]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_rebuild.c
MFV 2.0-rc2
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_rebuild.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2018, Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  */
26
27 #include <sys/vdev_impl.h>
28 #include <sys/dsl_scan.h>
29 #include <sys/spa_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/vdev_rebuild.h>
32 #include <sys/zio.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/arc.h>
35 #include <sys/zap.h>
36
37 /*
38  * This file contains the sequential reconstruction implementation for
39  * resilvering.  This form of resilvering is internally referred to as device
40  * rebuild to avoid conflating it with the traditional healing reconstruction
41  * performed by the dsl scan code.
42  *
43  * When replacing a device, or scrubbing the pool, ZFS has historically used
44  * a process called resilvering which is a form of healing reconstruction.
45  * This approach has the advantage that as blocks are read from disk their
46  * checksums can be immediately verified and the data repaired.  Unfortunately,
47  * it also results in a random IO pattern to the disk even when extra care
48  * is taken to sequentialize the IO as much as possible.  This substantially
49  * increases the time required to resilver the pool and restore redundancy.
50  *
51  * For mirrored devices it's possible to implement an alternate sequential
52  * reconstruction strategy when resilvering.  Sequential reconstruction
53  * behaves like a traditional RAID rebuild and reconstructs a device in LBA
54  * order without verifying the checksum.  After this phase completes a second
55  * scrub phase is started to verify all of the checksums.  This two phase
56  * process will take longer than the healing reconstruction described above.
57  * However, it has that advantage that after the reconstruction first phase
58  * completes redundancy has been restored.  At this point the pool can incur
59  * another device failure without risking data loss.
60  *
61  * There are a few noteworthy limitations and other advantages of resilvering
62  * using sequential reconstruction vs healing reconstruction.
63  *
64  * Limitations:
65  *
66  *   - Only supported for mirror vdev types.  Due to the variable stripe
67  *     width used by raidz sequential reconstruction is not possible.
68  *
69  *   - Block checksums are not verified during sequential reconstuction.
70  *     Similar to traditional RAID the parity/mirror data is reconstructed
71  *     but cannot be immediately double checked.  For this reason when the
72  *     last active resilver completes the pool is automatically scrubbed.
73  *
74  *   - Deferred resilvers using sequential reconstruction are not currently
75  *     supported.  When adding another vdev to an active top-level resilver
76  *     it must be restarted.
77  *
78  * Advantages:
79  *
80  *   - Sequential reconstuction is performed in LBA order which may be faster
81  *     than healing reconstuction particularly when using using HDDs (or
82  *     especially with SMR devices).  Only allocated capacity is resilvered.
83  *
84  *   - Sequential reconstruction is not constrained by ZFS block boundaries.
85  *     This allows it to issue larger IOs to disk which span multiple blocks
86  *     allowing all of these logical blocks to be repaired with a single IO.
87  *
88  *   - Unlike a healing resilver or scrub which are pool wide operations,
89  *     sequential reconstruction is handled by the top-level mirror vdevs.
90  *     This allows for it to be started or canceled on a top-level vdev
91  *     without impacting any other top-level vdevs in the pool.
92  *
93  *   - Data only referenced by a pool checkpoint will be repaired because
94  *     that space is reflected in the space maps.  This differs for a
95  *     healing resilver or scrub which will not repair that data.
96  */
97
98
99 /*
100  * Maximum number of queued rebuild I/Os top-level vdev.  The number of
101  * concurrent rebuild I/Os issued to the device is controlled by the
102  * zfs_vdev_rebuild_min_active and zfs_vdev_rebuild_max_active module
103  * options.
104  */
105 unsigned int zfs_rebuild_queue_limit = 20;
106
107 /*
108  * Size of rebuild reads; defaults to 1MiB and is capped at SPA_MAXBLOCKSIZE.
109  */
110 unsigned long zfs_rebuild_max_segment = 1024 * 1024;
111
112 /*
113  * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
114  */
115 static void vdev_rebuild_thread(void *arg);
116
117 /*
118  * Clear the per-vdev rebuild bytes value for a vdev tree.
119  */
120 static void
121 clear_rebuild_bytes(vdev_t *vd)
122 {
123         vdev_stat_t *vs = &vd->vdev_stat;
124
125         for (uint64_t i = 0; i < vd->vdev_children; i++)
126                 clear_rebuild_bytes(vd->vdev_child[i]);
127
128         mutex_enter(&vd->vdev_stat_lock);
129         vs->vs_rebuild_processed = 0;
130         mutex_exit(&vd->vdev_stat_lock);
131 }
132
133 /*
134  * Determines whether a vdev_rebuild_thread() should be stopped.
135  */
136 static boolean_t
137 vdev_rebuild_should_stop(vdev_t *vd)
138 {
139         return (!vdev_writeable(vd) || vd->vdev_removing ||
140             vd->vdev_rebuild_exit_wanted ||
141             vd->vdev_rebuild_cancel_wanted ||
142             vd->vdev_rebuild_reset_wanted);
143 }
144
145 /*
146  * Determine if the rebuild should be canceled.  This may happen when all
147  * vdevs with MISSING DTLs are detached.
148  */
149 static boolean_t
150 vdev_rebuild_should_cancel(vdev_t *vd)
151 {
152         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
153         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
154
155         if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
156                 return (B_TRUE);
157
158         return (B_FALSE);
159 }
160
161 /*
162  * The sync task for updating the on-disk state of a rebuild.  This is
163  * scheduled by vdev_rebuild_range().
164  */
165 static void
166 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
167 {
168         int vdev_id = (uintptr_t)arg;
169         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
170         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
171         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
172         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
173         uint64_t txg = dmu_tx_get_txg(tx);
174
175         mutex_enter(&vd->vdev_rebuild_lock);
176
177         if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
178                 vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
179                 vr->vr_scan_offset[txg & TXG_MASK] = 0;
180         }
181
182         vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
183             NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
184
185         VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
186             VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
187             REBUILD_PHYS_ENTRIES, vrp, tx));
188
189         mutex_exit(&vd->vdev_rebuild_lock);
190 }
191
192 /*
193  * Initialize the on-disk state for a new rebuild, start the rebuild thread.
194  */
195 static void
196 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
197 {
198         int vdev_id = (uintptr_t)arg;
199         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
200         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
201         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
202         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
203
204         ASSERT(vd->vdev_rebuilding);
205
206         spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
207
208         mutex_enter(&vd->vdev_rebuild_lock);
209         bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
210         vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
211         vrp->vrp_min_txg = 0;
212         vrp->vrp_max_txg = dmu_tx_get_txg(tx);
213         vrp->vrp_start_time = gethrestime_sec();
214         vrp->vrp_scan_time_ms = 0;
215         vr->vr_prev_scan_time_ms = 0;
216
217         /*
218          * Rebuilds are currently only used when replacing a device, in which
219          * case there must be DTL_MISSING entries.  In the future, we could
220          * allow rebuilds to be used in a way similar to a scrub.  This would
221          * be useful because it would allow us to rebuild the space used by
222          * pool checkpoints.
223          */
224         VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
225
226         VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
227             VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
228             REBUILD_PHYS_ENTRIES, vrp, tx));
229
230         spa_history_log_internal(spa, "rebuild", tx,
231             "vdev_id=%llu vdev_guid=%llu started",
232             (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
233
234         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
235         vd->vdev_rebuild_thread = thread_create(NULL, 0,
236             vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
237
238         mutex_exit(&vd->vdev_rebuild_lock);
239 }
240
241 static void
242 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, char *name)
243 {
244         nvlist_t *aux = fnvlist_alloc();
245
246         fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
247         spa_event_notify(spa, vd, aux, name);
248         nvlist_free(aux);
249 }
250
251 /*
252  * Called to request that a new rebuild be started.  The feature will remain
253  * active for the duration of the rebuild, then revert to the enabled state.
254  */
255 static void
256 vdev_rebuild_initiate(vdev_t *vd)
257 {
258         spa_t *spa = vd->vdev_spa;
259
260         ASSERT(vd->vdev_top == vd);
261         ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
262         ASSERT(!vd->vdev_rebuilding);
263
264         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
265         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
266
267         vd->vdev_rebuilding = B_TRUE;
268
269         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
270             (void *)(uintptr_t)vd->vdev_id, tx);
271         dmu_tx_commit(tx);
272
273         vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
274 }
275
276 /*
277  * Update the on-disk state to completed when a rebuild finishes.
278  */
279 static void
280 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
281 {
282         int vdev_id = (uintptr_t)arg;
283         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
284         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
285         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
286         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
287
288         mutex_enter(&vd->vdev_rebuild_lock);
289         vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
290         vrp->vrp_end_time = gethrestime_sec();
291
292         VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
293             VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
294             REBUILD_PHYS_ENTRIES, vrp, tx));
295
296         vdev_dtl_reassess(vd,  tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
297         spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
298
299         spa_history_log_internal(spa, "rebuild",  tx,
300             "vdev_id=%llu vdev_guid=%llu complete",
301             (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
302         vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
303
304         /* Handles detaching of spares */
305         spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
306         vd->vdev_rebuilding = B_FALSE;
307         mutex_exit(&vd->vdev_rebuild_lock);
308
309         spa_notify_waiters(spa);
310         cv_broadcast(&vd->vdev_rebuild_cv);
311 }
312
313 /*
314  * Update the on-disk state to canceled when a rebuild finishes.
315  */
316 static void
317 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
318 {
319         int vdev_id = (uintptr_t)arg;
320         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
321         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
322         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
323         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
324
325         mutex_enter(&vd->vdev_rebuild_lock);
326         vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
327         vrp->vrp_end_time = gethrestime_sec();
328
329         VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
330             VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
331             REBUILD_PHYS_ENTRIES, vrp, tx));
332
333         spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
334
335         spa_history_log_internal(spa, "rebuild",  tx,
336             "vdev_id=%llu vdev_guid=%llu canceled",
337             (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
338         vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
339
340         vd->vdev_rebuild_cancel_wanted = B_FALSE;
341         vd->vdev_rebuilding = B_FALSE;
342         mutex_exit(&vd->vdev_rebuild_lock);
343
344         spa_notify_waiters(spa);
345         cv_broadcast(&vd->vdev_rebuild_cv);
346 }
347
348 /*
349  * Resets the progress of a running rebuild.  This will occur when a new
350  * vdev is added to rebuild.
351  */
352 static void
353 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
354 {
355         int vdev_id = (uintptr_t)arg;
356         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
357         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
358         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
359         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
360
361         mutex_enter(&vd->vdev_rebuild_lock);
362
363         ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
364         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
365
366         vrp->vrp_last_offset = 0;
367         vrp->vrp_min_txg = 0;
368         vrp->vrp_max_txg = dmu_tx_get_txg(tx);
369         vrp->vrp_bytes_scanned = 0;
370         vrp->vrp_bytes_issued = 0;
371         vrp->vrp_bytes_rebuilt = 0;
372         vrp->vrp_bytes_est = 0;
373         vrp->vrp_scan_time_ms = 0;
374         vr->vr_prev_scan_time_ms = 0;
375
376         /* See vdev_rebuild_initiate_sync comment */
377         VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
378
379         VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
380             VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
381             REBUILD_PHYS_ENTRIES, vrp, tx));
382
383         spa_history_log_internal(spa, "rebuild",  tx,
384             "vdev_id=%llu vdev_guid=%llu reset",
385             (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
386
387         vd->vdev_rebuild_reset_wanted = B_FALSE;
388         ASSERT(vd->vdev_rebuilding);
389
390         vd->vdev_rebuild_thread = thread_create(NULL, 0,
391             vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
392
393         mutex_exit(&vd->vdev_rebuild_lock);
394 }
395
396 /*
397  * Clear the last rebuild status.
398  */
399 void
400 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
401 {
402         int vdev_id = (uintptr_t)arg;
403         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
404         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
405         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
406         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
407         objset_t *mos = spa_meta_objset(spa);
408
409         mutex_enter(&vd->vdev_rebuild_lock);
410
411         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
412             vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
413                 mutex_exit(&vd->vdev_rebuild_lock);
414                 return;
415         }
416
417         clear_rebuild_bytes(vd);
418         bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
419
420         if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
421             VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
422                 VERIFY0(zap_update(mos, vd->vdev_top_zap,
423                     VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
424                     REBUILD_PHYS_ENTRIES, vrp, tx));
425         }
426
427         mutex_exit(&vd->vdev_rebuild_lock);
428 }
429
430 /*
431  * The zio_done_func_t callback for each rebuild I/O issued.  It's responsible
432  * for updating the rebuild stats and limiting the number of in flight I/Os.
433  */
434 static void
435 vdev_rebuild_cb(zio_t *zio)
436 {
437         vdev_rebuild_t *vr = zio->io_private;
438         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
439         vdev_t *vd = vr->vr_top_vdev;
440
441         mutex_enter(&vd->vdev_rebuild_io_lock);
442         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
443                 /*
444                  * The I/O failed because the top-level vdev was unavailable.
445                  * Attempt to roll back to the last completed offset, in order
446                  * resume from the correct location if the pool is resumed.
447                  * (This works because spa_sync waits on spa_txg_zio before
448                  * it runs sync tasks.)
449                  */
450                 uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
451                 *off = MIN(*off, zio->io_offset);
452         } else if (zio->io_error) {
453                 vrp->vrp_errors++;
454         }
455
456         abd_free(zio->io_abd);
457
458         ASSERT3U(vd->vdev_rebuild_inflight, >, 0);
459         vd->vdev_rebuild_inflight--;
460         cv_broadcast(&vd->vdev_rebuild_io_cv);
461         mutex_exit(&vd->vdev_rebuild_io_lock);
462
463         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
464 }
465
466 /*
467  * Rebuild the data in this range by constructing a special dummy block
468  * pointer for the given range.  It has no relation to any existing blocks
469  * in the pool.  But by disabling checksum verification and issuing a scrub
470  * I/O mirrored vdevs will replicate the block using any available mirror
471  * leaf vdevs.
472  */
473 static void
474 vdev_rebuild_rebuild_block(vdev_rebuild_t *vr, uint64_t start, uint64_t asize,
475     uint64_t txg)
476 {
477         vdev_t *vd = vr->vr_top_vdev;
478         spa_t *spa = vd->vdev_spa;
479         uint64_t psize = asize;
480
481         ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
482             vd->vdev_ops == &vdev_replacing_ops ||
483             vd->vdev_ops == &vdev_spare_ops);
484
485         blkptr_t blk, *bp = &blk;
486         BP_ZERO(bp);
487
488         DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
489         DVA_SET_OFFSET(&bp->blk_dva[0], start);
490         DVA_SET_GANG(&bp->blk_dva[0], 0);
491         DVA_SET_ASIZE(&bp->blk_dva[0], asize);
492
493         BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
494         BP_SET_LSIZE(bp, psize);
495         BP_SET_PSIZE(bp, psize);
496         BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
497         BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
498         BP_SET_TYPE(bp, DMU_OT_NONE);
499         BP_SET_LEVEL(bp, 0);
500         BP_SET_DEDUP(bp, 0);
501         BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
502
503         /*
504          * We increment the issued bytes by the asize rather than the psize
505          * so the scanned and issued bytes may be directly compared.  This
506          * is consistent with the scrub/resilver issued reporting.
507          */
508         vr->vr_pass_bytes_issued += asize;
509         vr->vr_rebuild_phys.vrp_bytes_issued += asize;
510
511         zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, bp,
512             abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
513             ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
514             ZIO_FLAG_RESILVER, NULL));
515 }
516
517 /*
518  * Issues a rebuild I/O and takes care of rate limiting the number of queued
519  * rebuild I/Os.  The provided start and size must be properly aligned for the
520  * top-level vdev type being rebuilt.
521  */
522 static int
523 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
524 {
525         uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
526         vdev_t *vd = vr->vr_top_vdev;
527         spa_t *spa = vd->vdev_spa;
528
529         ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
530         ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
531
532         vr->vr_pass_bytes_scanned += size;
533         vr->vr_rebuild_phys.vrp_bytes_scanned += size;
534
535         mutex_enter(&vd->vdev_rebuild_io_lock);
536
537         /* Limit in flight rebuild I/Os */
538         while (vd->vdev_rebuild_inflight >= zfs_rebuild_queue_limit)
539                 cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
540
541         vd->vdev_rebuild_inflight++;
542         mutex_exit(&vd->vdev_rebuild_io_lock);
543
544         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
545         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
546         uint64_t txg = dmu_tx_get_txg(tx);
547
548         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
549         mutex_enter(&vd->vdev_rebuild_lock);
550
551         /* This is the first I/O for this txg. */
552         if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
553                 vr->vr_scan_offset[txg & TXG_MASK] = start;
554                 dsl_sync_task_nowait(spa_get_dsl(spa),
555                     vdev_rebuild_update_sync,
556                     (void *)(uintptr_t)vd->vdev_id, tx);
557         }
558
559         /* When exiting write out our progress. */
560         if (vdev_rebuild_should_stop(vd)) {
561                 mutex_enter(&vd->vdev_rebuild_io_lock);
562                 vd->vdev_rebuild_inflight--;
563                 mutex_exit(&vd->vdev_rebuild_io_lock);
564                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
565                 mutex_exit(&vd->vdev_rebuild_lock);
566                 dmu_tx_commit(tx);
567                 return (SET_ERROR(EINTR));
568         }
569         mutex_exit(&vd->vdev_rebuild_lock);
570
571         vr->vr_scan_offset[txg & TXG_MASK] = start + size;
572         vdev_rebuild_rebuild_block(vr, start, size, txg);
573
574         dmu_tx_commit(tx);
575
576         return (0);
577 }
578
579 /*
580  * Split range into legally-sized logical chunks given the constraints of the
581  * top-level mirror vdev type.
582  */
583 static uint64_t
584 vdev_rebuild_chunk_size(vdev_t *vd, uint64_t start, uint64_t size)
585 {
586         uint64_t chunk_size, max_asize, max_segment;
587
588         ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
589             vd->vdev_ops == &vdev_replacing_ops ||
590             vd->vdev_ops == &vdev_spare_ops);
591
592         max_segment = MIN(P2ROUNDUP(zfs_rebuild_max_segment,
593             1 << vd->vdev_ashift), SPA_MAXBLOCKSIZE);
594         max_asize = vdev_psize_to_asize(vd, max_segment);
595         chunk_size = MIN(size, max_asize);
596
597         return (chunk_size);
598 }
599
600 /*
601  * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
602  */
603 static int
604 vdev_rebuild_ranges(vdev_rebuild_t *vr)
605 {
606         vdev_t *vd = vr->vr_top_vdev;
607         zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
608         zfs_btree_index_t idx;
609         int error;
610
611         for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
612             rs = zfs_btree_next(t, &idx, &idx)) {
613                 uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
614                 uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
615
616                 /*
617                  * zfs_scan_suspend_progress can be set to disable rebuild
618                  * progress for testing.  See comment in dsl_scan_sync().
619                  */
620                 while (zfs_scan_suspend_progress &&
621                     !vdev_rebuild_should_stop(vd)) {
622                         delay(hz);
623                 }
624
625                 while (size > 0) {
626                         uint64_t chunk_size;
627
628                         chunk_size = vdev_rebuild_chunk_size(vd, start, size);
629
630                         error = vdev_rebuild_range(vr, start, chunk_size);
631                         if (error != 0)
632                                 return (error);
633
634                         size -= chunk_size;
635                         start += chunk_size;
636                 }
637         }
638
639         return (0);
640 }
641
642 /*
643  * Calculates the estimated capacity which remains to be scanned.  Since
644  * we traverse the pool in metaslab order only allocated capacity beyond
645  * the vrp_last_offset need be considered.  All lower offsets must have
646  * already been rebuilt and are thus already included in vrp_bytes_scanned.
647  */
648 static void
649 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
650 {
651         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
652         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
653         uint64_t bytes_est = vrp->vrp_bytes_scanned;
654
655         if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
656                 return;
657
658         for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
659                 metaslab_t *msp = vd->vdev_ms[i];
660
661                 mutex_enter(&msp->ms_lock);
662                 bytes_est += metaslab_allocated_space(msp);
663                 mutex_exit(&msp->ms_lock);
664         }
665
666         vrp->vrp_bytes_est = bytes_est;
667 }
668
669 /*
670  * Load from disk the top-level vdev's rebuild information.
671  */
672 int
673 vdev_rebuild_load(vdev_t *vd)
674 {
675         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
676         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
677         spa_t *spa = vd->vdev_spa;
678         int err = 0;
679
680         mutex_enter(&vd->vdev_rebuild_lock);
681         vd->vdev_rebuilding = B_FALSE;
682
683         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
684                 bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
685                 mutex_exit(&vd->vdev_rebuild_lock);
686                 return (SET_ERROR(ENOTSUP));
687         }
688
689         ASSERT(vd->vdev_top == vd);
690
691         err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
692             VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
693             REBUILD_PHYS_ENTRIES, vrp);
694
695         /*
696          * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
697          * not prevent a pool from being imported.  Clear the rebuild
698          * status allowing a new resilver/rebuild to be started.
699          */
700         if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
701                 bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
702         } else if (err) {
703                 mutex_exit(&vd->vdev_rebuild_lock);
704                 return (err);
705         }
706
707         vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
708         vr->vr_top_vdev = vd;
709
710         mutex_exit(&vd->vdev_rebuild_lock);
711
712         return (0);
713 }
714
715 /*
716  * Each scan thread is responsible for rebuilding a top-level vdev.  The
717  * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
718  */
719 static void
720 vdev_rebuild_thread(void *arg)
721 {
722         vdev_t *vd = arg;
723         spa_t *spa = vd->vdev_spa;
724         int error = 0;
725
726         /*
727          * If there's a scrub in process request that it be stopped.  This
728          * is not required for a correct rebuild, but we do want rebuilds to
729          * emulate the resilver behavior as much as possible.
730          */
731         dsl_pool_t *dsl = spa_get_dsl(spa);
732         if (dsl_scan_scrubbing(dsl))
733                 dsl_scan_cancel(dsl);
734
735         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
736         mutex_enter(&vd->vdev_rebuild_lock);
737
738         ASSERT3P(vd->vdev_top, ==, vd);
739         ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
740         ASSERT(vd->vdev_rebuilding);
741         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
742         ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
743         ASSERT3B(vd->vdev_rebuild_reset_wanted, ==, B_FALSE);
744
745         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
746         vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
747         vr->vr_top_vdev = vd;
748         vr->vr_scan_msp = NULL;
749         vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
750         vr->vr_pass_start_time = gethrtime();
751         vr->vr_pass_bytes_scanned = 0;
752         vr->vr_pass_bytes_issued = 0;
753
754         uint64_t update_est_time = gethrtime();
755         vdev_rebuild_update_bytes_est(vd, 0);
756
757         clear_rebuild_bytes(vr->vr_top_vdev);
758
759         mutex_exit(&vd->vdev_rebuild_lock);
760
761         /*
762          * Systematically walk the metaslabs and issue rebuild I/Os for
763          * all ranges in the allocated space map.
764          */
765         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
766                 metaslab_t *msp = vd->vdev_ms[i];
767                 vr->vr_scan_msp = msp;
768
769                 /*
770                  * Removal of vdevs from the vdev tree may eliminate the need
771                  * for the rebuild, in which case it should be canceled.  The
772                  * vdev_rebuild_cancel_wanted flag is set until the sync task
773                  * completes.  This may be after the rebuild thread exits.
774                  */
775                 if (vdev_rebuild_should_cancel(vd)) {
776                         vd->vdev_rebuild_cancel_wanted = B_TRUE;
777                         error = EINTR;
778                         break;
779                 }
780
781                 ASSERT0(range_tree_space(vr->vr_scan_tree));
782
783                 /*
784                  * Disable any new allocations to this metaslab and wait
785                  * for any writes inflight to complete.  This is needed to
786                  * ensure all allocated ranges are rebuilt.
787                  */
788                 metaslab_disable(msp);
789                 spa_config_exit(spa, SCL_CONFIG, FTAG);
790                 txg_wait_synced(dsl, 0);
791
792                 mutex_enter(&msp->ms_sync_lock);
793                 mutex_enter(&msp->ms_lock);
794
795                 /*
796                  * When a metaslab has been allocated from read its allocated
797                  * ranges from the space map object in to the vr_scan_tree.
798                  * Then add inflight / unflushed ranges and remove inflight /
799                  * unflushed frees.  This is the minimum range to be rebuilt.
800                  */
801                 if (msp->ms_sm != NULL) {
802                         VERIFY0(space_map_load(msp->ms_sm,
803                             vr->vr_scan_tree, SM_ALLOC));
804
805                         for (int i = 0; i < TXG_SIZE; i++) {
806                                 ASSERT0(range_tree_space(
807                                     msp->ms_allocating[i]));
808                         }
809
810                         range_tree_walk(msp->ms_unflushed_allocs,
811                             range_tree_add, vr->vr_scan_tree);
812                         range_tree_walk(msp->ms_unflushed_frees,
813                             range_tree_remove, vr->vr_scan_tree);
814
815                         /*
816                          * Remove ranges which have already been rebuilt based
817                          * on the last offset.  This can happen when restarting
818                          * a scan after exporting and re-importing the pool.
819                          */
820                         range_tree_clear(vr->vr_scan_tree, 0,
821                             vrp->vrp_last_offset);
822                 }
823
824                 mutex_exit(&msp->ms_lock);
825                 mutex_exit(&msp->ms_sync_lock);
826
827                 /*
828                  * To provide an accurate estimate re-calculate the estimated
829                  * size every 5 minutes to account for recent allocations and
830                  * frees made space maps which have not yet been rebuilt.
831                  */
832                 if (gethrtime() > update_est_time + SEC2NSEC(300)) {
833                         update_est_time = gethrtime();
834                         vdev_rebuild_update_bytes_est(vd, i);
835                 }
836
837                 /*
838                  * Walk the allocated space map and issue the rebuild I/O.
839                  */
840                 error = vdev_rebuild_ranges(vr);
841                 range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
842
843                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
844                 metaslab_enable(msp, B_FALSE, B_FALSE);
845
846                 if (error != 0)
847                         break;
848         }
849
850         range_tree_destroy(vr->vr_scan_tree);
851         spa_config_exit(spa, SCL_CONFIG, FTAG);
852
853         /* Wait for any remaining rebuild I/O to complete */
854         mutex_enter(&vd->vdev_rebuild_io_lock);
855         while (vd->vdev_rebuild_inflight > 0)
856                 cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
857
858         mutex_exit(&vd->vdev_rebuild_io_lock);
859
860         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
861
862         dsl_pool_t *dp = spa_get_dsl(spa);
863         dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
864         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
865
866         mutex_enter(&vd->vdev_rebuild_lock);
867         if (error == 0) {
868                 /*
869                  * After a successful rebuild clear the DTLs of all ranges
870                  * which were missing when the rebuild was started.  These
871                  * ranges must have been rebuilt as a consequence of rebuilding
872                  * all allocated space.  Note that unlike a scrub or resilver
873                  * the rebuild operation will reconstruct data only referenced
874                  * by a pool checkpoint.  See the dsl_scan_done() comments.
875                  */
876                 dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
877                     (void *)(uintptr_t)vd->vdev_id, tx);
878         } else if (vd->vdev_rebuild_cancel_wanted) {
879                 /*
880                  * The rebuild operation was canceled.  This will occur when
881                  * a device participating in the rebuild is detached.
882                  */
883                 dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
884                     (void *)(uintptr_t)vd->vdev_id, tx);
885         } else if (vd->vdev_rebuild_reset_wanted) {
886                 /*
887                  * Reset the running rebuild without canceling and restarting
888                  * it.  This will occur when a new device is attached and must
889                  * participate in the rebuild.
890                  */
891                 dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
892                     (void *)(uintptr_t)vd->vdev_id, tx);
893         } else {
894                 /*
895                  * The rebuild operation should be suspended.  This may occur
896                  * when detaching a child vdev or when exporting the pool.  The
897                  * rebuild is left in the active state so it will be resumed.
898                  */
899                 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
900                 vd->vdev_rebuilding = B_FALSE;
901         }
902
903         dmu_tx_commit(tx);
904
905         vd->vdev_rebuild_thread = NULL;
906         mutex_exit(&vd->vdev_rebuild_lock);
907         spa_config_exit(spa, SCL_CONFIG, FTAG);
908
909         cv_broadcast(&vd->vdev_rebuild_cv);
910
911         thread_exit();
912 }
913
914 /*
915  * Returns B_TRUE if any top-level vdev are rebuilding.
916  */
917 boolean_t
918 vdev_rebuild_active(vdev_t *vd)
919 {
920         spa_t *spa = vd->vdev_spa;
921         boolean_t ret = B_FALSE;
922
923         if (vd == spa->spa_root_vdev) {
924                 for (uint64_t i = 0; i < vd->vdev_children; i++) {
925                         ret = vdev_rebuild_active(vd->vdev_child[i]);
926                         if (ret)
927                                 return (ret);
928                 }
929         } else if (vd->vdev_top_zap != 0) {
930                 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
931                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
932
933                 mutex_enter(&vd->vdev_rebuild_lock);
934                 ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
935                 mutex_exit(&vd->vdev_rebuild_lock);
936         }
937
938         return (ret);
939 }
940
941 /*
942  * Start a rebuild operation.  The rebuild may be restarted when the
943  * top-level vdev is currently actively rebuilding.
944  */
945 void
946 vdev_rebuild(vdev_t *vd)
947 {
948         vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
949         vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
950
951         ASSERT(vd->vdev_top == vd);
952         ASSERT(vdev_is_concrete(vd));
953         ASSERT(!vd->vdev_removing);
954         ASSERT(spa_feature_is_enabled(vd->vdev_spa,
955             SPA_FEATURE_DEVICE_REBUILD));
956
957         mutex_enter(&vd->vdev_rebuild_lock);
958         if (vd->vdev_rebuilding) {
959                 ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
960
961                 /*
962                  * Signal a running rebuild operation that it should restart
963                  * from the beginning because a new device was attached.  The
964                  * vdev_rebuild_reset_wanted flag is set until the sync task
965                  * completes.  This may be after the rebuild thread exits.
966                  */
967                 if (!vd->vdev_rebuild_reset_wanted)
968                         vd->vdev_rebuild_reset_wanted = B_TRUE;
969         } else {
970                 vdev_rebuild_initiate(vd);
971         }
972         mutex_exit(&vd->vdev_rebuild_lock);
973 }
974
975 static void
976 vdev_rebuild_restart_impl(vdev_t *vd)
977 {
978         spa_t *spa = vd->vdev_spa;
979
980         if (vd == spa->spa_root_vdev) {
981                 for (uint64_t i = 0; i < vd->vdev_children; i++)
982                         vdev_rebuild_restart_impl(vd->vdev_child[i]);
983
984         } else if (vd->vdev_top_zap != 0) {
985                 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
986                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
987
988                 mutex_enter(&vd->vdev_rebuild_lock);
989                 if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
990                     vdev_writeable(vd) && !vd->vdev_rebuilding) {
991                         ASSERT(spa_feature_is_active(spa,
992                             SPA_FEATURE_DEVICE_REBUILD));
993                         vd->vdev_rebuilding = B_TRUE;
994                         vd->vdev_rebuild_thread = thread_create(NULL, 0,
995                             vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
996                             maxclsyspri);
997                 }
998                 mutex_exit(&vd->vdev_rebuild_lock);
999         }
1000 }
1001
1002 /*
1003  * Conditionally restart all of the vdev_rebuild_thread's for a pool.  The
1004  * feature flag must be active and the rebuild in the active state.   This
1005  * cannot be used to start a new rebuild.
1006  */
1007 void
1008 vdev_rebuild_restart(spa_t *spa)
1009 {
1010         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1011
1012         vdev_rebuild_restart_impl(spa->spa_root_vdev);
1013 }
1014
1015 /*
1016  * Stop and wait for all of the vdev_rebuild_thread's associated with the
1017  * vdev tree provide to be terminated (canceled or stopped).
1018  */
1019 void
1020 vdev_rebuild_stop_wait(vdev_t *vd)
1021 {
1022         spa_t *spa = vd->vdev_spa;
1023
1024         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1025
1026         if (vd == spa->spa_root_vdev) {
1027                 for (uint64_t i = 0; i < vd->vdev_children; i++)
1028                         vdev_rebuild_stop_wait(vd->vdev_child[i]);
1029
1030         } else if (vd->vdev_top_zap != 0) {
1031                 ASSERT(vd == vd->vdev_top);
1032
1033                 mutex_enter(&vd->vdev_rebuild_lock);
1034                 if (vd->vdev_rebuild_thread != NULL) {
1035                         vd->vdev_rebuild_exit_wanted = B_TRUE;
1036                         while (vd->vdev_rebuilding) {
1037                                 cv_wait(&vd->vdev_rebuild_cv,
1038                                     &vd->vdev_rebuild_lock);
1039                         }
1040                         vd->vdev_rebuild_exit_wanted = B_FALSE;
1041                 }
1042                 mutex_exit(&vd->vdev_rebuild_lock);
1043         }
1044 }
1045
1046 /*
1047  * Stop all rebuild operations but leave them in the active state so they
1048  * will be resumed when importing the pool.
1049  */
1050 void
1051 vdev_rebuild_stop_all(spa_t *spa)
1052 {
1053         vdev_rebuild_stop_wait(spa->spa_root_vdev);
1054 }
1055
1056 /*
1057  * Rebuild statistics reported per top-level vdev.
1058  */
1059 int
1060 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1061 {
1062         spa_t *spa = tvd->vdev_spa;
1063
1064         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1065                 return (SET_ERROR(ENOTSUP));
1066
1067         if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1068                 return (SET_ERROR(EINVAL));
1069
1070         int error = zap_contains(spa_meta_objset(spa),
1071             tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1072
1073         if (error == ENOENT) {
1074                 bzero(vrs, sizeof (vdev_rebuild_stat_t));
1075                 vrs->vrs_state = VDEV_REBUILD_NONE;
1076                 error = 0;
1077         } else if (error == 0) {
1078                 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1079                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1080
1081                 mutex_enter(&tvd->vdev_rebuild_lock);
1082                 vrs->vrs_state = vrp->vrp_rebuild_state;
1083                 vrs->vrs_start_time = vrp->vrp_start_time;
1084                 vrs->vrs_end_time = vrp->vrp_end_time;
1085                 vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1086                 vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1087                 vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1088                 vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1089                 vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1090                 vrs->vrs_errors = vrp->vrp_errors;
1091                 vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1092                     vr->vr_pass_start_time);
1093                 vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1094                 vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1095                 mutex_exit(&tvd->vdev_rebuild_lock);
1096         }
1097
1098         return (error);
1099 }
1100
1101 /* BEGIN CSTYLED */
1102 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
1103         "Max segment size in bytes of rebuild reads");
1104 /* END CSTYLED */