]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dmu_zfetch.c
Update OpenZFS to 2.0.0-rc3-gfc5966
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44
45 int zfs_prefetch_disable = B_FALSE;
46
47 /* max # of streams per zfetch */
48 unsigned int    zfetch_max_streams = 8;
49 /* min time before stream reclaim */
50 unsigned int    zfetch_min_sec_reap = 2;
51 /* max bytes to prefetch per stream (default 8MB) */
52 unsigned int    zfetch_max_distance = 8 * 1024 * 1024;
53 /* max bytes to prefetch indirects for per stream (default 64MB) */
54 unsigned int    zfetch_max_idistance = 64 * 1024 * 1024;
55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
56 unsigned long   zfetch_array_rd_sz = 1024 * 1024;
57
58 typedef struct zfetch_stats {
59         kstat_named_t zfetchstat_hits;
60         kstat_named_t zfetchstat_misses;
61         kstat_named_t zfetchstat_max_streams;
62 } zfetch_stats_t;
63
64 static zfetch_stats_t zfetch_stats = {
65         { "hits",                       KSTAT_DATA_UINT64 },
66         { "misses",                     KSTAT_DATA_UINT64 },
67         { "max_streams",                KSTAT_DATA_UINT64 },
68 };
69
70 #define ZFETCHSTAT_BUMP(stat) \
71         atomic_inc_64(&zfetch_stats.stat.value.ui64);
72
73 kstat_t         *zfetch_ksp;
74
75 void
76 zfetch_init(void)
77 {
78         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
79             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
80             KSTAT_FLAG_VIRTUAL);
81
82         if (zfetch_ksp != NULL) {
83                 zfetch_ksp->ks_data = &zfetch_stats;
84                 kstat_install(zfetch_ksp);
85         }
86 }
87
88 void
89 zfetch_fini(void)
90 {
91         if (zfetch_ksp != NULL) {
92                 kstat_delete(zfetch_ksp);
93                 zfetch_ksp = NULL;
94         }
95 }
96
97 /*
98  * This takes a pointer to a zfetch structure and a dnode.  It performs the
99  * necessary setup for the zfetch structure, grokking data from the
100  * associated dnode.
101  */
102 void
103 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
104 {
105         if (zf == NULL)
106                 return;
107
108         zf->zf_dnode = dno;
109
110         list_create(&zf->zf_stream, sizeof (zstream_t),
111             offsetof(zstream_t, zs_node));
112
113         mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
114 }
115
116 static void
117 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
118 {
119         ASSERT(MUTEX_HELD(&zf->zf_lock));
120         list_remove(&zf->zf_stream, zs);
121         mutex_destroy(&zs->zs_lock);
122         kmem_free(zs, sizeof (*zs));
123 }
124
125 /*
126  * Clean-up state associated with a zfetch structure (e.g. destroy the
127  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
128  */
129 void
130 dmu_zfetch_fini(zfetch_t *zf)
131 {
132         zstream_t *zs;
133
134         mutex_enter(&zf->zf_lock);
135         while ((zs = list_head(&zf->zf_stream)) != NULL)
136                 dmu_zfetch_stream_remove(zf, zs);
137         mutex_exit(&zf->zf_lock);
138         list_destroy(&zf->zf_stream);
139         mutex_destroy(&zf->zf_lock);
140
141         zf->zf_dnode = NULL;
142 }
143
144 /*
145  * If there aren't too many streams already, create a new stream.
146  * The "blkid" argument is the next block that we expect this stream to access.
147  * While we're here, clean up old streams (which haven't been
148  * accessed for at least zfetch_min_sec_reap seconds).
149  */
150 static void
151 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
152 {
153         zstream_t *zs_next;
154         int numstreams = 0;
155
156         ASSERT(MUTEX_HELD(&zf->zf_lock));
157
158         /*
159          * Clean up old streams.
160          */
161         for (zstream_t *zs = list_head(&zf->zf_stream);
162             zs != NULL; zs = zs_next) {
163                 zs_next = list_next(&zf->zf_stream, zs);
164                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
165                     zfetch_min_sec_reap)
166                         dmu_zfetch_stream_remove(zf, zs);
167                 else
168                         numstreams++;
169         }
170
171         /*
172          * The maximum number of streams is normally zfetch_max_streams,
173          * but for small files we lower it such that it's at least possible
174          * for all the streams to be non-overlapping.
175          *
176          * If we are already at the maximum number of streams for this file,
177          * even after removing old streams, then don't create this stream.
178          */
179         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
180             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
181             zfetch_max_distance));
182         if (numstreams >= max_streams) {
183                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
184                 return;
185         }
186
187         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
188         zs->zs_blkid = blkid;
189         zs->zs_pf_blkid = blkid;
190         zs->zs_ipf_blkid = blkid;
191         zs->zs_atime = gethrtime();
192         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
193
194         list_insert_head(&zf->zf_stream, zs);
195 }
196
197 /*
198  * This is the predictive prefetch entry point.  It associates dnode access
199  * specified with blkid and nblks arguments with prefetch stream, predicts
200  * further accesses based on that stats and initiates speculative prefetch.
201  * fetch_data argument specifies whether actual data blocks should be fetched:
202  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
203  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
204  */
205 void
206 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
207     boolean_t have_lock)
208 {
209         zstream_t *zs;
210         int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
211         int64_t pf_ahead_blks, max_blks;
212         int epbs, max_dist_blks, pf_nblks, ipf_nblks;
213         uint64_t end_of_access_blkid;
214         end_of_access_blkid = blkid + nblks;
215         spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
216
217         if (zfs_prefetch_disable)
218                 return;
219         /*
220          * If we haven't yet loaded the indirect vdevs' mappings, we
221          * can only read from blocks that we carefully ensure are on
222          * concrete vdevs (or previously-loaded indirect vdevs).  So we
223          * can't allow the predictive prefetcher to attempt reads of other
224          * blocks (e.g. of the MOS's dnode object).
225          */
226         if (!spa_indirect_vdevs_loaded(spa))
227                 return;
228
229         /*
230          * As a fast path for small (single-block) files, ignore access
231          * to the first block.
232          */
233         if (blkid == 0)
234                 return;
235
236         if (!have_lock)
237                 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
238         mutex_enter(&zf->zf_lock);
239
240         /*
241          * Find matching prefetch stream.  Depending on whether the accesses
242          * are block-aligned, first block of the new access may either follow
243          * the last block of the previous access, or be equal to it.
244          */
245         for (zs = list_head(&zf->zf_stream); zs != NULL;
246             zs = list_next(&zf->zf_stream, zs)) {
247                 if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) {
248                         mutex_enter(&zs->zs_lock);
249                         /*
250                          * zs_blkid could have changed before we
251                          * acquired zs_lock; re-check them here.
252                          */
253                         if (blkid == zs->zs_blkid) {
254                                 break;
255                         } else if (blkid + 1 == zs->zs_blkid) {
256                                 blkid++;
257                                 nblks--;
258                                 if (nblks == 0) {
259                                         /* Already prefetched this before. */
260                                         mutex_exit(&zs->zs_lock);
261                                         mutex_exit(&zf->zf_lock);
262                                         if (!have_lock) {
263                                                 rw_exit(&zf->zf_dnode->
264                                                     dn_struct_rwlock);
265                                         }
266                                         return;
267                                 }
268                                 break;
269                         }
270                         mutex_exit(&zs->zs_lock);
271                 }
272         }
273
274         if (zs == NULL) {
275                 /*
276                  * This access is not part of any existing stream.  Create
277                  * a new stream for it.
278                  */
279                 ZFETCHSTAT_BUMP(zfetchstat_misses);
280
281                 dmu_zfetch_stream_create(zf, end_of_access_blkid);
282                 mutex_exit(&zf->zf_lock);
283                 if (!have_lock)
284                         rw_exit(&zf->zf_dnode->dn_struct_rwlock);
285                 return;
286         }
287
288         /*
289          * This access was to a block that we issued a prefetch for on
290          * behalf of this stream. Issue further prefetches for this stream.
291          *
292          * Normally, we start prefetching where we stopped
293          * prefetching last (zs_pf_blkid).  But when we get our first
294          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
295          * want to prefetch the block we just accessed.  In this case,
296          * start just after the block we just accessed.
297          */
298         pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
299
300         /*
301          * Double our amount of prefetched data, but don't let the
302          * prefetch get further ahead than zfetch_max_distance.
303          */
304         if (fetch_data) {
305                 max_dist_blks =
306                     zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
307                 /*
308                  * Previously, we were (zs_pf_blkid - blkid) ahead.  We
309                  * want to now be double that, so read that amount again,
310                  * plus the amount we are catching up by (i.e. the amount
311                  * read just now).
312                  */
313                 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
314                 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
315                 pf_nblks = MIN(pf_ahead_blks, max_blks);
316         } else {
317                 pf_nblks = 0;
318         }
319
320         zs->zs_pf_blkid = pf_start + pf_nblks;
321
322         /*
323          * Do the same for indirects, starting from where we stopped last,
324          * or where we will stop reading data blocks (and the indirects
325          * that point to them).
326          */
327         ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
328         max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
329         /*
330          * We want to double our distance ahead of the data prefetch
331          * (or reader, if we are not prefetching data).  Previously, we
332          * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
333          * that amount again, plus the amount we are catching up by
334          * (i.e. the amount read now + the amount of data prefetched now).
335          */
336         pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
337         max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
338         ipf_nblks = MIN(pf_ahead_blks, max_blks);
339         zs->zs_ipf_blkid = ipf_start + ipf_nblks;
340
341         epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
342         ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
343         ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
344
345         zs->zs_atime = gethrtime();
346         zs->zs_blkid = end_of_access_blkid;
347         mutex_exit(&zs->zs_lock);
348         mutex_exit(&zf->zf_lock);
349
350         /*
351          * dbuf_prefetch() is asynchronous (even when it needs to read
352          * indirect blocks), but we still prefer to drop our locks before
353          * calling it to reduce the time we hold them.
354          */
355
356         for (int i = 0; i < pf_nblks; i++) {
357                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
358                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
359         }
360         for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
361                 dbuf_prefetch(zf->zf_dnode, 1, iblk,
362                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
363         }
364         if (!have_lock)
365                 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
366         ZFETCHSTAT_BUMP(zfetchstat_hits);
367 }
368
369 /* BEGIN CSTYLED */
370 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
371         "Disable all ZFS prefetching");
372
373 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
374         "Max number of streams per zfetch");
375
376 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
377         "Min time before stream reclaim");
378
379 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
380         "Max bytes to prefetch per stream");
381
382 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
383         "Max bytes to prefetch indirects for per stream");
384
385 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, ULONG, ZMOD_RW,
386         "Number of bytes in a array_read");
387 /* END CSTYLED */