]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / InstCombine / InstCombineMulDivRem.cpp
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <utility>
40
41 using namespace llvm;
42 using namespace PatternMatch;
43
44 #define DEBUG_TYPE "instcombine"
45
46 /// The specific integer value is used in a context where it is known to be
47 /// non-zero.  If this allows us to simplify the computation, do so and return
48 /// the new operand, otherwise return null.
49 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
50                                         Instruction &CxtI) {
51   // If V has multiple uses, then we would have to do more analysis to determine
52   // if this is safe.  For example, the use could be in dynamically unreached
53   // code.
54   if (!V->hasOneUse()) return nullptr;
55
56   bool MadeChange = false;
57
58   // ((1 << A) >>u B) --> (1 << (A-B))
59   // Because V cannot be zero, we know that B is less than A.
60   Value *A = nullptr, *B = nullptr, *One = nullptr;
61   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
62       match(One, m_One())) {
63     A = IC.Builder.CreateSub(A, B);
64     return IC.Builder.CreateShl(One, A);
65   }
66
67   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
68   // inexact.  Similarly for <<.
69   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
70   if (I && I->isLogicalShift() &&
71       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
72     // We know that this is an exact/nuw shift and that the input is a
73     // non-zero context as well.
74     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
75       IC.replaceOperand(*I, 0, V2);
76       MadeChange = true;
77     }
78
79     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
80       I->setIsExact();
81       MadeChange = true;
82     }
83
84     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
85       I->setHasNoUnsignedWrap();
86       MadeChange = true;
87     }
88   }
89
90   // TODO: Lots more we could do here:
91   //    If V is a phi node, we can call this on each of its operands.
92   //    "select cond, X, 0" can simplify to "X".
93
94   return MadeChange ? V : nullptr;
95 }
96
97 /// A helper routine of InstCombiner::visitMul().
98 ///
99 /// If C is a scalar/fixed width vector of known powers of 2, then this
100 /// function returns a new scalar/fixed width vector obtained from logBase2
101 /// of C.
102 /// Return a null pointer otherwise.
103 static Constant *getLogBase2(Type *Ty, Constant *C) {
104   const APInt *IVal;
105   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
106     return ConstantInt::get(Ty, IVal->logBase2());
107
108   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
109   if (!isa<FixedVectorType>(Ty))
110     return nullptr;
111
112   SmallVector<Constant *, 4> Elts;
113   for (unsigned I = 0, E = cast<FixedVectorType>(Ty)->getNumElements(); I != E;
114        ++I) {
115     Constant *Elt = C->getAggregateElement(I);
116     if (!Elt)
117       return nullptr;
118     if (isa<UndefValue>(Elt)) {
119       Elts.push_back(UndefValue::get(Ty->getScalarType()));
120       continue;
121     }
122     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
123       return nullptr;
124     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
125   }
126
127   return ConstantVector::get(Elts);
128 }
129
130 // TODO: This is a specific form of a much more general pattern.
131 //       We could detect a select with any binop identity constant, or we
132 //       could use SimplifyBinOp to see if either arm of the select reduces.
133 //       But that needs to be done carefully and/or while removing potential
134 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
135 static Value *foldMulSelectToNegate(BinaryOperator &I,
136                                     InstCombiner::BuilderTy &Builder) {
137   Value *Cond, *OtherOp;
138
139   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
140   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
141   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
142                         m_Value(OtherOp))))
143     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
144
145   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
146   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
147   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
148                         m_Value(OtherOp))))
149     return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
150
151   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
152   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
153   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
154                                            m_SpecificFP(-1.0))),
155                          m_Value(OtherOp)))) {
156     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
157     Builder.setFastMathFlags(I.getFastMathFlags());
158     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
159   }
160
161   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
162   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
163   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
164                                            m_SpecificFP(1.0))),
165                          m_Value(OtherOp)))) {
166     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
167     Builder.setFastMathFlags(I.getFastMathFlags());
168     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
169   }
170
171   return nullptr;
172 }
173
174 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
175   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
176                                  SQ.getWithInstruction(&I)))
177     return replaceInstUsesWith(I, V);
178
179   if (SimplifyAssociativeOrCommutative(I))
180     return &I;
181
182   if (Instruction *X = foldVectorBinop(I))
183     return X;
184
185   if (Value *V = SimplifyUsingDistributiveLaws(I))
186     return replaceInstUsesWith(I, V);
187
188   // X * -1 == 0 - X
189   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
190   if (match(Op1, m_AllOnes())) {
191     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
192     if (I.hasNoSignedWrap())
193       BO->setHasNoSignedWrap();
194     return BO;
195   }
196
197   // Also allow combining multiply instructions on vectors.
198   {
199     Value *NewOp;
200     Constant *C1, *C2;
201     const APInt *IVal;
202     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
203                         m_Constant(C1))) &&
204         match(C1, m_APInt(IVal))) {
205       // ((X << C2)*C1) == (X * (C1 << C2))
206       Constant *Shl = ConstantExpr::getShl(C1, C2);
207       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
208       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
209       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
210         BO->setHasNoUnsignedWrap();
211       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
212           Shl->isNotMinSignedValue())
213         BO->setHasNoSignedWrap();
214       return BO;
215     }
216
217     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
218       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
219       // Note that we need to sanitize undef multipliers to 1,
220       // to avoid introducing poison.
221       Constant *SafeC1 = Constant::replaceUndefsWith(
222           C1, ConstantInt::get(C1->getType()->getScalarType(), 1));
223       if (Constant *NewCst = getLogBase2(NewOp->getType(), SafeC1)) {
224         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
225
226         if (I.hasNoUnsignedWrap())
227           Shl->setHasNoUnsignedWrap();
228         if (I.hasNoSignedWrap()) {
229           const APInt *V;
230           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
231             Shl->setHasNoSignedWrap();
232         }
233
234         return Shl;
235       }
236     }
237   }
238
239   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
240     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
241     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
242     // The "* (2**n)" thus becomes a potential shifting opportunity.
243     {
244       const APInt &   Val = CI->getValue();
245       const APInt &PosVal = Val.abs();
246       if (Val.isNegative() && PosVal.isPowerOf2()) {
247         Value *X = nullptr, *Y = nullptr;
248         if (Op0->hasOneUse()) {
249           ConstantInt *C1;
250           Value *Sub = nullptr;
251           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
252             Sub = Builder.CreateSub(X, Y, "suba");
253           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
254             Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
255           if (Sub)
256             return
257               BinaryOperator::CreateMul(Sub,
258                                         ConstantInt::get(Y->getType(), PosVal));
259         }
260       }
261     }
262   }
263
264   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
265     return FoldedMul;
266
267   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
268     return replaceInstUsesWith(I, FoldedMul);
269
270   // Simplify mul instructions with a constant RHS.
271   if (isa<Constant>(Op1)) {
272     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
273     Value *X;
274     Constant *C1;
275     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
276       Value *Mul = Builder.CreateMul(C1, Op1);
277       // Only go forward with the transform if C1*CI simplifies to a tidier
278       // constant.
279       if (!match(Mul, m_Mul(m_Value(), m_Value())))
280         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
281     }
282   }
283
284   // abs(X) * abs(X) -> X * X
285   // nabs(X) * nabs(X) -> X * X
286   if (Op0 == Op1) {
287     Value *X, *Y;
288     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
289     if (SPF == SPF_ABS || SPF == SPF_NABS)
290       return BinaryOperator::CreateMul(X, X);
291   }
292
293   // -X * C --> X * -C
294   Value *X, *Y;
295   Constant *Op1C;
296   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
297     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
298
299   // -X * -Y --> X * Y
300   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
301     auto *NewMul = BinaryOperator::CreateMul(X, Y);
302     if (I.hasNoSignedWrap() &&
303         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
304         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
305       NewMul->setHasNoSignedWrap();
306     return NewMul;
307   }
308
309   // -X * Y --> -(X * Y)
310   // X * -Y --> -(X * Y)
311   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
312     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
313
314   // (X / Y) *  Y = X - (X % Y)
315   // (X / Y) * -Y = (X % Y) - X
316   {
317     Value *Y = Op1;
318     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
319     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
320                  Div->getOpcode() != Instruction::SDiv)) {
321       Y = Op0;
322       Div = dyn_cast<BinaryOperator>(Op1);
323     }
324     Value *Neg = dyn_castNegVal(Y);
325     if (Div && Div->hasOneUse() &&
326         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
327         (Div->getOpcode() == Instruction::UDiv ||
328          Div->getOpcode() == Instruction::SDiv)) {
329       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
330
331       // If the division is exact, X % Y is zero, so we end up with X or -X.
332       if (Div->isExact()) {
333         if (DivOp1 == Y)
334           return replaceInstUsesWith(I, X);
335         return BinaryOperator::CreateNeg(X);
336       }
337
338       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
339                                                           : Instruction::SRem;
340       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
341       if (DivOp1 == Y)
342         return BinaryOperator::CreateSub(X, Rem);
343       return BinaryOperator::CreateSub(Rem, X);
344     }
345   }
346
347   /// i1 mul -> i1 and.
348   if (I.getType()->isIntOrIntVectorTy(1))
349     return BinaryOperator::CreateAnd(Op0, Op1);
350
351   // X*(1 << Y) --> X << Y
352   // (1 << Y)*X --> X << Y
353   {
354     Value *Y;
355     BinaryOperator *BO = nullptr;
356     bool ShlNSW = false;
357     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
358       BO = BinaryOperator::CreateShl(Op1, Y);
359       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
360     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
361       BO = BinaryOperator::CreateShl(Op0, Y);
362       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
363     }
364     if (BO) {
365       if (I.hasNoUnsignedWrap())
366         BO->setHasNoUnsignedWrap();
367       if (I.hasNoSignedWrap() && ShlNSW)
368         BO->setHasNoSignedWrap();
369       return BO;
370     }
371   }
372
373   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
374   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
375   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
376   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
377        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
378       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
379       (Op0->hasOneUse() || Op1->hasOneUse())) {
380     Value *And = Builder.CreateAnd(X, Y, "mulbool");
381     return CastInst::Create(Instruction::ZExt, And, I.getType());
382   }
383   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
384   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
385   // Note: -1 * 1 == 1 * -1  == -1
386   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
387        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
388       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
389       (Op0->hasOneUse() || Op1->hasOneUse())) {
390     Value *And = Builder.CreateAnd(X, Y, "mulbool");
391     return CastInst::Create(Instruction::SExt, And, I.getType());
392   }
393
394   // (bool X) * Y --> X ? Y : 0
395   // Y * (bool X) --> X ? Y : 0
396   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
397     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
398   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
399     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
400
401   // (lshr X, 31) * Y --> (ashr X, 31) & Y
402   // Y * (lshr X, 31) --> (ashr X, 31) & Y
403   // TODO: We are not checking one-use because the elimination of the multiply
404   //       is better for analysis?
405   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
406   //       more similar to what we're doing above.
407   const APInt *C;
408   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
409     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
410   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
411     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
412
413   if (Instruction *Ext = narrowMathIfNoOverflow(I))
414     return Ext;
415
416   bool Changed = false;
417   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
418     Changed = true;
419     I.setHasNoSignedWrap(true);
420   }
421
422   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
423     Changed = true;
424     I.setHasNoUnsignedWrap(true);
425   }
426
427   return Changed ? &I : nullptr;
428 }
429
430 Instruction *InstCombiner::foldFPSignBitOps(BinaryOperator &I) {
431   BinaryOperator::BinaryOps Opcode = I.getOpcode();
432   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
433          "Expected fmul or fdiv");
434
435   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
436   Value *X, *Y;
437
438   // -X * -Y --> X * Y
439   // -X / -Y --> X / Y
440   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
441     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
442
443   // fabs(X) * fabs(X) -> X * X
444   // fabs(X) / fabs(X) -> X / X
445   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
446     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
447
448   // fabs(X) * fabs(Y) --> fabs(X * Y)
449   // fabs(X) / fabs(Y) --> fabs(X / Y)
450   if (match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))) &&
451       match(Op1, m_Intrinsic<Intrinsic::fabs>(m_Value(Y))) &&
452       (Op0->hasOneUse() || Op1->hasOneUse())) {
453     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
454     Builder.setFastMathFlags(I.getFastMathFlags());
455     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
456     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
457     Fabs->takeName(&I);
458     return replaceInstUsesWith(I, Fabs);
459   }
460
461   return nullptr;
462 }
463
464 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
465   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
466                                   I.getFastMathFlags(),
467                                   SQ.getWithInstruction(&I)))
468     return replaceInstUsesWith(I, V);
469
470   if (SimplifyAssociativeOrCommutative(I))
471     return &I;
472
473   if (Instruction *X = foldVectorBinop(I))
474     return X;
475
476   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
477     return FoldedMul;
478
479   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
480     return replaceInstUsesWith(I, FoldedMul);
481
482   if (Instruction *R = foldFPSignBitOps(I))
483     return R;
484
485   // X * -1.0 --> -X
486   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
487   if (match(Op1, m_SpecificFP(-1.0)))
488     return UnaryOperator::CreateFNegFMF(Op0, &I);
489
490   // -X * C --> X * -C
491   Value *X, *Y;
492   Constant *C;
493   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
494     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
495
496   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
497   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
498     return replaceInstUsesWith(I, V);
499
500   if (I.hasAllowReassoc()) {
501     // Reassociate constant RHS with another constant to form constant
502     // expression.
503     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
504       Constant *C1;
505       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
506         // (C1 / X) * C --> (C * C1) / X
507         Constant *CC1 = ConstantExpr::getFMul(C, C1);
508         if (CC1->isNormalFP())
509           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
510       }
511       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
512         // (X / C1) * C --> X * (C / C1)
513         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
514         if (CDivC1->isNormalFP())
515           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
516
517         // If the constant was a denormal, try reassociating differently.
518         // (X / C1) * C --> X / (C1 / C)
519         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
520         if (Op0->hasOneUse() && C1DivC->isNormalFP())
521           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
522       }
523
524       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
525       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
526       // further folds and (X * C) + C2 is 'fma'.
527       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
528         // (X + C1) * C --> (X * C) + (C * C1)
529         Constant *CC1 = ConstantExpr::getFMul(C, C1);
530         Value *XC = Builder.CreateFMulFMF(X, C, &I);
531         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
532       }
533       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
534         // (C1 - X) * C --> (C * C1) - (X * C)
535         Constant *CC1 = ConstantExpr::getFMul(C, C1);
536         Value *XC = Builder.CreateFMulFMF(X, C, &I);
537         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
538       }
539     }
540
541     Value *Z;
542     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
543                            m_Value(Z)))) {
544       // Sink division: (X / Y) * Z --> (X * Z) / Y
545       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
546       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
547     }
548
549     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
550     // nnan disallows the possibility of returning a number if both operands are
551     // negative (in that case, we should return NaN).
552     if (I.hasNoNaNs() &&
553         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
554         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
555       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
556       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
557       return replaceInstUsesWith(I, Sqrt);
558     }
559
560     // Like the similar transform in instsimplify, this requires 'nsz' because
561     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
562     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
563         Op0->hasNUses(2)) {
564       // Peek through fdiv to find squaring of square root:
565       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
566       if (match(Op0, m_FDiv(m_Value(X),
567                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
568         Value *XX = Builder.CreateFMulFMF(X, X, &I);
569         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
570       }
571       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
572       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
573                             m_Value(X)))) {
574         Value *XX = Builder.CreateFMulFMF(X, X, &I);
575         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
576       }
577     }
578
579     // exp(X) * exp(Y) -> exp(X + Y)
580     // Match as long as at least one of exp has only one use.
581     if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
582         match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
583         (Op0->hasOneUse() || Op1->hasOneUse())) {
584       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
585       Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
586       return replaceInstUsesWith(I, Exp);
587     }
588
589     // exp2(X) * exp2(Y) -> exp2(X + Y)
590     // Match as long as at least one of exp2 has only one use.
591     if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
592         match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
593         (Op0->hasOneUse() || Op1->hasOneUse())) {
594       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
595       Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
596       return replaceInstUsesWith(I, Exp2);
597     }
598
599     // (X*Y) * X => (X*X) * Y where Y != X
600     //  The purpose is two-fold:
601     //   1) to form a power expression (of X).
602     //   2) potentially shorten the critical path: After transformation, the
603     //  latency of the instruction Y is amortized by the expression of X*X,
604     //  and therefore Y is in a "less critical" position compared to what it
605     //  was before the transformation.
606     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
607         Op1 != Y) {
608       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
609       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
610     }
611     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
612         Op0 != Y) {
613       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
614       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
615     }
616   }
617
618   // log2(X * 0.5) * Y = log2(X) * Y - Y
619   if (I.isFast()) {
620     IntrinsicInst *Log2 = nullptr;
621     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
622             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
623       Log2 = cast<IntrinsicInst>(Op0);
624       Y = Op1;
625     }
626     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
627             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
628       Log2 = cast<IntrinsicInst>(Op1);
629       Y = Op0;
630     }
631     if (Log2) {
632       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
633       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
634       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
635     }
636   }
637
638   return nullptr;
639 }
640
641 /// Fold a divide or remainder with a select instruction divisor when one of the
642 /// select operands is zero. In that case, we can use the other select operand
643 /// because div/rem by zero is undefined.
644 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
645   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
646   if (!SI)
647     return false;
648
649   int NonNullOperand;
650   if (match(SI->getTrueValue(), m_Zero()))
651     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
652     NonNullOperand = 2;
653   else if (match(SI->getFalseValue(), m_Zero()))
654     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
655     NonNullOperand = 1;
656   else
657     return false;
658
659   // Change the div/rem to use 'Y' instead of the select.
660   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
661
662   // Okay, we know we replace the operand of the div/rem with 'Y' with no
663   // problem.  However, the select, or the condition of the select may have
664   // multiple uses.  Based on our knowledge that the operand must be non-zero,
665   // propagate the known value for the select into other uses of it, and
666   // propagate a known value of the condition into its other users.
667
668   // If the select and condition only have a single use, don't bother with this,
669   // early exit.
670   Value *SelectCond = SI->getCondition();
671   if (SI->use_empty() && SelectCond->hasOneUse())
672     return true;
673
674   // Scan the current block backward, looking for other uses of SI.
675   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
676   Type *CondTy = SelectCond->getType();
677   while (BBI != BBFront) {
678     --BBI;
679     // If we found an instruction that we can't assume will return, so
680     // information from below it cannot be propagated above it.
681     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
682       break;
683
684     // Replace uses of the select or its condition with the known values.
685     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
686          I != E; ++I) {
687       if (*I == SI) {
688         replaceUse(*I, SI->getOperand(NonNullOperand));
689         Worklist.push(&*BBI);
690       } else if (*I == SelectCond) {
691         replaceUse(*I, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
692                                            : ConstantInt::getFalse(CondTy));
693         Worklist.push(&*BBI);
694       }
695     }
696
697     // If we past the instruction, quit looking for it.
698     if (&*BBI == SI)
699       SI = nullptr;
700     if (&*BBI == SelectCond)
701       SelectCond = nullptr;
702
703     // If we ran out of things to eliminate, break out of the loop.
704     if (!SelectCond && !SI)
705       break;
706
707   }
708   return true;
709 }
710
711 /// True if the multiply can not be expressed in an int this size.
712 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
713                               bool IsSigned) {
714   bool Overflow;
715   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
716   return Overflow;
717 }
718
719 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
720 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
721                        bool IsSigned) {
722   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
723
724   // Bail if we will divide by zero.
725   if (C2.isNullValue())
726     return false;
727
728   // Bail if we would divide INT_MIN by -1.
729   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
730     return false;
731
732   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
733   if (IsSigned)
734     APInt::sdivrem(C1, C2, Quotient, Remainder);
735   else
736     APInt::udivrem(C1, C2, Quotient, Remainder);
737
738   return Remainder.isMinValue();
739 }
740
741 /// This function implements the transforms common to both integer division
742 /// instructions (udiv and sdiv). It is called by the visitors to those integer
743 /// division instructions.
744 /// Common integer divide transforms
745 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
746   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
747   bool IsSigned = I.getOpcode() == Instruction::SDiv;
748   Type *Ty = I.getType();
749
750   // The RHS is known non-zero.
751   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
752     return replaceOperand(I, 1, V);
753
754   // Handle cases involving: [su]div X, (select Cond, Y, Z)
755   // This does not apply for fdiv.
756   if (simplifyDivRemOfSelectWithZeroOp(I))
757     return &I;
758
759   const APInt *C2;
760   if (match(Op1, m_APInt(C2))) {
761     Value *X;
762     const APInt *C1;
763
764     // (X / C1) / C2  -> X / (C1*C2)
765     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
766         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
767       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
768       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
769         return BinaryOperator::Create(I.getOpcode(), X,
770                                       ConstantInt::get(Ty, Product));
771     }
772
773     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
774         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
775       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
776
777       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
778       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
779         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
780                                               ConstantInt::get(Ty, Quotient));
781         NewDiv->setIsExact(I.isExact());
782         return NewDiv;
783       }
784
785       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
786       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
787         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
788                                            ConstantInt::get(Ty, Quotient));
789         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
790         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
791         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
792         return Mul;
793       }
794     }
795
796     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
797          *C1 != C1->getBitWidth() - 1) ||
798         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
799       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
800       APInt C1Shifted = APInt::getOneBitSet(
801           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
802
803       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
804       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
805         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
806                                           ConstantInt::get(Ty, Quotient));
807         BO->setIsExact(I.isExact());
808         return BO;
809       }
810
811       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
812       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
813         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
814                                            ConstantInt::get(Ty, Quotient));
815         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
816         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
817         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
818         return Mul;
819       }
820     }
821
822     if (!C2->isNullValue()) // avoid X udiv 0
823       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
824         return FoldedDiv;
825   }
826
827   if (match(Op0, m_One())) {
828     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
829     if (IsSigned) {
830       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
831       // result is one, if Op1 is -1 then the result is minus one, otherwise
832       // it's zero.
833       Value *Inc = Builder.CreateAdd(Op1, Op0);
834       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
835       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
836     } else {
837       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
838       // result is one, otherwise it's zero.
839       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
840     }
841   }
842
843   // See if we can fold away this div instruction.
844   if (SimplifyDemandedInstructionBits(I))
845     return &I;
846
847   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
848   Value *X, *Z;
849   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
850     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
851         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
852       return BinaryOperator::Create(I.getOpcode(), X, Op1);
853
854   // (X << Y) / X -> 1 << Y
855   Value *Y;
856   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
857     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
858   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
859     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
860
861   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
862   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
863     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
864     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
865     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
866       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
867       replaceOperand(I, 1, Y);
868       return &I;
869     }
870   }
871
872   return nullptr;
873 }
874
875 static const unsigned MaxDepth = 6;
876
877 namespace {
878
879 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
880                                            const BinaryOperator &I,
881                                            InstCombiner &IC);
882
883 /// Used to maintain state for visitUDivOperand().
884 struct UDivFoldAction {
885   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
886   /// action joins two actions together.
887   FoldUDivOperandCb FoldAction;
888
889   /// Which operand to fold.
890   Value *OperandToFold;
891
892   union {
893     /// The instruction returned when FoldAction is invoked.
894     Instruction *FoldResult;
895
896     /// Stores the LHS action index if this action joins two actions together.
897     size_t SelectLHSIdx;
898   };
899
900   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
901       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
902   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
903       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
904 };
905
906 } // end anonymous namespace
907
908 // X udiv 2^C -> X >> C
909 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
910                                     const BinaryOperator &I, InstCombiner &IC) {
911   Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
912   if (!C1)
913     llvm_unreachable("Failed to constant fold udiv -> logbase2");
914   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
915   if (I.isExact())
916     LShr->setIsExact();
917   return LShr;
918 }
919
920 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
921 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
922 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
923                                 InstCombiner &IC) {
924   Value *ShiftLeft;
925   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
926     ShiftLeft = Op1;
927
928   Constant *CI;
929   Value *N;
930   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
931     llvm_unreachable("match should never fail here!");
932   Constant *Log2Base = getLogBase2(N->getType(), CI);
933   if (!Log2Base)
934     llvm_unreachable("getLogBase2 should never fail here!");
935   N = IC.Builder.CreateAdd(N, Log2Base);
936   if (Op1 != ShiftLeft)
937     N = IC.Builder.CreateZExt(N, Op1->getType());
938   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
939   if (I.isExact())
940     LShr->setIsExact();
941   return LShr;
942 }
943
944 // Recursively visits the possible right hand operands of a udiv
945 // instruction, seeing through select instructions, to determine if we can
946 // replace the udiv with something simpler.  If we find that an operand is not
947 // able to simplify the udiv, we abort the entire transformation.
948 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
949                                SmallVectorImpl<UDivFoldAction> &Actions,
950                                unsigned Depth = 0) {
951   // Check to see if this is an unsigned division with an exact power of 2,
952   // if so, convert to a right shift.
953   if (match(Op1, m_Power2())) {
954     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
955     return Actions.size();
956   }
957
958   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
959   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
960       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
961     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
962     return Actions.size();
963   }
964
965   // The remaining tests are all recursive, so bail out if we hit the limit.
966   if (Depth++ == MaxDepth)
967     return 0;
968
969   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
970     if (size_t LHSIdx =
971             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
972       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
973         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
974         return Actions.size();
975       }
976
977   return 0;
978 }
979
980 /// If we have zero-extended operands of an unsigned div or rem, we may be able
981 /// to narrow the operation (sink the zext below the math).
982 static Instruction *narrowUDivURem(BinaryOperator &I,
983                                    InstCombiner::BuilderTy &Builder) {
984   Instruction::BinaryOps Opcode = I.getOpcode();
985   Value *N = I.getOperand(0);
986   Value *D = I.getOperand(1);
987   Type *Ty = I.getType();
988   Value *X, *Y;
989   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
990       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
991     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
992     // urem (zext X), (zext Y) --> zext (urem X, Y)
993     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
994     return new ZExtInst(NarrowOp, Ty);
995   }
996
997   Constant *C;
998   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
999       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
1000     // If the constant is the same in the smaller type, use the narrow version.
1001     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1002     if (ConstantExpr::getZExt(TruncC, Ty) != C)
1003       return nullptr;
1004
1005     // udiv (zext X), C --> zext (udiv X, C')
1006     // urem (zext X), C --> zext (urem X, C')
1007     // udiv C, (zext X) --> zext (udiv C', X)
1008     // urem C, (zext X) --> zext (urem C', X)
1009     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
1010                                        : Builder.CreateBinOp(Opcode, TruncC, X);
1011     return new ZExtInst(NarrowOp, Ty);
1012   }
1013
1014   return nullptr;
1015 }
1016
1017 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
1018   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1019                                   SQ.getWithInstruction(&I)))
1020     return replaceInstUsesWith(I, V);
1021
1022   if (Instruction *X = foldVectorBinop(I))
1023     return X;
1024
1025   // Handle the integer div common cases
1026   if (Instruction *Common = commonIDivTransforms(I))
1027     return Common;
1028
1029   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1030   Value *X;
1031   const APInt *C1, *C2;
1032   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1033     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1034     bool Overflow;
1035     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1036     if (!Overflow) {
1037       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1038       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1039           X, ConstantInt::get(X->getType(), C2ShlC1));
1040       if (IsExact)
1041         BO->setIsExact();
1042       return BO;
1043     }
1044   }
1045
1046   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1047   // TODO: Could use isKnownNegative() to handle non-constant values.
1048   Type *Ty = I.getType();
1049   if (match(Op1, m_Negative())) {
1050     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1051     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1052   }
1053   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1054   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1055     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1056     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1057   }
1058
1059   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1060     return NarrowDiv;
1061
1062   // If the udiv operands are non-overflowing multiplies with a common operand,
1063   // then eliminate the common factor:
1064   // (A * B) / (A * X) --> B / X (and commuted variants)
1065   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1066   // TODO: If -reassociation handled this generally, we could remove this.
1067   Value *A, *B;
1068   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1069     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1070         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1071       return BinaryOperator::CreateUDiv(B, X);
1072     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1073         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1074       return BinaryOperator::CreateUDiv(A, X);
1075   }
1076
1077   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1078   SmallVector<UDivFoldAction, 6> UDivActions;
1079   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1080     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1081       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1082       Value *ActionOp1 = UDivActions[i].OperandToFold;
1083       Instruction *Inst;
1084       if (Action)
1085         Inst = Action(Op0, ActionOp1, I, *this);
1086       else {
1087         // This action joins two actions together.  The RHS of this action is
1088         // simply the last action we processed, we saved the LHS action index in
1089         // the joining action.
1090         size_t SelectRHSIdx = i - 1;
1091         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1092         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1093         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1094         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1095                                   SelectLHS, SelectRHS);
1096       }
1097
1098       // If this is the last action to process, return it to the InstCombiner.
1099       // Otherwise, we insert it before the UDiv and record it so that we may
1100       // use it as part of a joining action (i.e., a SelectInst).
1101       if (e - i != 1) {
1102         Inst->insertBefore(&I);
1103         UDivActions[i].FoldResult = Inst;
1104       } else
1105         return Inst;
1106     }
1107
1108   return nullptr;
1109 }
1110
1111 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1112   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1113                                   SQ.getWithInstruction(&I)))
1114     return replaceInstUsesWith(I, V);
1115
1116   if (Instruction *X = foldVectorBinop(I))
1117     return X;
1118
1119   // Handle the integer div common cases
1120   if (Instruction *Common = commonIDivTransforms(I))
1121     return Common;
1122
1123   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1124   Value *X;
1125   // sdiv Op0, -1 --> -Op0
1126   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1127   if (match(Op1, m_AllOnes()) ||
1128       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1129     return BinaryOperator::CreateNeg(Op0);
1130
1131   // X / INT_MIN --> X == INT_MIN
1132   if (match(Op1, m_SignMask()))
1133     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1134
1135   const APInt *Op1C;
1136   if (match(Op1, m_APInt(Op1C))) {
1137     // sdiv exact X, C  -->  ashr exact X, log2(C)
1138     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1139       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1140       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1141     }
1142
1143     // If the dividend is sign-extended and the constant divisor is small enough
1144     // to fit in the source type, shrink the division to the narrower type:
1145     // (sext X) sdiv C --> sext (X sdiv C)
1146     Value *Op0Src;
1147     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1148         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1149
1150       // In the general case, we need to make sure that the dividend is not the
1151       // minimum signed value because dividing that by -1 is UB. But here, we
1152       // know that the -1 divisor case is already handled above.
1153
1154       Constant *NarrowDivisor =
1155           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1156       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1157       return new SExtInst(NarrowOp, Op0->getType());
1158     }
1159
1160     // -X / C --> X / -C (if the negation doesn't overflow).
1161     // TODO: This could be enhanced to handle arbitrary vector constants by
1162     //       checking if all elements are not the min-signed-val.
1163     if (!Op1C->isMinSignedValue() &&
1164         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1165       Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C));
1166       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1167       BO->setIsExact(I.isExact());
1168       return BO;
1169     }
1170   }
1171
1172   // -X / Y --> -(X / Y)
1173   Value *Y;
1174   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1175     return BinaryOperator::CreateNSWNeg(
1176         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1177
1178   // If the sign bits of both operands are zero (i.e. we can prove they are
1179   // unsigned inputs), turn this into a udiv.
1180   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1181   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1182     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1183       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1184       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1185       BO->setIsExact(I.isExact());
1186       return BO;
1187     }
1188
1189     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1190       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1191       // Safe because the only negative value (1 << Y) can take on is
1192       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1193       // the sign bit set.
1194       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1195       BO->setIsExact(I.isExact());
1196       return BO;
1197     }
1198   }
1199
1200   return nullptr;
1201 }
1202
1203 /// Remove negation and try to convert division into multiplication.
1204 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1205   Constant *C;
1206   if (!match(I.getOperand(1), m_Constant(C)))
1207     return nullptr;
1208
1209   // -X / C --> X / -C
1210   Value *X;
1211   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1212     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1213
1214   // If the constant divisor has an exact inverse, this is always safe. If not,
1215   // then we can still create a reciprocal if fast-math-flags allow it and the
1216   // constant is a regular number (not zero, infinite, or denormal).
1217   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1218     return nullptr;
1219
1220   // Disallow denormal constants because we don't know what would happen
1221   // on all targets.
1222   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1223   // denorms are flushed?
1224   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1225   if (!RecipC->isNormalFP())
1226     return nullptr;
1227
1228   // X / C --> X * (1 / C)
1229   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1230 }
1231
1232 /// Remove negation and try to reassociate constant math.
1233 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1234   Constant *C;
1235   if (!match(I.getOperand(0), m_Constant(C)))
1236     return nullptr;
1237
1238   // C / -X --> -C / X
1239   Value *X;
1240   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1241     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1242
1243   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1244     return nullptr;
1245
1246   // Try to reassociate C / X expressions where X includes another constant.
1247   Constant *C2, *NewC = nullptr;
1248   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1249     // C / (X * C2) --> (C / C2) / X
1250     NewC = ConstantExpr::getFDiv(C, C2);
1251   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1252     // C / (X / C2) --> (C * C2) / X
1253     NewC = ConstantExpr::getFMul(C, C2);
1254   }
1255   // Disallow denormal constants because we don't know what would happen
1256   // on all targets.
1257   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1258   // denorms are flushed?
1259   if (!NewC || !NewC->isNormalFP())
1260     return nullptr;
1261
1262   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1263 }
1264
1265 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1266   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1267                                   I.getFastMathFlags(),
1268                                   SQ.getWithInstruction(&I)))
1269     return replaceInstUsesWith(I, V);
1270
1271   if (Instruction *X = foldVectorBinop(I))
1272     return X;
1273
1274   if (Instruction *R = foldFDivConstantDivisor(I))
1275     return R;
1276
1277   if (Instruction *R = foldFDivConstantDividend(I))
1278     return R;
1279
1280   if (Instruction *R = foldFPSignBitOps(I))
1281     return R;
1282
1283   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1284   if (isa<Constant>(Op0))
1285     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1286       if (Instruction *R = FoldOpIntoSelect(I, SI))
1287         return R;
1288
1289   if (isa<Constant>(Op1))
1290     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1291       if (Instruction *R = FoldOpIntoSelect(I, SI))
1292         return R;
1293
1294   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1295     Value *X, *Y;
1296     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1297         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1298       // (X / Y) / Z => X / (Y * Z)
1299       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1300       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1301     }
1302     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1303         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1304       // Z / (X / Y) => (Y * Z) / X
1305       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1306       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1307     }
1308     // Z / (1.0 / Y) => (Y * Z)
1309     //
1310     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1311     // m_OneUse check is avoided because even in the case of the multiple uses
1312     // for 1.0/Y, the number of instructions remain the same and a division is
1313     // replaced by a multiplication.
1314     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1315       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1316   }
1317
1318   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1319     // sin(X) / cos(X) -> tan(X)
1320     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1321     Value *X;
1322     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1323                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1324     bool IsCot =
1325         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1326                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1327
1328     if ((IsTan || IsCot) &&
1329         hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1330       IRBuilder<> B(&I);
1331       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1332       B.setFastMathFlags(I.getFastMathFlags());
1333       AttributeList Attrs =
1334           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1335       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1336                                         LibFunc_tanl, B, Attrs);
1337       if (IsCot)
1338         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1339       return replaceInstUsesWith(I, Res);
1340     }
1341   }
1342
1343   // X / (X * Y) --> 1.0 / Y
1344   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1345   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1346   Value *X, *Y;
1347   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1348       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1349     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1350     replaceOperand(I, 1, Y);
1351     return &I;
1352   }
1353
1354   // X / fabs(X) -> copysign(1.0, X)
1355   // fabs(X) / X -> copysign(1.0, X)
1356   if (I.hasNoNaNs() && I.hasNoInfs() &&
1357       (match(&I,
1358              m_FDiv(m_Value(X), m_Intrinsic<Intrinsic::fabs>(m_Deferred(X)))) ||
1359        match(&I, m_FDiv(m_Intrinsic<Intrinsic::fabs>(m_Value(X)),
1360                         m_Deferred(X))))) {
1361     Value *V = Builder.CreateBinaryIntrinsic(
1362         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1363     return replaceInstUsesWith(I, V);
1364   }
1365   return nullptr;
1366 }
1367
1368 /// This function implements the transforms common to both integer remainder
1369 /// instructions (urem and srem). It is called by the visitors to those integer
1370 /// remainder instructions.
1371 /// Common integer remainder transforms
1372 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1373   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1374
1375   // The RHS is known non-zero.
1376   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1377     return replaceOperand(I, 1, V);
1378
1379   // Handle cases involving: rem X, (select Cond, Y, Z)
1380   if (simplifyDivRemOfSelectWithZeroOp(I))
1381     return &I;
1382
1383   if (isa<Constant>(Op1)) {
1384     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1385       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1386         if (Instruction *R = FoldOpIntoSelect(I, SI))
1387           return R;
1388       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1389         const APInt *Op1Int;
1390         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1391             (I.getOpcode() == Instruction::URem ||
1392              !Op1Int->isMinSignedValue())) {
1393           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1394           // predecessor blocks, so do this only if we know the srem or urem
1395           // will not fault.
1396           if (Instruction *NV = foldOpIntoPhi(I, PN))
1397             return NV;
1398         }
1399       }
1400
1401       // See if we can fold away this rem instruction.
1402       if (SimplifyDemandedInstructionBits(I))
1403         return &I;
1404     }
1405   }
1406
1407   return nullptr;
1408 }
1409
1410 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1411   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1412                                   SQ.getWithInstruction(&I)))
1413     return replaceInstUsesWith(I, V);
1414
1415   if (Instruction *X = foldVectorBinop(I))
1416     return X;
1417
1418   if (Instruction *common = commonIRemTransforms(I))
1419     return common;
1420
1421   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1422     return NarrowRem;
1423
1424   // X urem Y -> X and Y-1, where Y is a power of 2,
1425   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1426   Type *Ty = I.getType();
1427   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1428     // This may increase instruction count, we don't enforce that Y is a
1429     // constant.
1430     Constant *N1 = Constant::getAllOnesValue(Ty);
1431     Value *Add = Builder.CreateAdd(Op1, N1);
1432     return BinaryOperator::CreateAnd(Op0, Add);
1433   }
1434
1435   // 1 urem X -> zext(X != 1)
1436   if (match(Op0, m_One())) {
1437     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1438     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1439   }
1440
1441   // X urem C -> X < C ? X : X - C, where C >= signbit.
1442   if (match(Op1, m_Negative())) {
1443     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1444     Value *Sub = Builder.CreateSub(Op0, Op1);
1445     return SelectInst::Create(Cmp, Op0, Sub);
1446   }
1447
1448   // If the divisor is a sext of a boolean, then the divisor must be max
1449   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1450   // max unsigned value. In that case, the remainder is 0:
1451   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1452   Value *X;
1453   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1454     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1455     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1456   }
1457
1458   return nullptr;
1459 }
1460
1461 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1462   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1463                                   SQ.getWithInstruction(&I)))
1464     return replaceInstUsesWith(I, V);
1465
1466   if (Instruction *X = foldVectorBinop(I))
1467     return X;
1468
1469   // Handle the integer rem common cases
1470   if (Instruction *Common = commonIRemTransforms(I))
1471     return Common;
1472
1473   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1474   {
1475     const APInt *Y;
1476     // X % -Y -> X % Y
1477     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1478       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1479   }
1480
1481   // -X srem Y --> -(X srem Y)
1482   Value *X, *Y;
1483   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1484     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); 
1485
1486   // If the sign bits of both operands are zero (i.e. we can prove they are
1487   // unsigned inputs), turn this into a urem.
1488   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1489   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1490       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1491     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1492     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1493   }
1494
1495   // If it's a constant vector, flip any negative values positive.
1496   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1497     Constant *C = cast<Constant>(Op1);
1498     unsigned VWidth = cast<VectorType>(C->getType())->getNumElements();
1499
1500     bool hasNegative = false;
1501     bool hasMissing = false;
1502     for (unsigned i = 0; i != VWidth; ++i) {
1503       Constant *Elt = C->getAggregateElement(i);
1504       if (!Elt) {
1505         hasMissing = true;
1506         break;
1507       }
1508
1509       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1510         if (RHS->isNegative())
1511           hasNegative = true;
1512     }
1513
1514     if (hasNegative && !hasMissing) {
1515       SmallVector<Constant *, 16> Elts(VWidth);
1516       for (unsigned i = 0; i != VWidth; ++i) {
1517         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1518         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1519           if (RHS->isNegative())
1520             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1521         }
1522       }
1523
1524       Constant *NewRHSV = ConstantVector::get(Elts);
1525       if (NewRHSV != C)  // Don't loop on -MININT
1526         return replaceOperand(I, 1, NewRHSV);
1527     }
1528   }
1529
1530   return nullptr;
1531 }
1532
1533 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1534   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1535                                   I.getFastMathFlags(),
1536                                   SQ.getWithInstruction(&I)))
1537     return replaceInstUsesWith(I, V);
1538
1539   if (Instruction *X = foldVectorBinop(I))
1540     return X;
1541
1542   return nullptr;
1543 }