]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - contrib/unbound/validator/val_secalgo.c
Copy stable/10@r272459 to releng/10.1 as part of
[FreeBSD/releng/10.1.git] / contrib / unbound / validator / val_secalgo.c
1 /*
2  * validator/val_secalgo.c - validator security algorithm functions.
3  *
4  * Copyright (c) 2012, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  * 
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  * 
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  * 
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  * 
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * These functions take raw data buffers, formatted for crypto verification,
41  * and do the library calls (for the crypto library in use).
42  */
43 #include "config.h"
44 #include "validator/val_secalgo.h"
45 #include "util/data/packed_rrset.h"
46 #include "util/log.h"
47 #include "ldns/rrdef.h"
48 #include "ldns/keyraw.h"
49 #include "ldns/sbuffer.h"
50
51 #if !defined(HAVE_SSL) && !defined(HAVE_NSS)
52 #error "Need crypto library to do digital signature cryptography"
53 #endif
54
55 /* OpenSSL implementation */
56 #ifdef HAVE_SSL
57 #ifdef HAVE_OPENSSL_ERR_H
58 #include <openssl/err.h>
59 #endif
60
61 #ifdef HAVE_OPENSSL_RAND_H
62 #include <openssl/rand.h>
63 #endif
64
65 #ifdef HAVE_OPENSSL_CONF_H
66 #include <openssl/conf.h>
67 #endif
68
69 #ifdef HAVE_OPENSSL_ENGINE_H
70 #include <openssl/engine.h>
71 #endif
72
73 /**
74  * Return size of DS digest according to its hash algorithm.
75  * @param algo: DS digest algo.
76  * @return size in bytes of digest, or 0 if not supported. 
77  */
78 size_t
79 ds_digest_size_supported(int algo)
80 {
81         switch(algo) {
82 #ifdef HAVE_EVP_SHA1
83                 case LDNS_SHA1:
84                         return SHA_DIGEST_LENGTH;
85 #endif
86 #ifdef HAVE_EVP_SHA256
87                 case LDNS_SHA256:
88                         return SHA256_DIGEST_LENGTH;
89 #endif
90 #ifdef USE_GOST
91                 case LDNS_HASH_GOST:
92                         if(EVP_get_digestbyname("md_gost94"))
93                                 return 32;
94                         else    return 0;
95 #endif
96 #ifdef USE_ECDSA
97                 case LDNS_SHA384:
98                         return SHA384_DIGEST_LENGTH;
99 #endif
100                 default: break;
101         }
102         return 0;
103 }
104
105 #ifdef USE_GOST
106 /** Perform GOST hash */
107 static int
108 do_gost94(unsigned char* data, size_t len, unsigned char* dest)
109 {
110         const EVP_MD* md = EVP_get_digestbyname("md_gost94");
111         if(!md) 
112                 return 0;
113         return sldns_digest_evp(data, (unsigned int)len, dest, md);
114 }
115 #endif
116
117 int
118 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
119         unsigned char* res)
120 {
121         switch(algo) {
122 #ifdef HAVE_EVP_SHA1
123                 case LDNS_SHA1:
124                         (void)SHA1(buf, len, res);
125                         return 1;
126 #endif
127 #ifdef HAVE_EVP_SHA256
128                 case LDNS_SHA256:
129                         (void)SHA256(buf, len, res);
130                         return 1;
131 #endif
132 #ifdef USE_GOST
133                 case LDNS_HASH_GOST:
134                         if(do_gost94(buf, len, res))
135                                 return 1;
136                         break;
137 #endif
138 #ifdef USE_ECDSA
139                 case LDNS_SHA384:
140                         (void)SHA384(buf, len, res);
141                         return 1;
142 #endif
143                 default: 
144                         verbose(VERB_QUERY, "unknown DS digest algorithm %d", 
145                                 algo);
146                         break;
147         }
148         return 0;
149 }
150
151 /** return true if DNSKEY algorithm id is supported */
152 int
153 dnskey_algo_id_is_supported(int id)
154 {
155         switch(id) {
156         case LDNS_RSAMD5:
157                 /* RFC 6725 deprecates RSAMD5 */
158                 return 0;
159         case LDNS_DSA:
160         case LDNS_DSA_NSEC3:
161         case LDNS_RSASHA1:
162         case LDNS_RSASHA1_NSEC3:
163 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
164         case LDNS_RSASHA256:
165 #endif
166 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
167         case LDNS_RSASHA512:
168 #endif
169 #ifdef USE_ECDSA
170         case LDNS_ECDSAP256SHA256:
171         case LDNS_ECDSAP384SHA384:
172 #endif
173                 return 1;
174 #ifdef USE_GOST
175         case LDNS_ECC_GOST:
176                 /* we support GOST if it can be loaded */
177                 return sldns_key_EVP_load_gost_id();
178 #endif
179         default:
180                 return 0;
181         }
182 }
183
184 /**
185  * Output a libcrypto openssl error to the logfile.
186  * @param str: string to add to it.
187  * @param e: the error to output, error number from ERR_get_error().
188  */
189 static void
190 log_crypto_error(const char* str, unsigned long e)
191 {
192         char buf[128];
193         /* or use ERR_error_string if ERR_error_string_n is not avail TODO */
194         ERR_error_string_n(e, buf, sizeof(buf));
195         /* buf now contains */
196         /* error:[error code]:[library name]:[function name]:[reason string] */
197         log_err("%s crypto %s", str, buf);
198 }
199
200 /**
201  * Setup DSA key digest in DER encoding ... 
202  * @param sig: input is signature output alloced ptr (unless failure).
203  *      caller must free alloced ptr if this routine returns true.
204  * @param len: input is initial siglen, output is output len.
205  * @return false on failure.
206  */
207 static int
208 setup_dsa_sig(unsigned char** sig, unsigned int* len)
209 {
210         unsigned char* orig = *sig;
211         unsigned int origlen = *len;
212         int newlen;
213         BIGNUM *R, *S;
214         DSA_SIG *dsasig;
215
216         /* extract the R and S field from the sig buffer */
217         if(origlen < 1 + 2*SHA_DIGEST_LENGTH)
218                 return 0;
219         R = BN_new();
220         if(!R) return 0;
221         (void) BN_bin2bn(orig + 1, SHA_DIGEST_LENGTH, R);
222         S = BN_new();
223         if(!S) return 0;
224         (void) BN_bin2bn(orig + 21, SHA_DIGEST_LENGTH, S);
225         dsasig = DSA_SIG_new();
226         if(!dsasig) return 0;
227
228         dsasig->r = R;
229         dsasig->s = S;
230         *sig = NULL;
231         newlen = i2d_DSA_SIG(dsasig, sig);
232         if(newlen < 0) {
233                 DSA_SIG_free(dsasig);
234                 free(*sig);
235                 return 0;
236         }
237         *len = (unsigned int)newlen;
238         DSA_SIG_free(dsasig);
239         return 1;
240 }
241
242 #ifdef USE_ECDSA
243 /**
244  * Setup the ECDSA signature in its encoding that the library wants.
245  * Converts from plain numbers to ASN formatted.
246  * @param sig: input is signature, output alloced ptr (unless failure).
247  *      caller must free alloced ptr if this routine returns true.
248  * @param len: input is initial siglen, output is output len.
249  * @return false on failure.
250  */
251 static int
252 setup_ecdsa_sig(unsigned char** sig, unsigned int* len)
253 {
254         ECDSA_SIG* ecdsa_sig;
255         int newlen;
256         int bnsize = (int)((*len)/2);
257         /* if too short or not even length, fails */
258         if(*len < 16 || bnsize*2 != (int)*len)
259                 return 0;
260         /* use the raw data to parse two evenly long BIGNUMs, "r | s". */
261         ecdsa_sig = ECDSA_SIG_new();
262         if(!ecdsa_sig) return 0;
263         ecdsa_sig->r = BN_bin2bn(*sig, bnsize, ecdsa_sig->r);
264         ecdsa_sig->s = BN_bin2bn(*sig+bnsize, bnsize, ecdsa_sig->s);
265         if(!ecdsa_sig->r || !ecdsa_sig->s) {
266                 ECDSA_SIG_free(ecdsa_sig);
267                 return 0;
268         }
269
270         /* spool it into ASN format */
271         *sig = NULL;
272         newlen = i2d_ECDSA_SIG(ecdsa_sig, sig);
273         if(newlen <= 0) {
274                 ECDSA_SIG_free(ecdsa_sig);
275                 free(*sig);
276                 return 0;
277         }
278         *len = (unsigned int)newlen;
279         ECDSA_SIG_free(ecdsa_sig);
280         return 1;
281 }
282 #endif /* USE_ECDSA */
283
284 /**
285  * Setup key and digest for verification. Adjust sig if necessary.
286  *
287  * @param algo: key algorithm
288  * @param evp_key: EVP PKEY public key to create.
289  * @param digest_type: digest type to use
290  * @param key: key to setup for.
291  * @param keylen: length of key.
292  * @return false on failure.
293  */
294 static int
295 setup_key_digest(int algo, EVP_PKEY** evp_key, const EVP_MD** digest_type, 
296         unsigned char* key, size_t keylen)
297 {
298         DSA* dsa;
299         RSA* rsa;
300
301         switch(algo) {
302                 case LDNS_DSA:
303                 case LDNS_DSA_NSEC3:
304                         *evp_key = EVP_PKEY_new();
305                         if(!*evp_key) {
306                                 log_err("verify: malloc failure in crypto");
307                                 return 0;
308                         }
309                         dsa = sldns_key_buf2dsa_raw(key, keylen);
310                         if(!dsa) {
311                                 verbose(VERB_QUERY, "verify: "
312                                         "sldns_key_buf2dsa_raw failed");
313                                 return 0;
314                         }
315                         if(EVP_PKEY_assign_DSA(*evp_key, dsa) == 0) {
316                                 verbose(VERB_QUERY, "verify: "
317                                         "EVP_PKEY_assign_DSA failed");
318                                 return 0;
319                         }
320                         *digest_type = EVP_dss1();
321
322                         break;
323                 case LDNS_RSASHA1:
324                 case LDNS_RSASHA1_NSEC3:
325 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
326                 case LDNS_RSASHA256:
327 #endif
328 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
329                 case LDNS_RSASHA512:
330 #endif
331                         *evp_key = EVP_PKEY_new();
332                         if(!*evp_key) {
333                                 log_err("verify: malloc failure in crypto");
334                                 return 0;
335                         }
336                         rsa = sldns_key_buf2rsa_raw(key, keylen);
337                         if(!rsa) {
338                                 verbose(VERB_QUERY, "verify: "
339                                         "sldns_key_buf2rsa_raw SHA failed");
340                                 return 0;
341                         }
342                         if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
343                                 verbose(VERB_QUERY, "verify: "
344                                         "EVP_PKEY_assign_RSA SHA failed");
345                                 return 0;
346                         }
347
348                         /* select SHA version */
349 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
350                         if(algo == LDNS_RSASHA256)
351                                 *digest_type = EVP_sha256();
352                         else
353 #endif
354 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
355                                 if(algo == LDNS_RSASHA512)
356                                 *digest_type = EVP_sha512();
357                         else
358 #endif
359                                 *digest_type = EVP_sha1();
360
361                         break;
362                 case LDNS_RSAMD5:
363                         *evp_key = EVP_PKEY_new();
364                         if(!*evp_key) {
365                                 log_err("verify: malloc failure in crypto");
366                                 return 0;
367                         }
368                         rsa = sldns_key_buf2rsa_raw(key, keylen);
369                         if(!rsa) {
370                                 verbose(VERB_QUERY, "verify: "
371                                         "sldns_key_buf2rsa_raw MD5 failed");
372                                 return 0;
373                         }
374                         if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
375                                 verbose(VERB_QUERY, "verify: "
376                                         "EVP_PKEY_assign_RSA MD5 failed");
377                                 return 0;
378                         }
379                         *digest_type = EVP_md5();
380
381                         break;
382 #ifdef USE_GOST
383                 case LDNS_ECC_GOST:
384                         *evp_key = sldns_gost2pkey_raw(key, keylen);
385                         if(!*evp_key) {
386                                 verbose(VERB_QUERY, "verify: "
387                                         "sldns_gost2pkey_raw failed");
388                                 return 0;
389                         }
390                         *digest_type = EVP_get_digestbyname("md_gost94");
391                         if(!*digest_type) {
392                                 verbose(VERB_QUERY, "verify: "
393                                         "EVP_getdigest md_gost94 failed");
394                                 return 0;
395                         }
396                         break;
397 #endif
398 #ifdef USE_ECDSA
399                 case LDNS_ECDSAP256SHA256:
400                         *evp_key = sldns_ecdsa2pkey_raw(key, keylen,
401                                 LDNS_ECDSAP256SHA256);
402                         if(!*evp_key) {
403                                 verbose(VERB_QUERY, "verify: "
404                                         "sldns_ecdsa2pkey_raw failed");
405                                 return 0;
406                         }
407 #ifdef USE_ECDSA_EVP_WORKAROUND
408                         /* openssl before 1.0.0 fixes RSA with the SHA256
409                          * hash in EVP.  We create one for ecdsa_sha256 */
410                         {
411                                 static int md_ecdsa_256_done = 0;
412                                 static EVP_MD md;
413                                 if(!md_ecdsa_256_done) {
414                                         EVP_MD m = *EVP_sha256();
415                                         md_ecdsa_256_done = 1;
416                                         m.required_pkey_type[0] = (*evp_key)->type;
417                                         m.verify = (void*)ECDSA_verify;
418                                         md = m;
419                                 }
420                                 *digest_type = &md;
421                         }
422 #else
423                         *digest_type = EVP_sha256();
424 #endif
425                         break;
426                 case LDNS_ECDSAP384SHA384:
427                         *evp_key = sldns_ecdsa2pkey_raw(key, keylen,
428                                 LDNS_ECDSAP384SHA384);
429                         if(!*evp_key) {
430                                 verbose(VERB_QUERY, "verify: "
431                                         "sldns_ecdsa2pkey_raw failed");
432                                 return 0;
433                         }
434 #ifdef USE_ECDSA_EVP_WORKAROUND
435                         /* openssl before 1.0.0 fixes RSA with the SHA384
436                          * hash in EVP.  We create one for ecdsa_sha384 */
437                         {
438                                 static int md_ecdsa_384_done = 0;
439                                 static EVP_MD md;
440                                 if(!md_ecdsa_384_done) {
441                                         EVP_MD m = *EVP_sha384();
442                                         md_ecdsa_384_done = 1;
443                                         m.required_pkey_type[0] = (*evp_key)->type;
444                                         m.verify = (void*)ECDSA_verify;
445                                         md = m;
446                                 }
447                                 *digest_type = &md;
448                         }
449 #else
450                         *digest_type = EVP_sha384();
451 #endif
452                         break;
453 #endif /* USE_ECDSA */
454                 default:
455                         verbose(VERB_QUERY, "verify: unknown algorithm %d", 
456                                 algo);
457                         return 0;
458         }
459         return 1;
460 }
461
462 /**
463  * Check a canonical sig+rrset and signature against a dnskey
464  * @param buf: buffer with data to verify, the first rrsig part and the
465  *      canonicalized rrset.
466  * @param algo: DNSKEY algorithm.
467  * @param sigblock: signature rdata field from RRSIG
468  * @param sigblock_len: length of sigblock data.
469  * @param key: public key data from DNSKEY RR.
470  * @param keylen: length of keydata.
471  * @param reason: bogus reason in more detail.
472  * @return secure if verification succeeded, bogus on crypto failure,
473  *      unchecked on format errors and alloc failures.
474  */
475 enum sec_status
476 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock, 
477         unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
478         char** reason)
479 {
480         const EVP_MD *digest_type;
481         EVP_MD_CTX ctx;
482         int res, dofree = 0;
483         EVP_PKEY *evp_key = NULL;
484         
485         if(!setup_key_digest(algo, &evp_key, &digest_type, key, keylen)) {
486                 verbose(VERB_QUERY, "verify: failed to setup key");
487                 *reason = "use of key for crypto failed";
488                 EVP_PKEY_free(evp_key);
489                 return sec_status_bogus;
490         }
491         /* if it is a DSA signature in bind format, convert to DER format */
492         if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) && 
493                 sigblock_len == 1+2*SHA_DIGEST_LENGTH) {
494                 if(!setup_dsa_sig(&sigblock, &sigblock_len)) {
495                         verbose(VERB_QUERY, "verify: failed to setup DSA sig");
496                         *reason = "use of key for DSA crypto failed";
497                         EVP_PKEY_free(evp_key);
498                         return sec_status_bogus;
499                 }
500                 dofree = 1;
501         }
502 #ifdef USE_ECDSA
503         else if(algo == LDNS_ECDSAP256SHA256 || algo == LDNS_ECDSAP384SHA384) {
504                 /* EVP uses ASN prefix on sig, which is not in the wire data */
505                 if(!setup_ecdsa_sig(&sigblock, &sigblock_len)) {
506                         verbose(VERB_QUERY, "verify: failed to setup ECDSA sig");
507                         *reason = "use of signature for ECDSA crypto failed";
508                         EVP_PKEY_free(evp_key);
509                         return sec_status_bogus;
510                 }
511                 dofree = 1;
512         }
513 #endif /* USE_ECDSA */
514
515         /* do the signature cryptography work */
516         EVP_MD_CTX_init(&ctx);
517         if(EVP_VerifyInit(&ctx, digest_type) == 0) {
518                 verbose(VERB_QUERY, "verify: EVP_VerifyInit failed");
519                 EVP_PKEY_free(evp_key);
520                 if(dofree) free(sigblock);
521                 return sec_status_unchecked;
522         }
523         if(EVP_VerifyUpdate(&ctx, (unsigned char*)sldns_buffer_begin(buf), 
524                 (unsigned int)sldns_buffer_limit(buf)) == 0) {
525                 verbose(VERB_QUERY, "verify: EVP_VerifyUpdate failed");
526                 EVP_PKEY_free(evp_key);
527                 if(dofree) free(sigblock);
528                 return sec_status_unchecked;
529         }
530
531         res = EVP_VerifyFinal(&ctx, sigblock, sigblock_len, evp_key);
532         if(EVP_MD_CTX_cleanup(&ctx) == 0) {
533                 verbose(VERB_QUERY, "verify: EVP_MD_CTX_cleanup failed");
534                 EVP_PKEY_free(evp_key);
535                 if(dofree) free(sigblock);
536                 return sec_status_unchecked;
537         }
538         EVP_PKEY_free(evp_key);
539
540         if(dofree)
541                 free(sigblock);
542
543         if(res == 1) {
544                 return sec_status_secure;
545         } else if(res == 0) {
546                 verbose(VERB_QUERY, "verify: signature mismatch");
547                 *reason = "signature crypto failed";
548                 return sec_status_bogus;
549         }
550
551         log_crypto_error("verify:", ERR_get_error());
552         return sec_status_unchecked;
553 }
554
555 /**************************************************/
556 #elif defined(HAVE_NSS)
557 /* libnss implementation */
558 /* nss3 */
559 #include "sechash.h"
560 #include "pk11pub.h"
561 #include "keyhi.h"
562 #include "secerr.h"
563 #include "cryptohi.h"
564 /* nspr4 */
565 #include "prerror.h"
566
567 size_t
568 ds_digest_size_supported(int algo)
569 {
570         /* uses libNSS */
571         switch(algo) {
572                 case LDNS_SHA1:
573                         return SHA1_LENGTH;
574 #ifdef USE_SHA2
575                 case LDNS_SHA256:
576                         return SHA256_LENGTH;
577 #endif
578 #ifdef USE_ECDSA
579                 case LDNS_SHA384:
580                         return SHA384_LENGTH;
581 #endif
582                 /* GOST not supported in NSS */
583                 case LDNS_HASH_GOST:
584                 default: break;
585         }
586         return 0;
587 }
588
589 int
590 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
591         unsigned char* res)
592 {
593         /* uses libNSS */
594         switch(algo) {
595                 case LDNS_SHA1:
596                         return HASH_HashBuf(HASH_AlgSHA1, res, buf, len)
597                                 == SECSuccess;
598 #if defined(USE_SHA2)
599                 case LDNS_SHA256:
600                         return HASH_HashBuf(HASH_AlgSHA256, res, buf, len)
601                                 == SECSuccess;
602 #endif
603 #ifdef USE_ECDSA
604                 case LDNS_SHA384:
605                         return HASH_HashBuf(HASH_AlgSHA384, res, buf, len)
606                                 == SECSuccess;
607 #endif
608                 case LDNS_HASH_GOST:
609                 default: 
610                         verbose(VERB_QUERY, "unknown DS digest algorithm %d", 
611                                 algo);
612                         break;
613         }
614         return 0;
615 }
616
617 int
618 dnskey_algo_id_is_supported(int id)
619 {
620         /* uses libNSS */
621         switch(id) {
622         case LDNS_RSAMD5:
623                 /* RFC 6725 deprecates RSAMD5 */
624                 return 0;
625         case LDNS_DSA:
626         case LDNS_DSA_NSEC3:
627         case LDNS_RSASHA1:
628         case LDNS_RSASHA1_NSEC3:
629 #ifdef USE_SHA2
630         case LDNS_RSASHA256:
631 #endif
632 #ifdef USE_SHA2
633         case LDNS_RSASHA512:
634 #endif
635                 return 1;
636 #ifdef USE_ECDSA
637         case LDNS_ECDSAP256SHA256:
638         case LDNS_ECDSAP384SHA384:
639                 return PK11_TokenExists(CKM_ECDSA);
640 #endif
641         case LDNS_ECC_GOST:
642         default:
643                 return 0;
644         }
645 }
646
647 /* return a new public key for NSS */
648 static SECKEYPublicKey* nss_key_create(KeyType ktype)
649 {
650         SECKEYPublicKey* key;
651         PLArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
652         if(!arena) {
653                 log_err("out of memory, PORT_NewArena failed");
654                 return NULL;
655         }
656         key = PORT_ArenaZNew(arena, SECKEYPublicKey);
657         if(!key) {
658                 log_err("out of memory, PORT_ArenaZNew failed");
659                 PORT_FreeArena(arena, PR_FALSE);
660                 return NULL;
661         }
662         key->arena = arena;
663         key->keyType = ktype;
664         key->pkcs11Slot = NULL;
665         key->pkcs11ID = CK_INVALID_HANDLE;
666         return key;
667 }
668
669 static SECKEYPublicKey* nss_buf2ecdsa(unsigned char* key, size_t len, int algo)
670 {
671         SECKEYPublicKey* pk;
672         SECItem pub = {siBuffer, NULL, 0};
673         SECItem params = {siBuffer, NULL, 0};
674         static unsigned char param256[] = {
675                 /* OBJECTIDENTIFIER 1.2.840.10045.3.1.7 (P-256)
676                  * {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
677                 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
678         };
679         static unsigned char param384[] = {
680                 /* OBJECTIDENTIFIER 1.3.132.0.34 (P-384)
681                  * {iso(1) identified-organization(3) certicom(132) curve(0) ansip384r1(34)} */
682                 0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22
683         };
684         unsigned char buf[256+2]; /* sufficient for 2*384/8+1 */
685
686         /* check length, which uncompressed must be 2 bignums */
687         if(algo == LDNS_ECDSAP256SHA256) {
688                 if(len != 2*256/8) return NULL;
689                 /* ECCurve_X9_62_PRIME_256V1 */
690         } else if(algo == LDNS_ECDSAP384SHA384) {
691                 if(len != 2*384/8) return NULL;
692                 /* ECCurve_X9_62_PRIME_384R1 */
693         } else    return NULL;
694
695         buf[0] = 0x04; /* POINT_FORM_UNCOMPRESSED */
696         memmove(buf+1, key, len);
697         pub.data = buf;
698         pub.len = len+1;
699         if(algo == LDNS_ECDSAP256SHA256) {
700                 params.data = param256;
701                 params.len = sizeof(param256);
702         } else {
703                 params.data = param384;
704                 params.len = sizeof(param384);
705         }
706
707         pk = nss_key_create(ecKey);
708         if(!pk)
709                 return NULL;
710         pk->u.ec.size = (len/2)*8;
711         if(SECITEM_CopyItem(pk->arena, &pk->u.ec.publicValue, &pub)) {
712                 SECKEY_DestroyPublicKey(pk);
713                 return NULL;
714         }
715         if(SECITEM_CopyItem(pk->arena, &pk->u.ec.DEREncodedParams, &params)) {
716                 SECKEY_DestroyPublicKey(pk);
717                 return NULL;
718         }
719
720         return pk;
721 }
722
723 static SECKEYPublicKey* nss_buf2dsa(unsigned char* key, size_t len)
724 {
725         SECKEYPublicKey* pk;
726         uint8_t T;
727         uint16_t length;
728         uint16_t offset;
729         SECItem Q = {siBuffer, NULL, 0};
730         SECItem P = {siBuffer, NULL, 0};
731         SECItem G = {siBuffer, NULL, 0};
732         SECItem Y = {siBuffer, NULL, 0};
733
734         if(len == 0)
735                 return NULL;
736         T = (uint8_t)key[0];
737         length = (64 + T * 8);
738         offset = 1;
739
740         if (T > 8) {
741                 return NULL;
742         }
743         if(len < (size_t)1 + SHA1_LENGTH + 3*length)
744                 return NULL;
745
746         Q.data = key+offset;
747         Q.len = SHA1_LENGTH;
748         offset += SHA1_LENGTH;
749
750         P.data = key+offset;
751         P.len = length;
752         offset += length;
753
754         G.data = key+offset;
755         G.len = length;
756         offset += length;
757
758         Y.data = key+offset;
759         Y.len = length;
760         offset += length;
761
762         pk = nss_key_create(dsaKey);
763         if(!pk)
764                 return NULL;
765         if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.prime, &P)) {
766                 SECKEY_DestroyPublicKey(pk);
767                 return NULL;
768         }
769         if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.subPrime, &Q)) {
770                 SECKEY_DestroyPublicKey(pk);
771                 return NULL;
772         }
773         if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.base, &G)) {
774                 SECKEY_DestroyPublicKey(pk);
775                 return NULL;
776         }
777         if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.publicValue, &Y)) {
778                 SECKEY_DestroyPublicKey(pk);
779                 return NULL;
780         }
781         return pk;
782 }
783
784 static SECKEYPublicKey* nss_buf2rsa(unsigned char* key, size_t len)
785 {
786         SECKEYPublicKey* pk;
787         uint16_t exp;
788         uint16_t offset;
789         uint16_t int16;
790         SECItem modulus = {siBuffer, NULL, 0};
791         SECItem exponent = {siBuffer, NULL, 0};
792         if(len == 0)
793                 return NULL;
794         if(key[0] == 0) {
795                 if(len < 3)
796                         return NULL;
797                 /* the exponent is too large so it's places further */
798                 memmove(&int16, key+1, 2);
799                 exp = ntohs(int16);
800                 offset = 3;
801         } else {
802                 exp = key[0];
803                 offset = 1;
804         }
805
806         /* key length at least one */
807         if(len < (size_t)offset + exp + 1)
808                 return NULL;
809         
810         exponent.data = key+offset;
811         exponent.len = exp;
812         offset += exp;
813         modulus.data = key+offset;
814         modulus.len = (len - offset);
815
816         pk = nss_key_create(rsaKey);
817         if(!pk)
818                 return NULL;
819         if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.modulus, &modulus)) {
820                 SECKEY_DestroyPublicKey(pk);
821                 return NULL;
822         }
823         if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.publicExponent, &exponent)) {
824                 SECKEY_DestroyPublicKey(pk);
825                 return NULL;
826         }
827         return pk;
828 }
829
830 /**
831  * Setup key and digest for verification. Adjust sig if necessary.
832  *
833  * @param algo: key algorithm
834  * @param evp_key: EVP PKEY public key to create.
835  * @param digest_type: digest type to use
836  * @param key: key to setup for.
837  * @param keylen: length of key.
838  * @param prefix: if returned, the ASN prefix for the hashblob.
839  * @param prefixlen: length of the prefix.
840  * @return false on failure.
841  */
842 static int
843 nss_setup_key_digest(int algo, SECKEYPublicKey** pubkey, HASH_HashType* htype,
844         unsigned char* key, size_t keylen, unsigned char** prefix,
845         size_t* prefixlen)
846 {
847         /* uses libNSS */
848
849         /* hash prefix for md5, RFC2537 */
850         static unsigned char p_md5[] = {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a,
851         0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10};
852         /* hash prefix to prepend to hash output, from RFC3110 */
853         static unsigned char p_sha1[] = {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
854                 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};
855         /* from RFC5702 */
856         static unsigned char p_sha256[] = {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
857         0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
858         static unsigned char p_sha512[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
859         0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
860         /* from RFC6234 */
861         /* for future RSASHA384 .. 
862         static unsigned char p_sha384[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
863         0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30};
864         */
865
866         switch(algo) {
867                 case LDNS_DSA:
868                 case LDNS_DSA_NSEC3:
869                         *pubkey = nss_buf2dsa(key, keylen);
870                         if(!*pubkey) {
871                                 log_err("verify: malloc failure in crypto");
872                                 return 0;
873                         }
874                         *htype = HASH_AlgSHA1;
875                         /* no prefix for DSA verification */
876                         break;
877                 case LDNS_RSASHA1:
878                 case LDNS_RSASHA1_NSEC3:
879 #ifdef USE_SHA2
880                 case LDNS_RSASHA256:
881 #endif
882 #ifdef USE_SHA2
883                 case LDNS_RSASHA512:
884 #endif
885                         *pubkey = nss_buf2rsa(key, keylen);
886                         if(!*pubkey) {
887                                 log_err("verify: malloc failure in crypto");
888                                 return 0;
889                         }
890                         /* select SHA version */
891 #ifdef USE_SHA2
892                         if(algo == LDNS_RSASHA256) {
893                                 *htype = HASH_AlgSHA256;
894                                 *prefix = p_sha256;
895                                 *prefixlen = sizeof(p_sha256);
896                         } else
897 #endif
898 #ifdef USE_SHA2
899                                 if(algo == LDNS_RSASHA512) {
900                                 *htype = HASH_AlgSHA512;
901                                 *prefix = p_sha512;
902                                 *prefixlen = sizeof(p_sha512);
903                         } else
904 #endif
905                         {
906                                 *htype = HASH_AlgSHA1;
907                                 *prefix = p_sha1;
908                                 *prefixlen = sizeof(p_sha1);
909                         }
910
911                         break;
912                 case LDNS_RSAMD5:
913                         *pubkey = nss_buf2rsa(key, keylen);
914                         if(!*pubkey) {
915                                 log_err("verify: malloc failure in crypto");
916                                 return 0;
917                         }
918                         *htype = HASH_AlgMD5;
919                         *prefix = p_md5;
920                         *prefixlen = sizeof(p_md5);
921
922                         break;
923 #ifdef USE_ECDSA
924                 case LDNS_ECDSAP256SHA256:
925                         *pubkey = nss_buf2ecdsa(key, keylen,
926                                 LDNS_ECDSAP256SHA256);
927                         if(!*pubkey) {
928                                 log_err("verify: malloc failure in crypto");
929                                 return 0;
930                         }
931                         *htype = HASH_AlgSHA256;
932                         /* no prefix for DSA verification */
933                         break;
934                 case LDNS_ECDSAP384SHA384:
935                         *pubkey = nss_buf2ecdsa(key, keylen,
936                                 LDNS_ECDSAP384SHA384);
937                         if(!*pubkey) {
938                                 log_err("verify: malloc failure in crypto");
939                                 return 0;
940                         }
941                         *htype = HASH_AlgSHA384;
942                         /* no prefix for DSA verification */
943                         break;
944 #endif /* USE_ECDSA */
945                 case LDNS_ECC_GOST:
946                 default:
947                         verbose(VERB_QUERY, "verify: unknown algorithm %d", 
948                                 algo);
949                         return 0;
950         }
951         return 1;
952 }
953
954 /**
955  * Check a canonical sig+rrset and signature against a dnskey
956  * @param buf: buffer with data to verify, the first rrsig part and the
957  *      canonicalized rrset.
958  * @param algo: DNSKEY algorithm.
959  * @param sigblock: signature rdata field from RRSIG
960  * @param sigblock_len: length of sigblock data.
961  * @param key: public key data from DNSKEY RR.
962  * @param keylen: length of keydata.
963  * @param reason: bogus reason in more detail.
964  * @return secure if verification succeeded, bogus on crypto failure,
965  *      unchecked on format errors and alloc failures.
966  */
967 enum sec_status
968 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock, 
969         unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
970         char** reason)
971 {
972         /* uses libNSS */
973         /* large enough for the different hashes */
974         unsigned char hash[HASH_LENGTH_MAX];
975         unsigned char hash2[HASH_LENGTH_MAX*2];
976         HASH_HashType htype = 0;
977         SECKEYPublicKey* pubkey = NULL;
978         SECItem secsig = {siBuffer, sigblock, sigblock_len};
979         SECItem sechash = {siBuffer, hash, 0};
980         SECStatus res;
981         unsigned char* prefix = NULL; /* prefix for hash, RFC3110, RFC5702 */
982         size_t prefixlen = 0;
983         int err;
984
985         if(!nss_setup_key_digest(algo, &pubkey, &htype, key, keylen,
986                 &prefix, &prefixlen)) {
987                 verbose(VERB_QUERY, "verify: failed to setup key");
988                 *reason = "use of key for crypto failed";
989                 SECKEY_DestroyPublicKey(pubkey);
990                 return sec_status_bogus;
991         }
992
993         /* need to convert DSA, ECDSA signatures? */
994         if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3)) {
995                 if(sigblock_len == 1+2*SHA1_LENGTH) {
996                         secsig.data ++;
997                         secsig.len --;
998                 } else {
999                         SECItem* p = DSAU_DecodeDerSig(&secsig);
1000                         if(!p) {
1001                                 verbose(VERB_QUERY, "verify: failed DER decode");
1002                                 *reason = "signature DER decode failed";
1003                                 SECKEY_DestroyPublicKey(pubkey);
1004                                 return sec_status_bogus;
1005                         }
1006                         if(SECITEM_CopyItem(pubkey->arena, &secsig, p)) {
1007                                 log_err("alloc failure in DER decode");
1008                                 SECKEY_DestroyPublicKey(pubkey);
1009                                 SECITEM_FreeItem(p, PR_TRUE);
1010                                 return sec_status_unchecked;
1011                         }
1012                         SECITEM_FreeItem(p, PR_TRUE);
1013                 }
1014         }
1015
1016         /* do the signature cryptography work */
1017         /* hash the data */
1018         sechash.len = HASH_ResultLen(htype);
1019         if(sechash.len > sizeof(hash)) {
1020                 verbose(VERB_QUERY, "verify: hash too large for buffer");
1021                 SECKEY_DestroyPublicKey(pubkey);
1022                 return sec_status_unchecked;
1023         }
1024         if(HASH_HashBuf(htype, hash, (unsigned char*)sldns_buffer_begin(buf),
1025                 (unsigned int)sldns_buffer_limit(buf)) != SECSuccess) {
1026                 verbose(VERB_QUERY, "verify: HASH_HashBuf failed");
1027                 SECKEY_DestroyPublicKey(pubkey);
1028                 return sec_status_unchecked;
1029         }
1030         if(prefix) {
1031                 int hashlen = sechash.len;
1032                 if(prefixlen+hashlen > sizeof(hash2)) {
1033                         verbose(VERB_QUERY, "verify: hashprefix too large");
1034                         SECKEY_DestroyPublicKey(pubkey);
1035                         return sec_status_unchecked;
1036                 }
1037                 sechash.data = hash2;
1038                 sechash.len = prefixlen+hashlen;
1039                 memcpy(sechash.data, prefix, prefixlen);
1040                 memmove(sechash.data+prefixlen, hash, hashlen);
1041         }
1042
1043         /* verify the signature */
1044         res = PK11_Verify(pubkey, &secsig, &sechash, NULL /*wincx*/);
1045         SECKEY_DestroyPublicKey(pubkey);
1046
1047         if(res == SECSuccess) {
1048                 return sec_status_secure;
1049         }
1050         err = PORT_GetError();
1051         if(err != SEC_ERROR_BAD_SIGNATURE) {
1052                 /* failed to verify */
1053                 verbose(VERB_QUERY, "verify: PK11_Verify failed: %s",
1054                         PORT_ErrorToString(err));
1055                 /* if it is not supported, like ECC is removed, we get,
1056                  * SEC_ERROR_NO_MODULE */
1057                 if(err == SEC_ERROR_NO_MODULE)
1058                         return sec_status_unchecked;
1059                 /* but other errors are commonly returned
1060                  * for a bad signature from NSS.  Thus we return bogus,
1061                  * not unchecked */
1062                 *reason = "signature crypto failed";
1063                 return sec_status_bogus;
1064         }
1065         verbose(VERB_QUERY, "verify: signature mismatch: %s",
1066                 PORT_ErrorToString(err));
1067         *reason = "signature crypto failed";
1068         return sec_status_bogus;
1069 }
1070
1071
1072 #endif /* HAVE_SSL or HAVE_NSS */