]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / JumpThreading.cpp
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/InitializePasses.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80
81 using namespace llvm;
82 using namespace jumpthreading;
83
84 #define DEBUG_TYPE "jump-threading"
85
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106
107 static cl::opt<bool> ThreadAcrossLoopHeaders(
108     "jump-threading-across-loop-headers",
109     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
110     cl::init(false), cl::Hidden);
111
112
113 namespace {
114
115   /// This pass performs 'jump threading', which looks at blocks that have
116   /// multiple predecessors and multiple successors.  If one or more of the
117   /// predecessors of the block can be proven to always jump to one of the
118   /// successors, we forward the edge from the predecessor to the successor by
119   /// duplicating the contents of this block.
120   ///
121   /// An example of when this can occur is code like this:
122   ///
123   ///   if () { ...
124   ///     X = 4;
125   ///   }
126   ///   if (X < 3) {
127   ///
128   /// In this case, the unconditional branch at the end of the first if can be
129   /// revectored to the false side of the second if.
130   class JumpThreading : public FunctionPass {
131     JumpThreadingPass Impl;
132
133   public:
134     static char ID; // Pass identification
135
136     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
137       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
138     }
139
140     bool runOnFunction(Function &F) override;
141
142     void getAnalysisUsage(AnalysisUsage &AU) const override {
143       AU.addRequired<DominatorTreeWrapperPass>();
144       AU.addPreserved<DominatorTreeWrapperPass>();
145       AU.addRequired<AAResultsWrapperPass>();
146       AU.addRequired<LazyValueInfoWrapperPass>();
147       AU.addPreserved<LazyValueInfoWrapperPass>();
148       AU.addPreserved<GlobalsAAWrapperPass>();
149       AU.addRequired<TargetLibraryInfoWrapperPass>();
150     }
151
152     void releaseMemory() override { Impl.releaseMemory(); }
153   };
154
155 } // end anonymous namespace
156
157 char JumpThreading::ID = 0;
158
159 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
160                 "Jump Threading", false, false)
161 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
162 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
164 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
165 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
166                 "Jump Threading", false, false)
167
168 // Public interface to the Jump Threading pass
169 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
170   return new JumpThreading(Threshold);
171 }
172
173 JumpThreadingPass::JumpThreadingPass(int T) {
174   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
175 }
176
177 // Update branch probability information according to conditional
178 // branch probability. This is usually made possible for cloned branches
179 // in inline instances by the context specific profile in the caller.
180 // For instance,
181 //
182 //  [Block PredBB]
183 //  [Branch PredBr]
184 //  if (t) {
185 //     Block A;
186 //  } else {
187 //     Block B;
188 //  }
189 //
190 //  [Block BB]
191 //  cond = PN([true, %A], [..., %B]); // PHI node
192 //  [Branch CondBr]
193 //  if (cond) {
194 //    ...  // P(cond == true) = 1%
195 //  }
196 //
197 //  Here we know that when block A is taken, cond must be true, which means
198 //      P(cond == true | A) = 1
199 //
200 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
201 //                               P(cond == true | B) * P(B)
202 //  we get:
203 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
204 //
205 //  which gives us:
206 //     P(A) is less than P(cond == true), i.e.
207 //     P(t == true) <= P(cond == true)
208 //
209 //  In other words, if we know P(cond == true) is unlikely, we know
210 //  that P(t == true) is also unlikely.
211 //
212 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
213   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
214   if (!CondBr)
215     return;
216
217   uint64_t TrueWeight, FalseWeight;
218   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
219     return;
220
221   if (TrueWeight + FalseWeight == 0)
222     // Zero branch_weights do not give a hint for getting branch probabilities.
223     // Technically it would result in division by zero denominator, which is
224     // TrueWeight + FalseWeight.
225     return;
226
227   // Returns the outgoing edge of the dominating predecessor block
228   // that leads to the PhiNode's incoming block:
229   auto GetPredOutEdge =
230       [](BasicBlock *IncomingBB,
231          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
232     auto *PredBB = IncomingBB;
233     auto *SuccBB = PhiBB;
234     SmallPtrSet<BasicBlock *, 16> Visited;
235     while (true) {
236       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
237       if (PredBr && PredBr->isConditional())
238         return {PredBB, SuccBB};
239       Visited.insert(PredBB);
240       auto *SinglePredBB = PredBB->getSinglePredecessor();
241       if (!SinglePredBB)
242         return {nullptr, nullptr};
243
244       // Stop searching when SinglePredBB has been visited. It means we see
245       // an unreachable loop.
246       if (Visited.count(SinglePredBB))
247         return {nullptr, nullptr};
248
249       SuccBB = PredBB;
250       PredBB = SinglePredBB;
251     }
252   };
253
254   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
255     Value *PhiOpnd = PN->getIncomingValue(i);
256     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
257
258     if (!CI || !CI->getType()->isIntegerTy(1))
259       continue;
260
261     BranchProbability BP =
262         (CI->isOne() ? BranchProbability::getBranchProbability(
263                            TrueWeight, TrueWeight + FalseWeight)
264                      : BranchProbability::getBranchProbability(
265                            FalseWeight, TrueWeight + FalseWeight));
266
267     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
268     if (!PredOutEdge.first)
269       return;
270
271     BasicBlock *PredBB = PredOutEdge.first;
272     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
273     if (!PredBr)
274       return;
275
276     uint64_t PredTrueWeight, PredFalseWeight;
277     // FIXME: We currently only set the profile data when it is missing.
278     // With PGO, this can be used to refine even existing profile data with
279     // context information. This needs to be done after more performance
280     // testing.
281     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
282       continue;
283
284     // We can not infer anything useful when BP >= 50%, because BP is the
285     // upper bound probability value.
286     if (BP >= BranchProbability(50, 100))
287       continue;
288
289     SmallVector<uint32_t, 2> Weights;
290     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
291       Weights.push_back(BP.getNumerator());
292       Weights.push_back(BP.getCompl().getNumerator());
293     } else {
294       Weights.push_back(BP.getCompl().getNumerator());
295       Weights.push_back(BP.getNumerator());
296     }
297     PredBr->setMetadata(LLVMContext::MD_prof,
298                         MDBuilder(PredBr->getParent()->getContext())
299                             .createBranchWeights(Weights));
300   }
301 }
302
303 /// runOnFunction - Toplevel algorithm.
304 bool JumpThreading::runOnFunction(Function &F) {
305   if (skipFunction(F))
306     return false;
307   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
308   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
309   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
310   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
311   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
312   std::unique_ptr<BlockFrequencyInfo> BFI;
313   std::unique_ptr<BranchProbabilityInfo> BPI;
314   if (F.hasProfileData()) {
315     LoopInfo LI{DominatorTree(F)};
316     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
317     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
318   }
319
320   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
321                               std::move(BFI), std::move(BPI));
322   if (PrintLVIAfterJumpThreading) {
323     dbgs() << "LVI for function '" << F.getName() << "':\n";
324     LVI->printLVI(F, DTU.getDomTree(), dbgs());
325   }
326   return Changed;
327 }
328
329 PreservedAnalyses JumpThreadingPass::run(Function &F,
330                                          FunctionAnalysisManager &AM) {
331   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
332   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
333   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
334   auto &AA = AM.getResult<AAManager>(F);
335   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
336
337   std::unique_ptr<BlockFrequencyInfo> BFI;
338   std::unique_ptr<BranchProbabilityInfo> BPI;
339   if (F.hasProfileData()) {
340     LoopInfo LI{DominatorTree(F)};
341     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
342     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
343   }
344
345   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
346                          std::move(BFI), std::move(BPI));
347
348   if (!Changed)
349     return PreservedAnalyses::all();
350   PreservedAnalyses PA;
351   PA.preserve<GlobalsAA>();
352   PA.preserve<DominatorTreeAnalysis>();
353   PA.preserve<LazyValueAnalysis>();
354   return PA;
355 }
356
357 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
358                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
359                                 DomTreeUpdater *DTU_, bool HasProfileData_,
360                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
361                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
362   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
363   TLI = TLI_;
364   LVI = LVI_;
365   AA = AA_;
366   DTU = DTU_;
367   BFI.reset();
368   BPI.reset();
369   // When profile data is available, we need to update edge weights after
370   // successful jump threading, which requires both BPI and BFI being available.
371   HasProfileData = HasProfileData_;
372   auto *GuardDecl = F.getParent()->getFunction(
373       Intrinsic::getName(Intrinsic::experimental_guard));
374   HasGuards = GuardDecl && !GuardDecl->use_empty();
375   if (HasProfileData) {
376     BPI = std::move(BPI_);
377     BFI = std::move(BFI_);
378   }
379
380   // Reduce the number of instructions duplicated when optimizing strictly for
381   // size.
382   if (BBDuplicateThreshold.getNumOccurrences())
383     BBDupThreshold = BBDuplicateThreshold;
384   else if (F.hasFnAttribute(Attribute::MinSize))
385     BBDupThreshold = 3;
386   else
387     BBDupThreshold = DefaultBBDupThreshold;
388
389   // JumpThreading must not processes blocks unreachable from entry. It's a
390   // waste of compute time and can potentially lead to hangs.
391   SmallPtrSet<BasicBlock *, 16> Unreachable;
392   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
393   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
394   DominatorTree &DT = DTU->getDomTree();
395   for (auto &BB : F)
396     if (!DT.isReachableFromEntry(&BB))
397       Unreachable.insert(&BB);
398
399   if (!ThreadAcrossLoopHeaders)
400     FindLoopHeaders(F);
401
402   bool EverChanged = false;
403   bool Changed;
404   do {
405     Changed = false;
406     for (auto &BB : F) {
407       if (Unreachable.count(&BB))
408         continue;
409       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
410         Changed = true;
411
412       // Jump threading may have introduced redundant debug values into BB
413       // which should be removed.
414       if (Changed)
415         RemoveRedundantDbgInstrs(&BB);
416
417       // Stop processing BB if it's the entry or is now deleted. The following
418       // routines attempt to eliminate BB and locating a suitable replacement
419       // for the entry is non-trivial.
420       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
421         continue;
422
423       if (pred_empty(&BB)) {
424         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
425         // the instructions in it. We must remove BB to prevent invalid IR.
426         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
427                           << "' with terminator: " << *BB.getTerminator()
428                           << '\n');
429         LoopHeaders.erase(&BB);
430         LVI->eraseBlock(&BB);
431         DeleteDeadBlock(&BB, DTU);
432         Changed = true;
433         continue;
434       }
435
436       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
437       // is "almost empty", we attempt to merge BB with its sole successor.
438       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
439       if (BI && BI->isUnconditional()) {
440         BasicBlock *Succ = BI->getSuccessor(0);
441         if (
442             // The terminator must be the only non-phi instruction in BB.
443             BB.getFirstNonPHIOrDbg()->isTerminator() &&
444             // Don't alter Loop headers and latches to ensure another pass can
445             // detect and transform nested loops later.
446             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
447             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
448           RemoveRedundantDbgInstrs(Succ);
449           // BB is valid for cleanup here because we passed in DTU. F remains
450           // BB's parent until a DTU->getDomTree() event.
451           LVI->eraseBlock(&BB);
452           Changed = true;
453         }
454       }
455     }
456     EverChanged |= Changed;
457   } while (Changed);
458
459   LoopHeaders.clear();
460   return EverChanged;
461 }
462
463 // Replace uses of Cond with ToVal when safe to do so. If all uses are
464 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
465 // because we may incorrectly replace uses when guards/assumes are uses of
466 // of `Cond` and we used the guards/assume to reason about the `Cond` value
467 // at the end of block. RAUW unconditionally replaces all uses
468 // including the guards/assumes themselves and the uses before the
469 // guard/assume.
470 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
471   assert(Cond->getType() == ToVal->getType());
472   auto *BB = Cond->getParent();
473   // We can unconditionally replace all uses in non-local blocks (i.e. uses
474   // strictly dominated by BB), since LVI information is true from the
475   // terminator of BB.
476   replaceNonLocalUsesWith(Cond, ToVal);
477   for (Instruction &I : reverse(*BB)) {
478     // Reached the Cond whose uses we are trying to replace, so there are no
479     // more uses.
480     if (&I == Cond)
481       break;
482     // We only replace uses in instructions that are guaranteed to reach the end
483     // of BB, where we know Cond is ToVal.
484     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
485       break;
486     I.replaceUsesOfWith(Cond, ToVal);
487   }
488   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
489     Cond->eraseFromParent();
490 }
491
492 /// Return the cost of duplicating a piece of this block from first non-phi
493 /// and before StopAt instruction to thread across it. Stop scanning the block
494 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
495 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
496                                              Instruction *StopAt,
497                                              unsigned Threshold) {
498   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
499   /// Ignore PHI nodes, these will be flattened when duplication happens.
500   BasicBlock::const_iterator I(BB->getFirstNonPHI());
501
502   // FIXME: THREADING will delete values that are just used to compute the
503   // branch, so they shouldn't count against the duplication cost.
504
505   unsigned Bonus = 0;
506   if (BB->getTerminator() == StopAt) {
507     // Threading through a switch statement is particularly profitable.  If this
508     // block ends in a switch, decrease its cost to make it more likely to
509     // happen.
510     if (isa<SwitchInst>(StopAt))
511       Bonus = 6;
512
513     // The same holds for indirect branches, but slightly more so.
514     if (isa<IndirectBrInst>(StopAt))
515       Bonus = 8;
516   }
517
518   // Bump the threshold up so the early exit from the loop doesn't skip the
519   // terminator-based Size adjustment at the end.
520   Threshold += Bonus;
521
522   // Sum up the cost of each instruction until we get to the terminator.  Don't
523   // include the terminator because the copy won't include it.
524   unsigned Size = 0;
525   for (; &*I != StopAt; ++I) {
526
527     // Stop scanning the block if we've reached the threshold.
528     if (Size > Threshold)
529       return Size;
530
531     // Debugger intrinsics don't incur code size.
532     if (isa<DbgInfoIntrinsic>(I)) continue;
533
534     // If this is a pointer->pointer bitcast, it is free.
535     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
536       continue;
537
538     // Bail out if this instruction gives back a token type, it is not possible
539     // to duplicate it if it is used outside this BB.
540     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
541       return ~0U;
542
543     // All other instructions count for at least one unit.
544     ++Size;
545
546     // Calls are more expensive.  If they are non-intrinsic calls, we model them
547     // as having cost of 4.  If they are a non-vector intrinsic, we model them
548     // as having cost of 2 total, and if they are a vector intrinsic, we model
549     // them as having cost 1.
550     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
551       if (CI->cannotDuplicate() || CI->isConvergent())
552         // Blocks with NoDuplicate are modelled as having infinite cost, so they
553         // are never duplicated.
554         return ~0U;
555       else if (!isa<IntrinsicInst>(CI))
556         Size += 3;
557       else if (!CI->getType()->isVectorTy())
558         Size += 1;
559     }
560   }
561
562   return Size > Bonus ? Size - Bonus : 0;
563 }
564
565 /// FindLoopHeaders - We do not want jump threading to turn proper loop
566 /// structures into irreducible loops.  Doing this breaks up the loop nesting
567 /// hierarchy and pessimizes later transformations.  To prevent this from
568 /// happening, we first have to find the loop headers.  Here we approximate this
569 /// by finding targets of backedges in the CFG.
570 ///
571 /// Note that there definitely are cases when we want to allow threading of
572 /// edges across a loop header.  For example, threading a jump from outside the
573 /// loop (the preheader) to an exit block of the loop is definitely profitable.
574 /// It is also almost always profitable to thread backedges from within the loop
575 /// to exit blocks, and is often profitable to thread backedges to other blocks
576 /// within the loop (forming a nested loop).  This simple analysis is not rich
577 /// enough to track all of these properties and keep it up-to-date as the CFG
578 /// mutates, so we don't allow any of these transformations.
579 void JumpThreadingPass::FindLoopHeaders(Function &F) {
580   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
581   FindFunctionBackedges(F, Edges);
582
583   for (const auto &Edge : Edges)
584     LoopHeaders.insert(Edge.second);
585 }
586
587 /// getKnownConstant - Helper method to determine if we can thread over a
588 /// terminator with the given value as its condition, and if so what value to
589 /// use for that. What kind of value this is depends on whether we want an
590 /// integer or a block address, but an undef is always accepted.
591 /// Returns null if Val is null or not an appropriate constant.
592 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
593   if (!Val)
594     return nullptr;
595
596   // Undef is "known" enough.
597   if (UndefValue *U = dyn_cast<UndefValue>(Val))
598     return U;
599
600   if (Preference == WantBlockAddress)
601     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
602
603   return dyn_cast<ConstantInt>(Val);
604 }
605
606 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
607 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
608 /// in any of our predecessors.  If so, return the known list of value and pred
609 /// BB in the result vector.
610 ///
611 /// This returns true if there were any known values.
612 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
613     Value *V, BasicBlock *BB, PredValueInfo &Result,
614     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
615     Instruction *CxtI) {
616   // This method walks up use-def chains recursively.  Because of this, we could
617   // get into an infinite loop going around loops in the use-def chain.  To
618   // prevent this, keep track of what (value, block) pairs we've already visited
619   // and terminate the search if we loop back to them
620   if (!RecursionSet.insert(V).second)
621     return false;
622
623   // If V is a constant, then it is known in all predecessors.
624   if (Constant *KC = getKnownConstant(V, Preference)) {
625     for (BasicBlock *Pred : predecessors(BB))
626       Result.emplace_back(KC, Pred);
627
628     return !Result.empty();
629   }
630
631   // If V is a non-instruction value, or an instruction in a different block,
632   // then it can't be derived from a PHI.
633   Instruction *I = dyn_cast<Instruction>(V);
634   if (!I || I->getParent() != BB) {
635
636     // Okay, if this is a live-in value, see if it has a known value at the end
637     // of any of our predecessors.
638     //
639     // FIXME: This should be an edge property, not a block end property.
640     /// TODO: Per PR2563, we could infer value range information about a
641     /// predecessor based on its terminator.
642     //
643     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
644     // "I" is a non-local compare-with-a-constant instruction.  This would be
645     // able to handle value inequalities better, for example if the compare is
646     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
647     // Perhaps getConstantOnEdge should be smart enough to do this?
648     for (BasicBlock *P : predecessors(BB)) {
649       // If the value is known by LazyValueInfo to be a constant in a
650       // predecessor, use that information to try to thread this block.
651       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
652       if (Constant *KC = getKnownConstant(PredCst, Preference))
653         Result.emplace_back(KC, P);
654     }
655
656     return !Result.empty();
657   }
658
659   /// If I is a PHI node, then we know the incoming values for any constants.
660   if (PHINode *PN = dyn_cast<PHINode>(I)) {
661     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
662       Value *InVal = PN->getIncomingValue(i);
663       if (Constant *KC = getKnownConstant(InVal, Preference)) {
664         Result.emplace_back(KC, PN->getIncomingBlock(i));
665       } else {
666         Constant *CI = LVI->getConstantOnEdge(InVal,
667                                               PN->getIncomingBlock(i),
668                                               BB, CxtI);
669         if (Constant *KC = getKnownConstant(CI, Preference))
670           Result.emplace_back(KC, PN->getIncomingBlock(i));
671       }
672     }
673
674     return !Result.empty();
675   }
676
677   // Handle Cast instructions.  Only see through Cast when the source operand is
678   // PHI or Cmp to save the compilation time.
679   if (CastInst *CI = dyn_cast<CastInst>(I)) {
680     Value *Source = CI->getOperand(0);
681     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
682       return false;
683     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
684                                         RecursionSet, CxtI);
685     if (Result.empty())
686       return false;
687
688     // Convert the known values.
689     for (auto &R : Result)
690       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
691
692     return true;
693   }
694
695   // Handle some boolean conditions.
696   if (I->getType()->getPrimitiveSizeInBits() == 1) {
697     assert(Preference == WantInteger && "One-bit non-integer type?");
698     // X | true -> true
699     // X & false -> false
700     if (I->getOpcode() == Instruction::Or ||
701         I->getOpcode() == Instruction::And) {
702       PredValueInfoTy LHSVals, RHSVals;
703
704       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
705                                       WantInteger, RecursionSet, CxtI);
706       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
707                                           WantInteger, RecursionSet, CxtI);
708
709       if (LHSVals.empty() && RHSVals.empty())
710         return false;
711
712       ConstantInt *InterestingVal;
713       if (I->getOpcode() == Instruction::Or)
714         InterestingVal = ConstantInt::getTrue(I->getContext());
715       else
716         InterestingVal = ConstantInt::getFalse(I->getContext());
717
718       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
719
720       // Scan for the sentinel.  If we find an undef, force it to the
721       // interesting value: x|undef -> true and x&undef -> false.
722       for (const auto &LHSVal : LHSVals)
723         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
724           Result.emplace_back(InterestingVal, LHSVal.second);
725           LHSKnownBBs.insert(LHSVal.second);
726         }
727       for (const auto &RHSVal : RHSVals)
728         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
729           // If we already inferred a value for this block on the LHS, don't
730           // re-add it.
731           if (!LHSKnownBBs.count(RHSVal.second))
732             Result.emplace_back(InterestingVal, RHSVal.second);
733         }
734
735       return !Result.empty();
736     }
737
738     // Handle the NOT form of XOR.
739     if (I->getOpcode() == Instruction::Xor &&
740         isa<ConstantInt>(I->getOperand(1)) &&
741         cast<ConstantInt>(I->getOperand(1))->isOne()) {
742       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
743                                           WantInteger, RecursionSet, CxtI);
744       if (Result.empty())
745         return false;
746
747       // Invert the known values.
748       for (auto &R : Result)
749         R.first = ConstantExpr::getNot(R.first);
750
751       return true;
752     }
753
754   // Try to simplify some other binary operator values.
755   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
756     assert(Preference != WantBlockAddress
757             && "A binary operator creating a block address?");
758     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
759       PredValueInfoTy LHSVals;
760       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
761                                           WantInteger, RecursionSet, CxtI);
762
763       // Try to use constant folding to simplify the binary operator.
764       for (const auto &LHSVal : LHSVals) {
765         Constant *V = LHSVal.first;
766         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
767
768         if (Constant *KC = getKnownConstant(Folded, WantInteger))
769           Result.emplace_back(KC, LHSVal.second);
770       }
771     }
772
773     return !Result.empty();
774   }
775
776   // Handle compare with phi operand, where the PHI is defined in this block.
777   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
778     assert(Preference == WantInteger && "Compares only produce integers");
779     Type *CmpType = Cmp->getType();
780     Value *CmpLHS = Cmp->getOperand(0);
781     Value *CmpRHS = Cmp->getOperand(1);
782     CmpInst::Predicate Pred = Cmp->getPredicate();
783
784     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
785     if (!PN)
786       PN = dyn_cast<PHINode>(CmpRHS);
787     if (PN && PN->getParent() == BB) {
788       const DataLayout &DL = PN->getModule()->getDataLayout();
789       // We can do this simplification if any comparisons fold to true or false.
790       // See if any do.
791       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
792         BasicBlock *PredBB = PN->getIncomingBlock(i);
793         Value *LHS, *RHS;
794         if (PN == CmpLHS) {
795           LHS = PN->getIncomingValue(i);
796           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
797         } else {
798           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
799           RHS = PN->getIncomingValue(i);
800         }
801         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
802         if (!Res) {
803           if (!isa<Constant>(RHS))
804             continue;
805
806           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
807           auto LHSInst = dyn_cast<Instruction>(LHS);
808           if (LHSInst && LHSInst->getParent() == BB)
809             continue;
810
811           LazyValueInfo::Tristate
812             ResT = LVI->getPredicateOnEdge(Pred, LHS,
813                                            cast<Constant>(RHS), PredBB, BB,
814                                            CxtI ? CxtI : Cmp);
815           if (ResT == LazyValueInfo::Unknown)
816             continue;
817           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
818         }
819
820         if (Constant *KC = getKnownConstant(Res, WantInteger))
821           Result.emplace_back(KC, PredBB);
822       }
823
824       return !Result.empty();
825     }
826
827     // If comparing a live-in value against a constant, see if we know the
828     // live-in value on any predecessors.
829     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
830       Constant *CmpConst = cast<Constant>(CmpRHS);
831
832       if (!isa<Instruction>(CmpLHS) ||
833           cast<Instruction>(CmpLHS)->getParent() != BB) {
834         for (BasicBlock *P : predecessors(BB)) {
835           // If the value is known by LazyValueInfo to be a constant in a
836           // predecessor, use that information to try to thread this block.
837           LazyValueInfo::Tristate Res =
838             LVI->getPredicateOnEdge(Pred, CmpLHS,
839                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
840           if (Res == LazyValueInfo::Unknown)
841             continue;
842
843           Constant *ResC = ConstantInt::get(CmpType, Res);
844           Result.emplace_back(ResC, P);
845         }
846
847         return !Result.empty();
848       }
849
850       // InstCombine can fold some forms of constant range checks into
851       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
852       // x as a live-in.
853       {
854         using namespace PatternMatch;
855
856         Value *AddLHS;
857         ConstantInt *AddConst;
858         if (isa<ConstantInt>(CmpConst) &&
859             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
860           if (!isa<Instruction>(AddLHS) ||
861               cast<Instruction>(AddLHS)->getParent() != BB) {
862             for (BasicBlock *P : predecessors(BB)) {
863               // If the value is known by LazyValueInfo to be a ConstantRange in
864               // a predecessor, use that information to try to thread this
865               // block.
866               ConstantRange CR = LVI->getConstantRangeOnEdge(
867                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
868               // Propagate the range through the addition.
869               CR = CR.add(AddConst->getValue());
870
871               // Get the range where the compare returns true.
872               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
873                   Pred, cast<ConstantInt>(CmpConst)->getValue());
874
875               Constant *ResC;
876               if (CmpRange.contains(CR))
877                 ResC = ConstantInt::getTrue(CmpType);
878               else if (CmpRange.inverse().contains(CR))
879                 ResC = ConstantInt::getFalse(CmpType);
880               else
881                 continue;
882
883               Result.emplace_back(ResC, P);
884             }
885
886             return !Result.empty();
887           }
888         }
889       }
890
891       // Try to find a constant value for the LHS of a comparison,
892       // and evaluate it statically if we can.
893       PredValueInfoTy LHSVals;
894       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
895                                           WantInteger, RecursionSet, CxtI);
896
897       for (const auto &LHSVal : LHSVals) {
898         Constant *V = LHSVal.first;
899         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
900         if (Constant *KC = getKnownConstant(Folded, WantInteger))
901           Result.emplace_back(KC, LHSVal.second);
902       }
903
904       return !Result.empty();
905     }
906   }
907
908   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
909     // Handle select instructions where at least one operand is a known constant
910     // and we can figure out the condition value for any predecessor block.
911     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
912     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
913     PredValueInfoTy Conds;
914     if ((TrueVal || FalseVal) &&
915         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
916                                             WantInteger, RecursionSet, CxtI)) {
917       for (auto &C : Conds) {
918         Constant *Cond = C.first;
919
920         // Figure out what value to use for the condition.
921         bool KnownCond;
922         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
923           // A known boolean.
924           KnownCond = CI->isOne();
925         } else {
926           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
927           // Either operand will do, so be sure to pick the one that's a known
928           // constant.
929           // FIXME: Do this more cleverly if both values are known constants?
930           KnownCond = (TrueVal != nullptr);
931         }
932
933         // See if the select has a known constant value for this predecessor.
934         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
935           Result.emplace_back(Val, C.second);
936       }
937
938       return !Result.empty();
939     }
940   }
941
942   // If all else fails, see if LVI can figure out a constant value for us.
943   Constant *CI = LVI->getConstant(V, BB, CxtI);
944   if (Constant *KC = getKnownConstant(CI, Preference)) {
945     for (BasicBlock *Pred : predecessors(BB))
946       Result.emplace_back(KC, Pred);
947   }
948
949   return !Result.empty();
950 }
951
952 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
953 /// in an undefined jump, decide which block is best to revector to.
954 ///
955 /// Since we can pick an arbitrary destination, we pick the successor with the
956 /// fewest predecessors.  This should reduce the in-degree of the others.
957 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
958   Instruction *BBTerm = BB->getTerminator();
959   unsigned MinSucc = 0;
960   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
961   // Compute the successor with the minimum number of predecessors.
962   unsigned MinNumPreds = pred_size(TestBB);
963   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
964     TestBB = BBTerm->getSuccessor(i);
965     unsigned NumPreds = pred_size(TestBB);
966     if (NumPreds < MinNumPreds) {
967       MinSucc = i;
968       MinNumPreds = NumPreds;
969     }
970   }
971
972   return MinSucc;
973 }
974
975 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
976   if (!BB->hasAddressTaken()) return false;
977
978   // If the block has its address taken, it may be a tree of dead constants
979   // hanging off of it.  These shouldn't keep the block alive.
980   BlockAddress *BA = BlockAddress::get(BB);
981   BA->removeDeadConstantUsers();
982   return !BA->use_empty();
983 }
984
985 /// ProcessBlock - If there are any predecessors whose control can be threaded
986 /// through to a successor, transform them now.
987 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
988   // If the block is trivially dead, just return and let the caller nuke it.
989   // This simplifies other transformations.
990   if (DTU->isBBPendingDeletion(BB) ||
991       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
992     return false;
993
994   // If this block has a single predecessor, and if that pred has a single
995   // successor, merge the blocks.  This encourages recursive jump threading
996   // because now the condition in this block can be threaded through
997   // predecessors of our predecessor block.
998   if (MaybeMergeBasicBlockIntoOnlyPred(BB))
999     return true;
1000
1001   if (TryToUnfoldSelectInCurrBB(BB))
1002     return true;
1003
1004   // Look if we can propagate guards to predecessors.
1005   if (HasGuards && ProcessGuards(BB))
1006     return true;
1007
1008   // What kind of constant we're looking for.
1009   ConstantPreference Preference = WantInteger;
1010
1011   // Look to see if the terminator is a conditional branch, switch or indirect
1012   // branch, if not we can't thread it.
1013   Value *Condition;
1014   Instruction *Terminator = BB->getTerminator();
1015   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1016     // Can't thread an unconditional jump.
1017     if (BI->isUnconditional()) return false;
1018     Condition = BI->getCondition();
1019   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1020     Condition = SI->getCondition();
1021   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1022     // Can't thread indirect branch with no successors.
1023     if (IB->getNumSuccessors() == 0) return false;
1024     Condition = IB->getAddress()->stripPointerCasts();
1025     Preference = WantBlockAddress;
1026   } else {
1027     return false; // Must be an invoke or callbr.
1028   }
1029
1030   // Run constant folding to see if we can reduce the condition to a simple
1031   // constant.
1032   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1033     Value *SimpleVal =
1034         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1035     if (SimpleVal) {
1036       I->replaceAllUsesWith(SimpleVal);
1037       if (isInstructionTriviallyDead(I, TLI))
1038         I->eraseFromParent();
1039       Condition = SimpleVal;
1040     }
1041   }
1042
1043   // If the terminator is branching on an undef, we can pick any of the
1044   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1045   if (isa<UndefValue>(Condition)) {
1046     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1047     std::vector<DominatorTree::UpdateType> Updates;
1048
1049     // Fold the branch/switch.
1050     Instruction *BBTerm = BB->getTerminator();
1051     Updates.reserve(BBTerm->getNumSuccessors());
1052     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1053       if (i == BestSucc) continue;
1054       BasicBlock *Succ = BBTerm->getSuccessor(i);
1055       Succ->removePredecessor(BB, true);
1056       Updates.push_back({DominatorTree::Delete, BB, Succ});
1057     }
1058
1059     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1060                       << "' folding undef terminator: " << *BBTerm << '\n');
1061     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1062     BBTerm->eraseFromParent();
1063     DTU->applyUpdatesPermissive(Updates);
1064     return true;
1065   }
1066
1067   // If the terminator of this block is branching on a constant, simplify the
1068   // terminator to an unconditional branch.  This can occur due to threading in
1069   // other blocks.
1070   if (getKnownConstant(Condition, Preference)) {
1071     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1072                       << "' folding terminator: " << *BB->getTerminator()
1073                       << '\n');
1074     ++NumFolds;
1075     ConstantFoldTerminator(BB, true, nullptr, DTU);
1076     return true;
1077   }
1078
1079   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1080
1081   // All the rest of our checks depend on the condition being an instruction.
1082   if (!CondInst) {
1083     // FIXME: Unify this with code below.
1084     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1085       return true;
1086     return false;
1087   }
1088
1089   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1090     // If we're branching on a conditional, LVI might be able to determine
1091     // it's value at the branch instruction.  We only handle comparisons
1092     // against a constant at this time.
1093     // TODO: This should be extended to handle switches as well.
1094     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1095     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1096     if (CondBr && CondConst) {
1097       // We should have returned as soon as we turn a conditional branch to
1098       // unconditional. Because its no longer interesting as far as jump
1099       // threading is concerned.
1100       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1101
1102       LazyValueInfo::Tristate Ret =
1103         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1104                             CondConst, CondBr);
1105       if (Ret != LazyValueInfo::Unknown) {
1106         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1107         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1108         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1109         ToRemoveSucc->removePredecessor(BB, true);
1110         BranchInst *UncondBr =
1111           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1112         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1113         CondBr->eraseFromParent();
1114         if (CondCmp->use_empty())
1115           CondCmp->eraseFromParent();
1116         // We can safely replace *some* uses of the CondInst if it has
1117         // exactly one value as returned by LVI. RAUW is incorrect in the
1118         // presence of guards and assumes, that have the `Cond` as the use. This
1119         // is because we use the guards/assume to reason about the `Cond` value
1120         // at the end of block, but RAUW unconditionally replaces all uses
1121         // including the guards/assumes themselves and the uses before the
1122         // guard/assume.
1123         else if (CondCmp->getParent() == BB) {
1124           auto *CI = Ret == LazyValueInfo::True ?
1125             ConstantInt::getTrue(CondCmp->getType()) :
1126             ConstantInt::getFalse(CondCmp->getType());
1127           ReplaceFoldableUses(CondCmp, CI);
1128         }
1129         DTU->applyUpdatesPermissive(
1130             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1131         return true;
1132       }
1133
1134       // We did not manage to simplify this branch, try to see whether
1135       // CondCmp depends on a known phi-select pattern.
1136       if (TryToUnfoldSelect(CondCmp, BB))
1137         return true;
1138     }
1139   }
1140
1141   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1142     if (TryToUnfoldSelect(SI, BB))
1143       return true;
1144
1145   // Check for some cases that are worth simplifying.  Right now we want to look
1146   // for loads that are used by a switch or by the condition for the branch.  If
1147   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1148   // which can then be used to thread the values.
1149   Value *SimplifyValue = CondInst;
1150   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1151     if (isa<Constant>(CondCmp->getOperand(1)))
1152       SimplifyValue = CondCmp->getOperand(0);
1153
1154   // TODO: There are other places where load PRE would be profitable, such as
1155   // more complex comparisons.
1156   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1157     if (SimplifyPartiallyRedundantLoad(LoadI))
1158       return true;
1159
1160   // Before threading, try to propagate profile data backwards:
1161   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1162     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1163       updatePredecessorProfileMetadata(PN, BB);
1164
1165   // Handle a variety of cases where we are branching on something derived from
1166   // a PHI node in the current block.  If we can prove that any predecessors
1167   // compute a predictable value based on a PHI node, thread those predecessors.
1168   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1169     return true;
1170
1171   // If this is an otherwise-unfoldable branch on a phi node in the current
1172   // block, see if we can simplify.
1173   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1174     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1175       return ProcessBranchOnPHI(PN);
1176
1177   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1178   if (CondInst->getOpcode() == Instruction::Xor &&
1179       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1180     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1181
1182   // Search for a stronger dominating condition that can be used to simplify a
1183   // conditional branch leaving BB.
1184   if (ProcessImpliedCondition(BB))
1185     return true;
1186
1187   return false;
1188 }
1189
1190 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1191   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1192   if (!BI || !BI->isConditional())
1193     return false;
1194
1195   Value *Cond = BI->getCondition();
1196   BasicBlock *CurrentBB = BB;
1197   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1198   unsigned Iter = 0;
1199
1200   auto &DL = BB->getModule()->getDataLayout();
1201
1202   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1203     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1204     if (!PBI || !PBI->isConditional())
1205       return false;
1206     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1207       return false;
1208
1209     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1210     Optional<bool> Implication =
1211         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1212     if (Implication) {
1213       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1214       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1215       RemoveSucc->removePredecessor(BB);
1216       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1217       UncondBI->setDebugLoc(BI->getDebugLoc());
1218       BI->eraseFromParent();
1219       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1220       return true;
1221     }
1222     CurrentBB = CurrentPred;
1223     CurrentPred = CurrentBB->getSinglePredecessor();
1224   }
1225
1226   return false;
1227 }
1228
1229 /// Return true if Op is an instruction defined in the given block.
1230 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1231   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1232     if (OpInst->getParent() == BB)
1233       return true;
1234   return false;
1235 }
1236
1237 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1238 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1239 /// This is an important optimization that encourages jump threading, and needs
1240 /// to be run interlaced with other jump threading tasks.
1241 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1242   // Don't hack volatile and ordered loads.
1243   if (!LoadI->isUnordered()) return false;
1244
1245   // If the load is defined in a block with exactly one predecessor, it can't be
1246   // partially redundant.
1247   BasicBlock *LoadBB = LoadI->getParent();
1248   if (LoadBB->getSinglePredecessor())
1249     return false;
1250
1251   // If the load is defined in an EH pad, it can't be partially redundant,
1252   // because the edges between the invoke and the EH pad cannot have other
1253   // instructions between them.
1254   if (LoadBB->isEHPad())
1255     return false;
1256
1257   Value *LoadedPtr = LoadI->getOperand(0);
1258
1259   // If the loaded operand is defined in the LoadBB and its not a phi,
1260   // it can't be available in predecessors.
1261   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1262     return false;
1263
1264   // Scan a few instructions up from the load, to see if it is obviously live at
1265   // the entry to its block.
1266   BasicBlock::iterator BBIt(LoadI);
1267   bool IsLoadCSE;
1268   if (Value *AvailableVal = FindAvailableLoadedValue(
1269           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1270     // If the value of the load is locally available within the block, just use
1271     // it.  This frequently occurs for reg2mem'd allocas.
1272
1273     if (IsLoadCSE) {
1274       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1275       combineMetadataForCSE(NLoadI, LoadI, false);
1276     };
1277
1278     // If the returned value is the load itself, replace with an undef. This can
1279     // only happen in dead loops.
1280     if (AvailableVal == LoadI)
1281       AvailableVal = UndefValue::get(LoadI->getType());
1282     if (AvailableVal->getType() != LoadI->getType())
1283       AvailableVal = CastInst::CreateBitOrPointerCast(
1284           AvailableVal, LoadI->getType(), "", LoadI);
1285     LoadI->replaceAllUsesWith(AvailableVal);
1286     LoadI->eraseFromParent();
1287     return true;
1288   }
1289
1290   // Otherwise, if we scanned the whole block and got to the top of the block,
1291   // we know the block is locally transparent to the load.  If not, something
1292   // might clobber its value.
1293   if (BBIt != LoadBB->begin())
1294     return false;
1295
1296   // If all of the loads and stores that feed the value have the same AA tags,
1297   // then we can propagate them onto any newly inserted loads.
1298   AAMDNodes AATags;
1299   LoadI->getAAMetadata(AATags);
1300
1301   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1302
1303   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1304
1305   AvailablePredsTy AvailablePreds;
1306   BasicBlock *OneUnavailablePred = nullptr;
1307   SmallVector<LoadInst*, 8> CSELoads;
1308
1309   // If we got here, the loaded value is transparent through to the start of the
1310   // block.  Check to see if it is available in any of the predecessor blocks.
1311   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1312     // If we already scanned this predecessor, skip it.
1313     if (!PredsScanned.insert(PredBB).second)
1314       continue;
1315
1316     BBIt = PredBB->end();
1317     unsigned NumScanedInst = 0;
1318     Value *PredAvailable = nullptr;
1319     // NOTE: We don't CSE load that is volatile or anything stronger than
1320     // unordered, that should have been checked when we entered the function.
1321     assert(LoadI->isUnordered() &&
1322            "Attempting to CSE volatile or atomic loads");
1323     // If this is a load on a phi pointer, phi-translate it and search
1324     // for available load/store to the pointer in predecessors.
1325     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1326     PredAvailable = FindAvailablePtrLoadStore(
1327         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1328         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1329
1330     // If PredBB has a single predecessor, continue scanning through the
1331     // single predecessor.
1332     BasicBlock *SinglePredBB = PredBB;
1333     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1334            NumScanedInst < DefMaxInstsToScan) {
1335       SinglePredBB = SinglePredBB->getSinglePredecessor();
1336       if (SinglePredBB) {
1337         BBIt = SinglePredBB->end();
1338         PredAvailable = FindAvailablePtrLoadStore(
1339             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1340             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1341             &NumScanedInst);
1342       }
1343     }
1344
1345     if (!PredAvailable) {
1346       OneUnavailablePred = PredBB;
1347       continue;
1348     }
1349
1350     if (IsLoadCSE)
1351       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1352
1353     // If so, this load is partially redundant.  Remember this info so that we
1354     // can create a PHI node.
1355     AvailablePreds.emplace_back(PredBB, PredAvailable);
1356   }
1357
1358   // If the loaded value isn't available in any predecessor, it isn't partially
1359   // redundant.
1360   if (AvailablePreds.empty()) return false;
1361
1362   // Okay, the loaded value is available in at least one (and maybe all!)
1363   // predecessors.  If the value is unavailable in more than one unique
1364   // predecessor, we want to insert a merge block for those common predecessors.
1365   // This ensures that we only have to insert one reload, thus not increasing
1366   // code size.
1367   BasicBlock *UnavailablePred = nullptr;
1368
1369   // If the value is unavailable in one of predecessors, we will end up
1370   // inserting a new instruction into them. It is only valid if all the
1371   // instructions before LoadI are guaranteed to pass execution to its
1372   // successor, or if LoadI is safe to speculate.
1373   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1374   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1375   // It requires domination tree analysis, so for this simple case it is an
1376   // overkill.
1377   if (PredsScanned.size() != AvailablePreds.size() &&
1378       !isSafeToSpeculativelyExecute(LoadI))
1379     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1380       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1381         return false;
1382
1383   // If there is exactly one predecessor where the value is unavailable, the
1384   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1385   // unconditional branch, we know that it isn't a critical edge.
1386   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1387       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1388     UnavailablePred = OneUnavailablePred;
1389   } else if (PredsScanned.size() != AvailablePreds.size()) {
1390     // Otherwise, we had multiple unavailable predecessors or we had a critical
1391     // edge from the one.
1392     SmallVector<BasicBlock*, 8> PredsToSplit;
1393     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1394
1395     for (const auto &AvailablePred : AvailablePreds)
1396       AvailablePredSet.insert(AvailablePred.first);
1397
1398     // Add all the unavailable predecessors to the PredsToSplit list.
1399     for (BasicBlock *P : predecessors(LoadBB)) {
1400       // If the predecessor is an indirect goto, we can't split the edge.
1401       // Same for CallBr.
1402       if (isa<IndirectBrInst>(P->getTerminator()) ||
1403           isa<CallBrInst>(P->getTerminator()))
1404         return false;
1405
1406       if (!AvailablePredSet.count(P))
1407         PredsToSplit.push_back(P);
1408     }
1409
1410     // Split them out to their own block.
1411     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1412   }
1413
1414   // If the value isn't available in all predecessors, then there will be
1415   // exactly one where it isn't available.  Insert a load on that edge and add
1416   // it to the AvailablePreds list.
1417   if (UnavailablePred) {
1418     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1419            "Can't handle critical edge here!");
1420     LoadInst *NewVal = new LoadInst(
1421         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1422         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1423         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1424         UnavailablePred->getTerminator());
1425     NewVal->setDebugLoc(LoadI->getDebugLoc());
1426     if (AATags)
1427       NewVal->setAAMetadata(AATags);
1428
1429     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1430   }
1431
1432   // Now we know that each predecessor of this block has a value in
1433   // AvailablePreds, sort them for efficient access as we're walking the preds.
1434   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1435
1436   // Create a PHI node at the start of the block for the PRE'd load value.
1437   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1438   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1439                                 &LoadBB->front());
1440   PN->takeName(LoadI);
1441   PN->setDebugLoc(LoadI->getDebugLoc());
1442
1443   // Insert new entries into the PHI for each predecessor.  A single block may
1444   // have multiple entries here.
1445   for (pred_iterator PI = PB; PI != PE; ++PI) {
1446     BasicBlock *P = *PI;
1447     AvailablePredsTy::iterator I =
1448         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1449
1450     assert(I != AvailablePreds.end() && I->first == P &&
1451            "Didn't find entry for predecessor!");
1452
1453     // If we have an available predecessor but it requires casting, insert the
1454     // cast in the predecessor and use the cast. Note that we have to update the
1455     // AvailablePreds vector as we go so that all of the PHI entries for this
1456     // predecessor use the same bitcast.
1457     Value *&PredV = I->second;
1458     if (PredV->getType() != LoadI->getType())
1459       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1460                                                P->getTerminator());
1461
1462     PN->addIncoming(PredV, I->first);
1463   }
1464
1465   for (LoadInst *PredLoadI : CSELoads) {
1466     combineMetadataForCSE(PredLoadI, LoadI, true);
1467   }
1468
1469   LoadI->replaceAllUsesWith(PN);
1470   LoadI->eraseFromParent();
1471
1472   return true;
1473 }
1474
1475 /// FindMostPopularDest - The specified list contains multiple possible
1476 /// threadable destinations.  Pick the one that occurs the most frequently in
1477 /// the list.
1478 static BasicBlock *
1479 FindMostPopularDest(BasicBlock *BB,
1480                     const SmallVectorImpl<std::pair<BasicBlock *,
1481                                           BasicBlock *>> &PredToDestList) {
1482   assert(!PredToDestList.empty());
1483
1484   // Determine popularity.  If there are multiple possible destinations, we
1485   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1486   // blocks with known and real destinations to threading undef.  We'll handle
1487   // them later if interesting.
1488   MapVector<BasicBlock *, unsigned> DestPopularity;
1489
1490   // Populate DestPopularity with the successors in the order they appear in the
1491   // successor list.  This way, we ensure determinism by iterating it in the
1492   // same order in std::max_element below.  We map nullptr to 0 so that we can
1493   // return nullptr when PredToDestList contains nullptr only.
1494   DestPopularity[nullptr] = 0;
1495   for (auto *SuccBB : successors(BB))
1496     DestPopularity[SuccBB] = 0;
1497
1498   for (const auto &PredToDest : PredToDestList)
1499     if (PredToDest.second)
1500       DestPopularity[PredToDest.second]++;
1501
1502   // Find the most popular dest.
1503   using VT = decltype(DestPopularity)::value_type;
1504   auto MostPopular = std::max_element(
1505       DestPopularity.begin(), DestPopularity.end(),
1506       [](const VT &L, const VT &R) { return L.second < R.second; });
1507
1508   // Okay, we have finally picked the most popular destination.
1509   return MostPopular->first;
1510 }
1511
1512 // Try to evaluate the value of V when the control flows from PredPredBB to
1513 // BB->getSinglePredecessor() and then on to BB.
1514 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB,
1515                                                        BasicBlock *PredPredBB,
1516                                                        Value *V) {
1517   BasicBlock *PredBB = BB->getSinglePredecessor();
1518   assert(PredBB && "Expected a single predecessor");
1519
1520   if (Constant *Cst = dyn_cast<Constant>(V)) {
1521     return Cst;
1522   }
1523
1524   // Consult LVI if V is not an instruction in BB or PredBB.
1525   Instruction *I = dyn_cast<Instruction>(V);
1526   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1527     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1528   }
1529
1530   // Look into a PHI argument.
1531   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1532     if (PHI->getParent() == PredBB)
1533       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1534     return nullptr;
1535   }
1536
1537   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1538   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1539     if (CondCmp->getParent() == BB) {
1540       Constant *Op0 =
1541           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1542       Constant *Op1 =
1543           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1544       if (Op0 && Op1) {
1545         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1546       }
1547     }
1548     return nullptr;
1549   }
1550
1551   return nullptr;
1552 }
1553
1554 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1555                                                ConstantPreference Preference,
1556                                                Instruction *CxtI) {
1557   // If threading this would thread across a loop header, don't even try to
1558   // thread the edge.
1559   if (LoopHeaders.count(BB))
1560     return false;
1561
1562   PredValueInfoTy PredValues;
1563   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1564                                        CxtI)) {
1565     // We don't have known values in predecessors.  See if we can thread through
1566     // BB and its sole predecessor.
1567     return MaybeThreadThroughTwoBasicBlocks(BB, Cond);
1568   }
1569
1570   assert(!PredValues.empty() &&
1571          "ComputeValueKnownInPredecessors returned true with no values");
1572
1573   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1574              for (const auto &PredValue : PredValues) {
1575                dbgs() << "  BB '" << BB->getName()
1576                       << "': FOUND condition = " << *PredValue.first
1577                       << " for pred '" << PredValue.second->getName() << "'.\n";
1578   });
1579
1580   // Decide what we want to thread through.  Convert our list of known values to
1581   // a list of known destinations for each pred.  This also discards duplicate
1582   // predecessors and keeps track of the undefined inputs (which are represented
1583   // as a null dest in the PredToDestList).
1584   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1585   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1586
1587   BasicBlock *OnlyDest = nullptr;
1588   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1589   Constant *OnlyVal = nullptr;
1590   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1591
1592   for (const auto &PredValue : PredValues) {
1593     BasicBlock *Pred = PredValue.second;
1594     if (!SeenPreds.insert(Pred).second)
1595       continue;  // Duplicate predecessor entry.
1596
1597     Constant *Val = PredValue.first;
1598
1599     BasicBlock *DestBB;
1600     if (isa<UndefValue>(Val))
1601       DestBB = nullptr;
1602     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1603       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1604       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1605     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1606       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1607       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1608     } else {
1609       assert(isa<IndirectBrInst>(BB->getTerminator())
1610               && "Unexpected terminator");
1611       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1612       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1613     }
1614
1615     // If we have exactly one destination, remember it for efficiency below.
1616     if (PredToDestList.empty()) {
1617       OnlyDest = DestBB;
1618       OnlyVal = Val;
1619     } else {
1620       if (OnlyDest != DestBB)
1621         OnlyDest = MultipleDestSentinel;
1622       // It possible we have same destination, but different value, e.g. default
1623       // case in switchinst.
1624       if (Val != OnlyVal)
1625         OnlyVal = MultipleVal;
1626     }
1627
1628     // If the predecessor ends with an indirect goto, we can't change its
1629     // destination. Same for CallBr.
1630     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1631         isa<CallBrInst>(Pred->getTerminator()))
1632       continue;
1633
1634     PredToDestList.emplace_back(Pred, DestBB);
1635   }
1636
1637   // If all edges were unthreadable, we fail.
1638   if (PredToDestList.empty())
1639     return false;
1640
1641   // If all the predecessors go to a single known successor, we want to fold,
1642   // not thread. By doing so, we do not need to duplicate the current block and
1643   // also miss potential opportunities in case we dont/cant duplicate.
1644   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1645     if (BB->hasNPredecessors(PredToDestList.size())) {
1646       bool SeenFirstBranchToOnlyDest = false;
1647       std::vector <DominatorTree::UpdateType> Updates;
1648       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1649       for (BasicBlock *SuccBB : successors(BB)) {
1650         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1651           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1652         } else {
1653           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1654           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1655         }
1656       }
1657
1658       // Finally update the terminator.
1659       Instruction *Term = BB->getTerminator();
1660       BranchInst::Create(OnlyDest, Term);
1661       Term->eraseFromParent();
1662       DTU->applyUpdatesPermissive(Updates);
1663
1664       // If the condition is now dead due to the removal of the old terminator,
1665       // erase it.
1666       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1667         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1668           CondInst->eraseFromParent();
1669         // We can safely replace *some* uses of the CondInst if it has
1670         // exactly one value as returned by LVI. RAUW is incorrect in the
1671         // presence of guards and assumes, that have the `Cond` as the use. This
1672         // is because we use the guards/assume to reason about the `Cond` value
1673         // at the end of block, but RAUW unconditionally replaces all uses
1674         // including the guards/assumes themselves and the uses before the
1675         // guard/assume.
1676         else if (OnlyVal && OnlyVal != MultipleVal &&
1677                  CondInst->getParent() == BB)
1678           ReplaceFoldableUses(CondInst, OnlyVal);
1679       }
1680       return true;
1681     }
1682   }
1683
1684   // Determine which is the most common successor.  If we have many inputs and
1685   // this block is a switch, we want to start by threading the batch that goes
1686   // to the most popular destination first.  If we only know about one
1687   // threadable destination (the common case) we can avoid this.
1688   BasicBlock *MostPopularDest = OnlyDest;
1689
1690   if (MostPopularDest == MultipleDestSentinel) {
1691     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1692     // won't process them, but we might have other destination that are eligible
1693     // and we still want to process.
1694     erase_if(PredToDestList,
1695              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1696                return LoopHeaders.count(PredToDest.second) != 0;
1697              });
1698
1699     if (PredToDestList.empty())
1700       return false;
1701
1702     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1703   }
1704
1705   // Now that we know what the most popular destination is, factor all
1706   // predecessors that will jump to it into a single predecessor.
1707   SmallVector<BasicBlock*, 16> PredsToFactor;
1708   for (const auto &PredToDest : PredToDestList)
1709     if (PredToDest.second == MostPopularDest) {
1710       BasicBlock *Pred = PredToDest.first;
1711
1712       // This predecessor may be a switch or something else that has multiple
1713       // edges to the block.  Factor each of these edges by listing them
1714       // according to # occurrences in PredsToFactor.
1715       for (BasicBlock *Succ : successors(Pred))
1716         if (Succ == BB)
1717           PredsToFactor.push_back(Pred);
1718     }
1719
1720   // If the threadable edges are branching on an undefined value, we get to pick
1721   // the destination that these predecessors should get to.
1722   if (!MostPopularDest)
1723     MostPopularDest = BB->getTerminator()->
1724                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1725
1726   // Ok, try to thread it!
1727   return TryThreadEdge(BB, PredsToFactor, MostPopularDest);
1728 }
1729
1730 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1731 /// a PHI node in the current block.  See if there are any simplifications we
1732 /// can do based on inputs to the phi node.
1733 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1734   BasicBlock *BB = PN->getParent();
1735
1736   // TODO: We could make use of this to do it once for blocks with common PHI
1737   // values.
1738   SmallVector<BasicBlock*, 1> PredBBs;
1739   PredBBs.resize(1);
1740
1741   // If any of the predecessor blocks end in an unconditional branch, we can
1742   // *duplicate* the conditional branch into that block in order to further
1743   // encourage jump threading and to eliminate cases where we have branch on a
1744   // phi of an icmp (branch on icmp is much better).
1745   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1746     BasicBlock *PredBB = PN->getIncomingBlock(i);
1747     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1748       if (PredBr->isUnconditional()) {
1749         PredBBs[0] = PredBB;
1750         // Try to duplicate BB into PredBB.
1751         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1752           return true;
1753       }
1754   }
1755
1756   return false;
1757 }
1758
1759 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1760 /// a xor instruction in the current block.  See if there are any
1761 /// simplifications we can do based on inputs to the xor.
1762 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1763   BasicBlock *BB = BO->getParent();
1764
1765   // If either the LHS or RHS of the xor is a constant, don't do this
1766   // optimization.
1767   if (isa<ConstantInt>(BO->getOperand(0)) ||
1768       isa<ConstantInt>(BO->getOperand(1)))
1769     return false;
1770
1771   // If the first instruction in BB isn't a phi, we won't be able to infer
1772   // anything special about any particular predecessor.
1773   if (!isa<PHINode>(BB->front()))
1774     return false;
1775
1776   // If this BB is a landing pad, we won't be able to split the edge into it.
1777   if (BB->isEHPad())
1778     return false;
1779
1780   // If we have a xor as the branch input to this block, and we know that the
1781   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1782   // the condition into the predecessor and fix that value to true, saving some
1783   // logical ops on that path and encouraging other paths to simplify.
1784   //
1785   // This copies something like this:
1786   //
1787   //  BB:
1788   //    %X = phi i1 [1],  [%X']
1789   //    %Y = icmp eq i32 %A, %B
1790   //    %Z = xor i1 %X, %Y
1791   //    br i1 %Z, ...
1792   //
1793   // Into:
1794   //  BB':
1795   //    %Y = icmp ne i32 %A, %B
1796   //    br i1 %Y, ...
1797
1798   PredValueInfoTy XorOpValues;
1799   bool isLHS = true;
1800   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1801                                        WantInteger, BO)) {
1802     assert(XorOpValues.empty());
1803     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1804                                          WantInteger, BO))
1805       return false;
1806     isLHS = false;
1807   }
1808
1809   assert(!XorOpValues.empty() &&
1810          "ComputeValueKnownInPredecessors returned true with no values");
1811
1812   // Scan the information to see which is most popular: true or false.  The
1813   // predecessors can be of the set true, false, or undef.
1814   unsigned NumTrue = 0, NumFalse = 0;
1815   for (const auto &XorOpValue : XorOpValues) {
1816     if (isa<UndefValue>(XorOpValue.first))
1817       // Ignore undefs for the count.
1818       continue;
1819     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1820       ++NumFalse;
1821     else
1822       ++NumTrue;
1823   }
1824
1825   // Determine which value to split on, true, false, or undef if neither.
1826   ConstantInt *SplitVal = nullptr;
1827   if (NumTrue > NumFalse)
1828     SplitVal = ConstantInt::getTrue(BB->getContext());
1829   else if (NumTrue != 0 || NumFalse != 0)
1830     SplitVal = ConstantInt::getFalse(BB->getContext());
1831
1832   // Collect all of the blocks that this can be folded into so that we can
1833   // factor this once and clone it once.
1834   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1835   for (const auto &XorOpValue : XorOpValues) {
1836     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1837       continue;
1838
1839     BlocksToFoldInto.push_back(XorOpValue.second);
1840   }
1841
1842   // If we inferred a value for all of the predecessors, then duplication won't
1843   // help us.  However, we can just replace the LHS or RHS with the constant.
1844   if (BlocksToFoldInto.size() ==
1845       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1846     if (!SplitVal) {
1847       // If all preds provide undef, just nuke the xor, because it is undef too.
1848       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1849       BO->eraseFromParent();
1850     } else if (SplitVal->isZero()) {
1851       // If all preds provide 0, replace the xor with the other input.
1852       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1853       BO->eraseFromParent();
1854     } else {
1855       // If all preds provide 1, set the computed value to 1.
1856       BO->setOperand(!isLHS, SplitVal);
1857     }
1858
1859     return true;
1860   }
1861
1862   // If any of predecessors end with an indirect goto, we can't change its
1863   // destination. Same for CallBr.
1864   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1865         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1866                isa<CallBrInst>(Pred->getTerminator());
1867       }))
1868     return false;
1869
1870   // Try to duplicate BB into PredBB.
1871   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1872 }
1873
1874 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1875 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1876 /// NewPred using the entries from OldPred (suitably mapped).
1877 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1878                                             BasicBlock *OldPred,
1879                                             BasicBlock *NewPred,
1880                                      DenseMap<Instruction*, Value*> &ValueMap) {
1881   for (PHINode &PN : PHIBB->phis()) {
1882     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1883     // DestBlock.
1884     Value *IV = PN.getIncomingValueForBlock(OldPred);
1885
1886     // Remap the value if necessary.
1887     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1888       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1889       if (I != ValueMap.end())
1890         IV = I->second;
1891     }
1892
1893     PN.addIncoming(IV, NewPred);
1894   }
1895 }
1896
1897 /// Merge basic block BB into its sole predecessor if possible.
1898 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1899   BasicBlock *SinglePred = BB->getSinglePredecessor();
1900   if (!SinglePred)
1901     return false;
1902
1903   const Instruction *TI = SinglePred->getTerminator();
1904   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1905       SinglePred == BB || hasAddressTakenAndUsed(BB))
1906     return false;
1907
1908   // If SinglePred was a loop header, BB becomes one.
1909   if (LoopHeaders.erase(SinglePred))
1910     LoopHeaders.insert(BB);
1911
1912   LVI->eraseBlock(SinglePred);
1913   MergeBasicBlockIntoOnlyPred(BB, DTU);
1914
1915   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1916   // BB code within one basic block `BB`), we need to invalidate the LVI
1917   // information associated with BB, because the LVI information need not be
1918   // true for all of BB after the merge. For example,
1919   // Before the merge, LVI info and code is as follows:
1920   // SinglePred: <LVI info1 for %p val>
1921   // %y = use of %p
1922   // call @exit() // need not transfer execution to successor.
1923   // assume(%p) // from this point on %p is true
1924   // br label %BB
1925   // BB: <LVI info2 for %p val, i.e. %p is true>
1926   // %x = use of %p
1927   // br label exit
1928   //
1929   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1930   // (info2 and info1 respectively). After the merge and the deletion of the
1931   // LVI info1 for SinglePred. We have the following code:
1932   // BB: <LVI info2 for %p val>
1933   // %y = use of %p
1934   // call @exit()
1935   // assume(%p)
1936   // %x = use of %p <-- LVI info2 is correct from here onwards.
1937   // br label exit
1938   // LVI info2 for BB is incorrect at the beginning of BB.
1939
1940   // Invalidate LVI information for BB if the LVI is not provably true for
1941   // all of BB.
1942   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1943     LVI->eraseBlock(BB);
1944   return true;
1945 }
1946
1947 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1948 /// ValueMapping maps old values in BB to new ones in NewBB.
1949 void JumpThreadingPass::UpdateSSA(
1950     BasicBlock *BB, BasicBlock *NewBB,
1951     DenseMap<Instruction *, Value *> &ValueMapping) {
1952   // If there were values defined in BB that are used outside the block, then we
1953   // now have to update all uses of the value to use either the original value,
1954   // the cloned value, or some PHI derived value.  This can require arbitrary
1955   // PHI insertion, of which we are prepared to do, clean these up now.
1956   SSAUpdater SSAUpdate;
1957   SmallVector<Use *, 16> UsesToRename;
1958
1959   for (Instruction &I : *BB) {
1960     // Scan all uses of this instruction to see if it is used outside of its
1961     // block, and if so, record them in UsesToRename.
1962     for (Use &U : I.uses()) {
1963       Instruction *User = cast<Instruction>(U.getUser());
1964       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1965         if (UserPN->getIncomingBlock(U) == BB)
1966           continue;
1967       } else if (User->getParent() == BB)
1968         continue;
1969
1970       UsesToRename.push_back(&U);
1971     }
1972
1973     // If there are no uses outside the block, we're done with this instruction.
1974     if (UsesToRename.empty())
1975       continue;
1976     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1977
1978     // We found a use of I outside of BB.  Rename all uses of I that are outside
1979     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1980     // with the two values we know.
1981     SSAUpdate.Initialize(I.getType(), I.getName());
1982     SSAUpdate.AddAvailableValue(BB, &I);
1983     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1984
1985     while (!UsesToRename.empty())
1986       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1987     LLVM_DEBUG(dbgs() << "\n");
1988   }
1989 }
1990
1991 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
1992 /// arguments that come from PredBB.  Return the map from the variables in the
1993 /// source basic block to the variables in the newly created basic block.
1994 DenseMap<Instruction *, Value *>
1995 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI,
1996                                      BasicBlock::iterator BE, BasicBlock *NewBB,
1997                                      BasicBlock *PredBB) {
1998   // We are going to have to map operands from the source basic block to the new
1999   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2000   // block, evaluate them to account for entry from PredBB.
2001   DenseMap<Instruction *, Value *> ValueMapping;
2002
2003   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2004   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2005   // might need to rewrite the operand of the cloned phi.
2006   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2007     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2008     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2009     ValueMapping[PN] = NewPN;
2010   }
2011
2012   // Clone the non-phi instructions of the source basic block into NewBB,
2013   // keeping track of the mapping and using it to remap operands in the cloned
2014   // instructions.
2015   for (; BI != BE; ++BI) {
2016     Instruction *New = BI->clone();
2017     New->setName(BI->getName());
2018     NewBB->getInstList().push_back(New);
2019     ValueMapping[&*BI] = New;
2020
2021     // Remap operands to patch up intra-block references.
2022     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2023       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2024         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2025         if (I != ValueMapping.end())
2026           New->setOperand(i, I->second);
2027       }
2028   }
2029
2030   return ValueMapping;
2031 }
2032
2033 /// Attempt to thread through two successive basic blocks.
2034 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB,
2035                                                          Value *Cond) {
2036   // Consider:
2037   //
2038   // PredBB:
2039   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2040   //   %tobool = icmp eq i32 %cond, 0
2041   //   br i1 %tobool, label %BB, label ...
2042   //
2043   // BB:
2044   //   %cmp = icmp eq i32* %var, null
2045   //   br i1 %cmp, label ..., label ...
2046   //
2047   // We don't know the value of %var at BB even if we know which incoming edge
2048   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2049   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2050   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2051
2052   // Require that BB end with a Branch for simplicity.
2053   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2054   if (!CondBr)
2055     return false;
2056
2057   // BB must have exactly one predecessor.
2058   BasicBlock *PredBB = BB->getSinglePredecessor();
2059   if (!PredBB)
2060     return false;
2061
2062   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2063   // unconditional branch, we should be merging PredBB and BB instead. For
2064   // simplicity, we don't deal with a switch.
2065   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2066   if (!PredBBBranch || PredBBBranch->isUnconditional())
2067     return false;
2068
2069   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2070   // PredBB.
2071   if (PredBB->getSinglePredecessor())
2072     return false;
2073
2074   // Don't thread through PredBB if it contains a successor edge to itself, in
2075   // which case we would infinite loop.  Suppose we are threading an edge from
2076   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2077   // successor edge to itself.  If we allowed jump threading in this case, we
2078   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2079   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2080   // with another jump threading opportunity from PredBB.thread through PredBB
2081   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2082   // would keep peeling one iteration from PredBB.
2083   if (llvm::is_contained(successors(PredBB), PredBB))
2084     return false;
2085
2086   // Don't thread across a loop header.
2087   if (LoopHeaders.count(PredBB))
2088     return false;
2089
2090   // Avoid complication with duplicating EH pads.
2091   if (PredBB->isEHPad())
2092     return false;
2093
2094   // Find a predecessor that we can thread.  For simplicity, we only consider a
2095   // successor edge out of BB to which we thread exactly one incoming edge into
2096   // PredBB.
2097   unsigned ZeroCount = 0;
2098   unsigned OneCount = 0;
2099   BasicBlock *ZeroPred = nullptr;
2100   BasicBlock *OnePred = nullptr;
2101   for (BasicBlock *P : predecessors(PredBB)) {
2102     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2103             EvaluateOnPredecessorEdge(BB, P, Cond))) {
2104       if (CI->isZero()) {
2105         ZeroCount++;
2106         ZeroPred = P;
2107       } else if (CI->isOne()) {
2108         OneCount++;
2109         OnePred = P;
2110       }
2111     }
2112   }
2113
2114   // Disregard complicated cases where we have to thread multiple edges.
2115   BasicBlock *PredPredBB;
2116   if (ZeroCount == 1) {
2117     PredPredBB = ZeroPred;
2118   } else if (OneCount == 1) {
2119     PredPredBB = OnePred;
2120   } else {
2121     return false;
2122   }
2123
2124   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2125
2126   // If threading to the same block as we come from, we would infinite loop.
2127   if (SuccBB == BB) {
2128     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2129                       << "' - would thread to self!\n");
2130     return false;
2131   }
2132
2133   // If threading this would thread across a loop header, don't thread the edge.
2134   // See the comments above FindLoopHeaders for justifications and caveats.
2135   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2136     LLVM_DEBUG({
2137       bool BBIsHeader = LoopHeaders.count(BB);
2138       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2139       dbgs() << "  Not threading across "
2140              << (BBIsHeader ? "loop header BB '" : "block BB '")
2141              << BB->getName() << "' to dest "
2142              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2143              << SuccBB->getName()
2144              << "' - it might create an irreducible loop!\n";
2145     });
2146     return false;
2147   }
2148
2149   // Compute the cost of duplicating BB and PredBB.
2150   unsigned BBCost =
2151       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2152   unsigned PredBBCost = getJumpThreadDuplicationCost(
2153       PredBB, PredBB->getTerminator(), BBDupThreshold);
2154
2155   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2156   // individually before checking their sum because getJumpThreadDuplicationCost
2157   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2158   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2159       BBCost + PredBBCost > BBDupThreshold) {
2160     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2161                       << "' - Cost is too high: " << PredBBCost
2162                       << " for PredBB, " << BBCost << "for BB\n");
2163     return false;
2164   }
2165
2166   // Now we are ready to duplicate PredBB.
2167   ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2168   return true;
2169 }
2170
2171 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2172                                                     BasicBlock *PredBB,
2173                                                     BasicBlock *BB,
2174                                                     BasicBlock *SuccBB) {
2175   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2176                     << BB->getName() << "'\n");
2177
2178   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2179   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2180
2181   BasicBlock *NewBB =
2182       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2183                          PredBB->getParent(), PredBB);
2184   NewBB->moveAfter(PredBB);
2185
2186   // Set the block frequency of NewBB.
2187   if (HasProfileData) {
2188     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2189                      BPI->getEdgeProbability(PredPredBB, PredBB);
2190     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2191   }
2192
2193   // We are going to have to map operands from the original BB block to the new
2194   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2195   // to account for entry from PredPredBB.
2196   DenseMap<Instruction *, Value *> ValueMapping =
2197       CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2198
2199   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2200   // This eliminates predecessors from PredPredBB, which requires us to simplify
2201   // any PHI nodes in PredBB.
2202   Instruction *PredPredTerm = PredPredBB->getTerminator();
2203   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2204     if (PredPredTerm->getSuccessor(i) == PredBB) {
2205       PredBB->removePredecessor(PredPredBB, true);
2206       PredPredTerm->setSuccessor(i, NewBB);
2207     }
2208
2209   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2210                                   ValueMapping);
2211   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2212                                   ValueMapping);
2213
2214   DTU->applyUpdatesPermissive(
2215       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2216        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2217        {DominatorTree::Insert, PredPredBB, NewBB},
2218        {DominatorTree::Delete, PredPredBB, PredBB}});
2219
2220   UpdateSSA(PredBB, NewBB, ValueMapping);
2221
2222   // Clean up things like PHI nodes with single operands, dead instructions,
2223   // etc.
2224   SimplifyInstructionsInBlock(NewBB, TLI);
2225   SimplifyInstructionsInBlock(PredBB, TLI);
2226
2227   SmallVector<BasicBlock *, 1> PredsToFactor;
2228   PredsToFactor.push_back(NewBB);
2229   ThreadEdge(BB, PredsToFactor, SuccBB);
2230 }
2231
2232 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so.
2233 bool JumpThreadingPass::TryThreadEdge(
2234     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2235     BasicBlock *SuccBB) {
2236   // If threading to the same block as we come from, we would infinite loop.
2237   if (SuccBB == BB) {
2238     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2239                       << "' - would thread to self!\n");
2240     return false;
2241   }
2242
2243   // If threading this would thread across a loop header, don't thread the edge.
2244   // See the comments above FindLoopHeaders for justifications and caveats.
2245   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2246     LLVM_DEBUG({
2247       bool BBIsHeader = LoopHeaders.count(BB);
2248       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2249       dbgs() << "  Not threading across "
2250           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2251           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2252           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2253     });
2254     return false;
2255   }
2256
2257   unsigned JumpThreadCost =
2258       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2259   if (JumpThreadCost > BBDupThreshold) {
2260     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2261                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2262     return false;
2263   }
2264
2265   ThreadEdge(BB, PredBBs, SuccBB);
2266   return true;
2267 }
2268
2269 /// ThreadEdge - We have decided that it is safe and profitable to factor the
2270 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2271 /// across BB.  Transform the IR to reflect this change.
2272 void JumpThreadingPass::ThreadEdge(BasicBlock *BB,
2273                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2274                                    BasicBlock *SuccBB) {
2275   assert(SuccBB != BB && "Don't create an infinite loop");
2276
2277   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2278          "Don't thread across loop headers");
2279
2280   // And finally, do it!  Start by factoring the predecessors if needed.
2281   BasicBlock *PredBB;
2282   if (PredBBs.size() == 1)
2283     PredBB = PredBBs[0];
2284   else {
2285     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2286                       << " common predecessors.\n");
2287     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2288   }
2289
2290   // And finally, do it!
2291   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2292                     << "' to '" << SuccBB->getName()
2293                     << ", across block:\n    " << *BB << "\n");
2294
2295   LVI->threadEdge(PredBB, BB, SuccBB);
2296
2297   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2298                                          BB->getName()+".thread",
2299                                          BB->getParent(), BB);
2300   NewBB->moveAfter(PredBB);
2301
2302   // Set the block frequency of NewBB.
2303   if (HasProfileData) {
2304     auto NewBBFreq =
2305         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2306     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2307   }
2308
2309   // Copy all the instructions from BB to NewBB except the terminator.
2310   DenseMap<Instruction *, Value *> ValueMapping =
2311       CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2312
2313   // We didn't copy the terminator from BB over to NewBB, because there is now
2314   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2315   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2316   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2317
2318   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2319   // PHI nodes for NewBB now.
2320   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2321
2322   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2323   // eliminates predecessors from BB, which requires us to simplify any PHI
2324   // nodes in BB.
2325   Instruction *PredTerm = PredBB->getTerminator();
2326   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2327     if (PredTerm->getSuccessor(i) == BB) {
2328       BB->removePredecessor(PredBB, true);
2329       PredTerm->setSuccessor(i, NewBB);
2330     }
2331
2332   // Enqueue required DT updates.
2333   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2334                                {DominatorTree::Insert, PredBB, NewBB},
2335                                {DominatorTree::Delete, PredBB, BB}});
2336
2337   UpdateSSA(BB, NewBB, ValueMapping);
2338
2339   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2340   // over the new instructions and zap any that are constants or dead.  This
2341   // frequently happens because of phi translation.
2342   SimplifyInstructionsInBlock(NewBB, TLI);
2343
2344   // Update the edge weight from BB to SuccBB, which should be less than before.
2345   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2346
2347   // Threaded an edge!
2348   ++NumThreads;
2349 }
2350
2351 /// Create a new basic block that will be the predecessor of BB and successor of
2352 /// all blocks in Preds. When profile data is available, update the frequency of
2353 /// this new block.
2354 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2355                                                ArrayRef<BasicBlock *> Preds,
2356                                                const char *Suffix) {
2357   SmallVector<BasicBlock *, 2> NewBBs;
2358
2359   // Collect the frequencies of all predecessors of BB, which will be used to
2360   // update the edge weight of the result of splitting predecessors.
2361   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2362   if (HasProfileData)
2363     for (auto Pred : Preds)
2364       FreqMap.insert(std::make_pair(
2365           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2366
2367   // In the case when BB is a LandingPad block we create 2 new predecessors
2368   // instead of just one.
2369   if (BB->isLandingPad()) {
2370     std::string NewName = std::string(Suffix) + ".split-lp";
2371     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2372   } else {
2373     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2374   }
2375
2376   std::vector<DominatorTree::UpdateType> Updates;
2377   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2378   for (auto NewBB : NewBBs) {
2379     BlockFrequency NewBBFreq(0);
2380     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2381     for (auto Pred : predecessors(NewBB)) {
2382       Updates.push_back({DominatorTree::Delete, Pred, BB});
2383       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2384       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2385         NewBBFreq += FreqMap.lookup(Pred);
2386     }
2387     if (HasProfileData) // Apply the summed frequency to NewBB.
2388       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2389   }
2390
2391   DTU->applyUpdatesPermissive(Updates);
2392   return NewBBs[0];
2393 }
2394
2395 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2396   const Instruction *TI = BB->getTerminator();
2397   assert(TI->getNumSuccessors() > 1 && "not a split");
2398
2399   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2400   if (!WeightsNode)
2401     return false;
2402
2403   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2404   if (MDName->getString() != "branch_weights")
2405     return false;
2406
2407   // Ensure there are weights for all of the successors. Note that the first
2408   // operand to the metadata node is a name, not a weight.
2409   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2410 }
2411
2412 /// Update the block frequency of BB and branch weight and the metadata on the
2413 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2414 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2415 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2416                                                      BasicBlock *BB,
2417                                                      BasicBlock *NewBB,
2418                                                      BasicBlock *SuccBB) {
2419   if (!HasProfileData)
2420     return;
2421
2422   assert(BFI && BPI && "BFI & BPI should have been created here");
2423
2424   // As the edge from PredBB to BB is deleted, we have to update the block
2425   // frequency of BB.
2426   auto BBOrigFreq = BFI->getBlockFreq(BB);
2427   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2428   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2429   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2430   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2431
2432   // Collect updated outgoing edges' frequencies from BB and use them to update
2433   // edge probabilities.
2434   SmallVector<uint64_t, 4> BBSuccFreq;
2435   for (BasicBlock *Succ : successors(BB)) {
2436     auto SuccFreq = (Succ == SuccBB)
2437                         ? BB2SuccBBFreq - NewBBFreq
2438                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2439     BBSuccFreq.push_back(SuccFreq.getFrequency());
2440   }
2441
2442   uint64_t MaxBBSuccFreq =
2443       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2444
2445   SmallVector<BranchProbability, 4> BBSuccProbs;
2446   if (MaxBBSuccFreq == 0)
2447     BBSuccProbs.assign(BBSuccFreq.size(),
2448                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2449   else {
2450     for (uint64_t Freq : BBSuccFreq)
2451       BBSuccProbs.push_back(
2452           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2453     // Normalize edge probabilities so that they sum up to one.
2454     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2455                                               BBSuccProbs.end());
2456   }
2457
2458   // Update edge probabilities in BPI.
2459   BPI->setEdgeProbability(BB, BBSuccProbs);
2460
2461   // Update the profile metadata as well.
2462   //
2463   // Don't do this if the profile of the transformed blocks was statically
2464   // estimated.  (This could occur despite the function having an entry
2465   // frequency in completely cold parts of the CFG.)
2466   //
2467   // In this case we don't want to suggest to subsequent passes that the
2468   // calculated weights are fully consistent.  Consider this graph:
2469   //
2470   //                 check_1
2471   //             50% /  |
2472   //             eq_1   | 50%
2473   //                 \  |
2474   //                 check_2
2475   //             50% /  |
2476   //             eq_2   | 50%
2477   //                 \  |
2478   //                 check_3
2479   //             50% /  |
2480   //             eq_3   | 50%
2481   //                 \  |
2482   //
2483   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2484   // the overall probabilities are inconsistent; the total probability that the
2485   // value is either 1, 2 or 3 is 150%.
2486   //
2487   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2488   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2489   // the loop exit edge.  Then based solely on static estimation we would assume
2490   // the loop was extremely hot.
2491   //
2492   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2493   // shouldn't make edges extremely likely or unlikely based solely on static
2494   // estimation.
2495   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2496     SmallVector<uint32_t, 4> Weights;
2497     for (auto Prob : BBSuccProbs)
2498       Weights.push_back(Prob.getNumerator());
2499
2500     auto TI = BB->getTerminator();
2501     TI->setMetadata(
2502         LLVMContext::MD_prof,
2503         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2504   }
2505 }
2506
2507 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2508 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2509 /// If we can duplicate the contents of BB up into PredBB do so now, this
2510 /// improves the odds that the branch will be on an analyzable instruction like
2511 /// a compare.
2512 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2513     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2514   assert(!PredBBs.empty() && "Can't handle an empty set");
2515
2516   // If BB is a loop header, then duplicating this block outside the loop would
2517   // cause us to transform this into an irreducible loop, don't do this.
2518   // See the comments above FindLoopHeaders for justifications and caveats.
2519   if (LoopHeaders.count(BB)) {
2520     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2521                       << "' into predecessor block '" << PredBBs[0]->getName()
2522                       << "' - it might create an irreducible loop!\n");
2523     return false;
2524   }
2525
2526   unsigned DuplicationCost =
2527       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2528   if (DuplicationCost > BBDupThreshold) {
2529     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2530                       << "' - Cost is too high: " << DuplicationCost << "\n");
2531     return false;
2532   }
2533
2534   // And finally, do it!  Start by factoring the predecessors if needed.
2535   std::vector<DominatorTree::UpdateType> Updates;
2536   BasicBlock *PredBB;
2537   if (PredBBs.size() == 1)
2538     PredBB = PredBBs[0];
2539   else {
2540     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2541                       << " common predecessors.\n");
2542     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2543   }
2544   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2545
2546   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2547   // of PredBB.
2548   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2549                     << "' into end of '" << PredBB->getName()
2550                     << "' to eliminate branch on phi.  Cost: "
2551                     << DuplicationCost << " block is:" << *BB << "\n");
2552
2553   // Unless PredBB ends with an unconditional branch, split the edge so that we
2554   // can just clone the bits from BB into the end of the new PredBB.
2555   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2556
2557   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2558     BasicBlock *OldPredBB = PredBB;
2559     PredBB = SplitEdge(OldPredBB, BB);
2560     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2561     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2562     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2563     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2564   }
2565
2566   // We are going to have to map operands from the original BB block into the
2567   // PredBB block.  Evaluate PHI nodes in BB.
2568   DenseMap<Instruction*, Value*> ValueMapping;
2569
2570   BasicBlock::iterator BI = BB->begin();
2571   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2572     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2573   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2574   // mapping and using it to remap operands in the cloned instructions.
2575   for (; BI != BB->end(); ++BI) {
2576     Instruction *New = BI->clone();
2577
2578     // Remap operands to patch up intra-block references.
2579     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2580       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2581         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2582         if (I != ValueMapping.end())
2583           New->setOperand(i, I->second);
2584       }
2585
2586     // If this instruction can be simplified after the operands are updated,
2587     // just use the simplified value instead.  This frequently happens due to
2588     // phi translation.
2589     if (Value *IV = SimplifyInstruction(
2590             New,
2591             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2592       ValueMapping[&*BI] = IV;
2593       if (!New->mayHaveSideEffects()) {
2594         New->deleteValue();
2595         New = nullptr;
2596       }
2597     } else {
2598       ValueMapping[&*BI] = New;
2599     }
2600     if (New) {
2601       // Otherwise, insert the new instruction into the block.
2602       New->setName(BI->getName());
2603       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2604       // Update Dominance from simplified New instruction operands.
2605       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2606         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2607           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2608     }
2609   }
2610
2611   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2612   // add entries to the PHI nodes for branch from PredBB now.
2613   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2614   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2615                                   ValueMapping);
2616   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2617                                   ValueMapping);
2618
2619   UpdateSSA(BB, PredBB, ValueMapping);
2620
2621   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2622   // that we nuked.
2623   BB->removePredecessor(PredBB, true);
2624
2625   // Remove the unconditional branch at the end of the PredBB block.
2626   OldPredBranch->eraseFromParent();
2627   DTU->applyUpdatesPermissive(Updates);
2628
2629   ++NumDupes;
2630   return true;
2631 }
2632
2633 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2634 // a Select instruction in Pred. BB has other predecessors and SI is used in
2635 // a PHI node in BB. SI has no other use.
2636 // A new basic block, NewBB, is created and SI is converted to compare and 
2637 // conditional branch. SI is erased from parent.
2638 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2639                                           SelectInst *SI, PHINode *SIUse,
2640                                           unsigned Idx) {
2641   // Expand the select.
2642   //
2643   // Pred --
2644   //  |    v
2645   //  |  NewBB
2646   //  |    |
2647   //  |-----
2648   //  v
2649   // BB
2650   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2651   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2652                                          BB->getParent(), BB);
2653   // Move the unconditional branch to NewBB.
2654   PredTerm->removeFromParent();
2655   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2656   // Create a conditional branch and update PHI nodes.
2657   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2658   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2659   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2660
2661   // The select is now dead.
2662   SI->eraseFromParent();
2663   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2664                                {DominatorTree::Insert, Pred, NewBB}});
2665
2666   // Update any other PHI nodes in BB.
2667   for (BasicBlock::iterator BI = BB->begin();
2668        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2669     if (Phi != SIUse)
2670       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2671 }
2672
2673 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2674   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2675
2676   if (!CondPHI || CondPHI->getParent() != BB)
2677     return false;
2678
2679   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2680     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2681     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2682
2683     // The second and third condition can be potentially relaxed. Currently
2684     // the conditions help to simplify the code and allow us to reuse existing
2685     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2686     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2687       continue;
2688
2689     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2690     if (!PredTerm || !PredTerm->isUnconditional())
2691       continue;
2692
2693     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2694     return true;
2695   }
2696   return false;
2697 }
2698
2699 /// TryToUnfoldSelect - Look for blocks of the form
2700 /// bb1:
2701 ///   %a = select
2702 ///   br bb2
2703 ///
2704 /// bb2:
2705 ///   %p = phi [%a, %bb1] ...
2706 ///   %c = icmp %p
2707 ///   br i1 %c
2708 ///
2709 /// And expand the select into a branch structure if one of its arms allows %c
2710 /// to be folded. This later enables threading from bb1 over bb2.
2711 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2712   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2713   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2714   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2715
2716   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2717       CondLHS->getParent() != BB)
2718     return false;
2719
2720   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2721     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2722     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2723
2724     // Look if one of the incoming values is a select in the corresponding
2725     // predecessor.
2726     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2727       continue;
2728
2729     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2730     if (!PredTerm || !PredTerm->isUnconditional())
2731       continue;
2732
2733     // Now check if one of the select values would allow us to constant fold the
2734     // terminator in BB. We don't do the transform if both sides fold, those
2735     // cases will be threaded in any case.
2736     LazyValueInfo::Tristate LHSFolds =
2737         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2738                                 CondRHS, Pred, BB, CondCmp);
2739     LazyValueInfo::Tristate RHSFolds =
2740         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2741                                 CondRHS, Pred, BB, CondCmp);
2742     if ((LHSFolds != LazyValueInfo::Unknown ||
2743          RHSFolds != LazyValueInfo::Unknown) &&
2744         LHSFolds != RHSFolds) {
2745       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2746       return true;
2747     }
2748   }
2749   return false;
2750 }
2751
2752 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2753 /// same BB in the form
2754 /// bb:
2755 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2756 ///   %s = select %p, trueval, falseval
2757 ///
2758 /// or
2759 ///
2760 /// bb:
2761 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2762 ///   %c = cmp %p, 0
2763 ///   %s = select %c, trueval, falseval
2764 ///
2765 /// And expand the select into a branch structure. This later enables
2766 /// jump-threading over bb in this pass.
2767 ///
2768 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2769 /// select if the associated PHI has at least one constant.  If the unfolded
2770 /// select is not jump-threaded, it will be folded again in the later
2771 /// optimizations.
2772 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2773   // This transform can introduce a UB (a conditional branch that depends on a
2774   // poison value) that was not present in the original program. See
2775   // @TryToUnfoldSelectInCurrBB test in test/Transforms/JumpThreading/select.ll.
2776   // Disable this transform under MemorySanitizer.
2777   // FIXME: either delete it or replace with a valid transform. This issue is
2778   // not limited to MemorySanitizer (but has only been observed as an MSan false
2779   // positive in practice so far).
2780   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2781     return false;
2782
2783   // If threading this would thread across a loop header, don't thread the edge.
2784   // See the comments above FindLoopHeaders for justifications and caveats.
2785   if (LoopHeaders.count(BB))
2786     return false;
2787
2788   for (BasicBlock::iterator BI = BB->begin();
2789        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2790     // Look for a Phi having at least one constant incoming value.
2791     if (llvm::all_of(PN->incoming_values(),
2792                      [](Value *V) { return !isa<ConstantInt>(V); }))
2793       continue;
2794
2795     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2796       // Check if SI is in BB and use V as condition.
2797       if (SI->getParent() != BB)
2798         return false;
2799       Value *Cond = SI->getCondition();
2800       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2801     };
2802
2803     SelectInst *SI = nullptr;
2804     for (Use &U : PN->uses()) {
2805       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2806         // Look for a ICmp in BB that compares PN with a constant and is the
2807         // condition of a Select.
2808         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2809             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2810           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2811             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2812               SI = SelectI;
2813               break;
2814             }
2815       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2816         // Look for a Select in BB that uses PN as condition.
2817         if (isUnfoldCandidate(SelectI, U.get())) {
2818           SI = SelectI;
2819           break;
2820         }
2821       }
2822     }
2823
2824     if (!SI)
2825       continue;
2826     // Expand the select.
2827     Instruction *Term =
2828         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2829     BasicBlock *SplitBB = SI->getParent();
2830     BasicBlock *NewBB = Term->getParent();
2831     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2832     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2833     NewPN->addIncoming(SI->getFalseValue(), BB);
2834     SI->replaceAllUsesWith(NewPN);
2835     SI->eraseFromParent();
2836     // NewBB and SplitBB are newly created blocks which require insertion.
2837     std::vector<DominatorTree::UpdateType> Updates;
2838     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2839     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2840     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2841     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2842     // BB's successors were moved to SplitBB, update DTU accordingly.
2843     for (auto *Succ : successors(SplitBB)) {
2844       Updates.push_back({DominatorTree::Delete, BB, Succ});
2845       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2846     }
2847     DTU->applyUpdatesPermissive(Updates);
2848     return true;
2849   }
2850   return false;
2851 }
2852
2853 /// Try to propagate a guard from the current BB into one of its predecessors
2854 /// in case if another branch of execution implies that the condition of this
2855 /// guard is always true. Currently we only process the simplest case that
2856 /// looks like:
2857 ///
2858 /// Start:
2859 ///   %cond = ...
2860 ///   br i1 %cond, label %T1, label %F1
2861 /// T1:
2862 ///   br label %Merge
2863 /// F1:
2864 ///   br label %Merge
2865 /// Merge:
2866 ///   %condGuard = ...
2867 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2868 ///
2869 /// And cond either implies condGuard or !condGuard. In this case all the
2870 /// instructions before the guard can be duplicated in both branches, and the
2871 /// guard is then threaded to one of them.
2872 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2873   using namespace PatternMatch;
2874
2875   // We only want to deal with two predecessors.
2876   BasicBlock *Pred1, *Pred2;
2877   auto PI = pred_begin(BB), PE = pred_end(BB);
2878   if (PI == PE)
2879     return false;
2880   Pred1 = *PI++;
2881   if (PI == PE)
2882     return false;
2883   Pred2 = *PI++;
2884   if (PI != PE)
2885     return false;
2886   if (Pred1 == Pred2)
2887     return false;
2888
2889   // Try to thread one of the guards of the block.
2890   // TODO: Look up deeper than to immediate predecessor?
2891   auto *Parent = Pred1->getSinglePredecessor();
2892   if (!Parent || Parent != Pred2->getSinglePredecessor())
2893     return false;
2894
2895   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2896     for (auto &I : *BB)
2897       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2898         return true;
2899
2900   return false;
2901 }
2902
2903 /// Try to propagate the guard from BB which is the lower block of a diamond
2904 /// to one of its branches, in case if diamond's condition implies guard's
2905 /// condition.
2906 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2907                                     BranchInst *BI) {
2908   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2909   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2910   Value *GuardCond = Guard->getArgOperand(0);
2911   Value *BranchCond = BI->getCondition();
2912   BasicBlock *TrueDest = BI->getSuccessor(0);
2913   BasicBlock *FalseDest = BI->getSuccessor(1);
2914
2915   auto &DL = BB->getModule()->getDataLayout();
2916   bool TrueDestIsSafe = false;
2917   bool FalseDestIsSafe = false;
2918
2919   // True dest is safe if BranchCond => GuardCond.
2920   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2921   if (Impl && *Impl)
2922     TrueDestIsSafe = true;
2923   else {
2924     // False dest is safe if !BranchCond => GuardCond.
2925     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2926     if (Impl && *Impl)
2927       FalseDestIsSafe = true;
2928   }
2929
2930   if (!TrueDestIsSafe && !FalseDestIsSafe)
2931     return false;
2932
2933   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2934   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2935
2936   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2937   Instruction *AfterGuard = Guard->getNextNode();
2938   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2939   if (Cost > BBDupThreshold)
2940     return false;
2941   // Duplicate all instructions before the guard and the guard itself to the
2942   // branch where implication is not proved.
2943   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2944       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2945   assert(GuardedBlock && "Could not create the guarded block?");
2946   // Duplicate all instructions before the guard in the unguarded branch.
2947   // Since we have successfully duplicated the guarded block and this block
2948   // has fewer instructions, we expect it to succeed.
2949   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2950       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2951   assert(UnguardedBlock && "Could not create the unguarded block?");
2952   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2953                     << GuardedBlock->getName() << "\n");
2954   // Some instructions before the guard may still have uses. For them, we need
2955   // to create Phi nodes merging their copies in both guarded and unguarded
2956   // branches. Those instructions that have no uses can be just removed.
2957   SmallVector<Instruction *, 4> ToRemove;
2958   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2959     if (!isa<PHINode>(&*BI))
2960       ToRemove.push_back(&*BI);
2961
2962   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2963   assert(InsertionPoint && "Empty block?");
2964   // Substitute with Phis & remove.
2965   for (auto *Inst : reverse(ToRemove)) {
2966     if (!Inst->use_empty()) {
2967       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2968       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2969       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2970       NewPN->insertBefore(InsertionPoint);
2971       Inst->replaceAllUsesWith(NewPN);
2972     }
2973     Inst->eraseFromParent();
2974   }
2975   return true;
2976 }