]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_removal.c
MFV 2.0-rc2
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_removal.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51
52 /*
53  * This file contains the necessary logic to remove vdevs from a
54  * storage pool.  Currently, the only devices that can be removed
55  * are log, cache, and spare devices; and top level vdevs from a pool
56  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
57  * by the detach operation.)
58  *
59  * Log vdevs are removed by evacuating them and then turning the vdev
60  * into a hole vdev while holding spa config locks.
61  *
62  * Top level vdevs are removed and converted into an indirect vdev via
63  * a multi-step process:
64  *
65  *  - Disable allocations from this device (spa_vdev_remove_top).
66  *
67  *  - From a new thread (spa_vdev_remove_thread), copy data from
68  *    the removing vdev to a different vdev.  The copy happens in open
69  *    context (spa_vdev_copy_impl) and issues a sync task
70  *    (vdev_mapping_sync) so the sync thread can update the partial
71  *    indirect mappings in core and on disk.
72  *
73  *  - If a free happens during a removal, it is freed from the
74  *    removing vdev, and if it has already been copied, from the new
75  *    location as well (free_from_removing_vdev).
76  *
77  *  - After the removal is completed, the copy thread converts the vdev
78  *    into an indirect vdev (vdev_remove_complete) before instructing
79  *    the sync thread to destroy the space maps and finish the removal
80  *    (spa_finish_removal).
81  */
82
83 typedef struct vdev_copy_arg {
84         metaslab_t      *vca_msp;
85         uint64_t        vca_outstanding_bytes;
86         uint64_t        vca_read_error_bytes;
87         uint64_t        vca_write_error_bytes;
88         kcondvar_t      vca_cv;
89         kmutex_t        vca_lock;
90 } vdev_copy_arg_t;
91
92 /*
93  * The maximum amount of memory we can use for outstanding i/o while
94  * doing a device removal.  This determines how much i/o we can have
95  * in flight concurrently.
96  */
97 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * See also the accessor function spa_remove_max_segment().
106  */
107 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108
109 /*
110  * Ignore hard IO errors during device removal.  When set if a device
111  * encounters hard IO error during the removal process the removal will
112  * not be cancelled.  This can result in a normally recoverable block
113  * becoming permanently damaged and is not recommended.
114  */
115 int zfs_removal_ignore_errors = 0;
116
117 /*
118  * Allow a remap segment to span free chunks of at most this size. The main
119  * impact of a larger span is that we will read and write larger, more
120  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121  * for iops.  The value here was chosen to align with
122  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123  * reads (but there's no reason it has to be the same).
124  *
125  * Additionally, a higher span will have the following relatively minor
126  * effects:
127  *  - the mapping will be smaller, since one entry can cover more allocated
128  *    segments
129  *  - more of the fragmentation in the removing device will be preserved
130  *  - we'll do larger allocations, which may fail and fall back on smaller
131  *    allocations
132  */
133 int vdev_removal_max_span = 32 * 1024;
134
135 /*
136  * This is used by the test suite so that it can ensure that certain
137  * actions happen while in the middle of a removal.
138  */
139 int zfs_removal_suspend_progress = 0;
140
141 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
142
143 static void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145
146 static void
147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150             DMU_POOL_DIRECTORY_OBJECT,
151             DMU_POOL_REMOVING, sizeof (uint64_t),
152             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153             &spa->spa_removing_phys, tx));
154 }
155
156 static nvlist_t *
157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159         for (int i = 0; i < count; i++) {
160                 uint64_t guid =
161                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162
163                 if (guid == target_guid)
164                         return (nvpp[i]);
165         }
166
167         return (NULL);
168 }
169
170 static void
171 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
172     nvlist_t *dev_to_remove)
173 {
174         nvlist_t **newdev = NULL;
175
176         if (count > 1)
177                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
178
179         for (int i = 0, j = 0; i < count; i++) {
180                 if (dev[i] == dev_to_remove)
181                         continue;
182                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
183         }
184
185         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
186         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
187
188         for (int i = 0; i < count - 1; i++)
189                 nvlist_free(newdev[i]);
190
191         if (count > 1)
192                 kmem_free(newdev, (count - 1) * sizeof (void *));
193 }
194
195 static spa_vdev_removal_t *
196 spa_vdev_removal_create(vdev_t *vd)
197 {
198         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
199         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
200         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
201         svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
202         svr->svr_vdev_id = vd->vdev_id;
203
204         for (int i = 0; i < TXG_SIZE; i++) {
205                 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
206                     0, 0);
207                 list_create(&svr->svr_new_segments[i],
208                     sizeof (vdev_indirect_mapping_entry_t),
209                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
210         }
211
212         return (svr);
213 }
214
215 void
216 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
217 {
218         for (int i = 0; i < TXG_SIZE; i++) {
219                 ASSERT0(svr->svr_bytes_done[i]);
220                 ASSERT0(svr->svr_max_offset_to_sync[i]);
221                 range_tree_destroy(svr->svr_frees[i]);
222                 list_destroy(&svr->svr_new_segments[i]);
223         }
224
225         range_tree_destroy(svr->svr_allocd_segs);
226         mutex_destroy(&svr->svr_lock);
227         cv_destroy(&svr->svr_cv);
228         kmem_free(svr, sizeof (*svr));
229 }
230
231 /*
232  * This is called as a synctask in the txg in which we will mark this vdev
233  * as removing (in the config stored in the MOS).
234  *
235  * It begins the evacuation of a toplevel vdev by:
236  * - initializing the spa_removing_phys which tracks this removal
237  * - computing the amount of space to remove for accounting purposes
238  * - dirtying all dbufs in the spa_config_object
239  * - creating the spa_vdev_removal
240  * - starting the spa_vdev_remove_thread
241  */
242 static void
243 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
244 {
245         int vdev_id = (uintptr_t)arg;
246         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
247         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
248         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
249         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
250         spa_vdev_removal_t *svr = NULL;
251         uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
252
253         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
254         svr = spa_vdev_removal_create(vd);
255
256         ASSERT(vd->vdev_removing);
257         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
258
259         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
260         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
261                 /*
262                  * By activating the OBSOLETE_COUNTS feature, we prevent
263                  * the pool from being downgraded and ensure that the
264                  * refcounts are precise.
265                  */
266                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
267                 uint64_t one = 1;
268                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
269                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
270                     &one, tx));
271                 boolean_t are_precise __maybe_unused;
272                 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
273                 ASSERT3B(are_precise, ==, B_TRUE);
274         }
275
276         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
277         vd->vdev_indirect_mapping =
278             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
279         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
280         vd->vdev_indirect_births =
281             vdev_indirect_births_open(mos, vic->vic_births_object);
282         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
283         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
284         spa->spa_removing_phys.sr_end_time = 0;
285         spa->spa_removing_phys.sr_state = DSS_SCANNING;
286         spa->spa_removing_phys.sr_to_copy = 0;
287         spa->spa_removing_phys.sr_copied = 0;
288
289         /*
290          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
291          * there may be space in the defer tree, which is free, but still
292          * counted in vs_alloc.
293          */
294         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
295                 metaslab_t *ms = vd->vdev_ms[i];
296                 if (ms->ms_sm == NULL)
297                         continue;
298
299                 spa->spa_removing_phys.sr_to_copy +=
300                     metaslab_allocated_space(ms);
301
302                 /*
303                  * Space which we are freeing this txg does not need to
304                  * be copied.
305                  */
306                 spa->spa_removing_phys.sr_to_copy -=
307                     range_tree_space(ms->ms_freeing);
308
309                 ASSERT0(range_tree_space(ms->ms_freed));
310                 for (int t = 0; t < TXG_SIZE; t++)
311                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
312         }
313
314         /*
315          * Sync tasks are called before metaslab_sync(), so there should
316          * be no already-synced metaslabs in the TXG_CLEAN list.
317          */
318         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
319
320         spa_sync_removing_state(spa, tx);
321
322         /*
323          * All blocks that we need to read the most recent mapping must be
324          * stored on concrete vdevs.  Therefore, we must dirty anything that
325          * is read before spa_remove_init().  Specifically, the
326          * spa_config_object.  (Note that although we already modified the
327          * spa_config_object in spa_sync_removing_state, that may not have
328          * modified all blocks of the object.)
329          */
330         dmu_object_info_t doi;
331         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
332         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
333                 dmu_buf_t *dbuf;
334                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
335                     offset, FTAG, &dbuf, 0));
336                 dmu_buf_will_dirty(dbuf, tx);
337                 offset += dbuf->db_size;
338                 dmu_buf_rele(dbuf, FTAG);
339         }
340
341         /*
342          * Now that we've allocated the im_object, dirty the vdev to ensure
343          * that the object gets written to the config on disk.
344          */
345         vdev_config_dirty(vd);
346
347         zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
348             "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
349             vic->vic_mapping_object);
350
351         spa_history_log_internal(spa, "vdev remove started", tx,
352             "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
353             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
354         /*
355          * Setting spa_vdev_removal causes subsequent frees to call
356          * free_from_removing_vdev().  Note that we don't need any locking
357          * because we are the sync thread, and metaslab_free_impl() is only
358          * called from syncing context (potentially from a zio taskq thread,
359          * but in any case only when there are outstanding free i/os, which
360          * there are not).
361          */
362         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
363         spa->spa_vdev_removal = svr;
364         svr->svr_thread = thread_create(NULL, 0,
365             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
366 }
367
368 /*
369  * When we are opening a pool, we must read the mapping for each
370  * indirect vdev in order from most recently removed to least
371  * recently removed.  We do this because the blocks for the mapping
372  * of older indirect vdevs may be stored on more recently removed vdevs.
373  * In order to read each indirect mapping object, we must have
374  * initialized all more recently removed vdevs.
375  */
376 int
377 spa_remove_init(spa_t *spa)
378 {
379         int error;
380
381         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
382             DMU_POOL_DIRECTORY_OBJECT,
383             DMU_POOL_REMOVING, sizeof (uint64_t),
384             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
385             &spa->spa_removing_phys);
386
387         if (error == ENOENT) {
388                 spa->spa_removing_phys.sr_state = DSS_NONE;
389                 spa->spa_removing_phys.sr_removing_vdev = -1;
390                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
391                 spa->spa_indirect_vdevs_loaded = B_TRUE;
392                 return (0);
393         } else if (error != 0) {
394                 return (error);
395         }
396
397         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
398                 /*
399                  * We are currently removing a vdev.  Create and
400                  * initialize a spa_vdev_removal_t from the bonus
401                  * buffer of the removing vdevs vdev_im_object, and
402                  * initialize its partial mapping.
403                  */
404                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
405                 vdev_t *vd = vdev_lookup_top(spa,
406                     spa->spa_removing_phys.sr_removing_vdev);
407
408                 if (vd == NULL) {
409                         spa_config_exit(spa, SCL_STATE, FTAG);
410                         return (EINVAL);
411                 }
412
413                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
414
415                 ASSERT(vdev_is_concrete(vd));
416                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
417                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
418                 ASSERT(vd->vdev_removing);
419
420                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
421                     spa->spa_meta_objset, vic->vic_mapping_object);
422                 vd->vdev_indirect_births = vdev_indirect_births_open(
423                     spa->spa_meta_objset, vic->vic_births_object);
424                 spa_config_exit(spa, SCL_STATE, FTAG);
425
426                 spa->spa_vdev_removal = svr;
427         }
428
429         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
430         uint64_t indirect_vdev_id =
431             spa->spa_removing_phys.sr_prev_indirect_vdev;
432         while (indirect_vdev_id != UINT64_MAX) {
433                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
434                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
435
436                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
437                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
438                     spa->spa_meta_objset, vic->vic_mapping_object);
439                 vd->vdev_indirect_births = vdev_indirect_births_open(
440                     spa->spa_meta_objset, vic->vic_births_object);
441
442                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
443         }
444         spa_config_exit(spa, SCL_STATE, FTAG);
445
446         /*
447          * Now that we've loaded all the indirect mappings, we can allow
448          * reads from other blocks (e.g. via predictive prefetch).
449          */
450         spa->spa_indirect_vdevs_loaded = B_TRUE;
451         return (0);
452 }
453
454 void
455 spa_restart_removal(spa_t *spa)
456 {
457         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
458
459         if (svr == NULL)
460                 return;
461
462         /*
463          * In general when this function is called there is no
464          * removal thread running. The only scenario where this
465          * is not true is during spa_import() where this function
466          * is called twice [once from spa_import_impl() and
467          * spa_async_resume()]. Thus, in the scenario where we
468          * import a pool that has an ongoing removal we don't
469          * want to spawn a second thread.
470          */
471         if (svr->svr_thread != NULL)
472                 return;
473
474         if (!spa_writeable(spa))
475                 return;
476
477         zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
478         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
479             0, &p0, TS_RUN, minclsyspri);
480 }
481
482 /*
483  * Process freeing from a device which is in the middle of being removed.
484  * We must handle this carefully so that we attempt to copy freed data,
485  * and we correctly free already-copied data.
486  */
487 void
488 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
489 {
490         spa_t *spa = vd->vdev_spa;
491         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
492         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
493         uint64_t txg = spa_syncing_txg(spa);
494         uint64_t max_offset_yet = 0;
495
496         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
497         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
498             vdev_indirect_mapping_object(vim));
499         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
500
501         mutex_enter(&svr->svr_lock);
502
503         /*
504          * Remove the segment from the removing vdev's spacemap.  This
505          * ensures that we will not attempt to copy this space (if the
506          * removal thread has not yet visited it), and also ensures
507          * that we know what is actually allocated on the new vdevs
508          * (needed if we cancel the removal).
509          *
510          * Note: we must do the metaslab_free_concrete() with the svr_lock
511          * held, so that the remove_thread can not load this metaslab and then
512          * visit this offset between the time that we metaslab_free_concrete()
513          * and when we check to see if it has been visited.
514          *
515          * Note: The checkpoint flag is set to false as having/taking
516          * a checkpoint and removing a device can't happen at the same
517          * time.
518          */
519         ASSERT(!spa_has_checkpoint(spa));
520         metaslab_free_concrete(vd, offset, size, B_FALSE);
521
522         uint64_t synced_size = 0;
523         uint64_t synced_offset = 0;
524         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
525         if (offset < max_offset_synced) {
526                 /*
527                  * The mapping for this offset is already on disk.
528                  * Free from the new location.
529                  *
530                  * Note that we use svr_max_synced_offset because it is
531                  * updated atomically with respect to the in-core mapping.
532                  * By contrast, vim_max_offset is not.
533                  *
534                  * This block may be split between a synced entry and an
535                  * in-flight or unvisited entry.  Only process the synced
536                  * portion of it here.
537                  */
538                 synced_size = MIN(size, max_offset_synced - offset);
539                 synced_offset = offset;
540
541                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
542                 max_offset_yet = max_offset_synced;
543
544                 DTRACE_PROBE3(remove__free__synced,
545                     spa_t *, spa,
546                     uint64_t, offset,
547                     uint64_t, synced_size);
548
549                 size -= synced_size;
550                 offset += synced_size;
551         }
552
553         /*
554          * Look at all in-flight txgs starting from the currently syncing one
555          * and see if a section of this free is being copied. By starting from
556          * this txg and iterating forward, we might find that this region
557          * was copied in two different txgs and handle it appropriately.
558          */
559         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
560                 int txgoff = (txg + i) & TXG_MASK;
561                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
562                         /*
563                          * The mapping for this offset is in flight, and
564                          * will be synced in txg+i.
565                          */
566                         uint64_t inflight_size = MIN(size,
567                             svr->svr_max_offset_to_sync[txgoff] - offset);
568
569                         DTRACE_PROBE4(remove__free__inflight,
570                             spa_t *, spa,
571                             uint64_t, offset,
572                             uint64_t, inflight_size,
573                             uint64_t, txg + i);
574
575                         /*
576                          * We copy data in order of increasing offset.
577                          * Therefore the max_offset_to_sync[] must increase
578                          * (or be zero, indicating that nothing is being
579                          * copied in that txg).
580                          */
581                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
582                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
583                                     >=, max_offset_yet);
584                                 max_offset_yet =
585                                     svr->svr_max_offset_to_sync[txgoff];
586                         }
587
588                         /*
589                          * We've already committed to copying this segment:
590                          * we have allocated space elsewhere in the pool for
591                          * it and have an IO outstanding to copy the data. We
592                          * cannot free the space before the copy has
593                          * completed, or else the copy IO might overwrite any
594                          * new data. To free that space, we record the
595                          * segment in the appropriate svr_frees tree and free
596                          * the mapped space later, in the txg where we have
597                          * completed the copy and synced the mapping (see
598                          * vdev_mapping_sync).
599                          */
600                         range_tree_add(svr->svr_frees[txgoff],
601                             offset, inflight_size);
602                         size -= inflight_size;
603                         offset += inflight_size;
604
605                         /*
606                          * This space is already accounted for as being
607                          * done, because it is being copied in txg+i.
608                          * However, if i!=0, then it is being copied in
609                          * a future txg.  If we crash after this txg
610                          * syncs but before txg+i syncs, then the space
611                          * will be free.  Therefore we must account
612                          * for the space being done in *this* txg
613                          * (when it is freed) rather than the future txg
614                          * (when it will be copied).
615                          */
616                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
617                             inflight_size);
618                         svr->svr_bytes_done[txgoff] -= inflight_size;
619                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
620                 }
621         }
622         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
623
624         if (size > 0) {
625                 /*
626                  * The copy thread has not yet visited this offset.  Ensure
627                  * that it doesn't.
628                  */
629
630                 DTRACE_PROBE3(remove__free__unvisited,
631                     spa_t *, spa,
632                     uint64_t, offset,
633                     uint64_t, size);
634
635                 if (svr->svr_allocd_segs != NULL)
636                         range_tree_clear(svr->svr_allocd_segs, offset, size);
637
638                 /*
639                  * Since we now do not need to copy this data, for
640                  * accounting purposes we have done our job and can count
641                  * it as completed.
642                  */
643                 svr->svr_bytes_done[txg & TXG_MASK] += size;
644         }
645         mutex_exit(&svr->svr_lock);
646
647         /*
648          * Now that we have dropped svr_lock, process the synced portion
649          * of this free.
650          */
651         if (synced_size > 0) {
652                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
653
654                 /*
655                  * Note: this can only be called from syncing context,
656                  * and the vdev_indirect_mapping is only changed from the
657                  * sync thread, so we don't need svr_lock while doing
658                  * metaslab_free_impl_cb.
659                  */
660                 boolean_t checkpoint = B_FALSE;
661                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
662                     metaslab_free_impl_cb, &checkpoint);
663         }
664 }
665
666 /*
667  * Stop an active removal and update the spa_removing phys.
668  */
669 static void
670 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
671 {
672         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
673         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
674
675         /* Ensure the removal thread has completed before we free the svr. */
676         spa_vdev_remove_suspend(spa);
677
678         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
679
680         if (state == DSS_FINISHED) {
681                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
682                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
683                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
684
685                 if (srp->sr_prev_indirect_vdev != -1) {
686                         vdev_t *pvd;
687                         pvd = vdev_lookup_top(spa,
688                             srp->sr_prev_indirect_vdev);
689                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
690                 }
691
692                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
693                 srp->sr_prev_indirect_vdev = vd->vdev_id;
694         }
695         spa->spa_removing_phys.sr_state = state;
696         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
697
698         spa->spa_vdev_removal = NULL;
699         spa_vdev_removal_destroy(svr);
700
701         spa_sync_removing_state(spa, tx);
702         spa_notify_waiters(spa);
703
704         vdev_config_dirty(spa->spa_root_vdev);
705 }
706
707 static void
708 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
709 {
710         vdev_t *vd = arg;
711         vdev_indirect_mark_obsolete(vd, offset, size);
712         boolean_t checkpoint = B_FALSE;
713         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
714             metaslab_free_impl_cb, &checkpoint);
715 }
716
717 /*
718  * On behalf of the removal thread, syncs an incremental bit more of
719  * the indirect mapping to disk and updates the in-memory mapping.
720  * Called as a sync task in every txg that the removal thread makes progress.
721  */
722 static void
723 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
724 {
725         spa_vdev_removal_t *svr = arg;
726         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
727         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
728         vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
729         uint64_t txg = dmu_tx_get_txg(tx);
730         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
731
732         ASSERT(vic->vic_mapping_object != 0);
733         ASSERT3U(txg, ==, spa_syncing_txg(spa));
734
735         vdev_indirect_mapping_add_entries(vim,
736             &svr->svr_new_segments[txg & TXG_MASK], tx);
737         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
738             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
739
740         /*
741          * Free the copied data for anything that was freed while the
742          * mapping entries were in flight.
743          */
744         mutex_enter(&svr->svr_lock);
745         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
746             free_mapped_segment_cb, vd);
747         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
748             vdev_indirect_mapping_max_offset(vim));
749         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
750         mutex_exit(&svr->svr_lock);
751
752         spa_sync_removing_state(spa, tx);
753 }
754
755 typedef struct vdev_copy_segment_arg {
756         spa_t *vcsa_spa;
757         dva_t *vcsa_dest_dva;
758         uint64_t vcsa_txg;
759         range_tree_t *vcsa_obsolete_segs;
760 } vdev_copy_segment_arg_t;
761
762 static void
763 unalloc_seg(void *arg, uint64_t start, uint64_t size)
764 {
765         vdev_copy_segment_arg_t *vcsa = arg;
766         spa_t *spa = vcsa->vcsa_spa;
767         blkptr_t bp = { { { {0} } } };
768
769         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
770         BP_SET_LSIZE(&bp, size);
771         BP_SET_PSIZE(&bp, size);
772         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
773         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
774         BP_SET_TYPE(&bp, DMU_OT_NONE);
775         BP_SET_LEVEL(&bp, 0);
776         BP_SET_DEDUP(&bp, 0);
777         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
778
779         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
780         DVA_SET_OFFSET(&bp.blk_dva[0],
781             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
782         DVA_SET_ASIZE(&bp.blk_dva[0], size);
783
784         zio_free(spa, vcsa->vcsa_txg, &bp);
785 }
786
787 /*
788  * All reads and writes associated with a call to spa_vdev_copy_segment()
789  * are done.
790  */
791 static void
792 spa_vdev_copy_segment_done(zio_t *zio)
793 {
794         vdev_copy_segment_arg_t *vcsa = zio->io_private;
795
796         range_tree_vacate(vcsa->vcsa_obsolete_segs,
797             unalloc_seg, vcsa);
798         range_tree_destroy(vcsa->vcsa_obsolete_segs);
799         kmem_free(vcsa, sizeof (*vcsa));
800
801         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
802 }
803
804 /*
805  * The write of the new location is done.
806  */
807 static void
808 spa_vdev_copy_segment_write_done(zio_t *zio)
809 {
810         vdev_copy_arg_t *vca = zio->io_private;
811
812         abd_free(zio->io_abd);
813
814         mutex_enter(&vca->vca_lock);
815         vca->vca_outstanding_bytes -= zio->io_size;
816
817         if (zio->io_error != 0)
818                 vca->vca_write_error_bytes += zio->io_size;
819
820         cv_signal(&vca->vca_cv);
821         mutex_exit(&vca->vca_lock);
822 }
823
824 /*
825  * The read of the old location is done.  The parent zio is the write to
826  * the new location.  Allow it to start.
827  */
828 static void
829 spa_vdev_copy_segment_read_done(zio_t *zio)
830 {
831         vdev_copy_arg_t *vca = zio->io_private;
832
833         if (zio->io_error != 0) {
834                 mutex_enter(&vca->vca_lock);
835                 vca->vca_read_error_bytes += zio->io_size;
836                 mutex_exit(&vca->vca_lock);
837         }
838
839         zio_nowait(zio_unique_parent(zio));
840 }
841
842 /*
843  * If the old and new vdevs are mirrors, we will read both sides of the old
844  * mirror, and write each copy to the corresponding side of the new mirror.
845  * If the old and new vdevs have a different number of children, we will do
846  * this as best as possible.  Since we aren't verifying checksums, this
847  * ensures that as long as there's a good copy of the data, we'll have a
848  * good copy after the removal, even if there's silent damage to one side
849  * of the mirror. If we're removing a mirror that has some silent damage,
850  * we'll have exactly the same damage in the new location (assuming that
851  * the new location is also a mirror).
852  *
853  * We accomplish this by creating a tree of zio_t's, with as many writes as
854  * there are "children" of the new vdev (a non-redundant vdev counts as one
855  * child, a 2-way mirror has 2 children, etc). Each write has an associated
856  * read from a child of the old vdev. Typically there will be the same
857  * number of children of the old and new vdevs.  However, if there are more
858  * children of the new vdev, some child(ren) of the old vdev will be issued
859  * multiple reads.  If there are more children of the old vdev, some copies
860  * will be dropped.
861  *
862  * For example, the tree of zio_t's for a 2-way mirror is:
863  *
864  *                            null
865  *                           /    \
866  *    write(new vdev, child 0)      write(new vdev, child 1)
867  *      |                             |
868  *    read(old vdev, child 0)       read(old vdev, child 1)
869  *
870  * Child zio's complete before their parents complete.  However, zio's
871  * created with zio_vdev_child_io() may be issued before their children
872  * complete.  In this case we need to make sure that the children (reads)
873  * complete before the parents (writes) are *issued*.  We do this by not
874  * calling zio_nowait() on each write until its corresponding read has
875  * completed.
876  *
877  * The spa_config_lock must be held while zio's created by
878  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
879  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
880  * zio is needed to release the spa_config_lock after all the reads and
881  * writes complete. (Note that we can't grab the config lock for each read,
882  * because it is not reentrant - we could deadlock with a thread waiting
883  * for a write lock.)
884  */
885 static void
886 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
887     vdev_t *source_vd, uint64_t source_offset,
888     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
889 {
890         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
891
892         /*
893          * If the destination child in unwritable then there is no point
894          * in issuing the source reads which cannot be written.
895          */
896         if (!vdev_writeable(dest_child_vd))
897                 return;
898
899         mutex_enter(&vca->vca_lock);
900         vca->vca_outstanding_bytes += size;
901         mutex_exit(&vca->vca_lock);
902
903         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
904
905         vdev_t *source_child_vd = NULL;
906         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
907                 /*
908                  * Source and dest are both mirrors.  Copy from the same
909                  * child id as we are copying to (wrapping around if there
910                  * are more dest children than source children).  If the
911                  * preferred source child is unreadable select another.
912                  */
913                 for (int i = 0; i < source_vd->vdev_children; i++) {
914                         source_child_vd = source_vd->vdev_child[
915                             (dest_id + i) % source_vd->vdev_children];
916                         if (vdev_readable(source_child_vd))
917                                 break;
918                 }
919         } else {
920                 source_child_vd = source_vd;
921         }
922
923         /*
924          * There should always be at least one readable source child or
925          * the pool would be in a suspended state.  Somehow selecting an
926          * unreadable child would result in IO errors, the removal process
927          * being cancelled, and the pool reverting to its pre-removal state.
928          */
929         ASSERT3P(source_child_vd, !=, NULL);
930
931         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
932             dest_child_vd, dest_offset, abd, size,
933             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
934             ZIO_FLAG_CANFAIL,
935             spa_vdev_copy_segment_write_done, vca);
936
937         zio_nowait(zio_vdev_child_io(write_zio, NULL,
938             source_child_vd, source_offset, abd, size,
939             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
940             ZIO_FLAG_CANFAIL,
941             spa_vdev_copy_segment_read_done, vca));
942 }
943
944 /*
945  * Allocate a new location for this segment, and create the zio_t's to
946  * read from the old location and write to the new location.
947  */
948 static int
949 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
950     uint64_t maxalloc, uint64_t txg,
951     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
952 {
953         metaslab_group_t *mg = vd->vdev_mg;
954         spa_t *spa = vd->vdev_spa;
955         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
956         vdev_indirect_mapping_entry_t *entry;
957         dva_t dst = {{ 0 }};
958         uint64_t start = range_tree_min(segs);
959         ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
960
961         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
962         ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
963
964         uint64_t size = range_tree_span(segs);
965         if (range_tree_span(segs) > maxalloc) {
966                 /*
967                  * We can't allocate all the segments.  Prefer to end
968                  * the allocation at the end of a segment, thus avoiding
969                  * additional split blocks.
970                  */
971                 range_seg_max_t search;
972                 zfs_btree_index_t where;
973                 rs_set_start(&search, segs, start + maxalloc);
974                 rs_set_end(&search, segs, start + maxalloc);
975                 (void) zfs_btree_find(&segs->rt_root, &search, &where);
976                 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
977                     &where);
978                 if (rs != NULL) {
979                         size = rs_get_end(rs, segs) - start;
980                 } else {
981                         /*
982                          * There are no segments that end before maxalloc.
983                          * I.e. the first segment is larger than maxalloc,
984                          * so we must split it.
985                          */
986                         size = maxalloc;
987                 }
988         }
989         ASSERT3U(size, <=, maxalloc);
990         ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
991
992         /*
993          * An allocation class might not have any remaining vdevs or space
994          */
995         metaslab_class_t *mc = mg->mg_class;
996         if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
997                 mc = spa_normal_class(spa);
998         int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
999             zal, 0);
1000         if (error == ENOSPC && mc != spa_normal_class(spa)) {
1001                 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1002                     &dst, 0, NULL, txg, 0, zal, 0);
1003         }
1004         if (error != 0)
1005                 return (error);
1006
1007         /*
1008          * Determine the ranges that are not actually needed.  Offsets are
1009          * relative to the start of the range to be copied (i.e. relative to the
1010          * local variable "start").
1011          */
1012         range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
1013             0, 0);
1014
1015         zfs_btree_index_t where;
1016         range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1017         ASSERT3U(rs_get_start(rs, segs), ==, start);
1018         uint64_t prev_seg_end = rs_get_end(rs, segs);
1019         while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1020                 if (rs_get_start(rs, segs) >= start + size) {
1021                         break;
1022                 } else {
1023                         range_tree_add(obsolete_segs,
1024                             prev_seg_end - start,
1025                             rs_get_start(rs, segs) - prev_seg_end);
1026                 }
1027                 prev_seg_end = rs_get_end(rs, segs);
1028         }
1029         /* We don't end in the middle of an obsolete range */
1030         ASSERT3U(start + size, <=, prev_seg_end);
1031
1032         range_tree_clear(segs, start, size);
1033
1034         /*
1035          * We can't have any padding of the allocated size, otherwise we will
1036          * misunderstand what's allocated, and the size of the mapping. We
1037          * prevent padding by ensuring that all devices in the pool have the
1038          * same ashift, and the allocation size is a multiple of the ashift.
1039          */
1040         VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1041
1042         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1043         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1044         entry->vime_mapping.vimep_dst = dst;
1045         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1046                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1047         }
1048
1049         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1050         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1051         vcsa->vcsa_obsolete_segs = obsolete_segs;
1052         vcsa->vcsa_spa = spa;
1053         vcsa->vcsa_txg = txg;
1054
1055         /*
1056          * See comment before spa_vdev_copy_one_child().
1057          */
1058         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1059         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1060             spa_vdev_copy_segment_done, vcsa, 0);
1061         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1062         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1063                 for (int i = 0; i < dest_vd->vdev_children; i++) {
1064                         vdev_t *child = dest_vd->vdev_child[i];
1065                         spa_vdev_copy_one_child(vca, nzio, vd, start,
1066                             child, DVA_GET_OFFSET(&dst), i, size);
1067                 }
1068         } else {
1069                 spa_vdev_copy_one_child(vca, nzio, vd, start,
1070                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1071         }
1072         zio_nowait(nzio);
1073
1074         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1075         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1076         vdev_dirty(vd, 0, NULL, txg);
1077
1078         return (0);
1079 }
1080
1081 /*
1082  * Complete the removal of a toplevel vdev. This is called as a
1083  * synctask in the same txg that we will sync out the new config (to the
1084  * MOS object) which indicates that this vdev is indirect.
1085  */
1086 static void
1087 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1088 {
1089         spa_vdev_removal_t *svr = arg;
1090         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1091         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1092
1093         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1094
1095         for (int i = 0; i < TXG_SIZE; i++) {
1096                 ASSERT0(svr->svr_bytes_done[i]);
1097         }
1098
1099         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1100             spa->spa_removing_phys.sr_to_copy);
1101
1102         vdev_destroy_spacemaps(vd, tx);
1103
1104         /* destroy leaf zaps, if any */
1105         ASSERT3P(svr->svr_zaplist, !=, NULL);
1106         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1107             pair != NULL;
1108             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1109                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1110         }
1111         fnvlist_free(svr->svr_zaplist);
1112
1113         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1114         /* vd->vdev_path is not available here */
1115         spa_history_log_internal(spa, "vdev remove completed",  tx,
1116             "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1117 }
1118
1119 static void
1120 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1121 {
1122         ASSERT3P(zlist, !=, NULL);
1123         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1124
1125         if (vd->vdev_leaf_zap != 0) {
1126                 char zkey[32];
1127                 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1128                     VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1129                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1130         }
1131
1132         for (uint64_t id = 0; id < vd->vdev_children; id++) {
1133                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1134         }
1135 }
1136
1137 static void
1138 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1139 {
1140         vdev_t *ivd;
1141         dmu_tx_t *tx;
1142         spa_t *spa = vd->vdev_spa;
1143         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1144
1145         /*
1146          * First, build a list of leaf zaps to be destroyed.
1147          * This is passed to the sync context thread,
1148          * which does the actual unlinking.
1149          */
1150         svr->svr_zaplist = fnvlist_alloc();
1151         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1152
1153         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1154         ivd->vdev_removing = 0;
1155
1156         vd->vdev_leaf_zap = 0;
1157
1158         vdev_remove_child(ivd, vd);
1159         vdev_compact_children(ivd);
1160
1161         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1162
1163         mutex_enter(&svr->svr_lock);
1164         svr->svr_thread = NULL;
1165         cv_broadcast(&svr->svr_cv);
1166         mutex_exit(&svr->svr_lock);
1167
1168         /* After this, we can not use svr. */
1169         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1170         dsl_sync_task_nowait(spa->spa_dsl_pool,
1171             vdev_remove_complete_sync, svr, tx);
1172         dmu_tx_commit(tx);
1173 }
1174
1175 /*
1176  * Complete the removal of a toplevel vdev. This is called in open
1177  * context by the removal thread after we have copied all vdev's data.
1178  */
1179 static void
1180 vdev_remove_complete(spa_t *spa)
1181 {
1182         uint64_t txg;
1183
1184         /*
1185          * Wait for any deferred frees to be synced before we call
1186          * vdev_metaslab_fini()
1187          */
1188         txg_wait_synced(spa->spa_dsl_pool, 0);
1189         txg = spa_vdev_enter(spa);
1190         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1191         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1192         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1193         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1194
1195         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1196             ESC_ZFS_VDEV_REMOVE_DEV);
1197
1198         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1199             vd->vdev_id, txg);
1200
1201         /*
1202          * Discard allocation state.
1203          */
1204         if (vd->vdev_mg != NULL) {
1205                 vdev_metaslab_fini(vd);
1206                 metaslab_group_destroy(vd->vdev_mg);
1207                 vd->vdev_mg = NULL;
1208                 spa_log_sm_set_blocklimit(spa);
1209         }
1210         ASSERT0(vd->vdev_stat.vs_space);
1211         ASSERT0(vd->vdev_stat.vs_dspace);
1212
1213         vdev_remove_replace_with_indirect(vd, txg);
1214
1215         /*
1216          * We now release the locks, allowing spa_sync to run and finish the
1217          * removal via vdev_remove_complete_sync in syncing context.
1218          *
1219          * Note that we hold on to the vdev_t that has been replaced.  Since
1220          * it isn't part of the vdev tree any longer, it can't be concurrently
1221          * manipulated, even while we don't have the config lock.
1222          */
1223         (void) spa_vdev_exit(spa, NULL, txg, 0);
1224
1225         /*
1226          * Top ZAP should have been transferred to the indirect vdev in
1227          * vdev_remove_replace_with_indirect.
1228          */
1229         ASSERT0(vd->vdev_top_zap);
1230
1231         /*
1232          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1233          */
1234         ASSERT0(vd->vdev_leaf_zap);
1235
1236         txg = spa_vdev_enter(spa);
1237         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1238         /*
1239          * Request to update the config and the config cachefile.
1240          */
1241         vdev_config_dirty(spa->spa_root_vdev);
1242         (void) spa_vdev_exit(spa, vd, txg, 0);
1243
1244         if (ev != NULL)
1245                 spa_event_post(ev);
1246 }
1247
1248 /*
1249  * Evacuates a segment of size at most max_alloc from the vdev
1250  * via repeated calls to spa_vdev_copy_segment. If an allocation
1251  * fails, the pool is probably too fragmented to handle such a
1252  * large size, so decrease max_alloc so that the caller will not try
1253  * this size again this txg.
1254  */
1255 static void
1256 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1257     uint64_t *max_alloc, dmu_tx_t *tx)
1258 {
1259         uint64_t txg = dmu_tx_get_txg(tx);
1260         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1261
1262         mutex_enter(&svr->svr_lock);
1263
1264         /*
1265          * Determine how big of a chunk to copy.  We can allocate up
1266          * to max_alloc bytes, and we can span up to vdev_removal_max_span
1267          * bytes of unallocated space at a time.  "segs" will track the
1268          * allocated segments that we are copying.  We may also be copying
1269          * free segments (of up to vdev_removal_max_span bytes).
1270          */
1271         range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1272         for (;;) {
1273                 range_tree_t *rt = svr->svr_allocd_segs;
1274                 range_seg_t *rs = range_tree_first(rt);
1275
1276                 if (rs == NULL)
1277                         break;
1278
1279                 uint64_t seg_length;
1280
1281                 if (range_tree_is_empty(segs)) {
1282                         /* need to truncate the first seg based on max_alloc */
1283                         seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1284                             rt), *max_alloc);
1285                 } else {
1286                         if (rs_get_start(rs, rt) - range_tree_max(segs) >
1287                             vdev_removal_max_span) {
1288                                 /*
1289                                  * Including this segment would cause us to
1290                                  * copy a larger unneeded chunk than is allowed.
1291                                  */
1292                                 break;
1293                         } else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1294                             *max_alloc) {
1295                                 /*
1296                                  * This additional segment would extend past
1297                                  * max_alloc. Rather than splitting this
1298                                  * segment, leave it for the next mapping.
1299                                  */
1300                                 break;
1301                         } else {
1302                                 seg_length = rs_get_end(rs, rt) -
1303                                     rs_get_start(rs, rt);
1304                         }
1305                 }
1306
1307                 range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1308                 range_tree_remove(svr->svr_allocd_segs,
1309                     rs_get_start(rs, rt), seg_length);
1310         }
1311
1312         if (range_tree_is_empty(segs)) {
1313                 mutex_exit(&svr->svr_lock);
1314                 range_tree_destroy(segs);
1315                 return;
1316         }
1317
1318         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1319                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1320                     svr, tx);
1321         }
1322
1323         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1324
1325         /*
1326          * Note: this is the amount of *allocated* space
1327          * that we are taking care of each txg.
1328          */
1329         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1330
1331         mutex_exit(&svr->svr_lock);
1332
1333         zio_alloc_list_t zal;
1334         metaslab_trace_init(&zal);
1335         uint64_t thismax = SPA_MAXBLOCKSIZE;
1336         while (!range_tree_is_empty(segs)) {
1337                 int error = spa_vdev_copy_segment(vd,
1338                     segs, thismax, txg, vca, &zal);
1339
1340                 if (error == ENOSPC) {
1341                         /*
1342                          * Cut our segment in half, and don't try this
1343                          * segment size again this txg.  Note that the
1344                          * allocation size must be aligned to the highest
1345                          * ashift in the pool, so that the allocation will
1346                          * not be padded out to a multiple of the ashift,
1347                          * which could cause us to think that this mapping
1348                          * is larger than we intended.
1349                          */
1350                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1351                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1352                         uint64_t attempted =
1353                             MIN(range_tree_span(segs), thismax);
1354                         thismax = P2ROUNDUP(attempted / 2,
1355                             1 << spa->spa_max_ashift);
1356                         /*
1357                          * The minimum-size allocation can not fail.
1358                          */
1359                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1360                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
1361                 } else {
1362                         ASSERT0(error);
1363
1364                         /*
1365                          * We've performed an allocation, so reset the
1366                          * alloc trace list.
1367                          */
1368                         metaslab_trace_fini(&zal);
1369                         metaslab_trace_init(&zal);
1370                 }
1371         }
1372         metaslab_trace_fini(&zal);
1373         range_tree_destroy(segs);
1374 }
1375
1376 /*
1377  * The size of each removal mapping is limited by the tunable
1378  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1379  * pool's ashift, so that we don't try to split individual sectors regardless
1380  * of the tunable value.  (Note that device removal requires that all devices
1381  * have the same ashift, so there's no difference between spa_min_ashift and
1382  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1383  */
1384 uint64_t
1385 spa_remove_max_segment(spa_t *spa)
1386 {
1387         return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1388 }
1389
1390 /*
1391  * The removal thread operates in open context.  It iterates over all
1392  * allocated space in the vdev, by loading each metaslab's spacemap.
1393  * For each contiguous segment of allocated space (capping the segment
1394  * size at SPA_MAXBLOCKSIZE), we:
1395  *    - Allocate space for it on another vdev.
1396  *    - Create a new mapping from the old location to the new location
1397  *      (as a record in svr_new_segments).
1398  *    - Initiate a physical read zio to get the data off the removing disk.
1399  *    - In the read zio's done callback, initiate a physical write zio to
1400  *      write it to the new vdev.
1401  * Note that all of this will take effect when a particular TXG syncs.
1402  * The sync thread ensures that all the phys reads and writes for the syncing
1403  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1404  * (see vdev_mapping_sync()).
1405  */
1406 static void
1407 spa_vdev_remove_thread(void *arg)
1408 {
1409         spa_t *spa = arg;
1410         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1411         vdev_copy_arg_t vca;
1412         uint64_t max_alloc = spa_remove_max_segment(spa);
1413         uint64_t last_txg = 0;
1414
1415         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1416         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1417         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1418         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1419
1420         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1421         ASSERT(vdev_is_concrete(vd));
1422         ASSERT(vd->vdev_removing);
1423         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1424         ASSERT(vim != NULL);
1425
1426         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1427         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1428         vca.vca_outstanding_bytes = 0;
1429         vca.vca_read_error_bytes = 0;
1430         vca.vca_write_error_bytes = 0;
1431
1432         mutex_enter(&svr->svr_lock);
1433
1434         /*
1435          * Start from vim_max_offset so we pick up where we left off
1436          * if we are restarting the removal after opening the pool.
1437          */
1438         uint64_t msi;
1439         for (msi = start_offset >> vd->vdev_ms_shift;
1440             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1441                 metaslab_t *msp = vd->vdev_ms[msi];
1442                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1443
1444                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1445
1446                 mutex_enter(&msp->ms_sync_lock);
1447                 mutex_enter(&msp->ms_lock);
1448
1449                 /*
1450                  * Assert nothing in flight -- ms_*tree is empty.
1451                  */
1452                 for (int i = 0; i < TXG_SIZE; i++) {
1453                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1454                 }
1455
1456                 /*
1457                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1458                  * read the allocated segments from the space map object
1459                  * into svr_allocd_segs. Since we do this while holding
1460                  * svr_lock and ms_sync_lock, concurrent frees (which
1461                  * would have modified the space map) will wait for us
1462                  * to finish loading the spacemap, and then take the
1463                  * appropriate action (see free_from_removing_vdev()).
1464                  */
1465                 if (msp->ms_sm != NULL) {
1466                         VERIFY0(space_map_load(msp->ms_sm,
1467                             svr->svr_allocd_segs, SM_ALLOC));
1468
1469                         range_tree_walk(msp->ms_unflushed_allocs,
1470                             range_tree_add, svr->svr_allocd_segs);
1471                         range_tree_walk(msp->ms_unflushed_frees,
1472                             range_tree_remove, svr->svr_allocd_segs);
1473                         range_tree_walk(msp->ms_freeing,
1474                             range_tree_remove, svr->svr_allocd_segs);
1475
1476                         /*
1477                          * When we are resuming from a paused removal (i.e.
1478                          * when importing a pool with a removal in progress),
1479                          * discard any state that we have already processed.
1480                          */
1481                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1482                 }
1483                 mutex_exit(&msp->ms_lock);
1484                 mutex_exit(&msp->ms_sync_lock);
1485
1486                 vca.vca_msp = msp;
1487                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1488                     zfs_btree_numnodes(&svr->svr_allocd_segs->rt_root),
1489                     msp->ms_id);
1490
1491                 while (!svr->svr_thread_exit &&
1492                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1493
1494                         mutex_exit(&svr->svr_lock);
1495
1496                         /*
1497                          * We need to periodically drop the config lock so that
1498                          * writers can get in.  Additionally, we can't wait
1499                          * for a txg to sync while holding a config lock
1500                          * (since a waiting writer could cause a 3-way deadlock
1501                          * with the sync thread, which also gets a config
1502                          * lock for reader).  So we can't hold the config lock
1503                          * while calling dmu_tx_assign().
1504                          */
1505                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1506
1507                         /*
1508                          * This delay will pause the removal around the point
1509                          * specified by zfs_removal_suspend_progress. We do this
1510                          * solely from the test suite or during debugging.
1511                          */
1512                         uint64_t bytes_copied =
1513                             spa->spa_removing_phys.sr_copied;
1514                         for (int i = 0; i < TXG_SIZE; i++)
1515                                 bytes_copied += svr->svr_bytes_done[i];
1516                         while (zfs_removal_suspend_progress &&
1517                             !svr->svr_thread_exit)
1518                                 delay(hz);
1519
1520                         mutex_enter(&vca.vca_lock);
1521                         while (vca.vca_outstanding_bytes >
1522                             zfs_remove_max_copy_bytes) {
1523                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1524                         }
1525                         mutex_exit(&vca.vca_lock);
1526
1527                         dmu_tx_t *tx =
1528                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1529
1530                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1531                         uint64_t txg = dmu_tx_get_txg(tx);
1532
1533                         /*
1534                          * Reacquire the vdev_config lock.  The vdev_t
1535                          * that we're removing may have changed, e.g. due
1536                          * to a vdev_attach or vdev_detach.
1537                          */
1538                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1539                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1540
1541                         if (txg != last_txg)
1542                                 max_alloc = spa_remove_max_segment(spa);
1543                         last_txg = txg;
1544
1545                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1546
1547                         dmu_tx_commit(tx);
1548                         mutex_enter(&svr->svr_lock);
1549                 }
1550
1551                 mutex_enter(&vca.vca_lock);
1552                 if (zfs_removal_ignore_errors == 0 &&
1553                     (vca.vca_read_error_bytes > 0 ||
1554                     vca.vca_write_error_bytes > 0)) {
1555                         svr->svr_thread_exit = B_TRUE;
1556                 }
1557                 mutex_exit(&vca.vca_lock);
1558         }
1559
1560         mutex_exit(&svr->svr_lock);
1561
1562         spa_config_exit(spa, SCL_CONFIG, FTAG);
1563
1564         /*
1565          * Wait for all copies to finish before cleaning up the vca.
1566          */
1567         txg_wait_synced(spa->spa_dsl_pool, 0);
1568         ASSERT0(vca.vca_outstanding_bytes);
1569
1570         mutex_destroy(&vca.vca_lock);
1571         cv_destroy(&vca.vca_cv);
1572
1573         if (svr->svr_thread_exit) {
1574                 mutex_enter(&svr->svr_lock);
1575                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1576                 svr->svr_thread = NULL;
1577                 cv_broadcast(&svr->svr_cv);
1578                 mutex_exit(&svr->svr_lock);
1579
1580                 /*
1581                  * During the removal process an unrecoverable read or write
1582                  * error was encountered.  The removal process must be
1583                  * cancelled or this damage may become permanent.
1584                  */
1585                 if (zfs_removal_ignore_errors == 0 &&
1586                     (vca.vca_read_error_bytes > 0 ||
1587                     vca.vca_write_error_bytes > 0)) {
1588                         zfs_dbgmsg("canceling removal due to IO errors: "
1589                             "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1590                             vca.vca_read_error_bytes,
1591                             vca.vca_write_error_bytes);
1592                         spa_vdev_remove_cancel_impl(spa);
1593                 }
1594         } else {
1595                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1596                 vdev_remove_complete(spa);
1597         }
1598
1599         thread_exit();
1600 }
1601
1602 void
1603 spa_vdev_remove_suspend(spa_t *spa)
1604 {
1605         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1606
1607         if (svr == NULL)
1608                 return;
1609
1610         mutex_enter(&svr->svr_lock);
1611         svr->svr_thread_exit = B_TRUE;
1612         while (svr->svr_thread != NULL)
1613                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1614         svr->svr_thread_exit = B_FALSE;
1615         mutex_exit(&svr->svr_lock);
1616 }
1617
1618 /* ARGSUSED */
1619 static int
1620 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1621 {
1622         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1623
1624         if (spa->spa_vdev_removal == NULL)
1625                 return (ENOTACTIVE);
1626         return (0);
1627 }
1628
1629 /*
1630  * Cancel a removal by freeing all entries from the partial mapping
1631  * and marking the vdev as no longer being removing.
1632  */
1633 /* ARGSUSED */
1634 static void
1635 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1636 {
1637         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1638         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1639         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1640         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1641         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1642         objset_t *mos = spa->spa_meta_objset;
1643
1644         ASSERT3P(svr->svr_thread, ==, NULL);
1645
1646         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1647
1648         boolean_t are_precise;
1649         VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1650         if (are_precise) {
1651                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1652                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1653                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1654         }
1655
1656         uint64_t obsolete_sm_object;
1657         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1658         if (obsolete_sm_object != 0) {
1659                 ASSERT(vd->vdev_obsolete_sm != NULL);
1660                 ASSERT3U(obsolete_sm_object, ==,
1661                     space_map_object(vd->vdev_obsolete_sm));
1662
1663                 space_map_free(vd->vdev_obsolete_sm, tx);
1664                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1665                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1666                 space_map_close(vd->vdev_obsolete_sm);
1667                 vd->vdev_obsolete_sm = NULL;
1668                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1669         }
1670         for (int i = 0; i < TXG_SIZE; i++) {
1671                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1672                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1673                     vdev_indirect_mapping_max_offset(vim));
1674         }
1675
1676         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1677                 metaslab_t *msp = vd->vdev_ms[msi];
1678
1679                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1680                         break;
1681
1682                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1683
1684                 mutex_enter(&msp->ms_lock);
1685
1686                 /*
1687                  * Assert nothing in flight -- ms_*tree is empty.
1688                  */
1689                 for (int i = 0; i < TXG_SIZE; i++)
1690                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1691                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1692                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1693                 ASSERT0(range_tree_space(msp->ms_freed));
1694
1695                 if (msp->ms_sm != NULL) {
1696                         mutex_enter(&svr->svr_lock);
1697                         VERIFY0(space_map_load(msp->ms_sm,
1698                             svr->svr_allocd_segs, SM_ALLOC));
1699
1700                         range_tree_walk(msp->ms_unflushed_allocs,
1701                             range_tree_add, svr->svr_allocd_segs);
1702                         range_tree_walk(msp->ms_unflushed_frees,
1703                             range_tree_remove, svr->svr_allocd_segs);
1704                         range_tree_walk(msp->ms_freeing,
1705                             range_tree_remove, svr->svr_allocd_segs);
1706
1707                         /*
1708                          * Clear everything past what has been synced,
1709                          * because we have not allocated mappings for it yet.
1710                          */
1711                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1712                         uint64_t sm_end = msp->ms_sm->sm_start +
1713                             msp->ms_sm->sm_size;
1714                         if (sm_end > syncd)
1715                                 range_tree_clear(svr->svr_allocd_segs,
1716                                     syncd, sm_end - syncd);
1717
1718                         mutex_exit(&svr->svr_lock);
1719                 }
1720                 mutex_exit(&msp->ms_lock);
1721
1722                 mutex_enter(&svr->svr_lock);
1723                 range_tree_vacate(svr->svr_allocd_segs,
1724                     free_mapped_segment_cb, vd);
1725                 mutex_exit(&svr->svr_lock);
1726         }
1727
1728         /*
1729          * Note: this must happen after we invoke free_mapped_segment_cb,
1730          * because it adds to the obsolete_segments.
1731          */
1732         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1733
1734         ASSERT3U(vic->vic_mapping_object, ==,
1735             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1736         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1737         vd->vdev_indirect_mapping = NULL;
1738         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1739         vic->vic_mapping_object = 0;
1740
1741         ASSERT3U(vic->vic_births_object, ==,
1742             vdev_indirect_births_object(vd->vdev_indirect_births));
1743         vdev_indirect_births_close(vd->vdev_indirect_births);
1744         vd->vdev_indirect_births = NULL;
1745         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1746         vic->vic_births_object = 0;
1747
1748         /*
1749          * We may have processed some frees from the removing vdev in this
1750          * txg, thus increasing svr_bytes_done; discard that here to
1751          * satisfy the assertions in spa_vdev_removal_destroy().
1752          * Note that future txg's can not have any bytes_done, because
1753          * future TXG's are only modified from open context, and we have
1754          * already shut down the copying thread.
1755          */
1756         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1757         spa_finish_removal(spa, DSS_CANCELED, tx);
1758
1759         vd->vdev_removing = B_FALSE;
1760         vdev_config_dirty(vd);
1761
1762         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1763             vd->vdev_id, dmu_tx_get_txg(tx));
1764         spa_history_log_internal(spa, "vdev remove canceled", tx,
1765             "%s vdev %llu %s", spa_name(spa),
1766             (u_longlong_t)vd->vdev_id,
1767             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1768 }
1769
1770 static int
1771 spa_vdev_remove_cancel_impl(spa_t *spa)
1772 {
1773         uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1774
1775         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1776             spa_vdev_remove_cancel_sync, NULL, 0,
1777             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1778
1779         if (error == 0) {
1780                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1781                 vdev_t *vd = vdev_lookup_top(spa, vdid);
1782                 metaslab_group_activate(vd->vdev_mg);
1783                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1784         }
1785
1786         return (error);
1787 }
1788
1789 int
1790 spa_vdev_remove_cancel(spa_t *spa)
1791 {
1792         spa_vdev_remove_suspend(spa);
1793
1794         if (spa->spa_vdev_removal == NULL)
1795                 return (ENOTACTIVE);
1796
1797         return (spa_vdev_remove_cancel_impl(spa));
1798 }
1799
1800 void
1801 svr_sync(spa_t *spa, dmu_tx_t *tx)
1802 {
1803         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1804         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1805
1806         if (svr == NULL)
1807                 return;
1808
1809         /*
1810          * This check is necessary so that we do not dirty the
1811          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1812          * is nothing to do.  Dirtying it every time would prevent us
1813          * from syncing-to-convergence.
1814          */
1815         if (svr->svr_bytes_done[txgoff] == 0)
1816                 return;
1817
1818         /*
1819          * Update progress accounting.
1820          */
1821         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1822         svr->svr_bytes_done[txgoff] = 0;
1823
1824         spa_sync_removing_state(spa, tx);
1825 }
1826
1827 static void
1828 vdev_remove_make_hole_and_free(vdev_t *vd)
1829 {
1830         uint64_t id = vd->vdev_id;
1831         spa_t *spa = vd->vdev_spa;
1832         vdev_t *rvd = spa->spa_root_vdev;
1833
1834         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1835         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1836
1837         vdev_free(vd);
1838
1839         vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1840         vdev_add_child(rvd, vd);
1841         vdev_config_dirty(rvd);
1842
1843         /*
1844          * Reassess the health of our root vdev.
1845          */
1846         vdev_reopen(rvd);
1847 }
1848
1849 /*
1850  * Remove a log device.  The config lock is held for the specified TXG.
1851  */
1852 static int
1853 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1854 {
1855         metaslab_group_t *mg = vd->vdev_mg;
1856         spa_t *spa = vd->vdev_spa;
1857         int error = 0;
1858
1859         ASSERT(vd->vdev_islog);
1860         ASSERT(vd == vd->vdev_top);
1861         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1862
1863         /*
1864          * Stop allocating from this vdev.
1865          */
1866         metaslab_group_passivate(mg);
1867
1868         /*
1869          * Wait for the youngest allocations and frees to sync,
1870          * and then wait for the deferral of those frees to finish.
1871          */
1872         spa_vdev_config_exit(spa, NULL,
1873             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1874
1875         /*
1876          * Cancel any initialize or TRIM which was in progress.
1877          */
1878         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1879         vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
1880         vdev_autotrim_stop_wait(vd);
1881
1882         /*
1883          * Evacuate the device.  We don't hold the config lock as
1884          * writer since we need to do I/O but we do keep the
1885          * spa_namespace_lock held.  Once this completes the device
1886          * should no longer have any blocks allocated on it.
1887          */
1888         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1889         if (vd->vdev_stat.vs_alloc != 0)
1890                 error = spa_reset_logs(spa);
1891
1892         *txg = spa_vdev_config_enter(spa);
1893
1894         if (error != 0) {
1895                 metaslab_group_activate(mg);
1896                 return (error);
1897         }
1898         ASSERT0(vd->vdev_stat.vs_alloc);
1899
1900         /*
1901          * The evacuation succeeded.  Remove any remaining MOS metadata
1902          * associated with this vdev, and wait for these changes to sync.
1903          */
1904         vd->vdev_removing = B_TRUE;
1905
1906         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1907         vdev_config_dirty(vd);
1908
1909         /*
1910          * When the log space map feature is enabled we look at
1911          * the vdev's top_zap to find the on-disk flush data of
1912          * the metaslab we just flushed. Thus, while removing a
1913          * log vdev we make sure to call vdev_metaslab_fini()
1914          * first, which removes all metaslabs of this vdev from
1915          * spa_metaslabs_by_flushed before vdev_remove_empty()
1916          * destroys the top_zap of this log vdev.
1917          *
1918          * This avoids the scenario where we flush a metaslab
1919          * from the log vdev being removed that doesn't have a
1920          * top_zap and end up failing to lookup its on-disk flush
1921          * data.
1922          *
1923          * We don't call metaslab_group_destroy() right away
1924          * though (it will be called in vdev_free() later) as
1925          * during metaslab_sync() of metaslabs from other vdevs
1926          * we may touch the metaslab group of this vdev through
1927          * metaslab_class_histogram_verify()
1928          */
1929         vdev_metaslab_fini(vd);
1930         spa_log_sm_set_blocklimit(spa);
1931
1932         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1933         *txg = spa_vdev_config_enter(spa);
1934
1935         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1936             ESC_ZFS_VDEV_REMOVE_DEV);
1937         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1938         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1939
1940         /* The top ZAP should have been destroyed by vdev_remove_empty. */
1941         ASSERT0(vd->vdev_top_zap);
1942         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1943         ASSERT0(vd->vdev_leaf_zap);
1944
1945         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1946
1947         if (list_link_active(&vd->vdev_state_dirty_node))
1948                 vdev_state_clean(vd);
1949         if (list_link_active(&vd->vdev_config_dirty_node))
1950                 vdev_config_clean(vd);
1951
1952         ASSERT0(vd->vdev_stat.vs_alloc);
1953
1954         /*
1955          * Clean up the vdev namespace.
1956          */
1957         vdev_remove_make_hole_and_free(vd);
1958
1959         if (ev != NULL)
1960                 spa_event_post(ev);
1961
1962         return (0);
1963 }
1964
1965 static int
1966 spa_vdev_remove_top_check(vdev_t *vd)
1967 {
1968         spa_t *spa = vd->vdev_spa;
1969
1970         if (vd != vd->vdev_top)
1971                 return (SET_ERROR(ENOTSUP));
1972
1973         if (!vdev_is_concrete(vd))
1974                 return (SET_ERROR(ENOTSUP));
1975
1976         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1977                 return (SET_ERROR(ENOTSUP));
1978
1979         /* available space in the pool's normal class */
1980         uint64_t available = dsl_dir_space_available(
1981             spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1982
1983         metaslab_class_t *mc = vd->vdev_mg->mg_class;
1984
1985         /*
1986          * When removing a vdev from an allocation class that has
1987          * remaining vdevs, include available space from the class.
1988          */
1989         if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1990                 uint64_t class_avail = metaslab_class_get_space(mc) -
1991                     metaslab_class_get_alloc(mc);
1992
1993                 /* add class space, adjusted for overhead */
1994                 available += (class_avail * 94) / 100;
1995         }
1996
1997         /*
1998          * There has to be enough free space to remove the
1999          * device and leave double the "slop" space (i.e. we
2000          * must leave at least 3% of the pool free, in addition to
2001          * the normal slop space).
2002          */
2003         if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
2004                 return (SET_ERROR(ENOSPC));
2005         }
2006
2007         /*
2008          * There can not be a removal in progress.
2009          */
2010         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2011                 return (SET_ERROR(EBUSY));
2012
2013         /*
2014          * The device must have all its data.
2015          */
2016         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2017             !vdev_dtl_empty(vd, DTL_OUTAGE))
2018                 return (SET_ERROR(EBUSY));
2019
2020         /*
2021          * The device must be healthy.
2022          */
2023         if (!vdev_readable(vd))
2024                 return (SET_ERROR(EIO));
2025
2026         /*
2027          * All vdevs in normal class must have the same ashift.
2028          */
2029         if (spa->spa_max_ashift != spa->spa_min_ashift) {
2030                 return (SET_ERROR(EINVAL));
2031         }
2032
2033         /*
2034          * All vdevs in normal class must have the same ashift
2035          * and not be raidz.
2036          */
2037         vdev_t *rvd = spa->spa_root_vdev;
2038         int num_indirect = 0;
2039         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2040                 vdev_t *cvd = rvd->vdev_child[id];
2041                 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
2042                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2043                 if (cvd->vdev_ops == &vdev_indirect_ops)
2044                         num_indirect++;
2045                 if (!vdev_is_concrete(cvd))
2046                         continue;
2047                 if (cvd->vdev_ops == &vdev_raidz_ops)
2048                         return (SET_ERROR(EINVAL));
2049                 /*
2050                  * Need the mirror to be mirror of leaf vdevs only
2051                  */
2052                 if (cvd->vdev_ops == &vdev_mirror_ops) {
2053                         for (uint64_t cid = 0;
2054                             cid < cvd->vdev_children; cid++) {
2055                                 if (!cvd->vdev_child[cid]->vdev_ops->
2056                                     vdev_op_leaf)
2057                                         return (SET_ERROR(EINVAL));
2058                         }
2059                 }
2060         }
2061
2062         return (0);
2063 }
2064
2065 /*
2066  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2067  * The config lock is held for the specified TXG.  Once initiated,
2068  * evacuation of all allocated space (copying it to other vdevs) happens
2069  * in the background (see spa_vdev_remove_thread()), and can be canceled
2070  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2071  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2072  */
2073 static int
2074 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2075 {
2076         spa_t *spa = vd->vdev_spa;
2077         int error;
2078
2079         /*
2080          * Check for errors up-front, so that we don't waste time
2081          * passivating the metaslab group and clearing the ZIL if there
2082          * are errors.
2083          */
2084         error = spa_vdev_remove_top_check(vd);
2085         if (error != 0)
2086                 return (error);
2087
2088         /*
2089          * Stop allocating from this vdev.  Note that we must check
2090          * that this is not the only device in the pool before
2091          * passivating, otherwise we will not be able to make
2092          * progress because we can't allocate from any vdevs.
2093          * The above check for sufficient free space serves this
2094          * purpose.
2095          */
2096         metaslab_group_t *mg = vd->vdev_mg;
2097         metaslab_group_passivate(mg);
2098
2099         /*
2100          * Wait for the youngest allocations and frees to sync,
2101          * and then wait for the deferral of those frees to finish.
2102          */
2103         spa_vdev_config_exit(spa, NULL,
2104             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2105
2106         /*
2107          * We must ensure that no "stubby" log blocks are allocated
2108          * on the device to be removed.  These blocks could be
2109          * written at any time, including while we are in the middle
2110          * of copying them.
2111          */
2112         error = spa_reset_logs(spa);
2113
2114         /*
2115          * We stop any initializing and TRIM that is currently in progress
2116          * but leave the state as "active". This will allow the process to
2117          * resume if the removal is canceled sometime later.
2118          */
2119         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2120         vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2121         vdev_autotrim_stop_wait(vd);
2122
2123         *txg = spa_vdev_config_enter(spa);
2124
2125         /*
2126          * Things might have changed while the config lock was dropped
2127          * (e.g. space usage).  Check for errors again.
2128          */
2129         if (error == 0)
2130                 error = spa_vdev_remove_top_check(vd);
2131
2132         if (error != 0) {
2133                 metaslab_group_activate(mg);
2134                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2135                 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2136                 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2137                 return (error);
2138         }
2139
2140         vd->vdev_removing = B_TRUE;
2141
2142         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2143         vdev_config_dirty(vd);
2144         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2145         dsl_sync_task_nowait(spa->spa_dsl_pool,
2146             vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2147         dmu_tx_commit(tx);
2148
2149         return (0);
2150 }
2151
2152 /*
2153  * Remove a device from the pool.
2154  *
2155  * Removing a device from the vdev namespace requires several steps
2156  * and can take a significant amount of time.  As a result we use
2157  * the spa_vdev_config_[enter/exit] functions which allow us to
2158  * grab and release the spa_config_lock while still holding the namespace
2159  * lock.  During each step the configuration is synced out.
2160  */
2161 int
2162 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2163 {
2164         vdev_t *vd;
2165         nvlist_t **spares, **l2cache, *nv;
2166         uint64_t txg = 0;
2167         uint_t nspares, nl2cache;
2168         int error = 0, error_log;
2169         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2170         sysevent_t *ev = NULL;
2171         char *vd_type = NULL, *vd_path = NULL;
2172
2173         ASSERT(spa_writeable(spa));
2174
2175         if (!locked)
2176                 txg = spa_vdev_enter(spa);
2177
2178         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2179         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2180                 error = (spa_has_checkpoint(spa)) ?
2181                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2182
2183                 if (!locked)
2184                         return (spa_vdev_exit(spa, NULL, txg, error));
2185
2186                 return (error);
2187         }
2188
2189         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2190
2191         if (spa->spa_spares.sav_vdevs != NULL &&
2192             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2193             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2194             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2195                 /*
2196                  * Only remove the hot spare if it's not currently in use
2197                  * in this pool.
2198                  */
2199                 if (vd == NULL || unspare) {
2200                         if (vd == NULL)
2201                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2202                         ev = spa_event_create(spa, vd, NULL,
2203                             ESC_ZFS_VDEV_REMOVE_AUX);
2204
2205                         vd_type = VDEV_TYPE_SPARE;
2206                         vd_path = spa_strdup(fnvlist_lookup_string(
2207                             nv, ZPOOL_CONFIG_PATH));
2208                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
2209                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2210                         spa_load_spares(spa);
2211                         spa->spa_spares.sav_sync = B_TRUE;
2212                 } else {
2213                         error = SET_ERROR(EBUSY);
2214                 }
2215         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2216             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2217             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2218             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2219                 vd_type = VDEV_TYPE_L2CACHE;
2220                 vd_path = spa_strdup(fnvlist_lookup_string(
2221                     nv, ZPOOL_CONFIG_PATH));
2222                 /*
2223                  * Cache devices can always be removed.
2224                  */
2225                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2226
2227                 /*
2228                  * Stop trimming the cache device. We need to release the
2229                  * config lock to allow the syncing of TRIM transactions
2230                  * without releasing the spa_namespace_lock. The same
2231                  * strategy is employed in spa_vdev_remove_top().
2232                  */
2233                 spa_vdev_config_exit(spa, NULL,
2234                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2235                 mutex_enter(&vd->vdev_trim_lock);
2236                 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2237                 mutex_exit(&vd->vdev_trim_lock);
2238                 txg = spa_vdev_config_enter(spa);
2239
2240                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2241                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2242                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2243                 spa_load_l2cache(spa);
2244                 spa->spa_l2cache.sav_sync = B_TRUE;
2245         } else if (vd != NULL && vd->vdev_islog) {
2246                 ASSERT(!locked);
2247                 vd_type = VDEV_TYPE_LOG;
2248                 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2249                     vd->vdev_path : "-");
2250                 error = spa_vdev_remove_log(vd, &txg);
2251         } else if (vd != NULL) {
2252                 ASSERT(!locked);
2253                 error = spa_vdev_remove_top(vd, &txg);
2254         } else {
2255                 /*
2256                  * There is no vdev of any kind with the specified guid.
2257                  */
2258                 error = SET_ERROR(ENOENT);
2259         }
2260
2261         error_log = error;
2262
2263         if (!locked)
2264                 error = spa_vdev_exit(spa, NULL, txg, error);
2265
2266         /*
2267          * Logging must be done outside the spa config lock. Otherwise,
2268          * this code path could end up holding the spa config lock while
2269          * waiting for a txg_sync so it can write to the internal log.
2270          * Doing that would prevent the txg sync from actually happening,
2271          * causing a deadlock.
2272          */
2273         if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2274                 spa_history_log_internal(spa, "vdev remove", NULL,
2275                     "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2276         }
2277         if (vd_path != NULL)
2278                 spa_strfree(vd_path);
2279
2280         if (ev != NULL)
2281                 spa_event_post(ev);
2282
2283         return (error);
2284 }
2285
2286 int
2287 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2288 {
2289         prs->prs_state = spa->spa_removing_phys.sr_state;
2290
2291         if (prs->prs_state == DSS_NONE)
2292                 return (SET_ERROR(ENOENT));
2293
2294         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2295         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2296         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2297         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2298         prs->prs_copied = spa->spa_removing_phys.sr_copied;
2299
2300         prs->prs_mapping_memory = 0;
2301         uint64_t indirect_vdev_id =
2302             spa->spa_removing_phys.sr_prev_indirect_vdev;
2303         while (indirect_vdev_id != -1) {
2304                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2305                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2306                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2307
2308                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2309                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2310                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2311         }
2312
2313         return (0);
2314 }
2315
2316 /* BEGIN CSTYLED */
2317 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2318         "Ignore hard IO errors when removing device");
2319
2320 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, INT, ZMOD_RW,
2321         "Largest contiguous segment to allocate when removing device");
2322
2323 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, INT, ZMOD_RW,
2324         "Largest span of free chunks a remap segment can span");
2325
2326 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, INT, ZMOD_RW,
2327         "Pause device removal after this many bytes are copied "
2328         "(debug use only - causes removal to hang)");
2329 /* END CSTYLED */
2330
2331 EXPORT_SYMBOL(free_from_removing_vdev);
2332 EXPORT_SYMBOL(spa_removal_get_stats);
2333 EXPORT_SYMBOL(spa_remove_init);
2334 EXPORT_SYMBOL(spa_restart_removal);
2335 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2336 EXPORT_SYMBOL(spa_vdev_remove);
2337 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2338 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2339 EXPORT_SYMBOL(svr_sync);