]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - crypto/openssl/doc/man3/PEM_read_bio_PrivateKey.pod
Merge OpenSSL 1.1.1h.
[FreeBSD/FreeBSD.git] / crypto / openssl / doc / man3 / PEM_read_bio_PrivateKey.pod
1 =pod
2
3 =head1 NAME
4
5 pem_password_cb,
6 PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey,
7 PEM_write_bio_PrivateKey_traditional, PEM_write_PrivateKey,
8 PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
9 PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
10 PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY,
11 PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
12 PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
13 PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
14 PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
15 PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
16 PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
17 PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
18 PEM_write_DSA_PUBKEY, PEM_read_bio_Parameters, PEM_write_bio_Parameters,
19 PEM_read_bio_DSAparams, PEM_read_DSAparams,
20 PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
21 PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
22 PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
23 PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
24 PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
25 PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
26 PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
27 PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
28 PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
29
30 =head1 SYNOPSIS
31
32  #include <openssl/pem.h>
33
34  typedef int pem_password_cb(char *buf, int size, int rwflag, void *u);
35
36  EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
37                                    pem_password_cb *cb, void *u);
38  EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
39                                pem_password_cb *cb, void *u);
40  int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
41                               unsigned char *kstr, int klen,
42                               pem_password_cb *cb, void *u);
43  int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
44                                           const EVP_CIPHER *enc,
45                                           unsigned char *kstr, int klen,
46                                           pem_password_cb *cb, void *u);
47  int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
48                           unsigned char *kstr, int klen,
49                           pem_password_cb *cb, void *u);
50
51  int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
52                                    char *kstr, int klen,
53                                    pem_password_cb *cb, void *u);
54  int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
55                                char *kstr, int klen,
56                                pem_password_cb *cb, void *u);
57  int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
58                                        char *kstr, int klen,
59                                        pem_password_cb *cb, void *u);
60  int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
61                                    char *kstr, int klen,
62                                    pem_password_cb *cb, void *u);
63
64  EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
65                                pem_password_cb *cb, void *u);
66  EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
67                            pem_password_cb *cb, void *u);
68  int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
69  int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
70
71  RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
72                                  pem_password_cb *cb, void *u);
73  RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
74                              pem_password_cb *cb, void *u);
75  int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
76                                  unsigned char *kstr, int klen,
77                                  pem_password_cb *cb, void *u);
78  int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
79                              unsigned char *kstr, int klen,
80                              pem_password_cb *cb, void *u);
81
82  RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
83                                 pem_password_cb *cb, void *u);
84  RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
85                             pem_password_cb *cb, void *u);
86  int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
87  int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
88
89  RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
90                               pem_password_cb *cb, void *u);
91  RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
92                           pem_password_cb *cb, void *u);
93  int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
94  int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
95
96  DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
97                                  pem_password_cb *cb, void *u);
98  DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
99                              pem_password_cb *cb, void *u);
100  int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
101                                  unsigned char *kstr, int klen,
102                                  pem_password_cb *cb, void *u);
103  int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
104                              unsigned char *kstr, int klen,
105                              pem_password_cb *cb, void *u);
106
107  DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
108                               pem_password_cb *cb, void *u);
109  DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
110                           pem_password_cb *cb, void *u);
111  int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
112  int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
113
114  EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x);
115  int PEM_write_bio_Parameters(BIO *bp, const EVP_PKEY *x);
116
117  DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
118  DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
119  int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
120  int PEM_write_DSAparams(FILE *fp, DSA *x);
121
122  DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
123  DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
124  int PEM_write_bio_DHparams(BIO *bp, DH *x);
125  int PEM_write_DHparams(FILE *fp, DH *x);
126
127  X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
128  X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
129  int PEM_write_bio_X509(BIO *bp, X509 *x);
130  int PEM_write_X509(FILE *fp, X509 *x);
131
132  X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
133  X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
134  int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
135  int PEM_write_X509_AUX(FILE *fp, X509 *x);
136
137  X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
138                                  pem_password_cb *cb, void *u);
139  X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
140                              pem_password_cb *cb, void *u);
141  int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
142  int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
143  int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
144  int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
145
146  X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
147                                  pem_password_cb *cb, void *u);
148  X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
149                              pem_password_cb *cb, void *u);
150  int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
151  int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
152
153  PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
154  PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
155  int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
156  int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
157
158 =head1 DESCRIPTION
159
160 The PEM functions read or write structures in PEM format. In
161 this sense PEM format is simply base64 encoded data surrounded
162 by header lines.
163
164 For more details about the meaning of arguments see the
165 B<PEM FUNCTION ARGUMENTS> section.
166
167 Each operation has four functions associated with it. For
168 brevity the term "B<TYPE> functions" will be used below to collectively
169 refer to the PEM_read_bio_TYPE(), PEM_read_TYPE(),
170 PEM_write_bio_TYPE(), and PEM_write_TYPE() functions.
171
172 The B<PrivateKey> functions read or write a private key in PEM format using an
173 EVP_PKEY structure. The write routines use PKCS#8 private key format and are
174 equivalent to PEM_write_bio_PKCS8PrivateKey().The read functions transparently
175 handle traditional and PKCS#8 format encrypted and unencrypted keys.
176
177 PEM_write_bio_PrivateKey_traditional() writes out a private key in the
178 "traditional" format with a simple private key marker and should only
179 be used for compatibility with legacy programs.
180
181 PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private
182 key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using
183 PKCS#5 v2.0 password based encryption algorithms. The B<cipher> argument
184 specifies the encryption algorithm to use: unlike some other PEM routines the
185 encryption is applied at the PKCS#8 level and not in the PEM headers. If
186 B<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
187 structure is used instead.
188
189 PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
190 also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
191 it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
192 to use is specified in the B<nid> parameter and should be the NID of the
193 corresponding OBJECT IDENTIFIER (see NOTES section).
194
195 The B<PUBKEY> functions process a public key using an EVP_PKEY
196 structure. The public key is encoded as a SubjectPublicKeyInfo
197 structure.
198
199 The B<RSAPrivateKey> functions process an RSA private key using an
200 RSA structure. The write routines uses traditional format. The read
201 routines handles the same formats as the B<PrivateKey>
202 functions but an error occurs if the private key is not RSA.
203
204 The B<RSAPublicKey> functions process an RSA public key using an
205 RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
206 structure.
207
208 The B<RSA_PUBKEY> functions also process an RSA public key using
209 an RSA structure. However, the public key is encoded using a
210 SubjectPublicKeyInfo structure and an error occurs if the public
211 key is not RSA.
212
213 The B<DSAPrivateKey> functions process a DSA private key using a
214 DSA structure. The write routines uses traditional format. The read
215 routines handles the same formats as the B<PrivateKey>
216 functions but an error occurs if the private key is not DSA.
217
218 The B<DSA_PUBKEY> functions process a DSA public key using
219 a DSA structure. The public key is encoded using a
220 SubjectPublicKeyInfo structure and an error occurs if the public
221 key is not DSA.
222
223 The B<Parameters> functions read or write key parameters in PEM format using
224 an EVP_PKEY structure.  The encoding depends on the type of key; for DSA key
225 parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH
226 key parameters, it will be a PKCS#3 DHparameter structure.  I<These functions
227 only exist for the B<BIO> type>.
228
229 The B<DSAparams> functions process DSA parameters using a DSA
230 structure. The parameters are encoded using a Dss-Parms structure
231 as defined in RFC2459.
232
233 The B<DHparams> functions process DH parameters using a DH
234 structure. The parameters are encoded using a PKCS#3 DHparameter
235 structure.
236
237 The B<X509> functions process an X509 certificate using an X509
238 structure. They will also process a trusted X509 certificate but
239 any trust settings are discarded.
240
241 The B<X509_AUX> functions process a trusted X509 certificate using
242 an X509 structure.
243
244 The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
245 certificate request using an X509_REQ structure. The B<X509_REQ>
246 write functions use B<CERTIFICATE REQUEST> in the header whereas
247 the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
248 (as required by some CAs). The B<X509_REQ> read functions will
249 handle either form so there are no B<X509_REQ_NEW> read functions.
250
251 The B<X509_CRL> functions process an X509 CRL using an X509_CRL
252 structure.
253
254 The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
255 structure.
256
257 =head1 PEM FUNCTION ARGUMENTS
258
259 The PEM functions have many common arguments.
260
261 The B<bp> BIO parameter (if present) specifies the BIO to read from
262 or write to.
263
264 The B<fp> FILE parameter (if present) specifies the FILE pointer to
265 read from or write to.
266
267 The PEM read functions all take an argument B<TYPE **x> and return
268 a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function
269 uses. If B<x> is NULL then the parameter is ignored. If B<x> is not
270 NULL but B<*x> is NULL then the structure returned will be written
271 to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made
272 to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections).
273 Irrespective of the value of B<x> a pointer to the structure is always
274 returned (or NULL if an error occurred).
275
276 The PEM functions which write private keys take an B<enc> parameter
277 which specifies the encryption algorithm to use, encryption is done
278 at the PEM level. If this parameter is set to NULL then the private
279 key is written in unencrypted form.
280
281 The B<cb> argument is the callback to use when querying for the pass
282 phrase used for encrypted PEM structures (normally only private keys).
283
284 For the PEM write routines if the B<kstr> parameter is not NULL then
285 B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is
286 ignored.
287
288 If the B<cb> parameters is set to NULL and the B<u> parameter is not
289 NULL then the B<u> parameter is interpreted as a null terminated string
290 to use as the passphrase. If both B<cb> and B<u> are NULL then the
291 default callback routine is used which will typically prompt for the
292 passphrase on the current terminal with echoing turned off.
293
294 The default passphrase callback is sometimes inappropriate (for example
295 in a GUI application) so an alternative can be supplied. The callback
296 routine has the following form:
297
298  int cb(char *buf, int size, int rwflag, void *u);
299
300 B<buf> is the buffer to write the passphrase to. B<size> is the maximum
301 length of the passphrase (i.e. the size of buf). B<rwflag> is a flag
302 which is set to 0 when reading and 1 when writing. A typical routine
303 will ask the user to verify the passphrase (for example by prompting
304 for it twice) if B<rwflag> is 1. The B<u> parameter has the same
305 value as the B<u> parameter passed to the PEM routine. It allows
306 arbitrary data to be passed to the callback by the application
307 (for example a window handle in a GUI application). The callback
308 B<must> return the number of characters in the passphrase or -1 if
309 an error occurred.
310
311 =head1 NOTES
312
313 The old B<PrivateKey> write routines are retained for compatibility.
314 New applications should write private keys using the
315 PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
316 because they are more secure (they use an iteration count of 2048 whereas
317 the traditional routines use a count of 1) unless compatibility with older
318 versions of OpenSSL is important.
319
320 The B<PrivateKey> read routines can be used in all applications because
321 they handle all formats transparently.
322
323 A frequent cause of problems is attempting to use the PEM routines like
324 this:
325
326  X509 *x;
327
328  PEM_read_bio_X509(bp, &x, 0, NULL);
329
330 this is a bug because an attempt will be made to reuse the data at B<x>
331 which is an uninitialised pointer.
332
333 These functions make no assumption regarding the pass phrase received from the
334 password callback.
335 It will simply be treated as a byte sequence.
336
337 =head1 PEM ENCRYPTION FORMAT
338
339 These old B<PrivateKey> routines use a non standard technique for encryption.
340
341 The private key (or other data) takes the following form:
342
343  -----BEGIN RSA PRIVATE KEY-----
344  Proc-Type: 4,ENCRYPTED
345  DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
346
347  ...base64 encoded data...
348  -----END RSA PRIVATE KEY-----
349
350 The line beginning with I<Proc-Type> contains the version and the
351 protection on the encapsulated data. The line beginning I<DEK-Info>
352 contains two comma separated values: the encryption algorithm name as
353 used by EVP_get_cipherbyname() and an initialization vector used by the
354 cipher encoded as a set of hexadecimal digits. After those two lines is
355 the base64-encoded encrypted data.
356
357 The encryption key is derived using EVP_BytesToKey(). The cipher's
358 initialization vector is passed to EVP_BytesToKey() as the B<salt>
359 parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used
360 (regardless of the size of the initialization vector). The user's
361 password is passed to EVP_BytesToKey() using the B<data> and B<datal>
362 parameters. Finally, the library uses an iteration count of 1 for
363 EVP_BytesToKey().
364
365 The B<key> derived by EVP_BytesToKey() along with the original initialization
366 vector is then used to decrypt the encrypted data. The B<iv> produced by
367 EVP_BytesToKey() is not utilized or needed, and NULL should be passed to
368 the function.
369
370 The pseudo code to derive the key would look similar to:
371
372  EVP_CIPHER* cipher = EVP_des_ede3_cbc();
373  EVP_MD* md = EVP_md5();
374
375  unsigned int nkey = EVP_CIPHER_key_length(cipher);
376  unsigned int niv = EVP_CIPHER_iv_length(cipher);
377  unsigned char key[nkey];
378  unsigned char iv[niv];
379
380  memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
381  rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
382  if (rc != nkey)
383      /* Error */
384
385  /* On success, use key and iv to initialize the cipher */
386
387 =head1 BUGS
388
389 The PEM read routines in some versions of OpenSSL will not correctly reuse
390 an existing structure. Therefore, the following:
391
392  PEM_read_bio_X509(bp, &x, 0, NULL);
393
394 where B<x> already contains a valid certificate, may not work, whereas:
395
396  X509_free(x);
397  x = PEM_read_bio_X509(bp, NULL, 0, NULL);
398
399 is guaranteed to work.
400
401 =head1 RETURN VALUES
402
403 The read routines return either a pointer to the structure read or NULL
404 if an error occurred.
405
406 The write routines return 1 for success or 0 for failure.
407
408 =head1 EXAMPLES
409
410 Although the PEM routines take several arguments in almost all applications
411 most of them are set to 0 or NULL.
412
413 Read a certificate in PEM format from a BIO:
414
415  X509 *x;
416
417  x = PEM_read_bio_X509(bp, NULL, 0, NULL);
418  if (x == NULL)
419      /* Error */
420
421 Alternative method:
422
423  X509 *x = NULL;
424
425  if (!PEM_read_bio_X509(bp, &x, 0, NULL))
426      /* Error */
427
428 Write a certificate to a BIO:
429
430  if (!PEM_write_bio_X509(bp, x))
431      /* Error */
432
433 Write a private key (using traditional format) to a BIO using
434 triple DES encryption, the pass phrase is prompted for:
435
436  if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
437      /* Error */
438
439 Write a private key (using PKCS#8 format) to a BIO using triple
440 DES encryption, using the pass phrase "hello":
441
442  if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
443                                     NULL, 0, 0, "hello"))
444      /* Error */
445
446 Read a private key from a BIO using a pass phrase callback:
447
448  key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
449  if (key == NULL)
450      /* Error */
451
452 Skeleton pass phrase callback:
453
454  int pass_cb(char *buf, int size, int rwflag, void *u)
455  {
456
457      /* We'd probably do something else if 'rwflag' is 1 */
458      printf("Enter pass phrase for \"%s\"\n", (char *)u);
459
460      /* get pass phrase, length 'len' into 'tmp' */
461      char *tmp = "hello";
462      if (tmp == NULL) /* An error occurred */
463          return -1;
464
465      size_t len = strlen(tmp);
466
467      if (len > size)
468          len = size;
469      memcpy(buf, tmp, len);
470      return len;
471  }
472
473 =head1 SEE ALSO
474
475 L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>,
476 L<passphrase-encoding(7)>
477
478 =head1 HISTORY
479
480 The old Netscape certificate sequences were no longer documented
481 in OpenSSL 1.1.0; applications should use the PKCS7 standard instead
482 as they will be formally deprecated in a future releases.
483
484 =head1 COPYRIGHT
485
486 Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
487
488 Licensed under the OpenSSL license (the "License").  You may not use
489 this file except in compliance with the License.  You can obtain a copy
490 in the file LICENSE in the source distribution or at
491 L<https://www.openssl.org/source/license.html>.
492
493 =cut