))
149     if (A->hasByValAttr() || A->hasNoAliasAttr()) {
150       // Note even if the argument is marked nocapture, we still need to check
151       // for copies made inside the function. The nocapture attribute only
152       // specifies that there are no copies made that outlive the function.
153       auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
154       if (IsCapturedCache)
155         CacheIt->second = Ret;
156       return Ret;
157     }
158
159   return false;
160 }
161
162 /// Returns true if the pointer is one which would have been considered an
163 /// escape by isNonEscapingLocalObject.
164 static bool isEscapeSource(const Value *V) {
165   if (isa<CallBase>(V))
166     return true;
167
168   if (isa<Argument>(V))
169     return true;
170
171   // The load case works because isNonEscapingLocalObject considers all
172   // stores to be escapes (it passes true for the StoreCaptures argument
173   // to PointerMayBeCaptured).
174   if (isa<LoadInst>(V))
175     return true;
176
177   return false;
178 }
179
180 /// Returns the size of the object specified by V or UnknownSize if unknown.
181 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
182                               const TargetLibraryInfo &TLI,
183                               bool NullIsValidLoc,
184                               bool RoundToAlign = false) {
185   uint64_t Size;
186   ObjectSizeOpts Opts;
187   Opts.RoundToAlign = RoundToAlign;
188   Opts.NullIsUnknownSize = NullIsValidLoc;
189   if (getObjectSize(V, Size, DL, &TLI, Opts))
190     return Size;
191   return MemoryLocation::UnknownSize;
192 }
193
194 /// Returns true if we can prove that the object specified by V is smaller than
195 /// Size.
196 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
197                                 const DataLayout &DL,
198                                 const TargetLibraryInfo &TLI,
199                                 bool NullIsValidLoc) {
200   // Note that the meanings of the "object" are slightly different in the
201   // following contexts:
202   //    c1: llvm::getObjectSize()
203   //    c2: llvm.objectsize() intrinsic
204   //    c3: isObjectSmallerThan()
205   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
206   // refers to the "entire object".
207   //
208   //  Consider this example:
209   //     char *p = (char*)malloc(100)
210   //     char *q = p+80;
211   //
212   //  In the context of c1 and c2, the "object" pointed by q refers to the
213   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214   //
215   //  However, in the context of c3, the "object" refers to the chunk of memory
216   // being allocated. So, the "object" has 100 bytes, and q points to the middle
217   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
218   // parameter, before the llvm::getObjectSize() is called to get the size of
219   // entire object, we should:
220   //    - either rewind the pointer q to the base-address of the object in
221   //      question (in this case rewind to p), or
222   //    - just give up. It is up to caller to make sure the pointer is pointing
223   //      to the base address the object.
224   //
225   // We go for 2nd option for simplicity.
226   if (!isIdentifiedObject(V))
227     return false;
228
229   // This function needs to use the aligned object size because we allow
230   // reads a bit past the end given sufficient alignment.
231   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
232                                       /*RoundToAlign*/ true);
233
234   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
235 }
236
237 /// Return the minimal extent from \p V to the end of the underlying object,
238 /// assuming the result is used in an aliasing query. E.g., we do use the query
239 /// location size and the fact that null pointers cannot alias here.
240 static uint64_t getMinimalExtentFrom(const Value &V,
241                                      const LocationSize &LocSize,
242                                      const DataLayout &DL,
243                                      bool NullIsValidLoc) {
244   // If we have dereferenceability information we know a lower bound for the
245   // extent as accesses for a lower offset would be valid. We need to exclude
246   // the "or null" part if null is a valid pointer.
247   bool CanBeNull;
248   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
249   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
250   // If queried with a precise location size, we assume that location size to be
251   // accessed, thus valid.
252   if (LocSize.isPrecise())
253     DerefBytes = std::max(DerefBytes, LocSize.getValue());
254   return DerefBytes;
255 }
256
257 /// Returns true if we can prove that the object specified by V has size Size.
258 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
259                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
260   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
261   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
262 }
263
264 //===----------------------------------------------------------------------===//
265 // GetElementPtr Instruction Decomposition and Analysis
266 //===----------------------------------------------------------------------===//
267
268 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
269 /// B are constant integers.
270 ///
271 /// Returns the scale and offset values as APInts and return V as a Value*, and
272 /// return whether we looked through any sign or zero extends.  The incoming
273 /// Value is known to have IntegerType, and it may already be sign or zero
274 /// extended.
275 ///
276 /// Note that this looks through extends, so the high bits may not be
277 /// represented in the result.
278 /*static*/ const Value *BasicAAResult::GetLinearExpression(
279     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
280     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
281     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
282   assert(V->getType()->isIntegerTy() && "Not an integer value");
283
284   // Limit our recursion depth.
285   if (Depth == 6) {
286     Scale = 1;
287     Offset = 0;
288     return V;
289   }
290
291   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
292     // If it's a constant, just convert it to an offset and remove the variable.
293     // If we've been called recursively, the Offset bit width will be greater
294     // than the constant's (the Offset's always as wide as the outermost call),
295     // so we'll zext here and process any extension in the isa<SExtInst> &
296     // isa<ZExtInst> cases below.
297     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
298     assert(Scale == 0 && "Constant values don't have a scale");
299     return V;
300   }
301
302   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
303     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
304       // If we've been called recursively, then Offset and Scale will be wider
305       // than the BOp operands. We'll always zext it here as we'll process sign
306       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
307       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
308
309       switch (BOp->getOpcode()) {
310       default:
311         // We don't understand this instruction, so we can't decompose it any
312         // further.
313         Scale = 1;
314         Offset = 0;
315         return V;
316       case Instruction::Or:
317         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
318         // analyze it.
319         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
320                                BOp, DT)) {
321           Scale = 1;
322           Offset = 0;
323           return V;
324         }
325         LLVM_FALLTHROUGH;
326       case Instruction::Add:
327         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
328                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
329         Offset += RHS;
330         break;
331       case Instruction::Sub:
332         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
333                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
334         Offset -= RHS;
335         break;
336       case Instruction::Mul:
337         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
338                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
339         Offset *= RHS;
340         Scale *= RHS;
341         break;
342       case Instruction::Shl:
343         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
344                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
345
346         // We're trying to linearize an expression of the kind:
347         //   shl i8 -128, 36
348         // where the shift count exceeds the bitwidth of the type.
349         // We can't decompose this further (the expression would return
350         // a poison value).
351         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
352             Scale.getBitWidth() < RHS.getLimitedValue()) {
353           Scale = 1;
354           Offset = 0;
355           return V;
356         }
357
358         Offset <<= RHS.getLimitedValue();
359         Scale <<= RHS.getLimitedValue();
360         // the semantics of nsw and nuw for left shifts don't match those of
361         // multiplications, so we won't propagate them.
362         NSW = NUW = false;
363         return V;
364       }
365
366       if (isa<OverflowingBinaryOperator>(BOp)) {
367         NUW &= BOp->hasNoUnsignedWrap();
368         NSW &= BOp->hasNoSignedWrap();
369       }
370       return V;
371     }
372   }
373
374   // Since GEP indices are sign extended anyway, we don't care about the high
375   // bits of a sign or zero extended value - just scales and offsets.  The
376   // extensions have to be consistent though.
377   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
378     Value *CastOp = cast<CastInst>(V)->getOperand(0);
379     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
380     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
381     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
382     const Value *Result =
383         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
384                             Depth + 1, AC, DT, NSW, NUW);
385
386     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
387     // by just incrementing the number of bits we've extended by.
388     unsigned ExtendedBy = NewWidth - SmallWidth;
389
390     if (isa<SExtInst>(V) && ZExtBits == 0) {
391       // sext(sext(%x, a), b) == sext(%x, a + b)
392
393       if (NSW) {
394         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
395         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
396         unsigned OldWidth = Offset.getBitWidth();
397         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
398       } else {
399         // We may have signed-wrapped, so don't decompose sext(%x + c) into
400         // sext(%x) + sext(c)
401         Scale = 1;
402         Offset = 0;
403         Result = CastOp;
404         ZExtBits = OldZExtBits;
405         SExtBits = OldSExtBits;
406       }
407       SExtBits += ExtendedBy;
408     } else {
409       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
410
411       if (!NUW) {
412         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
413         // zext(%x) + zext(c)
414         Scale = 1;
415         Offset = 0;
416         Result = CastOp;
417         ZExtBits = OldZExtBits;
418         SExtBits = OldSExtBits;
419       }
420       ZExtBits += ExtendedBy;
421     }
422
423     return Result;
424   }
425
426   Scale = 1;
427   Offset = 0;
428   return V;
429 }
430
431 /// To ensure a pointer offset fits in an integer of size PointerSize
432 /// (in bits) when that size is smaller than the maximum pointer size. This is
433 /// an issue, for example, in particular for 32b pointers with negative indices
434 /// that rely on two's complement wrap-arounds for precise alias information
435 /// where the maximum pointer size is 64b.
436 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
437   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
438   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
439   return (Offset << ShiftBits).ashr(ShiftBits);
440 }
441
442 static unsigned getMaxPointerSize(const DataLayout &DL) {
443   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
444   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
445   if (DoubleCalcBits) MaxPointerSize *= 2;
446
447   return MaxPointerSize;
448 }
449
450 /// If V is a symbolic pointer expression, decompose it into a base pointer
451 /// with a constant offset and a number of scaled symbolic offsets.
452 ///
453 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
454 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
455 /// specified amount, but which may have other unrepresented high bits. As
456 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
457 ///
458 /// When DataLayout is around, this function is capable of analyzing everything
459 /// that GetUnderlyingObject can look through. To be able to do that
460 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
461 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
462 /// through pointer casts.
463 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
464        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
465        DominatorTree *DT) {
466   // Limit recursion depth to limit compile time in crazy cases.
467   unsigned MaxLookup = MaxLookupSearchDepth;
468   SearchTimes++;
469
470   unsigned MaxPointerSize = getMaxPointerSize(DL);
471   Decomposed.VarIndices.clear();
472   do {
473     // See if this is a bitcast or GEP.
474     const Operator *Op = dyn_cast<Operator>(V);
475     if (!Op) {
476       // The only non-operator case we can handle are GlobalAliases.
477       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
478         if (!GA->isInterposable()) {
479           V = GA->getAliasee();
480           continue;
481         }
482       }
483       Decomposed.Base = V;
484       return false;
485     }
486
487     if (Op->getOpcode() == Instruction::BitCast ||
488         Op->getOpcode() == Instruction::AddrSpaceCast) {
489       V = Op->getOperand(0);
490       continue;
491     }
492
493     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
494     if (!GEPOp) {
495       if (const auto *PHI = dyn_cast<PHINode>(V)) {
496         // Look through single-arg phi nodes created by LCSSA.
497         if (PHI->getNumIncomingValues() == 1) {
498           V = PHI->getIncomingValue(0);
499           continue;
500         }
501       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
502         // CaptureTracking can know about special capturing properties of some
503         // intrinsics like launder.invariant.group, that can't be expressed with
504         // the attributes, but have properties like returning aliasing pointer.
505         // Because some analysis may assume that nocaptured pointer is not
506         // returned from some special intrinsic (because function would have to
507         // be marked with returns attribute), it is crucial to use this function
508         // because it should be in sync with CaptureTracking. Not using it may
509         // cause weird miscompilations where 2 aliasing pointers are assumed to
510         // noalias.
511         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
512           V = RP;
513           continue;
514         }
515       }
516
517       Decomposed.Base = V;
518       return false;
519     }
520
521     // Don't attempt to analyze GEPs over unsized objects.
522     if (!GEPOp->getSourceElementType()->isSized()) {
523       Decomposed.Base = V;
524       return false;
525     }
526
527     // Don't attempt to analyze GEPs if index scale is not a compile-time
528     // constant.
529     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
530       Decomposed.Base = V;
531       Decomposed.HasCompileTimeConstantScale = false;
532       return false;
533     }
534
535     unsigned AS = GEPOp->getPointerAddressSpace();
536     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
537     gep_type_iterator GTI = gep_type_begin(GEPOp);
538     unsigned PointerSize = DL.getPointerSizeInBits(AS);
539     // Assume all GEP operands are constants until proven otherwise.
540     bool GepHasConstantOffset = true;
541     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
542          I != E; ++I, ++GTI) {
543       const Value *Index = *I;
544       // Compute the (potentially symbolic) offset in bytes for this index.
545       if (StructType *STy = GTI.getStructTypeOrNull()) {
546         // For a struct, add the member offset.
547         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
548         if (FieldNo == 0)
549           continue;
550
551         Decomposed.StructOffset +=
552           DL.getStructLayout(STy)->getElementOffset(FieldNo);
553         continue;
554       }
555
556       // For an array/pointer, add the element offset, explicitly scaled.
557       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
558         if (CIdx->isZero())
559           continue;
560         Decomposed.OtherOffset +=
561             (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
562              CIdx->getValue().sextOrSelf(MaxPointerSize))
563                 .sextOrTrunc(MaxPointerSize);
564         continue;
565       }
566
567       GepHasConstantOffset = false;
568
569       APInt Scale(MaxPointerSize,
570                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
571       unsigned ZExtBits = 0, SExtBits = 0;
572
573       // If the integer type is smaller than the pointer size, it is implicitly
574       // sign extended to pointer size.
575       unsigned Width = Index->getType()->getIntegerBitWidth();
576       if (PointerSize > Width)
577         SExtBits += PointerSize - Width;
578
579       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
580       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
581       bool NSW = true, NUW = true;
582       const Value *OrigIndex = Index;
583       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
584                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
585
586       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
587       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
588
589       // It can be the case that, even through C1*V+C2 does not overflow for
590       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
591       // decompose the expression in this way.
592       //
593       // FIXME: C1*Scale and the other operations in the decomposed
594       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
595       // possibility.
596       APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
597                                  Scale.sext(MaxPointerSize*2);
598       if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
599         Index = OrigIndex;
600         IndexScale = 1;
601         IndexOffset = 0;
602
603         ZExtBits = SExtBits = 0;
604         if (PointerSize > Width)
605           SExtBits += PointerSize - Width;
606       } else {
607         Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
608         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
609       }
610
611       // If we already had an occurrence of this index variable, merge this
612       // scale into it.  For example, we want to handle:
613       //   A[x][x] -> x*16 + x*4 -> x*20
614       // This also ensures that 'x' only appears in the index list once.
615       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
616         if (Decomposed.VarIndices[i].V == Index &&
617             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
618             Decomposed.VarIndices[i].SExtBits == SExtBits) {
619           Scale += Decomposed.VarIndices[i].Scale;
620           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
621           break;
622         }
623       }
624
625       // Make sure that we have a scale that makes sense for this target's
626       // pointer size.
627       Scale = adjustToPointerSize(Scale, PointerSize);
628
629       if (!!Scale) {
630         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
631         Decomposed.VarIndices.push_back(Entry);
632       }
633     }
634
635     // Take care of wrap-arounds
636     if (GepHasConstantOffset) {
637       Decomposed.StructOffset =
638           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
639       Decomposed.OtherOffset =
640           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
641     }
642
643     // Analyze the base pointer next.
644     V = GEPOp->getOperand(0);
645   } while (--MaxLookup);
646
647   // If the chain of expressions is too deep, just return early.
648   Decomposed.Base = V;
649   SearchLimitReached++;
650   return true;
651 }
652
653 /// Returns whether the given pointer value points to memory that is local to
654 /// the function, with global constants being considered local to all
655 /// functions.
656 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
657                                            AAQueryInfo &AAQI, bool OrLocal) {
658   assert(Visited.empty() && "Visited must be cleared after use!");
659
660   unsigned MaxLookup = 8;
661   SmallVector<const Value *, 16> Worklist;
662   Worklist.push_back(Loc.Ptr);
663   do {
664     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
665     if (!Visited.insert(V).second) {
666       Visited.clear();
667       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
668     }
669
670     // An alloca instruction defines local memory.
671     if (OrLocal && isa<AllocaInst>(V))
672       continue;
673
674     // A global constant counts as local memory for our purposes.
675     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
676       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
677       // global to be marked constant in some modules and non-constant in
678       // others.  GV may even be a declaration, not a definition.
679       if (!GV->isConstant()) {
680         Visited.clear();
681         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
682       }
683       continue;
684     }
685
686     // If both select values point to local memory, then so does the select.
687     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
688       Worklist.push_back(SI->getTrueValue());
689       Worklist.push_back(SI->getFalseValue());
690       continue;
691     }
692
693     // If all values incoming to a phi node point to local memory, then so does
694     // the phi.
695     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
696       // Don't bother inspecting phi nodes with many operands.
697       if (PN->getNumIncomingValues() > MaxLookup) {
698         Visited.clear();
699         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
700       }
701       for (Value *IncValue : PN->incoming_values())
702         Worklist.push_back(IncValue);
703       continue;
704     }
705
706     // Otherwise be conservative.
707     Visited.clear();
708     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
709   } while (!Worklist.empty() && --MaxLookup);
710
711   Visited.clear();
712   return Worklist.empty();
713 }
714
715 /// Returns the behavior when calling the given call site.
716 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
717   if (Call->doesNotAccessMemory())
718     // Can't do better than this.
719     return FMRB_DoesNotAccessMemory;
720
721   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
722
723   // If the callsite knows it only reads memory, don't return worse
724   // than that.
725   if (Call->onlyReadsMemory())
726     Min = FMRB_OnlyReadsMemory;
727   else if (Call->doesNotReadMemory())
728     Min = FMRB_OnlyWritesMemory;
729
730   if (Call->onlyAccessesArgMemory())
731     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
732   else if (Call->onlyAccessesInaccessibleMemory())
733     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
734   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
735     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
736
737   // If the call has operand bundles then aliasing attributes from the function
738   // it calls do not directly apply to the call.  This can be made more precise
739   // in the future.
740   if (!Call->hasOperandBundles())
741     if (const Function *F = Call->getCalledFunction())
742       Min =
743           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
744
745   return Min;
746 }
747
748 /// Returns the behavior when calling the given function. For use when the call
749 /// site is not known.
750 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
751   // If the function declares it doesn't access memory, we can't do better.
752   if (F->doesNotAccessMemory())
753     return FMRB_DoesNotAccessMemory;
754
755   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
756
757   // If the function declares it only reads memory, go with that.
758   if (F->onlyReadsMemory())
759     Min = FMRB_OnlyReadsMemory;
760   else if (F->doesNotReadMemory())
761     Min = FMRB_OnlyWritesMemory;
762
763   if (F->onlyAccessesArgMemory())
764     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
765   else if (F->onlyAccessesInaccessibleMemory())
766     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
767   else if (F->onlyAccessesInaccessibleMemOrArgMem())
768     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
769
770   return Min;
771 }
772
773 /// Returns true if this is a writeonly (i.e Mod only) parameter.
774 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
775                              const TargetLibraryInfo &TLI) {
776   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
777     return true;
778
779   // We can bound the aliasing properties of memset_pattern16 just as we can
780   // for memcpy/memset.  This is particularly important because the
781   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
782   // whenever possible.
783   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
784   // attributes.
785   LibFunc F;
786   if (Call->getCalledFunction() &&
787       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
788       F == LibFunc_memset_pattern16 && TLI.has(F))
789     if (ArgIdx == 0)
790       return true;
791
792   // TODO: memset_pattern4, memset_pattern8
793   // TODO: _chk variants
794   // TODO: strcmp, strcpy
795
796   return false;
797 }
798
799 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
800                                            unsigned ArgIdx) {
801   // Checking for known builtin intrinsics and target library functions.
802   if (isWriteOnlyParam(Call, ArgIdx, TLI))
803     return ModRefInfo::Mod;
804
805   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
806     return ModRefInfo::Ref;
807
808   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
809     return ModRefInfo::NoModRef;
810
811   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
812 }
813
814 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
815   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
816   return II && II->getIntrinsicID() == IID;
817 }
818
819 #ifndef NDEBUG
820 static const Function *getParent(const Value *V) {
821   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
822     if (!inst->getParent())
823       return nullptr;
824     return inst->getParent()->getParent();
825   }
826
827   if (const Argument *arg = dyn_cast<Argument>(V))
828     return arg->getParent();
829
830   return nullptr;
831 }
832
833 static bool notDifferentParent(const Value *O1, const Value *O2) {
834
835   const Function *F1 = getParent(O1);
836   const Function *F2 = getParent(O2);
837
838   return !F1 || !F2 || F1 == F2;
839 }
840 #endif
841
842 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
843                                  const MemoryLocation &LocB,
844                                  AAQueryInfo &AAQI) {
845   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
846          "BasicAliasAnalysis doesn't support interprocedural queries.");
847
848   // If we have a directly cached entry for these locations, we have recursed
849   // through this once, so just return the cached results. Notably, when this
850   // happens, we don't clear the cache.
851   auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
852   if (CacheIt != AAQI.AliasCache.end())
853     return CacheIt->second;
854
855   CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
856   if (CacheIt != AAQI.AliasCache.end())
857     return CacheIt->second;
858
859   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
860                                  LocB.Size, LocB.AATags, AAQI);
861
862   VisitedPhiBBs.clear();
863   return Alias;
864 }
865
866 /// Checks to see if the specified callsite can clobber the specified memory
867 /// object.
868 ///
869 /// Since we only look at local properties of this function, we really can't
870 /// say much about this query.  We do, however, use simple "address taken"
871 /// analysis on local objects.
872 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
873                                         const MemoryLocation &Loc,
874                                         AAQueryInfo &AAQI) {
875   assert(notDifferentParent(Call, Loc.Ptr) &&
876          "AliasAnalysis query involving multiple functions!");
877
878   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
879
880   // Calls marked 'tail' cannot read or write allocas from the current frame
881   // because the current frame might be destroyed by the time they run. However,
882   // a tail call may use an alloca with byval. Calling with byval copies the
883   // contents of the alloca into argument registers or stack slots, so there is
884   // no lifetime issue.
885   if (isa<AllocaInst>(Object))
886     if (const CallInst *CI = dyn_cast<CallInst>(Call))
887       if (CI->isTailCall() &&
888           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
889         return ModRefInfo::NoModRef;
890
891   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
892   // modify them even though the alloca is not escaped.
893   if (auto *AI = dyn_cast<AllocaInst>(Object))
894     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
895       return ModRefInfo::Mod;
896
897   // If the pointer is to a locally allocated object that does not escape,
898   // then the call can not mod/ref the pointer unless the call takes the pointer
899   // as an argument, and itself doesn't capture it.
900   if (!isa<Constant>(Object) && Call != Object &&
901       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
902
903     // Optimistically assume that call doesn't touch Object and check this
904     // assumption in the following loop.
905     ModRefInfo Result = ModRefInfo::NoModRef;
906     bool IsMustAlias = true;
907
908     unsigned OperandNo = 0;
909     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
910          CI != CE; ++CI, ++OperandNo) {
911       // Only look at the no-capture or byval pointer arguments.  If this
912       // pointer were passed to arguments that were neither of these, then it
913       // couldn't be no-capture.
914       if (!(*CI)->getType()->isPointerTy() ||
915           (!Call->doesNotCapture(OperandNo) &&
916            OperandNo < Call->getNumArgOperands() &&
917            !Call->isByValArgument(OperandNo)))
918         continue;
919
920       // Call doesn't access memory through this operand, so we don't care
921       // if it aliases with Object.
922       if (Call->doesNotAccessMemory(OperandNo))
923         continue;
924
925       // If this is a no-capture pointer argument, see if we can tell that it
926       // is impossible to alias the pointer we're checking.
927       AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
928                                                 MemoryLocation(Object), AAQI);
929       if (AR != MustAlias)
930         IsMustAlias = false;
931       // Operand doesn't alias 'Object', continue looking for other aliases
932       if (AR == NoAlias)
933         continue;
934       // Operand aliases 'Object', but call doesn't modify it. Strengthen
935       // initial assumption and keep looking in case if there are more aliases.
936       if (Call->onlyReadsMemory(OperandNo)) {
937         Result = setRef(Result);
938         continue;
939       }
940       // Operand aliases 'Object' but call only writes into it.
941       if (Call->doesNotReadMemory(OperandNo)) {
942         Result = setMod(Result);
943         continue;
944       }
945       // This operand aliases 'Object' and call reads and writes into it.
946       // Setting ModRef will not yield an early return below, MustAlias is not
947       // used further.
948       Result = ModRefInfo::ModRef;
949       break;
950     }
951
952     // No operand aliases, reset Must bit. Add below if at least one aliases
953     // and all aliases found are MustAlias.
954     if (isNoModRef(Result))
955       IsMustAlias = false;
956
957     // Early return if we improved mod ref information
958     if (!isModAndRefSet(Result)) {
959       if (isNoModRef(Result))
960         return ModRefInfo::NoModRef;
961       return IsMustAlias ? setMust(Result) : clearMust(Result);
962     }
963   }
964
965   // If the call is malloc/calloc like, we can assume that it doesn't
966   // modify any IR visible value.  This is only valid because we assume these
967   // routines do not read values visible in the IR.  TODO: Consider special
968   // casing realloc and strdup routines which access only their arguments as
969   // well.  Or alternatively, replace all of this with inaccessiblememonly once
970   // that's implemented fully.
971   if (isMallocOrCallocLikeFn(Call, &TLI)) {
972     // Be conservative if the accessed pointer may alias the allocation -
973     // fallback to the generic handling below.
974     if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
975       return ModRefInfo::NoModRef;
976   }
977
978   // The semantics of memcpy intrinsics forbid overlap between their respective
979   // operands, i.e., source and destination of any given memcpy must no-alias.
980   // If Loc must-aliases either one of these two locations, then it necessarily
981   // no-aliases the other.
982   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
983     AliasResult SrcAA, DestAA;
984
985     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
986                                           Loc, AAQI)) == MustAlias)
987       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
988       return ModRefInfo::Ref;
989     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
990                                            Loc, AAQI)) == MustAlias)
991       // The converse case.
992       return ModRefInfo::Mod;
993
994     // It's also possible for Loc to alias both src and dest, or neither.
995     ModRefInfo rv = ModRefInfo::NoModRef;
996     if (SrcAA != NoAlias)
997       rv = setRef(rv);
998     if (DestAA != NoAlias)
999       rv = setMod(rv);
1000     return rv;
1001   }
1002
1003   // While the assume intrinsic is marked as arbitrarily writing so that
1004   // proper control dependencies will be maintained, it never aliases any
1005   // particular memory location.
1006   if (isIntrinsicCall(Call, Intrinsic::assume))
1007     return ModRefInfo::NoModRef;
1008
1009   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1010   // that proper control dependencies are maintained but they never mods any
1011   // particular memory location.
1012   //
1013   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1014   // heap state at the point the guard is issued needs to be consistent in case
1015   // the guard invokes the "deopt" continuation.
1016   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1017     return ModRefInfo::Ref;
1018
1019   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1020   // writing so that proper control dependencies are maintained but they never
1021   // mod any particular memory location visible to the IR.
1022   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1023   // intrinsic is now modeled as reading memory. This prevents hoisting the
1024   // invariant.start intrinsic over stores. Consider:
1025   // *ptr = 40;
1026   // *ptr = 50;
1027   // invariant_start(ptr)
1028   // int val = *ptr;
1029   // print(val);
1030   //
1031   // This cannot be transformed to:
1032   //
1033   // *ptr = 40;
1034   // invariant_start(ptr)
1035   // *ptr = 50;
1036   // int val = *ptr;
1037   // print(val);
1038   //
1039   // The transformation will cause the second store to be ignored (based on
1040   // rules of invariant.start)  and print 40, while the first program always
1041   // prints 50.
1042   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1043     return ModRefInfo::Ref;
1044
1045   // The AAResultBase base class has some smarts, lets use them.
1046   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1047 }
1048
1049 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1050                                         const CallBase *Call2,
1051                                         AAQueryInfo &AAQI) {
1052   // While the assume intrinsic is marked as arbitrarily writing so that
1053   // proper control dependencies will be maintained, it never aliases any
1054   // particular memory location.
1055   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1056       isIntrinsicCall(Call2, Intrinsic::assume))
1057     return ModRefInfo::NoModRef;
1058
1059   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1060   // that proper control dependencies are maintained but they never mod any
1061   // particular memory location.
1062   //
1063   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1064   // heap state at the point the guard is issued needs to be consistent in case
1065   // the guard invokes the "deopt" continuation.
1066
1067   // NB! This function is *not* commutative, so we special case two
1068   // possibilities for guard intrinsics.
1069
1070   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1071     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1072                ? ModRefInfo::Ref
1073                : ModRefInfo::NoModRef;
1074
1075   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1076     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1077                ? ModRefInfo::Mod
1078                : ModRefInfo::NoModRef;
1079
1080   // The AAResultBase base class has some smarts, lets use them.
1081   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1082 }
1083
1084 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1085 /// both having the exact same pointer operand.
1086 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1087                                             LocationSize MaybeV1Size,
1088                                             const GEPOperator *GEP2,
1089                                             LocationSize MaybeV2Size,
1090                                             const DataLayout &DL) {
1091   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1092              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1093          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1094          "Expected GEPs with the same pointer operand");
1095
1096   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1097   // such that the struct field accesses provably cannot alias.
1098   // We also need at least two indices (the pointer, and the struct field).
1099   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1100       GEP1->getNumIndices() < 2)
1101     return MayAlias;
1102
1103   // If we don't know the size of the accesses through both GEPs, we can't
1104   // determine whether the struct fields accessed can't alias.
1105   if (MaybeV1Size == LocationSize::unknown() ||
1106       MaybeV2Size == LocationSize::unknown())
1107     return MayAlias;
1108
1109   const uint64_t V1Size = MaybeV1Size.getValue();
1110   const uint64_t V2Size = MaybeV2Size.getValue();
1111
1112   ConstantInt *C1 =
1113       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1114   ConstantInt *C2 =
1115       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1116
1117   // If the last (struct) indices are constants and are equal, the other indices
1118   // might be also be dynamically equal, so the GEPs can alias.
1119   if (C1 && C2) {
1120     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1121     if (C1->getValue().sextOrSelf(BitWidth) ==
1122         C2->getValue().sextOrSelf(BitWidth))
1123       return MayAlias;
1124   }
1125
1126   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1127   // you stripped the last index.
1128   // On the way, look at each indexed type.  If there's something other
1129   // than an array, different indices can lead to different final types.
1130   SmallVector<Value *, 8> IntermediateIndices;
1131
1132   // Insert the first index; we don't need to check the type indexed
1133   // through it as it only drops the pointer indirection.
1134   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1135   IntermediateIndices.push_back(GEP1->getOperand(1));
1136
1137   // Insert all the remaining indices but the last one.
1138   // Also, check that they all index through arrays.
1139   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1140     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1141             GEP1->getSourceElementType(), IntermediateIndices)))
1142       return MayAlias;
1143     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1144   }
1145
1146   auto *Ty = GetElementPtrInst::getIndexedType(
1147     GEP1->getSourceElementType(), IntermediateIndices);
1148   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1149
1150   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1151     // We know that:
1152     // - both GEPs begin indexing from the exact same pointer;
1153     // - the last indices in both GEPs are constants, indexing into a sequential
1154     //   type (array or vector);
1155     // - both GEPs only index through arrays prior to that.
1156     //
1157     // Because array indices greater than the number of elements are valid in
1158     // GEPs, unless we know the intermediate indices are identical between
1159     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1160     // partially overlap. We also need to check that the loaded size matches
1161     // the element size, otherwise we could still have overlap.
1162     Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1163     const uint64_t ElementSize =
1164         DL.getTypeStoreSize(LastElementTy).getFixedSize();
1165     if (V1Size != ElementSize || V2Size != ElementSize)
1166       return MayAlias;
1167
1168     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1169       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1170         return MayAlias;
1171
1172     // Now we know that the array/pointer that GEP1 indexes into and that
1173     // that GEP2 indexes into must either precisely overlap or be disjoint.
1174     // Because they cannot partially overlap and because fields in an array
1175     // cannot overlap, if we can prove the final indices are different between
1176     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1177
1178     // If the last indices are constants, we've already checked they don't
1179     // equal each other so we can exit early.
1180     if (C1 && C2)
1181       return NoAlias;
1182     {
1183       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1184       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1185       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1186         // If one of the indices is a PHI node, be safe and only use
1187         // computeKnownBits so we don't make any assumptions about the
1188         // relationships between the two indices. This is important if we're
1189         // asking about values from different loop iterations. See PR32314.
1190         // TODO: We may be able to change the check so we only do this when
1191         // we definitely looked through a PHINode.
1192         if (GEP1LastIdx != GEP2LastIdx &&
1193             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1194           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1195           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1196           if (Known1.Zero.intersects(Known2.One) ||
1197               Known1.One.intersects(Known2.Zero))
1198             return NoAlias;
1199         }
1200       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1201         return NoAlias;
1202     }
1203     return MayAlias;
1204   } else if (!LastIndexedStruct || !C1 || !C2) {
1205     return MayAlias;
1206   }
1207
1208   if (C1->getValue().getActiveBits() > 64 ||
1209       C2->getValue().getActiveBits() > 64)
1210     return MayAlias;
1211
1212   // We know that:
1213   // - both GEPs begin indexing from the exact same pointer;
1214   // - the last indices in both GEPs are constants, indexing into a struct;
1215   // - said indices are different, hence, the pointed-to fields are different;
1216   // - both GEPs only index through arrays prior to that.
1217   //
1218   // This lets us determine that the struct that GEP1 indexes into and the
1219   // struct that GEP2 indexes into must either precisely overlap or be
1220   // completely disjoint.  Because they cannot partially overlap, indexing into
1221   // different non-overlapping fields of the struct will never alias.
1222
1223   // Therefore, the only remaining thing needed to show that both GEPs can't
1224   // alias is that the fields are not overlapping.
1225   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1226   const uint64_t StructSize = SL->getSizeInBytes();
1227   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1228   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1229
1230   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1231                                       uint64_t V2Off, uint64_t V2Size) {
1232     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1233            ((V2Off + V2Size <= StructSize) ||
1234             (V2Off + V2Size - StructSize <= V1Off));
1235   };
1236
1237   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1238       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1239     return NoAlias;
1240
1241   return MayAlias;
1242 }
1243
1244 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1245 // beginning of the object the GEP points would have a negative offset with
1246 // repsect to the alloca, that means the GEP can not alias pointer (b).
1247 // Note that the pointer based on the alloca may not be a GEP. For
1248 // example, it may be the alloca itself.
1249 // The same applies if (b) is based on a GlobalVariable. Note that just being
1250 // based on isIdentifiedObject() is not enough - we need an identified object
1251 // that does not permit access to negative offsets. For example, a negative
1252 // offset from a noalias argument or call can be inbounds w.r.t the actual
1253 // underlying object.
1254 //
1255 // For example, consider:
1256 //
1257 //   struct { int f0, int f1, ...} foo;
1258 //   foo alloca;
1259 //   foo* random = bar(alloca);
1260 //   int *f0 = &alloca.f0
1261 //   int *f1 = &random->f1;
1262 //
1263 // Which is lowered, approximately, to:
1264 //
1265 //  %alloca = alloca %struct.foo
1266 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1267 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1268 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1269 //
1270 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1271 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1272 // point into the same object. But since %f0 points to the beginning of %alloca,
1273 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1274 // than (%alloca - 1), and so is not inbounds, a contradiction.
1275 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1276       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1277       LocationSize MaybeObjectAccessSize) {
1278   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1279   if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1280     return false;
1281
1282   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1283
1284   // We need the object to be an alloca or a globalvariable, and want to know
1285   // the offset of the pointer from the object precisely, so no variable
1286   // indices are allowed.
1287   if (!(isa<AllocaInst>(DecompObject.Base) ||
1288         isa<GlobalVariable>(DecompObject.Base)) ||
1289       !DecompObject.VarIndices.empty())
1290     return false;
1291
1292   APInt ObjectBaseOffset = DecompObject.StructOffset +
1293                            DecompObject.OtherOffset;
1294
1295   // If the GEP has no variable indices, we know the precise offset
1296   // from the base, then use it. If the GEP has variable indices,
1297   // we can't get exact GEP offset to identify pointer alias. So return
1298   // false in that case.
1299   if (!DecompGEP.VarIndices.empty())
1300     return false;
1301
1302   APInt GEPBaseOffset = DecompGEP.StructOffset;
1303   GEPBaseOffset += DecompGEP.OtherOffset;
1304
1305   return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1306 }
1307
1308 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1309 /// another pointer.
1310 ///
1311 /// We know that V1 is a GEP, but we don't know anything about V2.
1312 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1313 /// V2.
1314 AliasResult BasicAAResult::aliasGEP(
1315     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1316     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1317     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1318   DecomposedGEP DecompGEP1, DecompGEP2;
1319   unsigned MaxPointerSize = getMaxPointerSize(DL);
1320   DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1321   DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1322   DecompGEP1.HasCompileTimeConstantScale =
1323       DecompGEP2.HasCompileTimeConstantScale = true;
1324
1325   bool GEP1MaxLookupReached =
1326     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1327   bool GEP2MaxLookupReached =
1328     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1329
1330   // Don't attempt to analyze the decomposed GEP if index scale is not a
1331   // compile-time constant.
1332   if (!DecompGEP1.HasCompileTimeConstantScale ||
1333       !DecompGEP2.HasCompileTimeConstantScale)
1334     return MayAlias;
1335
1336   APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1337   APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1338
1339   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1340          "DecomposeGEPExpression returned a result different from "
1341          "GetUnderlyingObject");
1342
1343   // If the GEP's offset relative to its base is such that the base would
1344   // fall below the start of the object underlying V2, then the GEP and V2
1345   // cannot alias.
1346   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1347       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1348     return NoAlias;
1349   // If we have two gep instructions with must-alias or not-alias'ing base
1350   // pointers, figure out if the indexes to the GEP tell us anything about the
1351   // derived pointer.
1352   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1353     // Check for the GEP base being at a negative offset, this time in the other
1354     // direction.
1355     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1356         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1357       return NoAlias;
1358     // Do the base pointers alias?
1359     AliasResult BaseAlias =
1360         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1361                    UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1362
1363     // Check for geps of non-aliasing underlying pointers where the offsets are
1364     // identical.
1365     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1366       // Do the base pointers alias assuming type and size.
1367       AliasResult PreciseBaseAlias = aliasCheck(
1368           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1369       if (PreciseBaseAlias == NoAlias) {
1370         // See if the computed offset from the common pointer tells us about the
1371         // relation of the resulting pointer.
1372         // If the max search depth is reached the result is undefined
1373         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1374           return MayAlias;
1375
1376         // Same offsets.
1377         if (GEP1BaseOffset == GEP2BaseOffset &&
1378             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1379           return NoAlias;
1380       }
1381     }
1382
1383     // If we get a No or May, then return it immediately, no amount of analysis
1384     // will improve this situation.
1385     if (BaseAlias != MustAlias) {
1386       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1387       return BaseAlias;
1388     }
1389
1390     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1391     // exactly, see if the computed offset from the common pointer tells us
1392     // about the relation of the resulting pointer.
1393     // If we know the two GEPs are based off of the exact same pointer (and not
1394     // just the same underlying object), see if that tells us anything about
1395     // the resulting pointers.
1396     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1397             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1398         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1399       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1400       // If we couldn't find anything interesting, don't abandon just yet.
1401       if (R != MayAlias)
1402         return R;
1403     }
1404
1405     // If the max search depth is reached, the result is undefined
1406     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1407       return MayAlias;
1408
1409     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1410     // symbolic difference.
1411     GEP1BaseOffset -= GEP2BaseOffset;
1412     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1413
1414   } else {
1415     // Check to see if these two pointers are related by the getelementptr
1416     // instruction.  If one pointer is a GEP with a non-zero index of the other
1417     // pointer, we know they cannot alias.
1418
1419     // If both accesses are unknown size, we can't do anything useful here.
1420     if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1421       return MayAlias;
1422
1423     AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1424                                AAMDNodes(), V2, LocationSize::unknown(),
1425                                V2AAInfo, AAQI, nullptr, UnderlyingV2);
1426     if (R != MustAlias) {
1427       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1428       // If V2 is known not to alias GEP base pointer, then the two values
1429       // cannot alias per GEP semantics: "Any memory access must be done through
1430       // a pointer value associated with an address range of the memory access,
1431       // otherwise the behavior is undefined.".
1432       assert(R == NoAlias || R == MayAlias);
1433       return R;
1434     }
1435
1436     // If the max search depth is reached the result is undefined
1437     if (GEP1MaxLookupReached)
1438       return MayAlias;
1439   }
1440
1441   // In the two GEP Case, if there is no difference in the offsets of the
1442   // computed pointers, the resultant pointers are a must alias.  This
1443   // happens when we have two lexically identical GEP's (for example).
1444   //
1445   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1446   // must aliases the GEP, the end result is a must alias also.
1447   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1448     return MustAlias;
1449
1450   // If there is a constant difference between the pointers, but the difference
1451   // is less than the size of the associated memory object, then we know
1452   // that the objects are partially overlapping.  If the difference is
1453   // greater, we know they do not overlap.
1454   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1455     if (GEP1BaseOffset.sge(0)) {
1456       if (V2Size != LocationSize::unknown()) {
1457         if (GEP1BaseOffset.ult(V2Size.getValue()))
1458           return PartialAlias;
1459         return NoAlias;
1460       }
1461     } else {
1462       // We have the situation where:
1463       // +                +
1464       // | BaseOffset     |
1465       // ---------------->|
1466       // |-->V1Size       |-------> V2Size
1467       // GEP1             V2
1468       // We need to know that V2Size is not unknown, otherwise we might have
1469       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1470       if (V1Size != LocationSize::unknown() &&
1471           V2Size != LocationSize::unknown()) {
1472         if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1473           return PartialAlias;
1474         return NoAlias;
1475       }
1476     }
1477   }
1478
1479   if (!DecompGEP1.VarIndices.empty()) {
1480     APInt Modulo(MaxPointerSize, 0);
1481     bool AllPositive = true;
1482     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1483
1484       // Try to distinguish something like &A[i][1] against &A[42][0].
1485       // Grab the least significant bit set in any of the scales. We
1486       // don't need std::abs here (even if the scale's negative) as we'll
1487       // be ^'ing Modulo with itself later.
1488       Modulo |= DecompGEP1.VarIndices[i].Scale;
1489
1490       if (AllPositive) {
1491         // If the Value could change between cycles, then any reasoning about
1492         // the Value this cycle may not hold in the next cycle. We'll just
1493         // give up if we can't determine conditions that hold for every cycle:
1494         const Value *V = DecompGEP1.VarIndices[i].V;
1495
1496         KnownBits Known =
1497             computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1498         bool SignKnownZero = Known.isNonNegative();
1499         bool SignKnownOne = Known.isNegative();
1500
1501         // Zero-extension widens the variable, and so forces the sign
1502         // bit to zero.
1503         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1504         SignKnownZero |= IsZExt;
1505         SignKnownOne &= !IsZExt;
1506
1507         // If the variable begins with a zero then we know it's
1508         // positive, regardless of whether the value is signed or
1509         // unsigned.
1510         APInt Scale = DecompGEP1.VarIndices[i].Scale;
1511         AllPositive =
1512             (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1513       }
1514     }
1515
1516     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1517
1518     // We can compute the difference between the two addresses
1519     // mod Modulo. Check whether that difference guarantees that the
1520     // two locations do not alias.
1521     APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1522     if (V1Size != LocationSize::unknown() &&
1523         V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1524         (Modulo - ModOffset).uge(V1Size.getValue()))
1525       return NoAlias;
1526
1527     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1528     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1529     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1530     if (AllPositive && GEP1BaseOffset.sgt(0) &&
1531         V2Size != LocationSize::unknown() &&
1532         GEP1BaseOffset.uge(V2Size.getValue()))
1533       return NoAlias;
1534
1535     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1536                                 GEP1BaseOffset, &AC, DT))
1537       return NoAlias;
1538   }
1539
1540   // Statically, we can see that the base objects are the same, but the
1541   // pointers have dynamic offsets which we can't resolve. And none of our
1542   // little tricks above worked.
1543   return MayAlias;
1544 }
1545
1546 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1547   // If the results agree, take it.
1548   if (A == B)
1549     return A;
1550   // A mix of PartialAlias and MustAlias is PartialAlias.
1551   if ((A == PartialAlias && B == MustAlias) ||
1552       (B == PartialAlias && A == MustAlias))
1553     return PartialAlias;
1554   // Otherwise, we don't know anything.
1555   return MayAlias;
1556 }
1557
1558 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1559 /// against another.
1560 AliasResult
1561 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1562                            const AAMDNodes &SIAAInfo, const Value *V2,
1563                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1564                            const Value *UnderV2, AAQueryInfo &AAQI) {
1565   // If the values are Selects with the same condition, we can do a more precise
1566   // check: just check for aliases between the values on corresponding arms.
1567   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1568     if (SI->getCondition() == SI2->getCondition()) {
1569       AliasResult Alias =
1570           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1571                      V2Size, V2AAInfo, AAQI);
1572       if (Alias == MayAlias)
1573         return MayAlias;
1574       AliasResult ThisAlias =
1575           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1576                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1577       return MergeAliasResults(ThisAlias, Alias);
1578     }
1579
1580   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1581   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1582   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1583                                  SISize, SIAAInfo, AAQI, UnderV2);
1584   if (Alias == MayAlias)
1585     return MayAlias;
1586
1587   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1588                                      SISize, SIAAInfo, AAQI, UnderV2);
1589   return MergeAliasResults(ThisAlias, Alias);
1590 }
1591
1592 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1593 /// another.
1594 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1595                                     const AAMDNodes &PNAAInfo, const Value *V2,
1596                                     LocationSize V2Size,
1597                                     const AAMDNodes &V2AAInfo,
1598                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1599   // Track phi nodes we have visited. We use this information when we determine
1600   // value equivalence.
1601   VisitedPhiBBs.insert(PN->getParent());
1602
1603   // If the values are PHIs in the same block, we can do a more precise
1604   // as well as efficient check: just check for aliases between the values
1605   // on corresponding edges.
1606   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1607     if (PN2->getParent() == PN->getParent()) {
1608       AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1609                                 MemoryLocation(V2, V2Size, V2AAInfo));
1610       if (PN > V2)
1611         std::swap(Locs.first, Locs.second);
1612       // Analyse the PHIs' inputs under the assumption that the PHIs are
1613       // NoAlias.
1614       // If the PHIs are May/MustAlias there must be (recursively) an input
1615       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1616       // there must be an operation on the PHIs within the PHIs' value cycle
1617       // that causes a MayAlias.
1618       // Pretend the phis do not alias.
1619       AliasResult Alias = NoAlias;
1620       AliasResult OrigAliasResult;
1621       {
1622         // Limited lifetime iterator invalidated by the aliasCheck call below.
1623         auto CacheIt = AAQI.AliasCache.find(Locs);
1624         assert((CacheIt != AAQI.AliasCache.end()) &&
1625                "There must exist an entry for the phi node");
1626         OrigAliasResult = CacheIt->second;
1627         CacheIt->second = NoAlias;
1628       }
1629
1630       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1631         AliasResult ThisAlias =
1632             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1633                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1634                        V2Size, V2AAInfo, AAQI);
1635         Alias = MergeAliasResults(ThisAlias, Alias);
1636         if (Alias == MayAlias)
1637           break;
1638       }
1639
1640       // Reset if speculation failed.
1641       if (Alias != NoAlias) {
1642         auto Pair =
1643             AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
1644         assert(!Pair.second && "Entry must have existed");
1645         Pair.first->second = OrigAliasResult;
1646       }
1647       return Alias;
1648     }
1649
1650   SmallVector<Value *, 4> V1Srcs;
1651   // For a recursive phi, that recurses through a contant gep, we can perform
1652   // aliasing calculations using the other phi operands with an unknown size to
1653   // specify that an unknown number of elements after the initial value are
1654   // potentially accessed.
1655   bool isRecursive = false;
1656   auto CheckForRecPhi = [&](Value *PV) {
1657     if (!EnableRecPhiAnalysis)
1658       return false;
1659     if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) {
1660       // Check whether the incoming value is a GEP that advances the pointer
1661       // result of this PHI node (e.g. in a loop). If this is the case, we
1662       // would recurse and always get a MayAlias. Handle this case specially
1663       // below. We need to ensure that the phi is inbounds and has a constant
1664       // positive operand so that we can check for alias with the initial value
1665       // and an unknown but positive size.
1666       if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() &&
1667           PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) &&
1668           !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) {
1669         isRecursive = true;
1670         return true;
1671       }
1672     }
1673     return false;
1674   };
1675
1676   if (PV) {
1677     // If we have PhiValues then use it to get the underlying phi values.
1678     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1679     // If we have more phi values than the search depth then return MayAlias
1680     // conservatively to avoid compile time explosion. The worst possible case
1681     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1682     // where 'm' and 'n' are the number of PHI sources.
1683     if (PhiValueSet.size() > MaxLookupSearchDepth)
1684       return MayAlias;
1685     // Add the values to V1Srcs
1686     for (Value *PV1 : PhiValueSet) {
1687       if (CheckForRecPhi(PV1))
1688         continue;
1689       V1Srcs.push_back(PV1);
1690     }
1691   } else {
1692     // If we don't have PhiInfo then just look at the operands of the phi itself
1693     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1694     SmallPtrSet<Value *, 4> UniqueSrc;
1695     for (Value *PV1 : PN->incoming_values()) {
1696       if (isa<PHINode>(PV1))
1697         // If any of the source itself is a PHI, return MayAlias conservatively
1698         // to avoid compile time explosion. The worst possible case is if both
1699         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1700         // and 'n' are the number of PHI sources.
1701         return MayAlias;
1702
1703       if (CheckForRecPhi(PV1))
1704         continue;
1705
1706       if (UniqueSrc.insert(PV1).second)
1707         V1Srcs.push_back(PV1);
1708     }
1709   }
1710
1711   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1712   // value. This should only be possible in blocks unreachable from the entry
1713   // block, but return MayAlias just in case.
1714   if (V1Srcs.empty())
1715     return MayAlias;
1716
1717   // If this PHI node is recursive, set the size of the accessed memory to
1718   // unknown to represent all the possible values the GEP could advance the
1719   // pointer to.
1720   if (isRecursive)
1721     PNSize = LocationSize::unknown();
1722
1723   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1724                                  PNAAInfo, AAQI, UnderV2);
1725
1726   // Early exit if the check of the first PHI source against V2 is MayAlias.
1727   // Other results are not possible.
1728   if (Alias == MayAlias)
1729     return MayAlias;
1730   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1731   // remain valid to all elements and needs to conservatively return MayAlias.
1732   if (isRecursive && Alias != NoAlias)
1733     return MayAlias;
1734
1735   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1736   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1737   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1738     Value *V = V1Srcs[i];
1739
1740     AliasResult ThisAlias =
1741         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
1742     Alias = MergeAliasResults(ThisAlias, Alias);
1743     if (Alias == MayAlias)
1744       break;
1745   }
1746
1747   return Alias;
1748 }
1749
1750 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1751 /// array references.
1752 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1753                                       AAMDNodes V1AAInfo, const Value *V2,
1754                                       LocationSize V2Size, AAMDNodes V2AAInfo,
1755                                       AAQueryInfo &AAQI, const Value *O1,
1756                                       const Value *O2) {
1757   // If either of the memory references is empty, it doesn't matter what the
1758   // pointer values are.
1759   if (V1Size.isZero() || V2Size.isZero())
1760     return NoAlias;
1761
1762   // Strip off any casts if they exist.
1763   V1 = V1->stripPointerCastsAndInvariantGroups();
1764   V2 = V2->stripPointerCastsAndInvariantGroups();
1765
1766   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1767   // value for undef that aliases nothing in the program.
1768   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1769     return NoAlias;
1770
1771   // Are we checking for alias of the same value?
1772   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1773   // different iterations. We must therefore make sure that this is not the
1774   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1775   // happen by looking at the visited phi nodes and making sure they cannot
1776   // reach the value.
1777   if (isValueEqualInPotentialCycles(V1, V2))
1778     return MustAlias;
1779
1780   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1781     return NoAlias; // Scalars cannot alias each other
1782
1783   // Figure out what objects these things are pointing to if we can.
1784   if (O1 == nullptr)
1785     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1786
1787   if (O2 == nullptr)
1788     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1789
1790   // Null values in the default address space don't point to any object, so they
1791   // don't alias any other pointer.
1792   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1793     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1794       return NoAlias;
1795   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1796     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1797       return NoAlias;
1798
1799   if (O1 != O2) {
1800     // If V1/V2 point to two different objects, we know that we have no alias.
1801     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1802       return NoAlias;
1803
1804     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1805     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1806         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1807       return NoAlias;
1808
1809     // Function arguments can't alias with things that are known to be
1810     // unambigously identified at the function level.
1811     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1812         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1813       return NoAlias;
1814
1815     // If one pointer is the result of a call/invoke or load and the other is a
1816     // non-escaping local object within the same function, then we know the
1817     // object couldn't escape to a point where the call could return it.
1818     //
1819     // Note that if the pointers are in different functions, there are a
1820     // variety of complications. A call with a nocapture argument may still
1821     // temporary store the nocapture argument's value in a temporary memory
1822     // location if that memory location doesn't escape. Or it may pass a
1823     // nocapture value to other functions as long as they don't capture it.
1824     if (isEscapeSource(O1) &&
1825         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1826       return NoAlias;
1827     if (isEscapeSource(O2) &&
1828         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1829       return NoAlias;
1830   }
1831
1832   // If the size of one access is larger than the entire object on the other
1833   // side, then we know such behavior is undefined and can assume no alias.
1834   bool NullIsValidLocation = NullPointerIsDefined(&F);
1835   if ((isObjectSmallerThan(
1836           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1837           TLI, NullIsValidLocation)) ||
1838       (isObjectSmallerThan(
1839           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1840           TLI, NullIsValidLocation)))
1841     return NoAlias;
1842
1843   // Check the cache before climbing up use-def chains. This also terminates
1844   // otherwise infinitely recursive queries.
1845   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1846                             MemoryLocation(V2, V2Size, V2AAInfo));
1847   if (V1 > V2)
1848     std::swap(Locs.first, Locs.second);
1849   std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1850       AAQI.AliasCache.try_emplace(Locs, MayAlias);
1851   if (!Pair.second)
1852     return Pair.first->second;
1853
1854   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1855   // GEP can't simplify, we don't even look at the PHI cases.
1856   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1857     std::swap(V1, V2);
1858     std::swap(V1Size, V2Size);
1859     std::swap(O1, O2);
1860     std::swap(V1AAInfo, V2AAInfo);
1861   }
1862   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1863     AliasResult Result =
1864         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1865     if (Result != MayAlias) {
1866       auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
1867       assert(!ItInsPair.second && "Entry must have existed");
1868       ItInsPair.first->second = Result;
1869       return Result;
1870     }
1871   }
1872
1873   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1874     std::swap(V1, V2);
1875     std::swap(O1, O2);
1876     std::swap(V1Size, V2Size);
1877     std::swap(V1AAInfo, V2AAInfo);
1878   }
1879   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1880     AliasResult Result =
1881         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1882     if (Result != MayAlias) {
1883       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1884       assert(!Pair.second && "Entry must have existed");
1885       return Pair.first->second = Result;
1886     }
1887   }
1888
1889   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1890     std::swap(V1, V2);
1891     std::swap(O1, O2);
1892     std::swap(V1Size, V2Size);
1893     std::swap(V1AAInfo, V2AAInfo);
1894   }
1895   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1896     AliasResult Result =
1897         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1898     if (Result != MayAlias) {
1899       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1900       assert(!Pair.second && "Entry must have existed");
1901       return Pair.first->second = Result;
1902     }
1903   }
1904
1905   // If both pointers are pointing into the same object and one of them
1906   // accesses the entire object, then the accesses must overlap in some way.
1907   if (O1 == O2)
1908     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1909         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1910          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
1911       Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
1912       assert(!Pair.second && "Entry must have existed");
1913       return Pair.first->second = PartialAlias;
1914     }
1915
1916   // Recurse back into the best AA results we have, potentially with refined
1917   // memory locations. We have already ensured that BasicAA has a MayAlias
1918   // cache result for these, so any recursion back into BasicAA won't loop.
1919   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1920   Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1921   assert(!Pair.second && "Entry must have existed");
1922   return Pair.first->second = Result;
1923 }
1924
1925 /// Check whether two Values can be considered equivalent.
1926 ///
1927 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1928 /// they can not be part of a cycle in the value graph by looking at all
1929 /// visited phi nodes an making sure that the phis cannot reach the value. We
1930 /// have to do this because we are looking through phi nodes (That is we say
1931 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1932 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1933                                                   const Value *V2) {
1934   if (V != V2)
1935     return false;
1936
1937   const Instruction *Inst = dyn_cast<Instruction>(V);
1938   if (!Inst)
1939     return true;
1940
1941   if (VisitedPhiBBs.empty())
1942     return true;
1943
1944   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1945     return false;
1946
1947   // Make sure that the visited phis cannot reach the Value. This ensures that
1948   // the Values cannot come from different iterations of a potential cycle the
1949   // phi nodes could be involved in.
1950   for (auto *P : VisitedPhiBBs)
1951     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1952       return false;
1953
1954   return true;
1955 }
1956
1957 /// Computes the symbolic difference between two de-composed GEPs.
1958 ///
1959 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1960 /// instructions GEP1 and GEP2 which have common base pointers.
1961 void BasicAAResult::GetIndexDifference(
1962     SmallVectorImpl<VariableGEPIndex> &Dest,
1963     const SmallVectorImpl<VariableGEPIndex> &Src) {
1964   if (Src.empty())
1965     return;
1966
1967   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1968     const Value *V = Src[i].V;
1969     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1970     APInt Scale = Src[i].Scale;
1971
1972     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1973     // than a few variable indexes.
1974     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1975       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1976           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1977         continue;
1978
1979       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1980       // goes to zero, remove the entry.
1981       if (Dest[j].Scale != Scale)
1982         Dest[j].Scale -= Scale;
1983       else
1984         Dest.erase(Dest.begin() + j);
1985       Scale = 0;
1986       break;
1987     }
1988
1989     // If we didn't consume this entry, add it to the end of the Dest list.
1990     if (!!Scale) {
1991       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1992       Dest.push_back(Entry);
1993     }
1994   }
1995 }
1996
1997 bool BasicAAResult::constantOffsetHeuristic(
1998     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1999     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
2000     AssumptionCache *AC, DominatorTree *DT) {
2001   if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
2002       MaybeV2Size == LocationSize::unknown())
2003     return false;
2004
2005   const uint64_t V1Size = MaybeV1Size.getValue();
2006   const uint64_t V2Size = MaybeV2Size.getValue();
2007
2008   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
2009
2010   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
2011       Var0.Scale != -Var1.Scale)
2012     return false;
2013
2014   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
2015
2016   // We'll strip off the Extensions of Var0 and Var1 and do another round
2017   // of GetLinearExpression decomposition. In the example above, if Var0
2018   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
2019
2020   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
2021       V1Offset(Width, 0);
2022   bool NSW = true, NUW = true;
2023   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
2024   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
2025                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
2026   NSW = true;
2027   NUW = true;
2028   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
2029                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
2030
2031   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
2032       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
2033     return false;
2034
2035   // We have a hit - Var0 and Var1 only differ by a constant offset!
2036
2037   // If we've been sext'ed then zext'd the maximum difference between Var0 and
2038   // Var1 is possible to calculate, but we're just interested in the absolute
2039   // minimum difference between the two. The minimum distance may occur due to
2040   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
2041   // the minimum distance between %i and %i + 5 is 3.
2042   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
2043   MinDiff = APIntOps::umin(MinDiff, Wrapped);
2044   APInt MinDiffBytes =
2045     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
2046
2047   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2048   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2049   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2050   // V2Size can fit in the MinDiffBytes gap.
2051   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
2052          MinDiffBytes.uge(V2Size + BaseOffset.abs());
2053 }
2054
2055 //===----------------------------------------------------------------------===//
2056 // BasicAliasAnalysis Pass
2057 //===----------------------------------------------------------------------===//
2058
2059 AnalysisKey BasicAA::Key;
2060
2061 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
2062   return BasicAAResult(F.getParent()->getDataLayout(),
2063                        F,
2064                        AM.getResult<TargetLibraryAnalysis>(F),
2065                        AM.getResult<AssumptionAnalysis>(F),
2066                        &AM.getResult<DominatorTreeAnalysis>(F),
2067                        AM.getCachedResult<LoopAnalysis>(F),
2068                        AM.getCachedResult<PhiValuesAnalysis>(F));
2069 }
2070
2071 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2072   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2073 }
2074
2075 char BasicAAWrapperPass::ID = 0;
2076
2077 void BasicAAWrapperPass::anchor() {}
2078
2079 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
2080                       "Basic Alias Analysis (stateless AA impl)", true, true)
2081 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2082 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2083 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2084 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
2085 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
2086                     "Basic Alias Analysis (stateless AA impl)", true, true)
2087
2088 FunctionPass *llvm::createBasicAAWrapperPass() {
2089   return new BasicAAWrapperPass();
2090 }
2091
2092 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2093   auto &ACT = getAnalysis<AssumptionCacheTracker>();
2094   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2095   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2096   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2097   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2098
2099   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2100                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2101                                  &DTWP.getDomTree(),
2102                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
2103                                  PVWP ? &PVWP->getResult() : nullptr));
2104
2105   return false;
2106 }
2107
2108 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2109   AU.setPreservesAll();
2110   AU.addRequired<AssumptionCacheTracker>();
2111   AU.addRequired<DominatorTreeWrapperPass>();
2112   AU.addRequired<TargetLibraryInfoWrapperPass>();
2113   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2114 }
2115
2116 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2117   return BasicAAResult(
2118       F.getParent()->getDataLayout(), F,
2119       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2120       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2121 }