]> CyberLeo.Net >> Repos - FreeBSD/releng/9.3.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Copy stable/9 to releng/9.3 as part of the 9.3-RELEASE cycle.
[FreeBSD/releng/9.3.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /*
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *          zfs_min_auto_ashift = 9 (512 bytes)
65  *
66  * On pool creation or the addition of a new top-level vdev, ZFS will
67  * increase the ashift of the top-level vdev to 2048 as limited by
68  * zfs_max_auto_ashift.
69  *
70  * Example: one or more 512B emulation child vdevs
71  *          child->vdev_ashift = 9 (512 bytes)
72  *          child->vdev_physical_ashift = 12 (4096 bytes)
73  *          zfs_max_auto_ashift = 13 (8192 bytes)
74  *          zfs_min_auto_ashift = 9 (512 bytes)
75  *
76  * On pool creation or the addition of a new top-level vdev, ZFS will
77  * increase the ashift of the top-level vdev to 4096 to match the
78  * max vdev_physical_ashift.
79  *
80  * Example: one or more 512B emulation child vdevs
81  *          child->vdev_ashift = 9 (512 bytes)
82  *          child->vdev_physical_ashift = 9 (512 bytes)
83  *          zfs_max_auto_ashift = 13 (8192 bytes)
84  *          zfs_min_auto_ashift = 12 (4096 bytes)
85  *
86  * On pool creation or the addition of a new top-level vdev, ZFS will
87  * increase the ashift of the top-level vdev to 4096 to match the
88  * zfs_min_auto_ashift.
89  */
90 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93 static int
94 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95 {
96         uint64_t val;
97         int err;
98
99         val = zfs_max_auto_ashift;
100         err = sysctl_handle_64(oidp, &val, 0, req);
101         if (err != 0 || req->newptr == NULL)
102                 return (err);
103
104         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105                 return (EINVAL);
106
107         zfs_max_auto_ashift = val;
108
109         return (0);
110 }
111 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113     sysctl_vfs_zfs_max_auto_ashift, "QU",
114     "Max ashift used when optimising for logical -> physical sectors size on "
115     "new top-level vdevs.");
116
117 static int
118 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119 {
120         uint64_t val;
121         int err;
122
123         val = zfs_min_auto_ashift;
124         err = sysctl_handle_64(oidp, &val, 0, req);
125         if (err != 0 || req->newptr == NULL)
126                 return (err);
127
128         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129                 return (EINVAL);
130
131         zfs_min_auto_ashift = val;
132
133         return (0);
134 }
135 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137     sysctl_vfs_zfs_min_auto_ashift, "QU",
138     "Min ashift used when creating new top-level vdevs.");
139
140 static vdev_ops_t *vdev_ops_table[] = {
141         &vdev_root_ops,
142         &vdev_raidz_ops,
143         &vdev_mirror_ops,
144         &vdev_replacing_ops,
145         &vdev_spare_ops,
146 #ifdef _KERNEL
147         &vdev_geom_ops,
148 #else
149         &vdev_disk_ops,
150 #endif
151         &vdev_file_ops,
152         &vdev_missing_ops,
153         &vdev_hole_ops,
154         NULL
155 };
156
157
158 /*
159  * Given a vdev type, return the appropriate ops vector.
160  */
161 static vdev_ops_t *
162 vdev_getops(const char *type)
163 {
164         vdev_ops_t *ops, **opspp;
165
166         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
167                 if (strcmp(ops->vdev_op_type, type) == 0)
168                         break;
169
170         return (ops);
171 }
172
173 /*
174  * Default asize function: return the MAX of psize with the asize of
175  * all children.  This is what's used by anything other than RAID-Z.
176  */
177 uint64_t
178 vdev_default_asize(vdev_t *vd, uint64_t psize)
179 {
180         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
181         uint64_t csize;
182
183         for (int c = 0; c < vd->vdev_children; c++) {
184                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
185                 asize = MAX(asize, csize);
186         }
187
188         return (asize);
189 }
190
191 /*
192  * Get the minimum allocatable size. We define the allocatable size as
193  * the vdev's asize rounded to the nearest metaslab. This allows us to
194  * replace or attach devices which don't have the same physical size but
195  * can still satisfy the same number of allocations.
196  */
197 uint64_t
198 vdev_get_min_asize(vdev_t *vd)
199 {
200         vdev_t *pvd = vd->vdev_parent;
201
202         /*
203          * If our parent is NULL (inactive spare or cache) or is the root,
204          * just return our own asize.
205          */
206         if (pvd == NULL)
207                 return (vd->vdev_asize);
208
209         /*
210          * The top-level vdev just returns the allocatable size rounded
211          * to the nearest metaslab.
212          */
213         if (vd == vd->vdev_top)
214                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
215
216         /*
217          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
218          * so each child must provide at least 1/Nth of its asize.
219          */
220         if (pvd->vdev_ops == &vdev_raidz_ops)
221                 return (pvd->vdev_min_asize / pvd->vdev_children);
222
223         return (pvd->vdev_min_asize);
224 }
225
226 void
227 vdev_set_min_asize(vdev_t *vd)
228 {
229         vd->vdev_min_asize = vdev_get_min_asize(vd);
230
231         for (int c = 0; c < vd->vdev_children; c++)
232                 vdev_set_min_asize(vd->vdev_child[c]);
233 }
234
235 vdev_t *
236 vdev_lookup_top(spa_t *spa, uint64_t vdev)
237 {
238         vdev_t *rvd = spa->spa_root_vdev;
239
240         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
241
242         if (vdev < rvd->vdev_children) {
243                 ASSERT(rvd->vdev_child[vdev] != NULL);
244                 return (rvd->vdev_child[vdev]);
245         }
246
247         return (NULL);
248 }
249
250 vdev_t *
251 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
252 {
253         vdev_t *mvd;
254
255         if (vd->vdev_guid == guid)
256                 return (vd);
257
258         for (int c = 0; c < vd->vdev_children; c++)
259                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
260                     NULL)
261                         return (mvd);
262
263         return (NULL);
264 }
265
266 void
267 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
268 {
269         size_t oldsize, newsize;
270         uint64_t id = cvd->vdev_id;
271         vdev_t **newchild;
272
273         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
274         ASSERT(cvd->vdev_parent == NULL);
275
276         cvd->vdev_parent = pvd;
277
278         if (pvd == NULL)
279                 return;
280
281         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
282
283         oldsize = pvd->vdev_children * sizeof (vdev_t *);
284         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
285         newsize = pvd->vdev_children * sizeof (vdev_t *);
286
287         newchild = kmem_zalloc(newsize, KM_SLEEP);
288         if (pvd->vdev_child != NULL) {
289                 bcopy(pvd->vdev_child, newchild, oldsize);
290                 kmem_free(pvd->vdev_child, oldsize);
291         }
292
293         pvd->vdev_child = newchild;
294         pvd->vdev_child[id] = cvd;
295
296         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
297         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
298
299         /*
300          * Walk up all ancestors to update guid sum.
301          */
302         for (; pvd != NULL; pvd = pvd->vdev_parent)
303                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
304 }
305
306 void
307 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
308 {
309         int c;
310         uint_t id = cvd->vdev_id;
311
312         ASSERT(cvd->vdev_parent == pvd);
313
314         if (pvd == NULL)
315                 return;
316
317         ASSERT(id < pvd->vdev_children);
318         ASSERT(pvd->vdev_child[id] == cvd);
319
320         pvd->vdev_child[id] = NULL;
321         cvd->vdev_parent = NULL;
322
323         for (c = 0; c < pvd->vdev_children; c++)
324                 if (pvd->vdev_child[c])
325                         break;
326
327         if (c == pvd->vdev_children) {
328                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
329                 pvd->vdev_child = NULL;
330                 pvd->vdev_children = 0;
331         }
332
333         /*
334          * Walk up all ancestors to update guid sum.
335          */
336         for (; pvd != NULL; pvd = pvd->vdev_parent)
337                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
338 }
339
340 /*
341  * Remove any holes in the child array.
342  */
343 void
344 vdev_compact_children(vdev_t *pvd)
345 {
346         vdev_t **newchild, *cvd;
347         int oldc = pvd->vdev_children;
348         int newc;
349
350         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351
352         for (int c = newc = 0; c < oldc; c++)
353                 if (pvd->vdev_child[c])
354                         newc++;
355
356         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
357
358         for (int c = newc = 0; c < oldc; c++) {
359                 if ((cvd = pvd->vdev_child[c]) != NULL) {
360                         newchild[newc] = cvd;
361                         cvd->vdev_id = newc++;
362                 }
363         }
364
365         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
366         pvd->vdev_child = newchild;
367         pvd->vdev_children = newc;
368 }
369
370 /*
371  * Allocate and minimally initialize a vdev_t.
372  */
373 vdev_t *
374 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
375 {
376         vdev_t *vd;
377
378         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
379
380         if (spa->spa_root_vdev == NULL) {
381                 ASSERT(ops == &vdev_root_ops);
382                 spa->spa_root_vdev = vd;
383                 spa->spa_load_guid = spa_generate_guid(NULL);
384         }
385
386         if (guid == 0 && ops != &vdev_hole_ops) {
387                 if (spa->spa_root_vdev == vd) {
388                         /*
389                          * The root vdev's guid will also be the pool guid,
390                          * which must be unique among all pools.
391                          */
392                         guid = spa_generate_guid(NULL);
393                 } else {
394                         /*
395                          * Any other vdev's guid must be unique within the pool.
396                          */
397                         guid = spa_generate_guid(spa);
398                 }
399                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
400         }
401
402         vd->vdev_spa = spa;
403         vd->vdev_id = id;
404         vd->vdev_guid = guid;
405         vd->vdev_guid_sum = guid;
406         vd->vdev_ops = ops;
407         vd->vdev_state = VDEV_STATE_CLOSED;
408         vd->vdev_ishole = (ops == &vdev_hole_ops);
409
410         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
411         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
412         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
413         for (int t = 0; t < DTL_TYPES; t++) {
414                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
415                     &vd->vdev_dtl_lock);
416         }
417         txg_list_create(&vd->vdev_ms_list,
418             offsetof(struct metaslab, ms_txg_node));
419         txg_list_create(&vd->vdev_dtl_list,
420             offsetof(struct vdev, vdev_dtl_node));
421         vd->vdev_stat.vs_timestamp = gethrtime();
422         vdev_queue_init(vd);
423         vdev_cache_init(vd);
424
425         return (vd);
426 }
427
428 /*
429  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
430  * creating a new vdev or loading an existing one - the behavior is slightly
431  * different for each case.
432  */
433 int
434 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
435     int alloctype)
436 {
437         vdev_ops_t *ops;
438         char *type;
439         uint64_t guid = 0, islog, nparity;
440         vdev_t *vd;
441
442         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
443
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
445                 return (SET_ERROR(EINVAL));
446
447         if ((ops = vdev_getops(type)) == NULL)
448                 return (SET_ERROR(EINVAL));
449
450         /*
451          * If this is a load, get the vdev guid from the nvlist.
452          * Otherwise, vdev_alloc_common() will generate one for us.
453          */
454         if (alloctype == VDEV_ALLOC_LOAD) {
455                 uint64_t label_id;
456
457                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
458                     label_id != id)
459                         return (SET_ERROR(EINVAL));
460
461                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
462                         return (SET_ERROR(EINVAL));
463         } else if (alloctype == VDEV_ALLOC_SPARE) {
464                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
465                         return (SET_ERROR(EINVAL));
466         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
467                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
468                         return (SET_ERROR(EINVAL));
469         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
470                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471                         return (SET_ERROR(EINVAL));
472         }
473
474         /*
475          * The first allocated vdev must be of type 'root'.
476          */
477         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
478                 return (SET_ERROR(EINVAL));
479
480         /*
481          * Determine whether we're a log vdev.
482          */
483         islog = 0;
484         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
485         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
486                 return (SET_ERROR(ENOTSUP));
487
488         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
489                 return (SET_ERROR(ENOTSUP));
490
491         /*
492          * Set the nparity property for RAID-Z vdevs.
493          */
494         nparity = -1ULL;
495         if (ops == &vdev_raidz_ops) {
496                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
497                     &nparity) == 0) {
498                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
499                                 return (SET_ERROR(EINVAL));
500                         /*
501                          * Previous versions could only support 1 or 2 parity
502                          * device.
503                          */
504                         if (nparity > 1 &&
505                             spa_version(spa) < SPA_VERSION_RAIDZ2)
506                                 return (SET_ERROR(ENOTSUP));
507                         if (nparity > 2 &&
508                             spa_version(spa) < SPA_VERSION_RAIDZ3)
509                                 return (SET_ERROR(ENOTSUP));
510                 } else {
511                         /*
512                          * We require the parity to be specified for SPAs that
513                          * support multiple parity levels.
514                          */
515                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
516                                 return (SET_ERROR(EINVAL));
517                         /*
518                          * Otherwise, we default to 1 parity device for RAID-Z.
519                          */
520                         nparity = 1;
521                 }
522         } else {
523                 nparity = 0;
524         }
525         ASSERT(nparity != -1ULL);
526
527         vd = vdev_alloc_common(spa, id, guid, ops);
528
529         vd->vdev_islog = islog;
530         vd->vdev_nparity = nparity;
531
532         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
533                 vd->vdev_path = spa_strdup(vd->vdev_path);
534         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
535                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
536         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
537             &vd->vdev_physpath) == 0)
538                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
539         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
540                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
541
542         /*
543          * Set the whole_disk property.  If it's not specified, leave the value
544          * as -1.
545          */
546         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
547             &vd->vdev_wholedisk) != 0)
548                 vd->vdev_wholedisk = -1ULL;
549
550         /*
551          * Look for the 'not present' flag.  This will only be set if the device
552          * was not present at the time of import.
553          */
554         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
555             &vd->vdev_not_present);
556
557         /*
558          * Get the alignment requirement.
559          */
560         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
561
562         /*
563          * Retrieve the vdev creation time.
564          */
565         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
566             &vd->vdev_crtxg);
567
568         /*
569          * If we're a top-level vdev, try to load the allocation parameters.
570          */
571         if (parent && !parent->vdev_parent &&
572             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
573                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
574                     &vd->vdev_ms_array);
575                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
576                     &vd->vdev_ms_shift);
577                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
578                     &vd->vdev_asize);
579                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
580                     &vd->vdev_removing);
581         }
582
583         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
584                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
585                     alloctype == VDEV_ALLOC_ADD ||
586                     alloctype == VDEV_ALLOC_SPLIT ||
587                     alloctype == VDEV_ALLOC_ROOTPOOL);
588                 vd->vdev_mg = metaslab_group_create(islog ?
589                     spa_log_class(spa) : spa_normal_class(spa), vd);
590         }
591
592         /*
593          * If we're a leaf vdev, try to load the DTL object and other state.
594          */
595         if (vd->vdev_ops->vdev_op_leaf &&
596             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
597             alloctype == VDEV_ALLOC_ROOTPOOL)) {
598                 if (alloctype == VDEV_ALLOC_LOAD) {
599                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
600                             &vd->vdev_dtl_object);
601                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
602                             &vd->vdev_unspare);
603                 }
604
605                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
606                         uint64_t spare = 0;
607
608                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
609                             &spare) == 0 && spare)
610                                 spa_spare_add(vd);
611                 }
612
613                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
614                     &vd->vdev_offline);
615
616                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
617                     &vd->vdev_resilver_txg);
618
619                 /*
620                  * When importing a pool, we want to ignore the persistent fault
621                  * state, as the diagnosis made on another system may not be
622                  * valid in the current context.  Local vdevs will
623                  * remain in the faulted state.
624                  */
625                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
626                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
627                             &vd->vdev_faulted);
628                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
629                             &vd->vdev_degraded);
630                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
631                             &vd->vdev_removed);
632
633                         if (vd->vdev_faulted || vd->vdev_degraded) {
634                                 char *aux;
635
636                                 vd->vdev_label_aux =
637                                     VDEV_AUX_ERR_EXCEEDED;
638                                 if (nvlist_lookup_string(nv,
639                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
640                                     strcmp(aux, "external") == 0)
641                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
642                         }
643                 }
644         }
645
646         /*
647          * Add ourselves to the parent's list of children.
648          */
649         vdev_add_child(parent, vd);
650
651         *vdp = vd;
652
653         return (0);
654 }
655
656 void
657 vdev_free(vdev_t *vd)
658 {
659         spa_t *spa = vd->vdev_spa;
660
661         /*
662          * vdev_free() implies closing the vdev first.  This is simpler than
663          * trying to ensure complicated semantics for all callers.
664          */
665         vdev_close(vd);
666
667         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
668         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
669
670         /*
671          * Free all children.
672          */
673         for (int c = 0; c < vd->vdev_children; c++)
674                 vdev_free(vd->vdev_child[c]);
675
676         ASSERT(vd->vdev_child == NULL);
677         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
678
679         /*
680          * Discard allocation state.
681          */
682         if (vd->vdev_mg != NULL) {
683                 vdev_metaslab_fini(vd);
684                 metaslab_group_destroy(vd->vdev_mg);
685         }
686
687         ASSERT0(vd->vdev_stat.vs_space);
688         ASSERT0(vd->vdev_stat.vs_dspace);
689         ASSERT0(vd->vdev_stat.vs_alloc);
690
691         /*
692          * Remove this vdev from its parent's child list.
693          */
694         vdev_remove_child(vd->vdev_parent, vd);
695
696         ASSERT(vd->vdev_parent == NULL);
697
698         /*
699          * Clean up vdev structure.
700          */
701         vdev_queue_fini(vd);
702         vdev_cache_fini(vd);
703
704         if (vd->vdev_path)
705                 spa_strfree(vd->vdev_path);
706         if (vd->vdev_devid)
707                 spa_strfree(vd->vdev_devid);
708         if (vd->vdev_physpath)
709                 spa_strfree(vd->vdev_physpath);
710         if (vd->vdev_fru)
711                 spa_strfree(vd->vdev_fru);
712
713         if (vd->vdev_isspare)
714                 spa_spare_remove(vd);
715         if (vd->vdev_isl2cache)
716                 spa_l2cache_remove(vd);
717
718         txg_list_destroy(&vd->vdev_ms_list);
719         txg_list_destroy(&vd->vdev_dtl_list);
720
721         mutex_enter(&vd->vdev_dtl_lock);
722         space_map_close(vd->vdev_dtl_sm);
723         for (int t = 0; t < DTL_TYPES; t++) {
724                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
725                 range_tree_destroy(vd->vdev_dtl[t]);
726         }
727         mutex_exit(&vd->vdev_dtl_lock);
728
729         mutex_destroy(&vd->vdev_dtl_lock);
730         mutex_destroy(&vd->vdev_stat_lock);
731         mutex_destroy(&vd->vdev_probe_lock);
732
733         if (vd == spa->spa_root_vdev)
734                 spa->spa_root_vdev = NULL;
735
736         kmem_free(vd, sizeof (vdev_t));
737 }
738
739 /*
740  * Transfer top-level vdev state from svd to tvd.
741  */
742 static void
743 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
744 {
745         spa_t *spa = svd->vdev_spa;
746         metaslab_t *msp;
747         vdev_t *vd;
748         int t;
749
750         ASSERT(tvd == tvd->vdev_top);
751
752         tvd->vdev_ms_array = svd->vdev_ms_array;
753         tvd->vdev_ms_shift = svd->vdev_ms_shift;
754         tvd->vdev_ms_count = svd->vdev_ms_count;
755
756         svd->vdev_ms_array = 0;
757         svd->vdev_ms_shift = 0;
758         svd->vdev_ms_count = 0;
759
760         if (tvd->vdev_mg)
761                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
762         tvd->vdev_mg = svd->vdev_mg;
763         tvd->vdev_ms = svd->vdev_ms;
764
765         svd->vdev_mg = NULL;
766         svd->vdev_ms = NULL;
767
768         if (tvd->vdev_mg != NULL)
769                 tvd->vdev_mg->mg_vd = tvd;
770
771         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
772         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
773         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
774
775         svd->vdev_stat.vs_alloc = 0;
776         svd->vdev_stat.vs_space = 0;
777         svd->vdev_stat.vs_dspace = 0;
778
779         for (t = 0; t < TXG_SIZE; t++) {
780                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
781                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
782                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
783                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
784                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
785                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
786         }
787
788         if (list_link_active(&svd->vdev_config_dirty_node)) {
789                 vdev_config_clean(svd);
790                 vdev_config_dirty(tvd);
791         }
792
793         if (list_link_active(&svd->vdev_state_dirty_node)) {
794                 vdev_state_clean(svd);
795                 vdev_state_dirty(tvd);
796         }
797
798         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
799         svd->vdev_deflate_ratio = 0;
800
801         tvd->vdev_islog = svd->vdev_islog;
802         svd->vdev_islog = 0;
803 }
804
805 static void
806 vdev_top_update(vdev_t *tvd, vdev_t *vd)
807 {
808         if (vd == NULL)
809                 return;
810
811         vd->vdev_top = tvd;
812
813         for (int c = 0; c < vd->vdev_children; c++)
814                 vdev_top_update(tvd, vd->vdev_child[c]);
815 }
816
817 /*
818  * Add a mirror/replacing vdev above an existing vdev.
819  */
820 vdev_t *
821 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
822 {
823         spa_t *spa = cvd->vdev_spa;
824         vdev_t *pvd = cvd->vdev_parent;
825         vdev_t *mvd;
826
827         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
828
829         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
830
831         mvd->vdev_asize = cvd->vdev_asize;
832         mvd->vdev_min_asize = cvd->vdev_min_asize;
833         mvd->vdev_max_asize = cvd->vdev_max_asize;
834         mvd->vdev_ashift = cvd->vdev_ashift;
835         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
836         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
837         mvd->vdev_state = cvd->vdev_state;
838         mvd->vdev_crtxg = cvd->vdev_crtxg;
839
840         vdev_remove_child(pvd, cvd);
841         vdev_add_child(pvd, mvd);
842         cvd->vdev_id = mvd->vdev_children;
843         vdev_add_child(mvd, cvd);
844         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
845
846         if (mvd == mvd->vdev_top)
847                 vdev_top_transfer(cvd, mvd);
848
849         return (mvd);
850 }
851
852 /*
853  * Remove a 1-way mirror/replacing vdev from the tree.
854  */
855 void
856 vdev_remove_parent(vdev_t *cvd)
857 {
858         vdev_t *mvd = cvd->vdev_parent;
859         vdev_t *pvd = mvd->vdev_parent;
860
861         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
862
863         ASSERT(mvd->vdev_children == 1);
864         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
865             mvd->vdev_ops == &vdev_replacing_ops ||
866             mvd->vdev_ops == &vdev_spare_ops);
867         cvd->vdev_ashift = mvd->vdev_ashift;
868         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
869         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
870
871         vdev_remove_child(mvd, cvd);
872         vdev_remove_child(pvd, mvd);
873
874         /*
875          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
876          * Otherwise, we could have detached an offline device, and when we
877          * go to import the pool we'll think we have two top-level vdevs,
878          * instead of a different version of the same top-level vdev.
879          */
880         if (mvd->vdev_top == mvd) {
881                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
882                 cvd->vdev_orig_guid = cvd->vdev_guid;
883                 cvd->vdev_guid += guid_delta;
884                 cvd->vdev_guid_sum += guid_delta;
885         }
886         cvd->vdev_id = mvd->vdev_id;
887         vdev_add_child(pvd, cvd);
888         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
889
890         if (cvd == cvd->vdev_top)
891                 vdev_top_transfer(mvd, cvd);
892
893         ASSERT(mvd->vdev_children == 0);
894         vdev_free(mvd);
895 }
896
897 int
898 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
899 {
900         spa_t *spa = vd->vdev_spa;
901         objset_t *mos = spa->spa_meta_objset;
902         uint64_t m;
903         uint64_t oldc = vd->vdev_ms_count;
904         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
905         metaslab_t **mspp;
906         int error;
907
908         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
909
910         /*
911          * This vdev is not being allocated from yet or is a hole.
912          */
913         if (vd->vdev_ms_shift == 0)
914                 return (0);
915
916         ASSERT(!vd->vdev_ishole);
917
918         /*
919          * Compute the raidz-deflation ratio.  Note, we hard-code
920          * in 128k (1 << 17) because it is the current "typical" blocksize.
921          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
922          * or we will inconsistently account for existing bp's.
923          */
924         vd->vdev_deflate_ratio = (1 << 17) /
925             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
926
927         ASSERT(oldc <= newc);
928
929         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
930
931         if (oldc != 0) {
932                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
933                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
934         }
935
936         vd->vdev_ms = mspp;
937         vd->vdev_ms_count = newc;
938
939         for (m = oldc; m < newc; m++) {
940                 uint64_t object = 0;
941
942                 if (txg == 0) {
943                         error = dmu_read(mos, vd->vdev_ms_array,
944                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
945                             DMU_READ_PREFETCH);
946                         if (error)
947                                 return (error);
948                 }
949                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
950         }
951
952         if (txg == 0)
953                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
954
955         /*
956          * If the vdev is being removed we don't activate
957          * the metaslabs since we want to ensure that no new
958          * allocations are performed on this device.
959          */
960         if (oldc == 0 && !vd->vdev_removing)
961                 metaslab_group_activate(vd->vdev_mg);
962
963         if (txg == 0)
964                 spa_config_exit(spa, SCL_ALLOC, FTAG);
965
966         return (0);
967 }
968
969 void
970 vdev_metaslab_fini(vdev_t *vd)
971 {
972         uint64_t m;
973         uint64_t count = vd->vdev_ms_count;
974
975         if (vd->vdev_ms != NULL) {
976                 metaslab_group_passivate(vd->vdev_mg);
977                 for (m = 0; m < count; m++) {
978                         metaslab_t *msp = vd->vdev_ms[m];
979
980                         if (msp != NULL)
981                                 metaslab_fini(msp);
982                 }
983                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
984                 vd->vdev_ms = NULL;
985         }
986 }
987
988 typedef struct vdev_probe_stats {
989         boolean_t       vps_readable;
990         boolean_t       vps_writeable;
991         int             vps_flags;
992 } vdev_probe_stats_t;
993
994 static void
995 vdev_probe_done(zio_t *zio)
996 {
997         spa_t *spa = zio->io_spa;
998         vdev_t *vd = zio->io_vd;
999         vdev_probe_stats_t *vps = zio->io_private;
1000
1001         ASSERT(vd->vdev_probe_zio != NULL);
1002
1003         if (zio->io_type == ZIO_TYPE_READ) {
1004                 if (zio->io_error == 0)
1005                         vps->vps_readable = 1;
1006                 if (zio->io_error == 0 && spa_writeable(spa)) {
1007                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1008                             zio->io_offset, zio->io_size, zio->io_data,
1009                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1010                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1011                 } else {
1012                         zio_buf_free(zio->io_data, zio->io_size);
1013                 }
1014         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1015                 if (zio->io_error == 0)
1016                         vps->vps_writeable = 1;
1017                 zio_buf_free(zio->io_data, zio->io_size);
1018         } else if (zio->io_type == ZIO_TYPE_NULL) {
1019                 zio_t *pio;
1020
1021                 vd->vdev_cant_read |= !vps->vps_readable;
1022                 vd->vdev_cant_write |= !vps->vps_writeable;
1023
1024                 if (vdev_readable(vd) &&
1025                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1026                         zio->io_error = 0;
1027                 } else {
1028                         ASSERT(zio->io_error != 0);
1029                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1030                             spa, vd, NULL, 0, 0);
1031                         zio->io_error = SET_ERROR(ENXIO);
1032                 }
1033
1034                 mutex_enter(&vd->vdev_probe_lock);
1035                 ASSERT(vd->vdev_probe_zio == zio);
1036                 vd->vdev_probe_zio = NULL;
1037                 mutex_exit(&vd->vdev_probe_lock);
1038
1039                 while ((pio = zio_walk_parents(zio)) != NULL)
1040                         if (!vdev_accessible(vd, pio))
1041                                 pio->io_error = SET_ERROR(ENXIO);
1042
1043                 kmem_free(vps, sizeof (*vps));
1044         }
1045 }
1046
1047 /*
1048  * Determine whether this device is accessible.
1049  *
1050  * Read and write to several known locations: the pad regions of each
1051  * vdev label but the first, which we leave alone in case it contains
1052  * a VTOC.
1053  */
1054 zio_t *
1055 vdev_probe(vdev_t *vd, zio_t *zio)
1056 {
1057         spa_t *spa = vd->vdev_spa;
1058         vdev_probe_stats_t *vps = NULL;
1059         zio_t *pio;
1060
1061         ASSERT(vd->vdev_ops->vdev_op_leaf);
1062
1063         /*
1064          * Don't probe the probe.
1065          */
1066         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1067                 return (NULL);
1068
1069         /*
1070          * To prevent 'probe storms' when a device fails, we create
1071          * just one probe i/o at a time.  All zios that want to probe
1072          * this vdev will become parents of the probe io.
1073          */
1074         mutex_enter(&vd->vdev_probe_lock);
1075
1076         if ((pio = vd->vdev_probe_zio) == NULL) {
1077                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1078
1079                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1080                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1081                     ZIO_FLAG_TRYHARD;
1082
1083                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1084                         /*
1085                          * vdev_cant_read and vdev_cant_write can only
1086                          * transition from TRUE to FALSE when we have the
1087                          * SCL_ZIO lock as writer; otherwise they can only
1088                          * transition from FALSE to TRUE.  This ensures that
1089                          * any zio looking at these values can assume that
1090                          * failures persist for the life of the I/O.  That's
1091                          * important because when a device has intermittent
1092                          * connectivity problems, we want to ensure that
1093                          * they're ascribed to the device (ENXIO) and not
1094                          * the zio (EIO).
1095                          *
1096                          * Since we hold SCL_ZIO as writer here, clear both
1097                          * values so the probe can reevaluate from first
1098                          * principles.
1099                          */
1100                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1101                         vd->vdev_cant_read = B_FALSE;
1102                         vd->vdev_cant_write = B_FALSE;
1103                 }
1104
1105                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1106                     vdev_probe_done, vps,
1107                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1108
1109                 /*
1110                  * We can't change the vdev state in this context, so we
1111                  * kick off an async task to do it on our behalf.
1112                  */
1113                 if (zio != NULL) {
1114                         vd->vdev_probe_wanted = B_TRUE;
1115                         spa_async_request(spa, SPA_ASYNC_PROBE);
1116                 }
1117         }
1118
1119         if (zio != NULL)
1120                 zio_add_child(zio, pio);
1121
1122         mutex_exit(&vd->vdev_probe_lock);
1123
1124         if (vps == NULL) {
1125                 ASSERT(zio != NULL);
1126                 return (NULL);
1127         }
1128
1129         for (int l = 1; l < VDEV_LABELS; l++) {
1130                 zio_nowait(zio_read_phys(pio, vd,
1131                     vdev_label_offset(vd->vdev_psize, l,
1132                     offsetof(vdev_label_t, vl_pad2)),
1133                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1134                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1135                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1136         }
1137
1138         if (zio == NULL)
1139                 return (pio);
1140
1141         zio_nowait(pio);
1142         return (NULL);
1143 }
1144
1145 static void
1146 vdev_open_child(void *arg)
1147 {
1148         vdev_t *vd = arg;
1149
1150         vd->vdev_open_thread = curthread;
1151         vd->vdev_open_error = vdev_open(vd);
1152         vd->vdev_open_thread = NULL;
1153 }
1154
1155 boolean_t
1156 vdev_uses_zvols(vdev_t *vd)
1157 {
1158         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1159             strlen(ZVOL_DIR)) == 0)
1160                 return (B_TRUE);
1161         for (int c = 0; c < vd->vdev_children; c++)
1162                 if (vdev_uses_zvols(vd->vdev_child[c]))
1163                         return (B_TRUE);
1164         return (B_FALSE);
1165 }
1166
1167 void
1168 vdev_open_children(vdev_t *vd)
1169 {
1170         taskq_t *tq;
1171         int children = vd->vdev_children;
1172
1173         /*
1174          * in order to handle pools on top of zvols, do the opens
1175          * in a single thread so that the same thread holds the
1176          * spa_namespace_lock
1177          */
1178         if (B_TRUE || vdev_uses_zvols(vd)) {
1179                 for (int c = 0; c < children; c++)
1180                         vd->vdev_child[c]->vdev_open_error =
1181                             vdev_open(vd->vdev_child[c]);
1182                 return;
1183         }
1184         tq = taskq_create("vdev_open", children, minclsyspri,
1185             children, children, TASKQ_PREPOPULATE);
1186
1187         for (int c = 0; c < children; c++)
1188                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1189                     TQ_SLEEP) != 0);
1190
1191         taskq_destroy(tq);
1192 }
1193
1194 /*
1195  * Prepare a virtual device for access.
1196  */
1197 int
1198 vdev_open(vdev_t *vd)
1199 {
1200         spa_t *spa = vd->vdev_spa;
1201         int error;
1202         uint64_t osize = 0;
1203         uint64_t max_osize = 0;
1204         uint64_t asize, max_asize, psize;
1205         uint64_t logical_ashift = 0;
1206         uint64_t physical_ashift = 0;
1207
1208         ASSERT(vd->vdev_open_thread == curthread ||
1209             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1210         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1211             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1212             vd->vdev_state == VDEV_STATE_OFFLINE);
1213
1214         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1215         vd->vdev_cant_read = B_FALSE;
1216         vd->vdev_cant_write = B_FALSE;
1217         vd->vdev_min_asize = vdev_get_min_asize(vd);
1218
1219         /*
1220          * If this vdev is not removed, check its fault status.  If it's
1221          * faulted, bail out of the open.
1222          */
1223         if (!vd->vdev_removed && vd->vdev_faulted) {
1224                 ASSERT(vd->vdev_children == 0);
1225                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1226                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1227                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1228                     vd->vdev_label_aux);
1229                 return (SET_ERROR(ENXIO));
1230         } else if (vd->vdev_offline) {
1231                 ASSERT(vd->vdev_children == 0);
1232                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1233                 return (SET_ERROR(ENXIO));
1234         }
1235
1236         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1237             &logical_ashift, &physical_ashift);
1238
1239         /*
1240          * Reset the vdev_reopening flag so that we actually close
1241          * the vdev on error.
1242          */
1243         vd->vdev_reopening = B_FALSE;
1244         if (zio_injection_enabled && error == 0)
1245                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1246
1247         if (error) {
1248                 if (vd->vdev_removed &&
1249                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1250                         vd->vdev_removed = B_FALSE;
1251
1252                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253                     vd->vdev_stat.vs_aux);
1254                 return (error);
1255         }
1256
1257         vd->vdev_removed = B_FALSE;
1258
1259         /*
1260          * Recheck the faulted flag now that we have confirmed that
1261          * the vdev is accessible.  If we're faulted, bail.
1262          */
1263         if (vd->vdev_faulted) {
1264                 ASSERT(vd->vdev_children == 0);
1265                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1266                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1267                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1268                     vd->vdev_label_aux);
1269                 return (SET_ERROR(ENXIO));
1270         }
1271
1272         if (vd->vdev_degraded) {
1273                 ASSERT(vd->vdev_children == 0);
1274                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1275                     VDEV_AUX_ERR_EXCEEDED);
1276         } else {
1277                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1278         }
1279
1280         /*
1281          * For hole or missing vdevs we just return success.
1282          */
1283         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1284                 return (0);
1285
1286         if (vd->vdev_ops->vdev_op_leaf) {
1287                 vd->vdev_notrim = B_FALSE;
1288                 trim_map_create(vd);
1289         }
1290
1291         for (int c = 0; c < vd->vdev_children; c++) {
1292                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1293                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1294                             VDEV_AUX_NONE);
1295                         break;
1296                 }
1297         }
1298
1299         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1300         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1301
1302         if (vd->vdev_children == 0) {
1303                 if (osize < SPA_MINDEVSIZE) {
1304                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1305                             VDEV_AUX_TOO_SMALL);
1306                         return (SET_ERROR(EOVERFLOW));
1307                 }
1308                 psize = osize;
1309                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1310                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1311                     VDEV_LABEL_END_SIZE);
1312         } else {
1313                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1314                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1315                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1316                             VDEV_AUX_TOO_SMALL);
1317                         return (SET_ERROR(EOVERFLOW));
1318                 }
1319                 psize = 0;
1320                 asize = osize;
1321                 max_asize = max_osize;
1322         }
1323
1324         vd->vdev_psize = psize;
1325
1326         /*
1327          * Make sure the allocatable size hasn't shrunk.
1328          */
1329         if (asize < vd->vdev_min_asize) {
1330                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1331                     VDEV_AUX_BAD_LABEL);
1332                 return (SET_ERROR(EINVAL));
1333         }
1334
1335         vd->vdev_physical_ashift =
1336             MAX(physical_ashift, vd->vdev_physical_ashift);
1337         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1338         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1339
1340         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1341                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1342                     VDEV_AUX_ASHIFT_TOO_BIG);
1343                 return (EINVAL);
1344         }
1345
1346         if (vd->vdev_asize == 0) {
1347                 /*
1348                  * This is the first-ever open, so use the computed values.
1349                  * For testing purposes, a higher ashift can be requested.
1350                  */
1351                 vd->vdev_asize = asize;
1352                 vd->vdev_max_asize = max_asize;
1353         } else {
1354                 /*
1355                  * Make sure the alignment requirement hasn't increased.
1356                  */
1357                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1358                     vd->vdev_ops->vdev_op_leaf) {
1359                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360                             VDEV_AUX_BAD_LABEL);
1361                         return (EINVAL);
1362                 }
1363                 vd->vdev_max_asize = max_asize;
1364         }
1365
1366         /*
1367          * If all children are healthy and the asize has increased,
1368          * then we've experienced dynamic LUN growth.  If automatic
1369          * expansion is enabled then use the additional space.
1370          */
1371         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1372             (vd->vdev_expanding || spa->spa_autoexpand))
1373                 vd->vdev_asize = asize;
1374
1375         vdev_set_min_asize(vd);
1376
1377         /*
1378          * Ensure we can issue some IO before declaring the
1379          * vdev open for business.
1380          */
1381         if (vd->vdev_ops->vdev_op_leaf &&
1382             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1383                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1384                     VDEV_AUX_ERR_EXCEEDED);
1385                 return (error);
1386         }
1387
1388         /*
1389          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1390          * resilver.  But don't do this if we are doing a reopen for a scrub,
1391          * since this would just restart the scrub we are already doing.
1392          */
1393         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1394             vdev_resilver_needed(vd, NULL, NULL))
1395                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1396
1397         return (0);
1398 }
1399
1400 /*
1401  * Called once the vdevs are all opened, this routine validates the label
1402  * contents.  This needs to be done before vdev_load() so that we don't
1403  * inadvertently do repair I/Os to the wrong device.
1404  *
1405  * If 'strict' is false ignore the spa guid check. This is necessary because
1406  * if the machine crashed during a re-guid the new guid might have been written
1407  * to all of the vdev labels, but not the cached config. The strict check
1408  * will be performed when the pool is opened again using the mos config.
1409  *
1410  * This function will only return failure if one of the vdevs indicates that it
1411  * has since been destroyed or exported.  This is only possible if
1412  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1413  * will be updated but the function will return 0.
1414  */
1415 int
1416 vdev_validate(vdev_t *vd, boolean_t strict)
1417 {
1418         spa_t *spa = vd->vdev_spa;
1419         nvlist_t *label;
1420         uint64_t guid = 0, top_guid;
1421         uint64_t state;
1422
1423         for (int c = 0; c < vd->vdev_children; c++)
1424                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1425                         return (SET_ERROR(EBADF));
1426
1427         /*
1428          * If the device has already failed, or was marked offline, don't do
1429          * any further validation.  Otherwise, label I/O will fail and we will
1430          * overwrite the previous state.
1431          */
1432         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1433                 uint64_t aux_guid = 0;
1434                 nvlist_t *nvl;
1435                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1436                     spa_last_synced_txg(spa) : -1ULL;
1437
1438                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1439                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1440                             VDEV_AUX_BAD_LABEL);
1441                         return (0);
1442                 }
1443
1444                 /*
1445                  * Determine if this vdev has been split off into another
1446                  * pool.  If so, then refuse to open it.
1447                  */
1448                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1449                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1450                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1451                             VDEV_AUX_SPLIT_POOL);
1452                         nvlist_free(label);
1453                         return (0);
1454                 }
1455
1456                 if (strict && (nvlist_lookup_uint64(label,
1457                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1458                     guid != spa_guid(spa))) {
1459                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1460                             VDEV_AUX_CORRUPT_DATA);
1461                         nvlist_free(label);
1462                         return (0);
1463                 }
1464
1465                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1466                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1467                     &aux_guid) != 0)
1468                         aux_guid = 0;
1469
1470                 /*
1471                  * If this vdev just became a top-level vdev because its
1472                  * sibling was detached, it will have adopted the parent's
1473                  * vdev guid -- but the label may or may not be on disk yet.
1474                  * Fortunately, either version of the label will have the
1475                  * same top guid, so if we're a top-level vdev, we can
1476                  * safely compare to that instead.
1477                  *
1478                  * If we split this vdev off instead, then we also check the
1479                  * original pool's guid.  We don't want to consider the vdev
1480                  * corrupt if it is partway through a split operation.
1481                  */
1482                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1483                     &guid) != 0 ||
1484                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1485                     &top_guid) != 0 ||
1486                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1487                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1488                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1489                             VDEV_AUX_CORRUPT_DATA);
1490                         nvlist_free(label);
1491                         return (0);
1492                 }
1493
1494                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1495                     &state) != 0) {
1496                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1497                             VDEV_AUX_CORRUPT_DATA);
1498                         nvlist_free(label);
1499                         return (0);
1500                 }
1501
1502                 nvlist_free(label);
1503
1504                 /*
1505                  * If this is a verbatim import, no need to check the
1506                  * state of the pool.
1507                  */
1508                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1509                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1510                     state != POOL_STATE_ACTIVE)
1511                         return (SET_ERROR(EBADF));
1512
1513                 /*
1514                  * If we were able to open and validate a vdev that was
1515                  * previously marked permanently unavailable, clear that state
1516                  * now.
1517                  */
1518                 if (vd->vdev_not_present)
1519                         vd->vdev_not_present = 0;
1520         }
1521
1522         return (0);
1523 }
1524
1525 /*
1526  * Close a virtual device.
1527  */
1528 void
1529 vdev_close(vdev_t *vd)
1530 {
1531         spa_t *spa = vd->vdev_spa;
1532         vdev_t *pvd = vd->vdev_parent;
1533
1534         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1535
1536         /*
1537          * If our parent is reopening, then we are as well, unless we are
1538          * going offline.
1539          */
1540         if (pvd != NULL && pvd->vdev_reopening)
1541                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1542
1543         vd->vdev_ops->vdev_op_close(vd);
1544
1545         vdev_cache_purge(vd);
1546
1547         if (vd->vdev_ops->vdev_op_leaf)
1548                 trim_map_destroy(vd);
1549
1550         /*
1551          * We record the previous state before we close it, so that if we are
1552          * doing a reopen(), we don't generate FMA ereports if we notice that
1553          * it's still faulted.
1554          */
1555         vd->vdev_prevstate = vd->vdev_state;
1556
1557         if (vd->vdev_offline)
1558                 vd->vdev_state = VDEV_STATE_OFFLINE;
1559         else
1560                 vd->vdev_state = VDEV_STATE_CLOSED;
1561         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1562 }
1563
1564 void
1565 vdev_hold(vdev_t *vd)
1566 {
1567         spa_t *spa = vd->vdev_spa;
1568
1569         ASSERT(spa_is_root(spa));
1570         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1571                 return;
1572
1573         for (int c = 0; c < vd->vdev_children; c++)
1574                 vdev_hold(vd->vdev_child[c]);
1575
1576         if (vd->vdev_ops->vdev_op_leaf)
1577                 vd->vdev_ops->vdev_op_hold(vd);
1578 }
1579
1580 void
1581 vdev_rele(vdev_t *vd)
1582 {
1583         spa_t *spa = vd->vdev_spa;
1584
1585         ASSERT(spa_is_root(spa));
1586         for (int c = 0; c < vd->vdev_children; c++)
1587                 vdev_rele(vd->vdev_child[c]);
1588
1589         if (vd->vdev_ops->vdev_op_leaf)
1590                 vd->vdev_ops->vdev_op_rele(vd);
1591 }
1592
1593 /*
1594  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1595  * reopen leaf vdevs which had previously been opened as they might deadlock
1596  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1597  * If the leaf has never been opened then open it, as usual.
1598  */
1599 void
1600 vdev_reopen(vdev_t *vd)
1601 {
1602         spa_t *spa = vd->vdev_spa;
1603
1604         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1605
1606         /* set the reopening flag unless we're taking the vdev offline */
1607         vd->vdev_reopening = !vd->vdev_offline;
1608         vdev_close(vd);
1609         (void) vdev_open(vd);
1610
1611         /*
1612          * Call vdev_validate() here to make sure we have the same device.
1613          * Otherwise, a device with an invalid label could be successfully
1614          * opened in response to vdev_reopen().
1615          */
1616         if (vd->vdev_aux) {
1617                 (void) vdev_validate_aux(vd);
1618                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1619                     vd->vdev_aux == &spa->spa_l2cache &&
1620                     !l2arc_vdev_present(vd))
1621                         l2arc_add_vdev(spa, vd);
1622         } else {
1623                 (void) vdev_validate(vd, B_TRUE);
1624         }
1625
1626         /*
1627          * Reassess parent vdev's health.
1628          */
1629         vdev_propagate_state(vd);
1630 }
1631
1632 int
1633 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1634 {
1635         int error;
1636
1637         /*
1638          * Normally, partial opens (e.g. of a mirror) are allowed.
1639          * For a create, however, we want to fail the request if
1640          * there are any components we can't open.
1641          */
1642         error = vdev_open(vd);
1643
1644         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1645                 vdev_close(vd);
1646                 return (error ? error : ENXIO);
1647         }
1648
1649         /*
1650          * Recursively load DTLs and initialize all labels.
1651          */
1652         if ((error = vdev_dtl_load(vd)) != 0 ||
1653             (error = vdev_label_init(vd, txg, isreplacing ?
1654             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1655                 vdev_close(vd);
1656                 return (error);
1657         }
1658
1659         return (0);
1660 }
1661
1662 void
1663 vdev_metaslab_set_size(vdev_t *vd)
1664 {
1665         /*
1666          * Aim for roughly 200 metaslabs per vdev.
1667          */
1668         vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1669         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1670 }
1671
1672 /*
1673  * Maximize performance by inflating the configured ashift for top level
1674  * vdevs to be as close to the physical ashift as possible while maintaining
1675  * administrator defined limits and ensuring it doesn't go below the
1676  * logical ashift.
1677  */
1678 void
1679 vdev_ashift_optimize(vdev_t *vd)
1680 {
1681         if (vd == vd->vdev_top) {
1682                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1683                         vd->vdev_ashift = MIN(
1684                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1685                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1686                 } else {
1687                         /*
1688                          * Unusual case where logical ashift > physical ashift
1689                          * so we can't cap the calculated ashift based on max
1690                          * ashift as that would cause failures.
1691                          * We still check if we need to increase it to match
1692                          * the min ashift.
1693                          */
1694                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1695                             vd->vdev_ashift);
1696                 }
1697         }
1698 }
1699
1700 void
1701 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1702 {
1703         ASSERT(vd == vd->vdev_top);
1704         ASSERT(!vd->vdev_ishole);
1705         ASSERT(ISP2(flags));
1706         ASSERT(spa_writeable(vd->vdev_spa));
1707
1708         if (flags & VDD_METASLAB)
1709                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1710
1711         if (flags & VDD_DTL)
1712                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1713
1714         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1715 }
1716
1717 void
1718 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1719 {
1720         for (int c = 0; c < vd->vdev_children; c++)
1721                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1722
1723         if (vd->vdev_ops->vdev_op_leaf)
1724                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1725 }
1726
1727 /*
1728  * DTLs.
1729  *
1730  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1731  * the vdev has less than perfect replication.  There are four kinds of DTL:
1732  *
1733  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1734  *
1735  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1736  *
1737  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1738  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1739  *      txgs that was scrubbed.
1740  *
1741  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1742  *      persistent errors or just some device being offline.
1743  *      Unlike the other three, the DTL_OUTAGE map is not generally
1744  *      maintained; it's only computed when needed, typically to
1745  *      determine whether a device can be detached.
1746  *
1747  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1748  * either has the data or it doesn't.
1749  *
1750  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1751  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1752  * if any child is less than fully replicated, then so is its parent.
1753  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1754  * comprising only those txgs which appear in 'maxfaults' or more children;
1755  * those are the txgs we don't have enough replication to read.  For example,
1756  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1757  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1758  * two child DTL_MISSING maps.
1759  *
1760  * It should be clear from the above that to compute the DTLs and outage maps
1761  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1762  * Therefore, that is all we keep on disk.  When loading the pool, or after
1763  * a configuration change, we generate all other DTLs from first principles.
1764  */
1765 void
1766 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1767 {
1768         range_tree_t *rt = vd->vdev_dtl[t];
1769
1770         ASSERT(t < DTL_TYPES);
1771         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1772         ASSERT(spa_writeable(vd->vdev_spa));
1773
1774         mutex_enter(rt->rt_lock);
1775         if (!range_tree_contains(rt, txg, size))
1776                 range_tree_add(rt, txg, size);
1777         mutex_exit(rt->rt_lock);
1778 }
1779
1780 boolean_t
1781 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1782 {
1783         range_tree_t *rt = vd->vdev_dtl[t];
1784         boolean_t dirty = B_FALSE;
1785
1786         ASSERT(t < DTL_TYPES);
1787         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1788
1789         mutex_enter(rt->rt_lock);
1790         if (range_tree_space(rt) != 0)
1791                 dirty = range_tree_contains(rt, txg, size);
1792         mutex_exit(rt->rt_lock);
1793
1794         return (dirty);
1795 }
1796
1797 boolean_t
1798 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1799 {
1800         range_tree_t *rt = vd->vdev_dtl[t];
1801         boolean_t empty;
1802
1803         mutex_enter(rt->rt_lock);
1804         empty = (range_tree_space(rt) == 0);
1805         mutex_exit(rt->rt_lock);
1806
1807         return (empty);
1808 }
1809
1810 /*
1811  * Returns the lowest txg in the DTL range.
1812  */
1813 static uint64_t
1814 vdev_dtl_min(vdev_t *vd)
1815 {
1816         range_seg_t *rs;
1817
1818         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1819         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1820         ASSERT0(vd->vdev_children);
1821
1822         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1823         return (rs->rs_start - 1);
1824 }
1825
1826 /*
1827  * Returns the highest txg in the DTL.
1828  */
1829 static uint64_t
1830 vdev_dtl_max(vdev_t *vd)
1831 {
1832         range_seg_t *rs;
1833
1834         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1835         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1836         ASSERT0(vd->vdev_children);
1837
1838         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1839         return (rs->rs_end);
1840 }
1841
1842 /*
1843  * Determine if a resilvering vdev should remove any DTL entries from
1844  * its range. If the vdev was resilvering for the entire duration of the
1845  * scan then it should excise that range from its DTLs. Otherwise, this
1846  * vdev is considered partially resilvered and should leave its DTL
1847  * entries intact. The comment in vdev_dtl_reassess() describes how we
1848  * excise the DTLs.
1849  */
1850 static boolean_t
1851 vdev_dtl_should_excise(vdev_t *vd)
1852 {
1853         spa_t *spa = vd->vdev_spa;
1854         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1855
1856         ASSERT0(scn->scn_phys.scn_errors);
1857         ASSERT0(vd->vdev_children);
1858
1859         if (vd->vdev_resilver_txg == 0 ||
1860             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1861                 return (B_TRUE);
1862
1863         /*
1864          * When a resilver is initiated the scan will assign the scn_max_txg
1865          * value to the highest txg value that exists in all DTLs. If this
1866          * device's max DTL is not part of this scan (i.e. it is not in
1867          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1868          * for excision.
1869          */
1870         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1871                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1872                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1873                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1874                 return (B_TRUE);
1875         }
1876         return (B_FALSE);
1877 }
1878
1879 /*
1880  * Reassess DTLs after a config change or scrub completion.
1881  */
1882 void
1883 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1884 {
1885         spa_t *spa = vd->vdev_spa;
1886         avl_tree_t reftree;
1887         int minref;
1888
1889         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1890
1891         for (int c = 0; c < vd->vdev_children; c++)
1892                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1893                     scrub_txg, scrub_done);
1894
1895         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1896                 return;
1897
1898         if (vd->vdev_ops->vdev_op_leaf) {
1899                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1900
1901                 mutex_enter(&vd->vdev_dtl_lock);
1902
1903                 /*
1904                  * If we've completed a scan cleanly then determine
1905                  * if this vdev should remove any DTLs. We only want to
1906                  * excise regions on vdevs that were available during
1907                  * the entire duration of this scan.
1908                  */
1909                 if (scrub_txg != 0 &&
1910                     (spa->spa_scrub_started ||
1911                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1912                     vdev_dtl_should_excise(vd)) {
1913                         /*
1914                          * We completed a scrub up to scrub_txg.  If we
1915                          * did it without rebooting, then the scrub dtl
1916                          * will be valid, so excise the old region and
1917                          * fold in the scrub dtl.  Otherwise, leave the
1918                          * dtl as-is if there was an error.
1919                          *
1920                          * There's little trick here: to excise the beginning
1921                          * of the DTL_MISSING map, we put it into a reference
1922                          * tree and then add a segment with refcnt -1 that
1923                          * covers the range [0, scrub_txg).  This means
1924                          * that each txg in that range has refcnt -1 or 0.
1925                          * We then add DTL_SCRUB with a refcnt of 2, so that
1926                          * entries in the range [0, scrub_txg) will have a
1927                          * positive refcnt -- either 1 or 2.  We then convert
1928                          * the reference tree into the new DTL_MISSING map.
1929                          */
1930                         space_reftree_create(&reftree);
1931                         space_reftree_add_map(&reftree,
1932                             vd->vdev_dtl[DTL_MISSING], 1);
1933                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1934                         space_reftree_add_map(&reftree,
1935                             vd->vdev_dtl[DTL_SCRUB], 2);
1936                         space_reftree_generate_map(&reftree,
1937                             vd->vdev_dtl[DTL_MISSING], 1);
1938                         space_reftree_destroy(&reftree);
1939                 }
1940                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1941                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1942                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1943                 if (scrub_done)
1944                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1945                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1946                 if (!vdev_readable(vd))
1947                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1948                 else
1949                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1950                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1951
1952                 /*
1953                  * If the vdev was resilvering and no longer has any
1954                  * DTLs then reset its resilvering flag.
1955                  */
1956                 if (vd->vdev_resilver_txg != 0 &&
1957                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1958                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1959                         vd->vdev_resilver_txg = 0;
1960
1961                 mutex_exit(&vd->vdev_dtl_lock);
1962
1963                 if (txg != 0)
1964                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1965                 return;
1966         }
1967
1968         mutex_enter(&vd->vdev_dtl_lock);
1969         for (int t = 0; t < DTL_TYPES; t++) {
1970                 /* account for child's outage in parent's missing map */
1971                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1972                 if (t == DTL_SCRUB)
1973                         continue;                       /* leaf vdevs only */
1974                 if (t == DTL_PARTIAL)
1975                         minref = 1;                     /* i.e. non-zero */
1976                 else if (vd->vdev_nparity != 0)
1977                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1978                 else
1979                         minref = vd->vdev_children;     /* any kind of mirror */
1980                 space_reftree_create(&reftree);
1981                 for (int c = 0; c < vd->vdev_children; c++) {
1982                         vdev_t *cvd = vd->vdev_child[c];
1983                         mutex_enter(&cvd->vdev_dtl_lock);
1984                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1985                         mutex_exit(&cvd->vdev_dtl_lock);
1986                 }
1987                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1988                 space_reftree_destroy(&reftree);
1989         }
1990         mutex_exit(&vd->vdev_dtl_lock);
1991 }
1992
1993 int
1994 vdev_dtl_load(vdev_t *vd)
1995 {
1996         spa_t *spa = vd->vdev_spa;
1997         objset_t *mos = spa->spa_meta_objset;
1998         int error = 0;
1999
2000         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2001                 ASSERT(!vd->vdev_ishole);
2002
2003                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2004                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2005                 if (error)
2006                         return (error);
2007                 ASSERT(vd->vdev_dtl_sm != NULL);
2008
2009                 mutex_enter(&vd->vdev_dtl_lock);
2010
2011                 /*
2012                  * Now that we've opened the space_map we need to update
2013                  * the in-core DTL.
2014                  */
2015                 space_map_update(vd->vdev_dtl_sm);
2016
2017                 error = space_map_load(vd->vdev_dtl_sm,
2018                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2019                 mutex_exit(&vd->vdev_dtl_lock);
2020
2021                 return (error);
2022         }
2023
2024         for (int c = 0; c < vd->vdev_children; c++) {
2025                 error = vdev_dtl_load(vd->vdev_child[c]);
2026                 if (error != 0)
2027                         break;
2028         }
2029
2030         return (error);
2031 }
2032
2033 void
2034 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2035 {
2036         spa_t *spa = vd->vdev_spa;
2037         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2038         objset_t *mos = spa->spa_meta_objset;
2039         range_tree_t *rtsync;
2040         kmutex_t rtlock;
2041         dmu_tx_t *tx;
2042         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2043
2044         ASSERT(!vd->vdev_ishole);
2045         ASSERT(vd->vdev_ops->vdev_op_leaf);
2046
2047         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2048
2049         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2050                 mutex_enter(&vd->vdev_dtl_lock);
2051                 space_map_free(vd->vdev_dtl_sm, tx);
2052                 space_map_close(vd->vdev_dtl_sm);
2053                 vd->vdev_dtl_sm = NULL;
2054                 mutex_exit(&vd->vdev_dtl_lock);
2055                 dmu_tx_commit(tx);
2056                 return;
2057         }
2058
2059         if (vd->vdev_dtl_sm == NULL) {
2060                 uint64_t new_object;
2061
2062                 new_object = space_map_alloc(mos, tx);
2063                 VERIFY3U(new_object, !=, 0);
2064
2065                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2066                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2067                 ASSERT(vd->vdev_dtl_sm != NULL);
2068         }
2069
2070         bzero(&rtlock, sizeof(rtlock));
2071         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2072
2073         rtsync = range_tree_create(NULL, NULL, &rtlock);
2074
2075         mutex_enter(&rtlock);
2076
2077         mutex_enter(&vd->vdev_dtl_lock);
2078         range_tree_walk(rt, range_tree_add, rtsync);
2079         mutex_exit(&vd->vdev_dtl_lock);
2080
2081         space_map_truncate(vd->vdev_dtl_sm, tx);
2082         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2083         range_tree_vacate(rtsync, NULL, NULL);
2084
2085         range_tree_destroy(rtsync);
2086
2087         mutex_exit(&rtlock);
2088         mutex_destroy(&rtlock);
2089
2090         /*
2091          * If the object for the space map has changed then dirty
2092          * the top level so that we update the config.
2093          */
2094         if (object != space_map_object(vd->vdev_dtl_sm)) {
2095                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2096                     "new object %llu", txg, spa_name(spa), object,
2097                     space_map_object(vd->vdev_dtl_sm));
2098                 vdev_config_dirty(vd->vdev_top);
2099         }
2100
2101         dmu_tx_commit(tx);
2102
2103         mutex_enter(&vd->vdev_dtl_lock);
2104         space_map_update(vd->vdev_dtl_sm);
2105         mutex_exit(&vd->vdev_dtl_lock);
2106 }
2107
2108 /*
2109  * Determine whether the specified vdev can be offlined/detached/removed
2110  * without losing data.
2111  */
2112 boolean_t
2113 vdev_dtl_required(vdev_t *vd)
2114 {
2115         spa_t *spa = vd->vdev_spa;
2116         vdev_t *tvd = vd->vdev_top;
2117         uint8_t cant_read = vd->vdev_cant_read;
2118         boolean_t required;
2119
2120         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2121
2122         if (vd == spa->spa_root_vdev || vd == tvd)
2123                 return (B_TRUE);
2124
2125         /*
2126          * Temporarily mark the device as unreadable, and then determine
2127          * whether this results in any DTL outages in the top-level vdev.
2128          * If not, we can safely offline/detach/remove the device.
2129          */
2130         vd->vdev_cant_read = B_TRUE;
2131         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2132         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2133         vd->vdev_cant_read = cant_read;
2134         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2135
2136         if (!required && zio_injection_enabled)
2137                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2138
2139         return (required);
2140 }
2141
2142 /*
2143  * Determine if resilver is needed, and if so the txg range.
2144  */
2145 boolean_t
2146 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2147 {
2148         boolean_t needed = B_FALSE;
2149         uint64_t thismin = UINT64_MAX;
2150         uint64_t thismax = 0;
2151
2152         if (vd->vdev_children == 0) {
2153                 mutex_enter(&vd->vdev_dtl_lock);
2154                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2155                     vdev_writeable(vd)) {
2156
2157                         thismin = vdev_dtl_min(vd);
2158                         thismax = vdev_dtl_max(vd);
2159                         needed = B_TRUE;
2160                 }
2161                 mutex_exit(&vd->vdev_dtl_lock);
2162         } else {
2163                 for (int c = 0; c < vd->vdev_children; c++) {
2164                         vdev_t *cvd = vd->vdev_child[c];
2165                         uint64_t cmin, cmax;
2166
2167                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2168                                 thismin = MIN(thismin, cmin);
2169                                 thismax = MAX(thismax, cmax);
2170                                 needed = B_TRUE;
2171                         }
2172                 }
2173         }
2174
2175         if (needed && minp) {
2176                 *minp = thismin;
2177                 *maxp = thismax;
2178         }
2179         return (needed);
2180 }
2181
2182 void
2183 vdev_load(vdev_t *vd)
2184 {
2185         /*
2186          * Recursively load all children.
2187          */
2188         for (int c = 0; c < vd->vdev_children; c++)
2189                 vdev_load(vd->vdev_child[c]);
2190
2191         /*
2192          * If this is a top-level vdev, initialize its metaslabs.
2193          */
2194         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2195             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2196             vdev_metaslab_init(vd, 0) != 0))
2197                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2198                     VDEV_AUX_CORRUPT_DATA);
2199
2200         /*
2201          * If this is a leaf vdev, load its DTL.
2202          */
2203         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2204                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2205                     VDEV_AUX_CORRUPT_DATA);
2206 }
2207
2208 /*
2209  * The special vdev case is used for hot spares and l2cache devices.  Its
2210  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2211  * we make sure that we can open the underlying device, then try to read the
2212  * label, and make sure that the label is sane and that it hasn't been
2213  * repurposed to another pool.
2214  */
2215 int
2216 vdev_validate_aux(vdev_t *vd)
2217 {
2218         nvlist_t *label;
2219         uint64_t guid, version;
2220         uint64_t state;
2221
2222         if (!vdev_readable(vd))
2223                 return (0);
2224
2225         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2226                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2227                     VDEV_AUX_CORRUPT_DATA);
2228                 return (-1);
2229         }
2230
2231         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2232             !SPA_VERSION_IS_SUPPORTED(version) ||
2233             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2234             guid != vd->vdev_guid ||
2235             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2236                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2237                     VDEV_AUX_CORRUPT_DATA);
2238                 nvlist_free(label);
2239                 return (-1);
2240         }
2241
2242         /*
2243          * We don't actually check the pool state here.  If it's in fact in
2244          * use by another pool, we update this fact on the fly when requested.
2245          */
2246         nvlist_free(label);
2247         return (0);
2248 }
2249
2250 void
2251 vdev_remove(vdev_t *vd, uint64_t txg)
2252 {
2253         spa_t *spa = vd->vdev_spa;
2254         objset_t *mos = spa->spa_meta_objset;
2255         dmu_tx_t *tx;
2256
2257         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2258
2259         if (vd->vdev_ms != NULL) {
2260                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2261                         metaslab_t *msp = vd->vdev_ms[m];
2262
2263                         if (msp == NULL || msp->ms_sm == NULL)
2264                                 continue;
2265
2266                         mutex_enter(&msp->ms_lock);
2267                         VERIFY0(space_map_allocated(msp->ms_sm));
2268                         space_map_free(msp->ms_sm, tx);
2269                         space_map_close(msp->ms_sm);
2270                         msp->ms_sm = NULL;
2271                         mutex_exit(&msp->ms_lock);
2272                 }
2273         }
2274
2275         if (vd->vdev_ms_array) {
2276                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2277                 vd->vdev_ms_array = 0;
2278         }
2279         dmu_tx_commit(tx);
2280 }
2281
2282 void
2283 vdev_sync_done(vdev_t *vd, uint64_t txg)
2284 {
2285         metaslab_t *msp;
2286         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2287
2288         ASSERT(!vd->vdev_ishole);
2289
2290         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2291                 metaslab_sync_done(msp, txg);
2292
2293         if (reassess)
2294                 metaslab_sync_reassess(vd->vdev_mg);
2295 }
2296
2297 void
2298 vdev_sync(vdev_t *vd, uint64_t txg)
2299 {
2300         spa_t *spa = vd->vdev_spa;
2301         vdev_t *lvd;
2302         metaslab_t *msp;
2303         dmu_tx_t *tx;
2304
2305         ASSERT(!vd->vdev_ishole);
2306
2307         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2308                 ASSERT(vd == vd->vdev_top);
2309                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2310                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2311                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2312                 ASSERT(vd->vdev_ms_array != 0);
2313                 vdev_config_dirty(vd);
2314                 dmu_tx_commit(tx);
2315         }
2316
2317         /*
2318          * Remove the metadata associated with this vdev once it's empty.
2319          */
2320         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2321                 vdev_remove(vd, txg);
2322
2323         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2324                 metaslab_sync(msp, txg);
2325                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2326         }
2327
2328         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2329                 vdev_dtl_sync(lvd, txg);
2330
2331         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2332 }
2333
2334 uint64_t
2335 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2336 {
2337         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2338 }
2339
2340 /*
2341  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2342  * not be opened, and no I/O is attempted.
2343  */
2344 int
2345 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2346 {
2347         vdev_t *vd, *tvd;
2348
2349         spa_vdev_state_enter(spa, SCL_NONE);
2350
2351         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2352                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2353
2354         if (!vd->vdev_ops->vdev_op_leaf)
2355                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2356
2357         tvd = vd->vdev_top;
2358
2359         /*
2360          * We don't directly use the aux state here, but if we do a
2361          * vdev_reopen(), we need this value to be present to remember why we
2362          * were faulted.
2363          */
2364         vd->vdev_label_aux = aux;
2365
2366         /*
2367          * Faulted state takes precedence over degraded.
2368          */
2369         vd->vdev_delayed_close = B_FALSE;
2370         vd->vdev_faulted = 1ULL;
2371         vd->vdev_degraded = 0ULL;
2372         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2373
2374         /*
2375          * If this device has the only valid copy of the data, then
2376          * back off and simply mark the vdev as degraded instead.
2377          */
2378         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2379                 vd->vdev_degraded = 1ULL;
2380                 vd->vdev_faulted = 0ULL;
2381
2382                 /*
2383                  * If we reopen the device and it's not dead, only then do we
2384                  * mark it degraded.
2385                  */
2386                 vdev_reopen(tvd);
2387
2388                 if (vdev_readable(vd))
2389                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2390         }
2391
2392         return (spa_vdev_state_exit(spa, vd, 0));
2393 }
2394
2395 /*
2396  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2397  * user that something is wrong.  The vdev continues to operate as normal as far
2398  * as I/O is concerned.
2399  */
2400 int
2401 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2402 {
2403         vdev_t *vd;
2404
2405         spa_vdev_state_enter(spa, SCL_NONE);
2406
2407         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2408                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2409
2410         if (!vd->vdev_ops->vdev_op_leaf)
2411                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2412
2413         /*
2414          * If the vdev is already faulted, then don't do anything.
2415          */
2416         if (vd->vdev_faulted || vd->vdev_degraded)
2417                 return (spa_vdev_state_exit(spa, NULL, 0));
2418
2419         vd->vdev_degraded = 1ULL;
2420         if (!vdev_is_dead(vd))
2421                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2422                     aux);
2423
2424         return (spa_vdev_state_exit(spa, vd, 0));
2425 }
2426
2427 /*
2428  * Online the given vdev.
2429  *
2430  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2431  * spare device should be detached when the device finishes resilvering.
2432  * Second, the online should be treated like a 'test' online case, so no FMA
2433  * events are generated if the device fails to open.
2434  */
2435 int
2436 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2437 {
2438         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2439
2440         spa_vdev_state_enter(spa, SCL_NONE);
2441
2442         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2443                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2444
2445         if (!vd->vdev_ops->vdev_op_leaf)
2446                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2447
2448         tvd = vd->vdev_top;
2449         vd->vdev_offline = B_FALSE;
2450         vd->vdev_tmpoffline = B_FALSE;
2451         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2452         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2453
2454         /* XXX - L2ARC 1.0 does not support expansion */
2455         if (!vd->vdev_aux) {
2456                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2457                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2458         }
2459
2460         vdev_reopen(tvd);
2461         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2462
2463         if (!vd->vdev_aux) {
2464                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2465                         pvd->vdev_expanding = B_FALSE;
2466         }
2467
2468         if (newstate)
2469                 *newstate = vd->vdev_state;
2470         if ((flags & ZFS_ONLINE_UNSPARE) &&
2471             !vdev_is_dead(vd) && vd->vdev_parent &&
2472             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2473             vd->vdev_parent->vdev_child[0] == vd)
2474                 vd->vdev_unspare = B_TRUE;
2475
2476         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2477
2478                 /* XXX - L2ARC 1.0 does not support expansion */
2479                 if (vd->vdev_aux)
2480                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2481                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2482         }
2483         return (spa_vdev_state_exit(spa, vd, 0));
2484 }
2485
2486 static int
2487 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2488 {
2489         vdev_t *vd, *tvd;
2490         int error = 0;
2491         uint64_t generation;
2492         metaslab_group_t *mg;
2493
2494 top:
2495         spa_vdev_state_enter(spa, SCL_ALLOC);
2496
2497         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2498                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2499
2500         if (!vd->vdev_ops->vdev_op_leaf)
2501                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2502
2503         tvd = vd->vdev_top;
2504         mg = tvd->vdev_mg;
2505         generation = spa->spa_config_generation + 1;
2506
2507         /*
2508          * If the device isn't already offline, try to offline it.
2509          */
2510         if (!vd->vdev_offline) {
2511                 /*
2512                  * If this device has the only valid copy of some data,
2513                  * don't allow it to be offlined. Log devices are always
2514                  * expendable.
2515                  */
2516                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2517                     vdev_dtl_required(vd))
2518                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2519
2520                 /*
2521                  * If the top-level is a slog and it has had allocations
2522                  * then proceed.  We check that the vdev's metaslab group
2523                  * is not NULL since it's possible that we may have just
2524                  * added this vdev but not yet initialized its metaslabs.
2525                  */
2526                 if (tvd->vdev_islog && mg != NULL) {
2527                         /*
2528                          * Prevent any future allocations.
2529                          */
2530                         metaslab_group_passivate(mg);
2531                         (void) spa_vdev_state_exit(spa, vd, 0);
2532
2533                         error = spa_offline_log(spa);
2534
2535                         spa_vdev_state_enter(spa, SCL_ALLOC);
2536
2537                         /*
2538                          * Check to see if the config has changed.
2539                          */
2540                         if (error || generation != spa->spa_config_generation) {
2541                                 metaslab_group_activate(mg);
2542                                 if (error)
2543                                         return (spa_vdev_state_exit(spa,
2544                                             vd, error));
2545                                 (void) spa_vdev_state_exit(spa, vd, 0);
2546                                 goto top;
2547                         }
2548                         ASSERT0(tvd->vdev_stat.vs_alloc);
2549                 }
2550
2551                 /*
2552                  * Offline this device and reopen its top-level vdev.
2553                  * If the top-level vdev is a log device then just offline
2554                  * it. Otherwise, if this action results in the top-level
2555                  * vdev becoming unusable, undo it and fail the request.
2556                  */
2557                 vd->vdev_offline = B_TRUE;
2558                 vdev_reopen(tvd);
2559
2560                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2561                     vdev_is_dead(tvd)) {
2562                         vd->vdev_offline = B_FALSE;
2563                         vdev_reopen(tvd);
2564                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2565                 }
2566
2567                 /*
2568                  * Add the device back into the metaslab rotor so that
2569                  * once we online the device it's open for business.
2570                  */
2571                 if (tvd->vdev_islog && mg != NULL)
2572                         metaslab_group_activate(mg);
2573         }
2574
2575         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2576
2577         return (spa_vdev_state_exit(spa, vd, 0));
2578 }
2579
2580 int
2581 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2582 {
2583         int error;
2584
2585         mutex_enter(&spa->spa_vdev_top_lock);
2586         error = vdev_offline_locked(spa, guid, flags);
2587         mutex_exit(&spa->spa_vdev_top_lock);
2588
2589         return (error);
2590 }
2591
2592 /*
2593  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2594  * vdev_offline(), we assume the spa config is locked.  We also clear all
2595  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2596  */
2597 void
2598 vdev_clear(spa_t *spa, vdev_t *vd)
2599 {
2600         vdev_t *rvd = spa->spa_root_vdev;
2601
2602         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2603
2604         if (vd == NULL)
2605                 vd = rvd;
2606
2607         vd->vdev_stat.vs_read_errors = 0;
2608         vd->vdev_stat.vs_write_errors = 0;
2609         vd->vdev_stat.vs_checksum_errors = 0;
2610
2611         for (int c = 0; c < vd->vdev_children; c++)
2612                 vdev_clear(spa, vd->vdev_child[c]);
2613
2614         if (vd == rvd) {
2615                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2616                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2617
2618                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2619                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2620         }
2621
2622         /*
2623          * If we're in the FAULTED state or have experienced failed I/O, then
2624          * clear the persistent state and attempt to reopen the device.  We
2625          * also mark the vdev config dirty, so that the new faulted state is
2626          * written out to disk.
2627          */
2628         if (vd->vdev_faulted || vd->vdev_degraded ||
2629             !vdev_readable(vd) || !vdev_writeable(vd)) {
2630
2631                 /*
2632                  * When reopening in reponse to a clear event, it may be due to
2633                  * a fmadm repair request.  In this case, if the device is
2634                  * still broken, we want to still post the ereport again.
2635                  */
2636                 vd->vdev_forcefault = B_TRUE;
2637
2638                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2639                 vd->vdev_cant_read = B_FALSE;
2640                 vd->vdev_cant_write = B_FALSE;
2641
2642                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2643
2644                 vd->vdev_forcefault = B_FALSE;
2645
2646                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2647                         vdev_state_dirty(vd->vdev_top);
2648
2649                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2650                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2651
2652                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2653         }
2654
2655         /*
2656          * When clearing a FMA-diagnosed fault, we always want to
2657          * unspare the device, as we assume that the original spare was
2658          * done in response to the FMA fault.
2659          */
2660         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2661             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2662             vd->vdev_parent->vdev_child[0] == vd)
2663                 vd->vdev_unspare = B_TRUE;
2664 }
2665
2666 boolean_t
2667 vdev_is_dead(vdev_t *vd)
2668 {
2669         /*
2670          * Holes and missing devices are always considered "dead".
2671          * This simplifies the code since we don't have to check for
2672          * these types of devices in the various code paths.
2673          * Instead we rely on the fact that we skip over dead devices
2674          * before issuing I/O to them.
2675          */
2676         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2677             vd->vdev_ops == &vdev_missing_ops);
2678 }
2679
2680 boolean_t
2681 vdev_readable(vdev_t *vd)
2682 {
2683         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2684 }
2685
2686 boolean_t
2687 vdev_writeable(vdev_t *vd)
2688 {
2689         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2690 }
2691
2692 boolean_t
2693 vdev_allocatable(vdev_t *vd)
2694 {
2695         uint64_t state = vd->vdev_state;
2696
2697         /*
2698          * We currently allow allocations from vdevs which may be in the
2699          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2700          * fails to reopen then we'll catch it later when we're holding
2701          * the proper locks.  Note that we have to get the vdev state
2702          * in a local variable because although it changes atomically,
2703          * we're asking two separate questions about it.
2704          */
2705         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2706             !vd->vdev_cant_write && !vd->vdev_ishole);
2707 }
2708
2709 boolean_t
2710 vdev_accessible(vdev_t *vd, zio_t *zio)
2711 {
2712         ASSERT(zio->io_vd == vd);
2713
2714         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2715                 return (B_FALSE);
2716
2717         if (zio->io_type == ZIO_TYPE_READ)
2718                 return (!vd->vdev_cant_read);
2719
2720         if (zio->io_type == ZIO_TYPE_WRITE)
2721                 return (!vd->vdev_cant_write);
2722
2723         return (B_TRUE);
2724 }
2725
2726 /*
2727  * Get statistics for the given vdev.
2728  */
2729 void
2730 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2731 {
2732         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2733
2734         mutex_enter(&vd->vdev_stat_lock);
2735         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2736         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2737         vs->vs_state = vd->vdev_state;
2738         vs->vs_rsize = vdev_get_min_asize(vd);
2739         if (vd->vdev_ops->vdev_op_leaf)
2740                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2741         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2742         vs->vs_configured_ashift = vd->vdev_top != NULL
2743             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2744         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2745         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2746         mutex_exit(&vd->vdev_stat_lock);
2747
2748         /*
2749          * If we're getting stats on the root vdev, aggregate the I/O counts
2750          * over all top-level vdevs (i.e. the direct children of the root).
2751          */
2752         if (vd == rvd) {
2753                 for (int c = 0; c < rvd->vdev_children; c++) {
2754                         vdev_t *cvd = rvd->vdev_child[c];
2755                         vdev_stat_t *cvs = &cvd->vdev_stat;
2756
2757                         mutex_enter(&vd->vdev_stat_lock);
2758                         for (int t = 0; t < ZIO_TYPES; t++) {
2759                                 vs->vs_ops[t] += cvs->vs_ops[t];
2760                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2761                         }
2762                         cvs->vs_scan_removing = cvd->vdev_removing;
2763                         mutex_exit(&vd->vdev_stat_lock);
2764                 }
2765         }
2766 }
2767
2768 void
2769 vdev_clear_stats(vdev_t *vd)
2770 {
2771         mutex_enter(&vd->vdev_stat_lock);
2772         vd->vdev_stat.vs_space = 0;
2773         vd->vdev_stat.vs_dspace = 0;
2774         vd->vdev_stat.vs_alloc = 0;
2775         mutex_exit(&vd->vdev_stat_lock);
2776 }
2777
2778 void
2779 vdev_scan_stat_init(vdev_t *vd)
2780 {
2781         vdev_stat_t *vs = &vd->vdev_stat;
2782
2783         for (int c = 0; c < vd->vdev_children; c++)
2784                 vdev_scan_stat_init(vd->vdev_child[c]);
2785
2786         mutex_enter(&vd->vdev_stat_lock);
2787         vs->vs_scan_processed = 0;
2788         mutex_exit(&vd->vdev_stat_lock);
2789 }
2790
2791 void
2792 vdev_stat_update(zio_t *zio, uint64_t psize)
2793 {
2794         spa_t *spa = zio->io_spa;
2795         vdev_t *rvd = spa->spa_root_vdev;
2796         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2797         vdev_t *pvd;
2798         uint64_t txg = zio->io_txg;
2799         vdev_stat_t *vs = &vd->vdev_stat;
2800         zio_type_t type = zio->io_type;
2801         int flags = zio->io_flags;
2802
2803         /*
2804          * If this i/o is a gang leader, it didn't do any actual work.
2805          */
2806         if (zio->io_gang_tree)
2807                 return;
2808
2809         if (zio->io_error == 0) {
2810                 /*
2811                  * If this is a root i/o, don't count it -- we've already
2812                  * counted the top-level vdevs, and vdev_get_stats() will
2813                  * aggregate them when asked.  This reduces contention on
2814                  * the root vdev_stat_lock and implicitly handles blocks
2815                  * that compress away to holes, for which there is no i/o.
2816                  * (Holes never create vdev children, so all the counters
2817                  * remain zero, which is what we want.)
2818                  *
2819                  * Note: this only applies to successful i/o (io_error == 0)
2820                  * because unlike i/o counts, errors are not additive.
2821                  * When reading a ditto block, for example, failure of
2822                  * one top-level vdev does not imply a root-level error.
2823                  */
2824                 if (vd == rvd)
2825                         return;
2826
2827                 ASSERT(vd == zio->io_vd);
2828
2829                 if (flags & ZIO_FLAG_IO_BYPASS)
2830                         return;
2831
2832                 mutex_enter(&vd->vdev_stat_lock);
2833
2834                 if (flags & ZIO_FLAG_IO_REPAIR) {
2835                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2836                                 dsl_scan_phys_t *scn_phys =
2837                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2838                                 uint64_t *processed = &scn_phys->scn_processed;
2839
2840                                 /* XXX cleanup? */
2841                                 if (vd->vdev_ops->vdev_op_leaf)
2842                                         atomic_add_64(processed, psize);
2843                                 vs->vs_scan_processed += psize;
2844                         }
2845
2846                         if (flags & ZIO_FLAG_SELF_HEAL)
2847                                 vs->vs_self_healed += psize;
2848                 }
2849
2850                 vs->vs_ops[type]++;
2851                 vs->vs_bytes[type] += psize;
2852
2853                 mutex_exit(&vd->vdev_stat_lock);
2854                 return;
2855         }
2856
2857         if (flags & ZIO_FLAG_SPECULATIVE)
2858                 return;
2859
2860         /*
2861          * If this is an I/O error that is going to be retried, then ignore the
2862          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2863          * hard errors, when in reality they can happen for any number of
2864          * innocuous reasons (bus resets, MPxIO link failure, etc).
2865          */
2866         if (zio->io_error == EIO &&
2867             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2868                 return;
2869
2870         /*
2871          * Intent logs writes won't propagate their error to the root
2872          * I/O so don't mark these types of failures as pool-level
2873          * errors.
2874          */
2875         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2876                 return;
2877
2878         mutex_enter(&vd->vdev_stat_lock);
2879         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2880                 if (zio->io_error == ECKSUM)
2881                         vs->vs_checksum_errors++;
2882                 else
2883                         vs->vs_read_errors++;
2884         }
2885         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2886                 vs->vs_write_errors++;
2887         mutex_exit(&vd->vdev_stat_lock);
2888
2889         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2890             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2891             (flags & ZIO_FLAG_SCAN_THREAD) ||
2892             spa->spa_claiming)) {
2893                 /*
2894                  * This is either a normal write (not a repair), or it's
2895                  * a repair induced by the scrub thread, or it's a repair
2896                  * made by zil_claim() during spa_load() in the first txg.
2897                  * In the normal case, we commit the DTL change in the same
2898                  * txg as the block was born.  In the scrub-induced repair
2899                  * case, we know that scrubs run in first-pass syncing context,
2900                  * so we commit the DTL change in spa_syncing_txg(spa).
2901                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2902                  *
2903                  * We currently do not make DTL entries for failed spontaneous
2904                  * self-healing writes triggered by normal (non-scrubbing)
2905                  * reads, because we have no transactional context in which to
2906                  * do so -- and it's not clear that it'd be desirable anyway.
2907                  */
2908                 if (vd->vdev_ops->vdev_op_leaf) {
2909                         uint64_t commit_txg = txg;
2910                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2911                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2912                                 ASSERT(spa_sync_pass(spa) == 1);
2913                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2914                                 commit_txg = spa_syncing_txg(spa);
2915                         } else if (spa->spa_claiming) {
2916                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2917                                 commit_txg = spa_first_txg(spa);
2918                         }
2919                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2920                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2921                                 return;
2922                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2923                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2924                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2925                 }
2926                 if (vd != rvd)
2927                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2928         }
2929 }
2930
2931 /*
2932  * Update the in-core space usage stats for this vdev, its metaslab class,
2933  * and the root vdev.
2934  */
2935 void
2936 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2937     int64_t space_delta)
2938 {
2939         int64_t dspace_delta = space_delta;
2940         spa_t *spa = vd->vdev_spa;
2941         vdev_t *rvd = spa->spa_root_vdev;
2942         metaslab_group_t *mg = vd->vdev_mg;
2943         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2944
2945         ASSERT(vd == vd->vdev_top);
2946
2947         /*
2948          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2949          * factor.  We must calculate this here and not at the root vdev
2950          * because the root vdev's psize-to-asize is simply the max of its
2951          * childrens', thus not accurate enough for us.
2952          */
2953         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2954         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2955         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2956             vd->vdev_deflate_ratio;
2957
2958         mutex_enter(&vd->vdev_stat_lock);
2959         vd->vdev_stat.vs_alloc += alloc_delta;
2960         vd->vdev_stat.vs_space += space_delta;
2961         vd->vdev_stat.vs_dspace += dspace_delta;
2962         mutex_exit(&vd->vdev_stat_lock);
2963
2964         if (mc == spa_normal_class(spa)) {
2965                 mutex_enter(&rvd->vdev_stat_lock);
2966                 rvd->vdev_stat.vs_alloc += alloc_delta;
2967                 rvd->vdev_stat.vs_space += space_delta;
2968                 rvd->vdev_stat.vs_dspace += dspace_delta;
2969                 mutex_exit(&rvd->vdev_stat_lock);
2970         }
2971
2972         if (mc != NULL) {
2973                 ASSERT(rvd == vd->vdev_parent);
2974                 ASSERT(vd->vdev_ms_count != 0);
2975
2976                 metaslab_class_space_update(mc,
2977                     alloc_delta, defer_delta, space_delta, dspace_delta);
2978         }
2979 }
2980
2981 /*
2982  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2983  * so that it will be written out next time the vdev configuration is synced.
2984  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2985  */
2986 void
2987 vdev_config_dirty(vdev_t *vd)
2988 {
2989         spa_t *spa = vd->vdev_spa;
2990         vdev_t *rvd = spa->spa_root_vdev;
2991         int c;
2992
2993         ASSERT(spa_writeable(spa));
2994
2995         /*
2996          * If this is an aux vdev (as with l2cache and spare devices), then we
2997          * update the vdev config manually and set the sync flag.
2998          */
2999         if (vd->vdev_aux != NULL) {
3000                 spa_aux_vdev_t *sav = vd->vdev_aux;
3001                 nvlist_t **aux;
3002                 uint_t naux;
3003
3004                 for (c = 0; c < sav->sav_count; c++) {
3005                         if (sav->sav_vdevs[c] == vd)
3006                                 break;
3007                 }
3008
3009                 if (c == sav->sav_count) {
3010                         /*
3011                          * We're being removed.  There's nothing more to do.
3012                          */
3013                         ASSERT(sav->sav_sync == B_TRUE);
3014                         return;
3015                 }
3016
3017                 sav->sav_sync = B_TRUE;
3018
3019                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3020                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3021                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3022                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3023                 }
3024
3025                 ASSERT(c < naux);
3026
3027                 /*
3028                  * Setting the nvlist in the middle if the array is a little
3029                  * sketchy, but it will work.
3030                  */
3031                 nvlist_free(aux[c]);
3032                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3033
3034                 return;
3035         }
3036
3037         /*
3038          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3039          * must either hold SCL_CONFIG as writer, or must be the sync thread
3040          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3041          * so this is sufficient to ensure mutual exclusion.
3042          */
3043         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3044             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3045             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3046
3047         if (vd == rvd) {
3048                 for (c = 0; c < rvd->vdev_children; c++)
3049                         vdev_config_dirty(rvd->vdev_child[c]);
3050         } else {
3051                 ASSERT(vd == vd->vdev_top);
3052
3053                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3054                     !vd->vdev_ishole)
3055                         list_insert_head(&spa->spa_config_dirty_list, vd);
3056         }
3057 }
3058
3059 void
3060 vdev_config_clean(vdev_t *vd)
3061 {
3062         spa_t *spa = vd->vdev_spa;
3063
3064         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3065             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3066             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3067
3068         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3069         list_remove(&spa->spa_config_dirty_list, vd);
3070 }
3071
3072 /*
3073  * Mark a top-level vdev's state as dirty, so that the next pass of
3074  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3075  * the state changes from larger config changes because they require
3076  * much less locking, and are often needed for administrative actions.
3077  */
3078 void
3079 vdev_state_dirty(vdev_t *vd)
3080 {
3081         spa_t *spa = vd->vdev_spa;
3082
3083         ASSERT(spa_writeable(spa));
3084         ASSERT(vd == vd->vdev_top);
3085
3086         /*
3087          * The state list is protected by the SCL_STATE lock.  The caller
3088          * must either hold SCL_STATE as writer, or must be the sync thread
3089          * (which holds SCL_STATE as reader).  There's only one sync thread,
3090          * so this is sufficient to ensure mutual exclusion.
3091          */
3092         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3093             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3094             spa_config_held(spa, SCL_STATE, RW_READER)));
3095
3096         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3097                 list_insert_head(&spa->spa_state_dirty_list, vd);
3098 }
3099
3100 void
3101 vdev_state_clean(vdev_t *vd)
3102 {
3103         spa_t *spa = vd->vdev_spa;
3104
3105         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3106             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3107             spa_config_held(spa, SCL_STATE, RW_READER)));
3108
3109         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3110         list_remove(&spa->spa_state_dirty_list, vd);
3111 }
3112
3113 /*
3114  * Propagate vdev state up from children to parent.
3115  */
3116 void
3117 vdev_propagate_state(vdev_t *vd)
3118 {
3119         spa_t *spa = vd->vdev_spa;
3120         vdev_t *rvd = spa->spa_root_vdev;
3121         int degraded = 0, faulted = 0;
3122         int corrupted = 0;
3123         vdev_t *child;
3124
3125         if (vd->vdev_children > 0) {
3126                 for (int c = 0; c < vd->vdev_children; c++) {
3127                         child = vd->vdev_child[c];
3128
3129                         /*
3130                          * Don't factor holes into the decision.
3131                          */
3132                         if (child->vdev_ishole)
3133                                 continue;
3134
3135                         if (!vdev_readable(child) ||
3136                             (!vdev_writeable(child) && spa_writeable(spa))) {
3137                                 /*
3138                                  * Root special: if there is a top-level log
3139                                  * device, treat the root vdev as if it were
3140                                  * degraded.
3141                                  */
3142                                 if (child->vdev_islog && vd == rvd)
3143                                         degraded++;
3144                                 else
3145                                         faulted++;
3146                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3147                                 degraded++;
3148                         }
3149
3150                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3151                                 corrupted++;
3152                 }
3153
3154                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3155
3156                 /*
3157                  * Root special: if there is a top-level vdev that cannot be
3158                  * opened due to corrupted metadata, then propagate the root
3159                  * vdev's aux state as 'corrupt' rather than 'insufficient
3160                  * replicas'.
3161                  */
3162                 if (corrupted && vd == rvd &&
3163                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3164                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3165                             VDEV_AUX_CORRUPT_DATA);
3166         }
3167
3168         if (vd->vdev_parent)
3169                 vdev_propagate_state(vd->vdev_parent);
3170 }
3171
3172 /*
3173  * Set a vdev's state.  If this is during an open, we don't update the parent
3174  * state, because we're in the process of opening children depth-first.
3175  * Otherwise, we propagate the change to the parent.
3176  *
3177  * If this routine places a device in a faulted state, an appropriate ereport is
3178  * generated.
3179  */
3180 void
3181 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3182 {
3183         uint64_t save_state;
3184         spa_t *spa = vd->vdev_spa;
3185
3186         if (state == vd->vdev_state) {
3187                 vd->vdev_stat.vs_aux = aux;
3188                 return;
3189         }
3190
3191         save_state = vd->vdev_state;
3192
3193         vd->vdev_state = state;
3194         vd->vdev_stat.vs_aux = aux;
3195
3196         /*
3197          * If we are setting the vdev state to anything but an open state, then
3198          * always close the underlying device unless the device has requested
3199          * a delayed close (i.e. we're about to remove or fault the device).
3200          * Otherwise, we keep accessible but invalid devices open forever.
3201          * We don't call vdev_close() itself, because that implies some extra
3202          * checks (offline, etc) that we don't want here.  This is limited to
3203          * leaf devices, because otherwise closing the device will affect other
3204          * children.
3205          */
3206         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3207             vd->vdev_ops->vdev_op_leaf)
3208                 vd->vdev_ops->vdev_op_close(vd);
3209
3210         /*
3211          * If we have brought this vdev back into service, we need
3212          * to notify fmd so that it can gracefully repair any outstanding
3213          * cases due to a missing device.  We do this in all cases, even those
3214          * that probably don't correlate to a repaired fault.  This is sure to
3215          * catch all cases, and we let the zfs-retire agent sort it out.  If
3216          * this is a transient state it's OK, as the retire agent will
3217          * double-check the state of the vdev before repairing it.
3218          */
3219         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3220             vd->vdev_prevstate != state)
3221                 zfs_post_state_change(spa, vd);
3222
3223         if (vd->vdev_removed &&
3224             state == VDEV_STATE_CANT_OPEN &&
3225             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3226                 /*
3227                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3228                  * device was previously marked removed and someone attempted to
3229                  * reopen it.  If this failed due to a nonexistent device, then
3230                  * keep the device in the REMOVED state.  We also let this be if
3231                  * it is one of our special test online cases, which is only
3232                  * attempting to online the device and shouldn't generate an FMA
3233                  * fault.
3234                  */
3235                 vd->vdev_state = VDEV_STATE_REMOVED;
3236                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3237         } else if (state == VDEV_STATE_REMOVED) {
3238                 vd->vdev_removed = B_TRUE;
3239         } else if (state == VDEV_STATE_CANT_OPEN) {
3240                 /*
3241                  * If we fail to open a vdev during an import or recovery, we
3242                  * mark it as "not available", which signifies that it was
3243                  * never there to begin with.  Failure to open such a device
3244                  * is not considered an error.
3245                  */
3246                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3247                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3248                     vd->vdev_ops->vdev_op_leaf)
3249                         vd->vdev_not_present = 1;
3250
3251                 /*
3252                  * Post the appropriate ereport.  If the 'prevstate' field is
3253                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3254                  * that this is part of a vdev_reopen().  In this case, we don't
3255                  * want to post the ereport if the device was already in the
3256                  * CANT_OPEN state beforehand.
3257                  *
3258                  * If the 'checkremove' flag is set, then this is an attempt to
3259                  * online the device in response to an insertion event.  If we
3260                  * hit this case, then we have detected an insertion event for a
3261                  * faulted or offline device that wasn't in the removed state.
3262                  * In this scenario, we don't post an ereport because we are
3263                  * about to replace the device, or attempt an online with
3264                  * vdev_forcefault, which will generate the fault for us.
3265                  */
3266                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3267                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3268                     vd != spa->spa_root_vdev) {
3269                         const char *class;
3270
3271                         switch (aux) {
3272                         case VDEV_AUX_OPEN_FAILED:
3273                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3274                                 break;
3275                         case VDEV_AUX_CORRUPT_DATA:
3276                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3277                                 break;
3278                         case VDEV_AUX_NO_REPLICAS:
3279                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3280                                 break;
3281                         case VDEV_AUX_BAD_GUID_SUM:
3282                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3283                                 break;
3284                         case VDEV_AUX_TOO_SMALL:
3285                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3286                                 break;
3287                         case VDEV_AUX_BAD_LABEL:
3288                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3289                                 break;
3290                         default:
3291                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3292                         }
3293
3294                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3295                 }
3296
3297                 /* Erase any notion of persistent removed state */
3298                 vd->vdev_removed = B_FALSE;
3299         } else {
3300                 vd->vdev_removed = B_FALSE;
3301         }
3302
3303         if (!isopen && vd->vdev_parent)
3304                 vdev_propagate_state(vd->vdev_parent);
3305 }
3306
3307 /*
3308  * Check the vdev configuration to ensure that it's capable of supporting
3309  * a root pool.
3310  *
3311  * On Solaris, we do not support RAID-Z or partial configuration.  In
3312  * addition, only a single top-level vdev is allowed and none of the
3313  * leaves can be wholedisks.
3314  *
3315  * For FreeBSD, we can boot from any configuration. There is a
3316  * limitation that the boot filesystem must be either uncompressed or
3317  * compresses with lzjb compression but I'm not sure how to enforce
3318  * that here.
3319  */
3320 boolean_t
3321 vdev_is_bootable(vdev_t *vd)
3322 {
3323 #ifdef sun
3324         if (!vd->vdev_ops->vdev_op_leaf) {
3325                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3326
3327                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3328                     vd->vdev_children > 1) {
3329                         return (B_FALSE);
3330                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3331                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3332                         return (B_FALSE);
3333                 }
3334         } else if (vd->vdev_wholedisk == 1) {
3335                 return (B_FALSE);
3336         }
3337
3338         for (int c = 0; c < vd->vdev_children; c++) {
3339                 if (!vdev_is_bootable(vd->vdev_child[c]))
3340                         return (B_FALSE);
3341         }
3342 #endif  /* sun */
3343         return (B_TRUE);
3344 }
3345
3346 /*
3347  * Load the state from the original vdev tree (ovd) which
3348  * we've retrieved from the MOS config object. If the original
3349  * vdev was offline or faulted then we transfer that state to the
3350  * device in the current vdev tree (nvd).
3351  */
3352 void
3353 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3354 {
3355         spa_t *spa = nvd->vdev_spa;
3356
3357         ASSERT(nvd->vdev_top->vdev_islog);
3358         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3359         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3360
3361         for (int c = 0; c < nvd->vdev_children; c++)
3362                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3363
3364         if (nvd->vdev_ops->vdev_op_leaf) {
3365                 /*
3366                  * Restore the persistent vdev state
3367                  */
3368                 nvd->vdev_offline = ovd->vdev_offline;
3369                 nvd->vdev_faulted = ovd->vdev_faulted;
3370                 nvd->vdev_degraded = ovd->vdev_degraded;
3371                 nvd->vdev_removed = ovd->vdev_removed;
3372         }
3373 }
3374
3375 /*
3376  * Determine if a log device has valid content.  If the vdev was
3377  * removed or faulted in the MOS config then we know that
3378  * the content on the log device has already been written to the pool.
3379  */
3380 boolean_t
3381 vdev_log_state_valid(vdev_t *vd)
3382 {
3383         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3384             !vd->vdev_removed)
3385                 return (B_TRUE);
3386
3387         for (int c = 0; c < vd->vdev_children; c++)
3388                 if (vdev_log_state_valid(vd->vdev_child[c]))
3389                         return (B_TRUE);
3390
3391         return (B_FALSE);
3392 }
3393
3394 /*
3395  * Expand a vdev if possible.
3396  */
3397 void
3398 vdev_expand(vdev_t *vd, uint64_t txg)
3399 {
3400         ASSERT(vd->vdev_top == vd);
3401         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3402
3403         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3404                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3405                 vdev_config_dirty(vd);
3406         }
3407 }
3408
3409 /*
3410  * Split a vdev.
3411  */
3412 void
3413 vdev_split(vdev_t *vd)
3414 {
3415         vdev_t *cvd, *pvd = vd->vdev_parent;
3416
3417         vdev_remove_child(pvd, vd);
3418         vdev_compact_children(pvd);
3419
3420         cvd = pvd->vdev_child[0];
3421         if (pvd->vdev_children == 1) {
3422                 vdev_remove_parent(cvd);
3423                 cvd->vdev_splitting = B_TRUE;
3424         }
3425         vdev_propagate_state(cvd);
3426 }
3427
3428 void
3429 vdev_deadman(vdev_t *vd)
3430 {
3431         for (int c = 0; c < vd->vdev_children; c++) {
3432                 vdev_t *cvd = vd->vdev_child[c];
3433
3434                 vdev_deadman(cvd);
3435         }
3436
3437         if (vd->vdev_ops->vdev_op_leaf) {
3438                 vdev_queue_t *vq = &vd->vdev_queue;
3439
3440                 mutex_enter(&vq->vq_lock);
3441                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3442                         spa_t *spa = vd->vdev_spa;
3443                         zio_t *fio;
3444                         uint64_t delta;
3445
3446                         /*
3447                          * Look at the head of all the pending queues,
3448                          * if any I/O has been outstanding for longer than
3449                          * the spa_deadman_synctime we panic the system.
3450                          */
3451                         fio = avl_first(&vq->vq_active_tree);
3452                         delta = gethrtime() - fio->io_timestamp;
3453                         if (delta > spa_deadman_synctime(spa)) {
3454                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3455                                     "delta %lluns, last io %lluns",
3456                                     fio->io_timestamp, delta,
3457                                     vq->vq_io_complete_ts);
3458                                 fm_panic("I/O to pool '%s' appears to be "
3459                                     "hung on vdev guid %llu at '%s'.",
3460                                     spa_name(spa),
3461                                     (long long unsigned int) vd->vdev_guid,
3462                                     vd->vdev_path);
3463                         }
3464                 }
3465                 mutex_exit(&vq->vq_lock);
3466         }
3467 }