]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/dev/bge/if_bge.c
MFC: r227309 (partial)
[FreeBSD/stable/9.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 #include <dev/bge/if_bgereg.h>
122
123 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
124 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140         uint16_t        bge_vid;
141         uint16_t        bge_did;
142 } bge_devs[] = {
143         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
145
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
149
150         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
151
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
229
230         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
231
232         { TC_VENDORID,          TC_DEVICEID_3C996 },
233
234         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
235         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
236         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
237
238         { 0, 0 }
239 };
240
241 static const struct bge_vendor {
242         uint16_t        v_id;
243         const char      *v_name;
244 } bge_vendors[] = {
245         { ALTEON_VENDORID,      "Alteon" },
246         { ALTIMA_VENDORID,      "Altima" },
247         { APPLE_VENDORID,       "Apple" },
248         { BCOM_VENDORID,        "Broadcom" },
249         { SK_VENDORID,          "SysKonnect" },
250         { TC_VENDORID,          "3Com" },
251         { FJTSU_VENDORID,       "Fujitsu" },
252
253         { 0, NULL }
254 };
255
256 static const struct bge_revision {
257         uint32_t        br_chipid;
258         const char      *br_name;
259 } bge_revisions[] = {
260         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
261         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
262         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
263         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
264         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
265         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
266         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
267         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
268         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
269         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
270         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
271         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
272         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
273         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
274         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
275         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
276         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
277         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
278         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
279         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
280         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
281         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
282         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
283         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
284         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
285         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
286         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
287         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
288         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
289         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
290         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
291         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
292         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
293         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
294         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
295         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
296         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
297         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
298         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
299         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
300         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
301         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
302         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
303         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
304         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
305         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
306         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
307         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
308         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
309         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
310         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
311         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
312         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
313         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
314         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
315         /* 5754 and 5787 share the same ASIC ID */
316         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
317         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
318         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
319         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
320         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
321         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
322         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
323         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
324         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
325
326         { 0, NULL }
327 };
328
329 /*
330  * Some defaults for major revisions, so that newer steppings
331  * that we don't know about have a shot at working.
332  */
333 static const struct bge_revision bge_majorrevs[] = {
334         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
335         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
336         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
337         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
338         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
339         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
340         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
341         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
342         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
343         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
344         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
345         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
346         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
347         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
348         /* 5754 and 5787 share the same ASIC ID */
349         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
350         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
351         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
352         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
353         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
354         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
355         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
356         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
357
358         { 0, NULL }
359 };
360
361 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
362 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
363 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
364 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
365 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
366 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
367 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
368 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
369
370 const struct bge_revision * bge_lookup_rev(uint32_t);
371 const struct bge_vendor * bge_lookup_vendor(uint16_t);
372
373 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
374
375 static int bge_probe(device_t);
376 static int bge_attach(device_t);
377 static int bge_detach(device_t);
378 static int bge_suspend(device_t);
379 static int bge_resume(device_t);
380 static void bge_release_resources(struct bge_softc *);
381 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
382 static int bge_dma_alloc(struct bge_softc *);
383 static void bge_dma_free(struct bge_softc *);
384 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
385     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
386
387 static void bge_devinfo(struct bge_softc *);
388 static int bge_mbox_reorder(struct bge_softc *);
389
390 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
391 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
392 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
393 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
394 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
395
396 static void bge_txeof(struct bge_softc *, uint16_t);
397 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
398 static int bge_rxeof(struct bge_softc *, uint16_t, int);
399
400 static void bge_asf_driver_up (struct bge_softc *);
401 static void bge_tick(void *);
402 static void bge_stats_clear_regs(struct bge_softc *);
403 static void bge_stats_update(struct bge_softc *);
404 static void bge_stats_update_regs(struct bge_softc *);
405 static struct mbuf *bge_check_short_dma(struct mbuf *);
406 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
407     uint16_t *, uint16_t *);
408 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
409
410 static void bge_intr(void *);
411 static int bge_msi_intr(void *);
412 static void bge_intr_task(void *, int);
413 static void bge_start_locked(struct ifnet *);
414 static void bge_start(struct ifnet *);
415 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
416 static void bge_init_locked(struct bge_softc *);
417 static void bge_init(void *);
418 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
419 static void bge_stop(struct bge_softc *);
420 static void bge_watchdog(struct bge_softc *);
421 static int bge_shutdown(device_t);
422 static int bge_ifmedia_upd_locked(struct ifnet *);
423 static int bge_ifmedia_upd(struct ifnet *);
424 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
425
426 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
427 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
428
429 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
430 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
431
432 static void bge_setpromisc(struct bge_softc *);
433 static void bge_setmulti(struct bge_softc *);
434 static void bge_setvlan(struct bge_softc *);
435
436 static __inline void bge_rxreuse_std(struct bge_softc *, int);
437 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
438 static int bge_newbuf_std(struct bge_softc *, int);
439 static int bge_newbuf_jumbo(struct bge_softc *, int);
440 static int bge_init_rx_ring_std(struct bge_softc *);
441 static void bge_free_rx_ring_std(struct bge_softc *);
442 static int bge_init_rx_ring_jumbo(struct bge_softc *);
443 static void bge_free_rx_ring_jumbo(struct bge_softc *);
444 static void bge_free_tx_ring(struct bge_softc *);
445 static int bge_init_tx_ring(struct bge_softc *);
446
447 static int bge_chipinit(struct bge_softc *);
448 static int bge_blockinit(struct bge_softc *);
449 static uint32_t bge_dma_swap_options(struct bge_softc *);
450
451 static int bge_has_eaddr(struct bge_softc *);
452 static uint32_t bge_readmem_ind(struct bge_softc *, int);
453 static void bge_writemem_ind(struct bge_softc *, int, int);
454 static void bge_writembx(struct bge_softc *, int, int);
455 #ifdef notdef
456 static uint32_t bge_readreg_ind(struct bge_softc *, int);
457 #endif
458 static void bge_writemem_direct(struct bge_softc *, int, int);
459 static void bge_writereg_ind(struct bge_softc *, int, int);
460
461 static int bge_miibus_readreg(device_t, int, int);
462 static int bge_miibus_writereg(device_t, int, int, int);
463 static void bge_miibus_statchg(device_t);
464 #ifdef DEVICE_POLLING
465 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
466 #endif
467
468 #define BGE_RESET_SHUTDOWN      0
469 #define BGE_RESET_START         1
470 #define BGE_RESET_SUSPEND       2
471 static void bge_sig_post_reset(struct bge_softc *, int);
472 static void bge_sig_legacy(struct bge_softc *, int);
473 static void bge_sig_pre_reset(struct bge_softc *, int);
474 static void bge_stop_fw(struct bge_softc *);
475 static int bge_reset(struct bge_softc *);
476 static void bge_link_upd(struct bge_softc *);
477
478 static void bge_ape_lock_init(struct bge_softc *);
479 static void bge_ape_read_fw_ver(struct bge_softc *);
480 static int bge_ape_lock(struct bge_softc *, int);
481 static void bge_ape_unlock(struct bge_softc *, int);
482 static void bge_ape_send_event(struct bge_softc *, uint32_t);
483 static void bge_ape_driver_state_change(struct bge_softc *, int);
484
485 /*
486  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
487  * leak information to untrusted users.  It is also known to cause alignment
488  * traps on certain architectures.
489  */
490 #ifdef BGE_REGISTER_DEBUG
491 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
492 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
493 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
494 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
495 #endif
496 static void bge_add_sysctls(struct bge_softc *);
497 static void bge_add_sysctl_stats_regs(struct bge_softc *,
498     struct sysctl_ctx_list *, struct sysctl_oid_list *);
499 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
500     struct sysctl_oid_list *);
501 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
502
503 static device_method_t bge_methods[] = {
504         /* Device interface */
505         DEVMETHOD(device_probe,         bge_probe),
506         DEVMETHOD(device_attach,        bge_attach),
507         DEVMETHOD(device_detach,        bge_detach),
508         DEVMETHOD(device_shutdown,      bge_shutdown),
509         DEVMETHOD(device_suspend,       bge_suspend),
510         DEVMETHOD(device_resume,        bge_resume),
511
512         /* MII interface */
513         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
514         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
515         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
516
517         DEVMETHOD_END
518 };
519
520 static driver_t bge_driver = {
521         "bge",
522         bge_methods,
523         sizeof(struct bge_softc)
524 };
525
526 static devclass_t bge_devclass;
527
528 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
529 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
530
531 static int bge_allow_asf = 1;
532
533 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
534
535 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
536 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
537         "Allow ASF mode if available");
538
539 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
540 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
541 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
542 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
543 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
544
545 static int
546 bge_has_eaddr(struct bge_softc *sc)
547 {
548 #ifdef __sparc64__
549         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
550         device_t dev;
551         uint32_t subvendor;
552
553         dev = sc->bge_dev;
554
555         /*
556          * The on-board BGEs found in sun4u machines aren't fitted with
557          * an EEPROM which means that we have to obtain the MAC address
558          * via OFW and that some tests will always fail.  We distinguish
559          * such BGEs by the subvendor ID, which also has to be obtained
560          * from OFW instead of the PCI configuration space as the latter
561          * indicates Broadcom as the subvendor of the netboot interface.
562          * For early Blade 1500 and 2500 we even have to check the OFW
563          * device path as the subvendor ID always defaults to Broadcom
564          * there.
565          */
566         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
567             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
568             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
569                 return (0);
570         memset(buf, 0, sizeof(buf));
571         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
572                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
573                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
574                         return (0);
575                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
576                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
577                         return (0);
578         }
579 #endif
580         return (1);
581 }
582
583 static uint32_t
584 bge_readmem_ind(struct bge_softc *sc, int off)
585 {
586         device_t dev;
587         uint32_t val;
588
589         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
590             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
591                 return (0);
592
593         dev = sc->bge_dev;
594
595         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
596         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
597         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
598         return (val);
599 }
600
601 static void
602 bge_writemem_ind(struct bge_softc *sc, int off, int val)
603 {
604         device_t dev;
605
606         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
607             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
608                 return;
609
610         dev = sc->bge_dev;
611
612         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
613         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
614         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
615 }
616
617 #ifdef notdef
618 static uint32_t
619 bge_readreg_ind(struct bge_softc *sc, int off)
620 {
621         device_t dev;
622
623         dev = sc->bge_dev;
624
625         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
626         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
627 }
628 #endif
629
630 static void
631 bge_writereg_ind(struct bge_softc *sc, int off, int val)
632 {
633         device_t dev;
634
635         dev = sc->bge_dev;
636
637         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
638         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
639 }
640
641 static void
642 bge_writemem_direct(struct bge_softc *sc, int off, int val)
643 {
644         CSR_WRITE_4(sc, off, val);
645 }
646
647 static void
648 bge_writembx(struct bge_softc *sc, int off, int val)
649 {
650         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
651                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
652
653         CSR_WRITE_4(sc, off, val);
654         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
655                 CSR_READ_4(sc, off);
656 }
657
658 /*
659  * Clear all stale locks and select the lock for this driver instance.
660  */
661 static void
662 bge_ape_lock_init(struct bge_softc *sc)
663 {
664         uint32_t bit, regbase;
665         int i;
666
667         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
668                 regbase = BGE_APE_LOCK_GRANT;
669         else
670                 regbase = BGE_APE_PER_LOCK_GRANT;
671
672         /* Clear any stale locks. */
673         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
674                 switch (i) {
675                 case BGE_APE_LOCK_PHY0:
676                 case BGE_APE_LOCK_PHY1:
677                 case BGE_APE_LOCK_PHY2:
678                 case BGE_APE_LOCK_PHY3:
679                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
680                         break;
681                 default:
682                         if (sc->bge_func_addr != 0)
683                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
684                         else
685                                 bit = (1 << sc->bge_func_addr);
686                 }
687                 APE_WRITE_4(sc, regbase + 4 * i, bit);
688         }
689
690         /* Select the PHY lock based on the device's function number. */
691         switch (sc->bge_func_addr) {
692         case 0:
693                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
694                 break;
695         case 1:
696                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
697                 break;
698         case 2:
699                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
700                 break;
701         case 3:
702                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
703                 break;
704         default:
705                 device_printf(sc->bge_dev,
706                     "PHY lock not supported on this function\n");
707         }
708 }
709
710 /*
711  * Check for APE firmware, set flags, and print version info.
712  */
713 static void
714 bge_ape_read_fw_ver(struct bge_softc *sc)
715 {
716         const char *fwtype;
717         uint32_t apedata, features;
718
719         /* Check for a valid APE signature in shared memory. */
720         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
721         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
722                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
723                 return;
724         }
725
726         /* Check if APE firmware is running. */
727         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
728         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
729                 device_printf(sc->bge_dev, "APE signature found "
730                     "but FW status not ready! 0x%08x\n", apedata);
731                 return;
732         }
733
734         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
735
736         /* Fetch the APE firwmare type and version. */
737         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
738         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
739         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
740                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
741                 fwtype = "NCSI";
742         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
743                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
744                 fwtype = "DASH";
745         } else
746                 fwtype = "UNKN";
747
748         /* Print the APE firmware version. */
749         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
750             fwtype,
751             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
752             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
753             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
754             (apedata & BGE_APE_FW_VERSION_BLDMSK));
755 }
756
757 static int
758 bge_ape_lock(struct bge_softc *sc, int locknum)
759 {
760         uint32_t bit, gnt, req, status;
761         int i, off;
762
763         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
764                 return (0);
765
766         /* Lock request/grant registers have different bases. */
767         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
768                 req = BGE_APE_LOCK_REQ;
769                 gnt = BGE_APE_LOCK_GRANT;
770         } else {
771                 req = BGE_APE_PER_LOCK_REQ;
772                 gnt = BGE_APE_PER_LOCK_GRANT;
773         }
774
775         off = 4 * locknum;
776
777         switch (locknum) {
778         case BGE_APE_LOCK_GPIO:
779                 /* Lock required when using GPIO. */
780                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
781                         return (0);
782                 if (sc->bge_func_addr == 0)
783                         bit = BGE_APE_LOCK_REQ_DRIVER0;
784                 else
785                         bit = (1 << sc->bge_func_addr);
786                 break;
787         case BGE_APE_LOCK_GRC:
788                 /* Lock required to reset the device. */
789                 if (sc->bge_func_addr == 0)
790                         bit = BGE_APE_LOCK_REQ_DRIVER0;
791                 else
792                         bit = (1 << sc->bge_func_addr);
793                 break;
794         case BGE_APE_LOCK_MEM:
795                 /* Lock required when accessing certain APE memory. */
796                 if (sc->bge_func_addr == 0)
797                         bit = BGE_APE_LOCK_REQ_DRIVER0;
798                 else
799                         bit = (1 << sc->bge_func_addr);
800                 break;
801         case BGE_APE_LOCK_PHY0:
802         case BGE_APE_LOCK_PHY1:
803         case BGE_APE_LOCK_PHY2:
804         case BGE_APE_LOCK_PHY3:
805                 /* Lock required when accessing PHYs. */
806                 bit = BGE_APE_LOCK_REQ_DRIVER0;
807                 break;
808         default:
809                 return (EINVAL);
810         }
811
812         /* Request a lock. */
813         APE_WRITE_4(sc, req + off, bit);
814
815         /* Wait up to 1 second to acquire lock. */
816         for (i = 0; i < 20000; i++) {
817                 status = APE_READ_4(sc, gnt + off);
818                 if (status == bit)
819                         break;
820                 DELAY(50);
821         }
822
823         /* Handle any errors. */
824         if (status != bit) {
825                 device_printf(sc->bge_dev, "APE lock %d request failed! "
826                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
827                     locknum, req + off, bit & 0xFFFF, gnt + off,
828                     status & 0xFFFF);
829                 /* Revoke the lock request. */
830                 APE_WRITE_4(sc, gnt + off, bit);
831                 return (EBUSY);
832         }
833
834         return (0);
835 }
836
837 static void
838 bge_ape_unlock(struct bge_softc *sc, int locknum)
839 {
840         uint32_t bit, gnt;
841         int off;
842
843         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
844                 return;
845
846         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
847                 gnt = BGE_APE_LOCK_GRANT;
848         else
849                 gnt = BGE_APE_PER_LOCK_GRANT;
850
851         off = 4 * locknum;
852
853         switch (locknum) {
854         case BGE_APE_LOCK_GPIO:
855                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
856                         return;
857                 if (sc->bge_func_addr == 0)
858                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
859                 else
860                         bit = (1 << sc->bge_func_addr);
861                 break;
862         case BGE_APE_LOCK_GRC:
863                 if (sc->bge_func_addr == 0)
864                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
865                 else
866                         bit = (1 << sc->bge_func_addr);
867                 break;
868         case BGE_APE_LOCK_MEM:
869                 if (sc->bge_func_addr == 0)
870                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
871                 else
872                         bit = (1 << sc->bge_func_addr);
873                 break;
874         case BGE_APE_LOCK_PHY0:
875         case BGE_APE_LOCK_PHY1:
876         case BGE_APE_LOCK_PHY2:
877         case BGE_APE_LOCK_PHY3:
878                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
879                 break;
880         default:
881                 return;
882         }
883
884         APE_WRITE_4(sc, gnt + off, bit);
885 }
886
887 /*
888  * Send an event to the APE firmware.
889  */
890 static void
891 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
892 {
893         uint32_t apedata;
894         int i;
895
896         /* NCSI does not support APE events. */
897         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
898                 return;
899
900         /* Wait up to 1ms for APE to service previous event. */
901         for (i = 10; i > 0; i--) {
902                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
903                         break;
904                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
905                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
906                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
907                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
908                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
909                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
910                         break;
911                 }
912                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
913                 DELAY(100);
914         }
915         if (i == 0)
916                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
917                     event);
918 }
919
920 static void
921 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
922 {
923         uint32_t apedata, event;
924
925         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
926                 return;
927
928         switch (kind) {
929         case BGE_RESET_START:
930                 /* If this is the first load, clear the load counter. */
931                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
932                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
933                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
934                 else {
935                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
936                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
937                 }
938                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
939                     BGE_APE_HOST_SEG_SIG_MAGIC);
940                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
941                     BGE_APE_HOST_SEG_LEN_MAGIC);
942
943                 /* Add some version info if bge(4) supports it. */
944                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
945                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
946                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
947                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
948                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
949                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
950                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
951                     BGE_APE_HOST_DRVR_STATE_START);
952                 event = BGE_APE_EVENT_STATUS_STATE_START;
953                 break;
954         case BGE_RESET_SHUTDOWN:
955                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
956                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
957                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
958                 break;
959         case BGE_RESET_SUSPEND:
960                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
961                 break;
962         default:
963                 return;
964         }
965
966         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
967             BGE_APE_EVENT_STATUS_STATE_CHNGE);
968 }
969
970 /*
971  * Map a single buffer address.
972  */
973
974 static void
975 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
976 {
977         struct bge_dmamap_arg *ctx;
978
979         if (error)
980                 return;
981
982         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
983
984         ctx = arg;
985         ctx->bge_busaddr = segs->ds_addr;
986 }
987
988 static uint8_t
989 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
990 {
991         uint32_t access, byte = 0;
992         int i;
993
994         /* Lock. */
995         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
996         for (i = 0; i < 8000; i++) {
997                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
998                         break;
999                 DELAY(20);
1000         }
1001         if (i == 8000)
1002                 return (1);
1003
1004         /* Enable access. */
1005         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1006         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1007
1008         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1009         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1010         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1011                 DELAY(10);
1012                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1013                         DELAY(10);
1014                         break;
1015                 }
1016         }
1017
1018         if (i == BGE_TIMEOUT * 10) {
1019                 if_printf(sc->bge_ifp, "nvram read timed out\n");
1020                 return (1);
1021         }
1022
1023         /* Get result. */
1024         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1025
1026         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1027
1028         /* Disable access. */
1029         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1030
1031         /* Unlock. */
1032         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1033         CSR_READ_4(sc, BGE_NVRAM_SWARB);
1034
1035         return (0);
1036 }
1037
1038 /*
1039  * Read a sequence of bytes from NVRAM.
1040  */
1041 static int
1042 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1043 {
1044         int err = 0, i;
1045         uint8_t byte = 0;
1046
1047         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1048                 return (1);
1049
1050         for (i = 0; i < cnt; i++) {
1051                 err = bge_nvram_getbyte(sc, off + i, &byte);
1052                 if (err)
1053                         break;
1054                 *(dest + i) = byte;
1055         }
1056
1057         return (err ? 1 : 0);
1058 }
1059
1060 /*
1061  * Read a byte of data stored in the EEPROM at address 'addr.' The
1062  * BCM570x supports both the traditional bitbang interface and an
1063  * auto access interface for reading the EEPROM. We use the auto
1064  * access method.
1065  */
1066 static uint8_t
1067 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1068 {
1069         int i;
1070         uint32_t byte = 0;
1071
1072         /*
1073          * Enable use of auto EEPROM access so we can avoid
1074          * having to use the bitbang method.
1075          */
1076         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1077
1078         /* Reset the EEPROM, load the clock period. */
1079         CSR_WRITE_4(sc, BGE_EE_ADDR,
1080             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1081         DELAY(20);
1082
1083         /* Issue the read EEPROM command. */
1084         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1085
1086         /* Wait for completion */
1087         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1088                 DELAY(10);
1089                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1090                         break;
1091         }
1092
1093         if (i == BGE_TIMEOUT * 10) {
1094                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
1095                 return (1);
1096         }
1097
1098         /* Get result. */
1099         byte = CSR_READ_4(sc, BGE_EE_DATA);
1100
1101         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1102
1103         return (0);
1104 }
1105
1106 /*
1107  * Read a sequence of bytes from the EEPROM.
1108  */
1109 static int
1110 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1111 {
1112         int i, error = 0;
1113         uint8_t byte = 0;
1114
1115         for (i = 0; i < cnt; i++) {
1116                 error = bge_eeprom_getbyte(sc, off + i, &byte);
1117                 if (error)
1118                         break;
1119                 *(dest + i) = byte;
1120         }
1121
1122         return (error ? 1 : 0);
1123 }
1124
1125 static int
1126 bge_miibus_readreg(device_t dev, int phy, int reg)
1127 {
1128         struct bge_softc *sc;
1129         uint32_t val;
1130         int i;
1131
1132         sc = device_get_softc(dev);
1133
1134         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1135                 return (0);
1136
1137         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1138         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1139                 CSR_WRITE_4(sc, BGE_MI_MODE,
1140                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1141                 DELAY(80);
1142         }
1143
1144         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1145             BGE_MIPHY(phy) | BGE_MIREG(reg));
1146
1147         /* Poll for the PHY register access to complete. */
1148         for (i = 0; i < BGE_TIMEOUT; i++) {
1149                 DELAY(10);
1150                 val = CSR_READ_4(sc, BGE_MI_COMM);
1151                 if ((val & BGE_MICOMM_BUSY) == 0) {
1152                         DELAY(5);
1153                         val = CSR_READ_4(sc, BGE_MI_COMM);
1154                         break;
1155                 }
1156         }
1157
1158         if (i == BGE_TIMEOUT) {
1159                 device_printf(sc->bge_dev,
1160                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1161                     phy, reg, val);
1162                 val = 0;
1163         }
1164
1165         /* Restore the autopoll bit if necessary. */
1166         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1167                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1168                 DELAY(80);
1169         }
1170
1171         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1172
1173         if (val & BGE_MICOMM_READFAIL)
1174                 return (0);
1175
1176         return (val & 0xFFFF);
1177 }
1178
1179 static int
1180 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1181 {
1182         struct bge_softc *sc;
1183         int i;
1184
1185         sc = device_get_softc(dev);
1186
1187         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1188             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1189                 return (0);
1190
1191         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1192                 return (0);
1193
1194         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1195         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1196                 CSR_WRITE_4(sc, BGE_MI_MODE,
1197                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1198                 DELAY(80);
1199         }
1200
1201         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1202             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1203
1204         for (i = 0; i < BGE_TIMEOUT; i++) {
1205                 DELAY(10);
1206                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1207                         DELAY(5);
1208                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1209                         break;
1210                 }
1211         }
1212
1213         /* Restore the autopoll bit if necessary. */
1214         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1215                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1216                 DELAY(80);
1217         }
1218
1219         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1220
1221         if (i == BGE_TIMEOUT)
1222                 device_printf(sc->bge_dev,
1223                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1224                     phy, reg, val);
1225
1226         return (0);
1227 }
1228
1229 static void
1230 bge_miibus_statchg(device_t dev)
1231 {
1232         struct bge_softc *sc;
1233         struct mii_data *mii;
1234         uint32_t mac_mode, rx_mode, tx_mode;
1235
1236         sc = device_get_softc(dev);
1237         if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1238                 return;
1239         mii = device_get_softc(sc->bge_miibus);
1240
1241         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1242             (IFM_ACTIVE | IFM_AVALID)) {
1243                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1244                 case IFM_10_T:
1245                 case IFM_100_TX:
1246                         sc->bge_link = 1;
1247                         break;
1248                 case IFM_1000_T:
1249                 case IFM_1000_SX:
1250                 case IFM_2500_SX:
1251                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1252                                 sc->bge_link = 1;
1253                         else
1254                                 sc->bge_link = 0;
1255                         break;
1256                 default:
1257                         sc->bge_link = 0;
1258                         break;
1259                 }
1260         } else
1261                 sc->bge_link = 0;
1262         if (sc->bge_link == 0)
1263                 return;
1264
1265         /*
1266          * APE firmware touches these registers to keep the MAC
1267          * connected to the outside world.  Try to keep the
1268          * accesses atomic.
1269          */
1270
1271         /* Set the port mode (MII/GMII) to match the link speed. */
1272         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1273             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1274         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1275         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1276
1277         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1278             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1279                 mac_mode |= BGE_PORTMODE_GMII;
1280         else
1281                 mac_mode |= BGE_PORTMODE_MII;
1282
1283         /* Set MAC flow control behavior to match link flow control settings. */
1284         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1285         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1286         if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
1287                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1288                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1289                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1290                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1291         } else
1292                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1293
1294         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1295         DELAY(40);
1296         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1297         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1298 }
1299
1300 /*
1301  * Intialize a standard receive ring descriptor.
1302  */
1303 static int
1304 bge_newbuf_std(struct bge_softc *sc, int i)
1305 {
1306         struct mbuf *m;
1307         struct bge_rx_bd *r;
1308         bus_dma_segment_t segs[1];
1309         bus_dmamap_t map;
1310         int error, nsegs;
1311
1312         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1313             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1314             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1315                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1316                 if (m == NULL)
1317                         return (ENOBUFS);
1318                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1319         } else {
1320                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1321                 if (m == NULL)
1322                         return (ENOBUFS);
1323                 m->m_len = m->m_pkthdr.len = MCLBYTES;
1324         }
1325         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1326                 m_adj(m, ETHER_ALIGN);
1327
1328         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1329             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1330         if (error != 0) {
1331                 m_freem(m);
1332                 return (error);
1333         }
1334         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1335                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1336                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1337                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1338                     sc->bge_cdata.bge_rx_std_dmamap[i]);
1339         }
1340         map = sc->bge_cdata.bge_rx_std_dmamap[i];
1341         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1342         sc->bge_cdata.bge_rx_std_sparemap = map;
1343         sc->bge_cdata.bge_rx_std_chain[i] = m;
1344         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1345         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1346         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1347         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1348         r->bge_flags = BGE_RXBDFLAG_END;
1349         r->bge_len = segs[0].ds_len;
1350         r->bge_idx = i;
1351
1352         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1353             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1354
1355         return (0);
1356 }
1357
1358 /*
1359  * Initialize a jumbo receive ring descriptor. This allocates
1360  * a jumbo buffer from the pool managed internally by the driver.
1361  */
1362 static int
1363 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1364 {
1365         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1366         bus_dmamap_t map;
1367         struct bge_extrx_bd *r;
1368         struct mbuf *m;
1369         int error, nsegs;
1370
1371         MGETHDR(m, M_NOWAIT, MT_DATA);
1372         if (m == NULL)
1373                 return (ENOBUFS);
1374
1375         m_cljget(m, M_NOWAIT, MJUM9BYTES);
1376         if (!(m->m_flags & M_EXT)) {
1377                 m_freem(m);
1378                 return (ENOBUFS);
1379         }
1380         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1381         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1382                 m_adj(m, ETHER_ALIGN);
1383
1384         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1385             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1386         if (error != 0) {
1387                 m_freem(m);
1388                 return (error);
1389         }
1390
1391         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1392                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1393                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1394                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1395                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1396         }
1397         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1398         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1399             sc->bge_cdata.bge_rx_jumbo_sparemap;
1400         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1401         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1402         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1403         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1404         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1405         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1406
1407         /*
1408          * Fill in the extended RX buffer descriptor.
1409          */
1410         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1411         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1412         r->bge_idx = i;
1413         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1414         switch (nsegs) {
1415         case 4:
1416                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1417                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1418                 r->bge_len3 = segs[3].ds_len;
1419                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1420         case 3:
1421                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1422                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1423                 r->bge_len2 = segs[2].ds_len;
1424                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1425         case 2:
1426                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1427                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1428                 r->bge_len1 = segs[1].ds_len;
1429                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1430         case 1:
1431                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1432                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1433                 r->bge_len0 = segs[0].ds_len;
1434                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1435                 break;
1436         default:
1437                 panic("%s: %d segments\n", __func__, nsegs);
1438         }
1439
1440         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1441             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1442
1443         return (0);
1444 }
1445
1446 static int
1447 bge_init_rx_ring_std(struct bge_softc *sc)
1448 {
1449         int error, i;
1450
1451         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1452         sc->bge_std = 0;
1453         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1454                 if ((error = bge_newbuf_std(sc, i)) != 0)
1455                         return (error);
1456                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1457         }
1458
1459         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1460             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1461
1462         sc->bge_std = 0;
1463         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1464
1465         return (0);
1466 }
1467
1468 static void
1469 bge_free_rx_ring_std(struct bge_softc *sc)
1470 {
1471         int i;
1472
1473         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1474                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1475                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1476                             sc->bge_cdata.bge_rx_std_dmamap[i],
1477                             BUS_DMASYNC_POSTREAD);
1478                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1479                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1480                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1481                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1482                 }
1483                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1484                     sizeof(struct bge_rx_bd));
1485         }
1486 }
1487
1488 static int
1489 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1490 {
1491         struct bge_rcb *rcb;
1492         int error, i;
1493
1494         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1495         sc->bge_jumbo = 0;
1496         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1497                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1498                         return (error);
1499                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1500         }
1501
1502         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1503             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1504
1505         sc->bge_jumbo = 0;
1506
1507         /* Enable the jumbo receive producer ring. */
1508         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1509         rcb->bge_maxlen_flags =
1510             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1511         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1512
1513         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1514
1515         return (0);
1516 }
1517
1518 static void
1519 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1520 {
1521         int i;
1522
1523         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1524                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1525                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1526                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1527                             BUS_DMASYNC_POSTREAD);
1528                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1529                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1530                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1531                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1532                 }
1533                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1534                     sizeof(struct bge_extrx_bd));
1535         }
1536 }
1537
1538 static void
1539 bge_free_tx_ring(struct bge_softc *sc)
1540 {
1541         int i;
1542
1543         if (sc->bge_ldata.bge_tx_ring == NULL)
1544                 return;
1545
1546         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1547                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1548                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1549                             sc->bge_cdata.bge_tx_dmamap[i],
1550                             BUS_DMASYNC_POSTWRITE);
1551                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1552                             sc->bge_cdata.bge_tx_dmamap[i]);
1553                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1554                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1555                 }
1556                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1557                     sizeof(struct bge_tx_bd));
1558         }
1559 }
1560
1561 static int
1562 bge_init_tx_ring(struct bge_softc *sc)
1563 {
1564         sc->bge_txcnt = 0;
1565         sc->bge_tx_saved_considx = 0;
1566
1567         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1568         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1569             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1570
1571         /* Initialize transmit producer index for host-memory send ring. */
1572         sc->bge_tx_prodidx = 0;
1573         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1574
1575         /* 5700 b2 errata */
1576         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1577                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1578
1579         /* NIC-memory send ring not used; initialize to zero. */
1580         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1581         /* 5700 b2 errata */
1582         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1583                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1584
1585         return (0);
1586 }
1587
1588 static void
1589 bge_setpromisc(struct bge_softc *sc)
1590 {
1591         struct ifnet *ifp;
1592
1593         BGE_LOCK_ASSERT(sc);
1594
1595         ifp = sc->bge_ifp;
1596
1597         /* Enable or disable promiscuous mode as needed. */
1598         if (ifp->if_flags & IFF_PROMISC)
1599                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1600         else
1601                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1602 }
1603
1604 static void
1605 bge_setmulti(struct bge_softc *sc)
1606 {
1607         struct ifnet *ifp;
1608         struct ifmultiaddr *ifma;
1609         uint32_t hashes[4] = { 0, 0, 0, 0 };
1610         int h, i;
1611
1612         BGE_LOCK_ASSERT(sc);
1613
1614         ifp = sc->bge_ifp;
1615
1616         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1617                 for (i = 0; i < 4; i++)
1618                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1619                 return;
1620         }
1621
1622         /* First, zot all the existing filters. */
1623         for (i = 0; i < 4; i++)
1624                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1625
1626         /* Now program new ones. */
1627         if_maddr_rlock(ifp);
1628         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1629                 if (ifma->ifma_addr->sa_family != AF_LINK)
1630                         continue;
1631                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1632                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1633                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1634         }
1635         if_maddr_runlock(ifp);
1636
1637         for (i = 0; i < 4; i++)
1638                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1639 }
1640
1641 static void
1642 bge_setvlan(struct bge_softc *sc)
1643 {
1644         struct ifnet *ifp;
1645
1646         BGE_LOCK_ASSERT(sc);
1647
1648         ifp = sc->bge_ifp;
1649
1650         /* Enable or disable VLAN tag stripping as needed. */
1651         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1652                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1653         else
1654                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1655 }
1656
1657 static void
1658 bge_sig_pre_reset(struct bge_softc *sc, int type)
1659 {
1660
1661         /*
1662          * Some chips don't like this so only do this if ASF is enabled
1663          */
1664         if (sc->bge_asf_mode)
1665                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1666
1667         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1668                 switch (type) {
1669                 case BGE_RESET_START:
1670                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1671                             BGE_FW_DRV_STATE_START);
1672                         break;
1673                 case BGE_RESET_SHUTDOWN:
1674                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1675                             BGE_FW_DRV_STATE_UNLOAD);
1676                         break;
1677                 case BGE_RESET_SUSPEND:
1678                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1679                             BGE_FW_DRV_STATE_SUSPEND);
1680                         break;
1681                 }
1682         }
1683
1684         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1685                 bge_ape_driver_state_change(sc, type);
1686 }
1687
1688 static void
1689 bge_sig_post_reset(struct bge_softc *sc, int type)
1690 {
1691
1692         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1693                 switch (type) {
1694                 case BGE_RESET_START:
1695                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1696                             BGE_FW_DRV_STATE_START_DONE);
1697                         /* START DONE */
1698                         break;
1699                 case BGE_RESET_SHUTDOWN:
1700                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1701                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1702                         break;
1703                 }
1704         }
1705         if (type == BGE_RESET_SHUTDOWN)
1706                 bge_ape_driver_state_change(sc, type);
1707 }
1708
1709 static void
1710 bge_sig_legacy(struct bge_softc *sc, int type)
1711 {
1712
1713         if (sc->bge_asf_mode) {
1714                 switch (type) {
1715                 case BGE_RESET_START:
1716                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1717                             BGE_FW_DRV_STATE_START);
1718                         break;
1719                 case BGE_RESET_SHUTDOWN:
1720                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1721                             BGE_FW_DRV_STATE_UNLOAD);
1722                         break;
1723                 }
1724         }
1725 }
1726
1727 static void
1728 bge_stop_fw(struct bge_softc *sc)
1729 {
1730         int i;
1731
1732         if (sc->bge_asf_mode) {
1733                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1734                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1735                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1736
1737                 for (i = 0; i < 100; i++ ) {
1738                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1739                             BGE_RX_CPU_DRV_EVENT))
1740                                 break;
1741                         DELAY(10);
1742                 }
1743         }
1744 }
1745
1746 static uint32_t
1747 bge_dma_swap_options(struct bge_softc *sc)
1748 {
1749         uint32_t dma_options;
1750
1751         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1752             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1753 #if BYTE_ORDER == BIG_ENDIAN
1754         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1755 #endif
1756         return (dma_options);
1757 }
1758
1759 /*
1760  * Do endian, PCI and DMA initialization.
1761  */
1762 static int
1763 bge_chipinit(struct bge_softc *sc)
1764 {
1765         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1766         uint16_t val;
1767         int i;
1768
1769         /* Set endianness before we access any non-PCI registers. */
1770         misc_ctl = BGE_INIT;
1771         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1772                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1773         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1774
1775         /*
1776          * Clear the MAC statistics block in the NIC's
1777          * internal memory.
1778          */
1779         for (i = BGE_STATS_BLOCK;
1780             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1781                 BGE_MEMWIN_WRITE(sc, i, 0);
1782
1783         for (i = BGE_STATUS_BLOCK;
1784             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1785                 BGE_MEMWIN_WRITE(sc, i, 0);
1786
1787         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1788                 /*
1789                  *  Fix data corruption caused by non-qword write with WB.
1790                  *  Fix master abort in PCI mode.
1791                  *  Fix PCI latency timer.
1792                  */
1793                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1794                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1795                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1796         }
1797
1798         /*
1799          * Set up the PCI DMA control register.
1800          */
1801         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1802             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1803         if (sc->bge_flags & BGE_FLAG_PCIE) {
1804                 if (sc->bge_mps >= 256)
1805                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1806                 else
1807                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1808         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1809                 if (BGE_IS_5714_FAMILY(sc)) {
1810                         /* 256 bytes for read and write. */
1811                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1812                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1813                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1814                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1815                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1816                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1817                         /*
1818                          * In the BCM5703, the DMA read watermark should
1819                          * be set to less than or equal to the maximum
1820                          * memory read byte count of the PCI-X command
1821                          * register.
1822                          */
1823                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1824                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1825                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1826                         /* 1536 bytes for read, 384 bytes for write. */
1827                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1828                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1829                 } else {
1830                         /* 384 bytes for read and write. */
1831                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1832                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1833                             0x0F;
1834                 }
1835                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1836                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1837                         uint32_t tmp;
1838
1839                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1840                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1841                         if (tmp == 6 || tmp == 7)
1842                                 dma_rw_ctl |=
1843                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1844
1845                         /* Set PCI-X DMA write workaround. */
1846                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1847                 }
1848         } else {
1849                 /* Conventional PCI bus: 256 bytes for read and write. */
1850                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1851                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1852
1853                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1854                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1855                         dma_rw_ctl |= 0x0F;
1856         }
1857         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1858             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1859                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1860                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1861         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1862             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1863                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1864         if (BGE_IS_5717_PLUS(sc)) {
1865                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1866                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1867                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1868                 /*
1869                  * Enable HW workaround for controllers that misinterpret
1870                  * a status tag update and leave interrupts permanently
1871                  * disabled.
1872                  */
1873                 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1874                     sc->bge_asicrev != BGE_ASICREV_BCM57765)
1875                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1876         }
1877         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1878
1879         /*
1880          * Set up general mode register.
1881          */
1882         mode_ctl = bge_dma_swap_options(sc);
1883         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1884                 /* Retain Host-2-BMC settings written by APE firmware. */
1885                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1886                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1887                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1888                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1889         }
1890         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1891             BGE_MODECTL_TX_NO_PHDR_CSUM;
1892
1893         /*
1894          * BCM5701 B5 have a bug causing data corruption when using
1895          * 64-bit DMA reads, which can be terminated early and then
1896          * completed later as 32-bit accesses, in combination with
1897          * certain bridges.
1898          */
1899         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1900             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1901                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1902
1903         /*
1904          * Tell the firmware the driver is running
1905          */
1906         if (sc->bge_asf_mode & ASF_STACKUP)
1907                 mode_ctl |= BGE_MODECTL_STACKUP;
1908
1909         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1910
1911         /*
1912          * Disable memory write invalidate.  Apparently it is not supported
1913          * properly by these devices.  Also ensure that INTx isn't disabled,
1914          * as these chips need it even when using MSI.
1915          */
1916         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1917             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1918
1919         /* Set the timer prescaler (always 66Mhz) */
1920         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1921
1922         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1923         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1924                 DELAY(40);      /* XXX */
1925
1926                 /* Put PHY into ready state */
1927                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1928                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1929                 DELAY(40);
1930         }
1931
1932         return (0);
1933 }
1934
1935 static int
1936 bge_blockinit(struct bge_softc *sc)
1937 {
1938         struct bge_rcb *rcb;
1939         bus_size_t vrcb;
1940         bge_hostaddr taddr;
1941         uint32_t dmactl, val;
1942         int i, limit;
1943
1944         /*
1945          * Initialize the memory window pointer register so that
1946          * we can access the first 32K of internal NIC RAM. This will
1947          * allow us to set up the TX send ring RCBs and the RX return
1948          * ring RCBs, plus other things which live in NIC memory.
1949          */
1950         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1951
1952         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1953
1954         if (!(BGE_IS_5705_PLUS(sc))) {
1955                 /* Configure mbuf memory pool */
1956                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1957                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1958                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1959                 else
1960                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1961
1962                 /* Configure DMA resource pool */
1963                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1964                     BGE_DMA_DESCRIPTORS);
1965                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1966         }
1967
1968         /* Configure mbuf pool watermarks */
1969         if (BGE_IS_5717_PLUS(sc)) {
1970                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1971                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
1972                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1973                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1974                 } else {
1975                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1976                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1977                 }
1978         } else if (!BGE_IS_5705_PLUS(sc)) {
1979                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1980                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1981                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1982         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1983                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1984                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1985                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1986         } else {
1987                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1988                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1989                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1990         }
1991
1992         /* Configure DMA resource watermarks */
1993         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1994         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1995
1996         /* Enable buffer manager */
1997         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1998         /*
1999          * Change the arbitration algorithm of TXMBUF read request to
2000          * round-robin instead of priority based for BCM5719.  When
2001          * TXFIFO is almost empty, RDMA will hold its request until
2002          * TXFIFO is not almost empty.
2003          */
2004         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2005                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2006         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2007
2008         /* Poll for buffer manager start indication */
2009         for (i = 0; i < BGE_TIMEOUT; i++) {
2010                 DELAY(10);
2011                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2012                         break;
2013         }
2014
2015         if (i == BGE_TIMEOUT) {
2016                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
2017                 return (ENXIO);
2018         }
2019
2020         /* Enable flow-through queues */
2021         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2022         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2023
2024         /* Wait until queue initialization is complete */
2025         for (i = 0; i < BGE_TIMEOUT; i++) {
2026                 DELAY(10);
2027                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2028                         break;
2029         }
2030
2031         if (i == BGE_TIMEOUT) {
2032                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
2033                 return (ENXIO);
2034         }
2035
2036         /*
2037          * Summary of rings supported by the controller:
2038          *
2039          * Standard Receive Producer Ring
2040          * - This ring is used to feed receive buffers for "standard"
2041          *   sized frames (typically 1536 bytes) to the controller.
2042          *
2043          * Jumbo Receive Producer Ring
2044          * - This ring is used to feed receive buffers for jumbo sized
2045          *   frames (i.e. anything bigger than the "standard" frames)
2046          *   to the controller.
2047          *
2048          * Mini Receive Producer Ring
2049          * - This ring is used to feed receive buffers for "mini"
2050          *   sized frames to the controller.
2051          * - This feature required external memory for the controller
2052          *   but was never used in a production system.  Should always
2053          *   be disabled.
2054          *
2055          * Receive Return Ring
2056          * - After the controller has placed an incoming frame into a
2057          *   receive buffer that buffer is moved into a receive return
2058          *   ring.  The driver is then responsible to passing the
2059          *   buffer up to the stack.  Many versions of the controller
2060          *   support multiple RR rings.
2061          *
2062          * Send Ring
2063          * - This ring is used for outgoing frames.  Many versions of
2064          *   the controller support multiple send rings.
2065          */
2066
2067         /* Initialize the standard receive producer ring control block. */
2068         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2069         rcb->bge_hostaddr.bge_addr_lo =
2070             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2071         rcb->bge_hostaddr.bge_addr_hi =
2072             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2073         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2074             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2075         if (BGE_IS_5717_PLUS(sc)) {
2076                 /*
2077                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2078                  * Bits 15-2 : Maximum RX frame size
2079                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2080                  * Bit 0     : Reserved
2081                  */
2082                 rcb->bge_maxlen_flags =
2083                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2084         } else if (BGE_IS_5705_PLUS(sc)) {
2085                 /*
2086                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2087                  * Bits 15-2 : Reserved (should be 0)
2088                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2089                  * Bit 0     : Reserved
2090                  */
2091                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2092         } else {
2093                 /*
2094                  * Ring size is always XXX entries
2095                  * Bits 31-16: Maximum RX frame size
2096                  * Bits 15-2 : Reserved (should be 0)
2097                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2098                  * Bit 0     : Reserved
2099                  */
2100                 rcb->bge_maxlen_flags =
2101                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2102         }
2103         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2104             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2105             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2106                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2107         else
2108                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2109         /* Write the standard receive producer ring control block. */
2110         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2111         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2112         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2113         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2114
2115         /* Reset the standard receive producer ring producer index. */
2116         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2117
2118         /*
2119          * Initialize the jumbo RX producer ring control
2120          * block.  We set the 'ring disabled' bit in the
2121          * flags field until we're actually ready to start
2122          * using this ring (i.e. once we set the MTU
2123          * high enough to require it).
2124          */
2125         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2126                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2127                 /* Get the jumbo receive producer ring RCB parameters. */
2128                 rcb->bge_hostaddr.bge_addr_lo =
2129                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2130                 rcb->bge_hostaddr.bge_addr_hi =
2131                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2132                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2133                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2134                     BUS_DMASYNC_PREREAD);
2135                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2136                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2137                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2138                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2139                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
2140                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2141                 else
2142                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2143                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2144                     rcb->bge_hostaddr.bge_addr_hi);
2145                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2146                     rcb->bge_hostaddr.bge_addr_lo);
2147                 /* Program the jumbo receive producer ring RCB parameters. */
2148                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2149                     rcb->bge_maxlen_flags);
2150                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2151                 /* Reset the jumbo receive producer ring producer index. */
2152                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2153         }
2154
2155         /* Disable the mini receive producer ring RCB. */
2156         if (BGE_IS_5700_FAMILY(sc)) {
2157                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2158                 rcb->bge_maxlen_flags =
2159                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2160                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2161                     rcb->bge_maxlen_flags);
2162                 /* Reset the mini receive producer ring producer index. */
2163                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2164         }
2165
2166         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2167         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2168                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2169                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2170                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2171                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2172                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2173         }
2174         /*
2175          * The BD ring replenish thresholds control how often the
2176          * hardware fetches new BD's from the producer rings in host
2177          * memory.  Setting the value too low on a busy system can
2178          * starve the hardware and recue the throughpout.
2179          *
2180          * Set the BD ring replentish thresholds. The recommended
2181          * values are 1/8th the number of descriptors allocated to
2182          * each ring.
2183          * XXX The 5754 requires a lower threshold, so it might be a
2184          * requirement of all 575x family chips.  The Linux driver sets
2185          * the lower threshold for all 5705 family chips as well, but there
2186          * are reports that it might not need to be so strict.
2187          *
2188          * XXX Linux does some extra fiddling here for the 5906 parts as
2189          * well.
2190          */
2191         if (BGE_IS_5705_PLUS(sc))
2192                 val = 8;
2193         else
2194                 val = BGE_STD_RX_RING_CNT / 8;
2195         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2196         if (BGE_IS_JUMBO_CAPABLE(sc))
2197                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2198                     BGE_JUMBO_RX_RING_CNT/8);
2199         if (BGE_IS_5717_PLUS(sc)) {
2200                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2201                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2202         }
2203
2204         /*
2205          * Disable all send rings by setting the 'ring disabled' bit
2206          * in the flags field of all the TX send ring control blocks,
2207          * located in NIC memory.
2208          */
2209         if (!BGE_IS_5705_PLUS(sc))
2210                 /* 5700 to 5704 had 16 send rings. */
2211                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2212         else
2213                 limit = 1;
2214         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2215         for (i = 0; i < limit; i++) {
2216                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2217                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2218                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2219                 vrcb += sizeof(struct bge_rcb);
2220         }
2221
2222         /* Configure send ring RCB 0 (we use only the first ring) */
2223         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2224         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2225         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2226         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2227         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2228             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2229             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2230                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2231         else
2232                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2233                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2234         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2235             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2236
2237         /*
2238          * Disable all receive return rings by setting the
2239          * 'ring diabled' bit in the flags field of all the receive
2240          * return ring control blocks, located in NIC memory.
2241          */
2242         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2243             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2244             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2245                 /* Should be 17, use 16 until we get an SRAM map. */
2246                 limit = 16;
2247         } else if (!BGE_IS_5705_PLUS(sc))
2248                 limit = BGE_RX_RINGS_MAX;
2249         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2250             BGE_IS_57765_PLUS(sc))
2251                 limit = 4;
2252         else
2253                 limit = 1;
2254         /* Disable all receive return rings. */
2255         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2256         for (i = 0; i < limit; i++) {
2257                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2258                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2259                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2260                     BGE_RCB_FLAG_RING_DISABLED);
2261                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2262                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2263                     (i * (sizeof(uint64_t))), 0);
2264                 vrcb += sizeof(struct bge_rcb);
2265         }
2266
2267         /*
2268          * Set up receive return ring 0.  Note that the NIC address
2269          * for RX return rings is 0x0.  The return rings live entirely
2270          * within the host, so the nicaddr field in the RCB isn't used.
2271          */
2272         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2273         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2274         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2275         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2276         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2277         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2278             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2279
2280         /* Set random backoff seed for TX */
2281         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2282             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2283             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2284             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
2285             BGE_TX_BACKOFF_SEED_MASK);
2286
2287         /* Set inter-packet gap */
2288         val = 0x2620;
2289         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
2290                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2291                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2292         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2293
2294         /*
2295          * Specify which ring to use for packets that don't match
2296          * any RX rules.
2297          */
2298         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2299
2300         /*
2301          * Configure number of RX lists. One interrupt distribution
2302          * list, sixteen active lists, one bad frames class.
2303          */
2304         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2305
2306         /* Inialize RX list placement stats mask. */
2307         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2308         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2309
2310         /* Disable host coalescing until we get it set up */
2311         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2312
2313         /* Poll to make sure it's shut down. */
2314         for (i = 0; i < BGE_TIMEOUT; i++) {
2315                 DELAY(10);
2316                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2317                         break;
2318         }
2319
2320         if (i == BGE_TIMEOUT) {
2321                 device_printf(sc->bge_dev,
2322                     "host coalescing engine failed to idle\n");
2323                 return (ENXIO);
2324         }
2325
2326         /* Set up host coalescing defaults */
2327         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2328         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2329         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2330         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2331         if (!(BGE_IS_5705_PLUS(sc))) {
2332                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2333                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2334         }
2335         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2336         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2337
2338         /* Set up address of statistics block */
2339         if (!(BGE_IS_5705_PLUS(sc))) {
2340                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2341                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2342                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2343                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2344                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2345                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2346                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2347         }
2348
2349         /* Set up address of status block */
2350         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2351             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2352         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2353             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2354
2355         /* Set up status block size. */
2356         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2357             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2358                 val = BGE_STATBLKSZ_FULL;
2359                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2360         } else {
2361                 val = BGE_STATBLKSZ_32BYTE;
2362                 bzero(sc->bge_ldata.bge_status_block, 32);
2363         }
2364         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2365             sc->bge_cdata.bge_status_map,
2366             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2367
2368         /* Turn on host coalescing state machine */
2369         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2370
2371         /* Turn on RX BD completion state machine and enable attentions */
2372         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2373             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2374
2375         /* Turn on RX list placement state machine */
2376         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2377
2378         /* Turn on RX list selector state machine. */
2379         if (!(BGE_IS_5705_PLUS(sc)))
2380                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2381
2382         /* Turn on DMA, clear stats. */
2383         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2384             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2385             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2386             BGE_MACMODE_FRMHDR_DMA_ENB;
2387
2388         if (sc->bge_flags & BGE_FLAG_TBI)
2389                 val |= BGE_PORTMODE_TBI;
2390         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2391                 val |= BGE_PORTMODE_GMII;
2392         else
2393                 val |= BGE_PORTMODE_MII;
2394
2395         /* Allow APE to send/receive frames. */
2396         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2397                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2398
2399         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2400         DELAY(40);
2401
2402         /* Set misc. local control, enable interrupts on attentions */
2403         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2404
2405 #ifdef notdef
2406         /* Assert GPIO pins for PHY reset */
2407         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2408             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2409         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2410             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2411 #endif
2412
2413         /* Turn on DMA completion state machine */
2414         if (!(BGE_IS_5705_PLUS(sc)))
2415                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2416
2417         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2418
2419         /* Enable host coalescing bug fix. */
2420         if (BGE_IS_5755_PLUS(sc))
2421                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2422
2423         /* Request larger DMA burst size to get better performance. */
2424         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2425                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2426
2427         /* Turn on write DMA state machine */
2428         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2429         DELAY(40);
2430
2431         /* Turn on read DMA state machine */
2432         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2433
2434         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2435                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2436
2437         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2438             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2439             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2440                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2441                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2442                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2443         if (sc->bge_flags & BGE_FLAG_PCIE)
2444                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2445         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2446                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2447                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2448                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2449                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2450                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2451         }
2452
2453         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2454                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2455                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2456                 /*
2457                  * Allow multiple outstanding read requests from
2458                  * non-LSO read DMA engine.
2459                  */
2460                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2461         }
2462
2463         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2464             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2465             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2466             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2467             BGE_IS_5717_PLUS(sc)) {
2468                 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2469                 /*
2470                  * Adjust tx margin to prevent TX data corruption and
2471                  * fix internal FIFO overflow.
2472                  */
2473                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2474                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2475                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2476                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2477                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2478                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2479                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2480                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2481                 }
2482                 /*
2483                  * Enable fix for read DMA FIFO overruns.
2484                  * The fix is to limit the number of RX BDs
2485                  * the hardware would fetch at a fime.
2486                  */
2487                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2488                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2489         }
2490
2491         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2492                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2493                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2494                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2495                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2496         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2497                 /*
2498                  * Allow 4KB burst length reads for non-LSO frames.
2499                  * Enable 512B burst length reads for buffer descriptors.
2500                  */
2501                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2502                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2503                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2504                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2505         }
2506
2507         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2508         DELAY(40);
2509
2510         /* Turn on RX data completion state machine */
2511         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2512
2513         /* Turn on RX BD initiator state machine */
2514         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2515
2516         /* Turn on RX data and RX BD initiator state machine */
2517         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2518
2519         /* Turn on Mbuf cluster free state machine */
2520         if (!(BGE_IS_5705_PLUS(sc)))
2521                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2522
2523         /* Turn on send BD completion state machine */
2524         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2525
2526         /* Turn on send data completion state machine */
2527         val = BGE_SDCMODE_ENABLE;
2528         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2529                 val |= BGE_SDCMODE_CDELAY;
2530         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2531
2532         /* Turn on send data initiator state machine */
2533         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2534                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2535                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2536         else
2537                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2538
2539         /* Turn on send BD initiator state machine */
2540         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2541
2542         /* Turn on send BD selector state machine */
2543         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2544
2545         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2546         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2547             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2548
2549         /* ack/clear link change events */
2550         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2551             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2552             BGE_MACSTAT_LINK_CHANGED);
2553         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2554
2555         /*
2556          * Enable attention when the link has changed state for
2557          * devices that use auto polling.
2558          */
2559         if (sc->bge_flags & BGE_FLAG_TBI) {
2560                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2561         } else {
2562                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2563                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2564                         DELAY(80);
2565                 }
2566                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2567                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2568                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2569                             BGE_EVTENB_MI_INTERRUPT);
2570         }
2571
2572         /*
2573          * Clear any pending link state attention.
2574          * Otherwise some link state change events may be lost until attention
2575          * is cleared by bge_intr() -> bge_link_upd() sequence.
2576          * It's not necessary on newer BCM chips - perhaps enabling link
2577          * state change attentions implies clearing pending attention.
2578          */
2579         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2580             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2581             BGE_MACSTAT_LINK_CHANGED);
2582
2583         /* Enable link state change attentions. */
2584         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2585
2586         return (0);
2587 }
2588
2589 const struct bge_revision *
2590 bge_lookup_rev(uint32_t chipid)
2591 {
2592         const struct bge_revision *br;
2593
2594         for (br = bge_revisions; br->br_name != NULL; br++) {
2595                 if (br->br_chipid == chipid)
2596                         return (br);
2597         }
2598
2599         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2600                 if (br->br_chipid == BGE_ASICREV(chipid))
2601                         return (br);
2602         }
2603
2604         return (NULL);
2605 }
2606
2607 const struct bge_vendor *
2608 bge_lookup_vendor(uint16_t vid)
2609 {
2610         const struct bge_vendor *v;
2611
2612         for (v = bge_vendors; v->v_name != NULL; v++)
2613                 if (v->v_id == vid)
2614                         return (v);
2615
2616         panic("%s: unknown vendor %d", __func__, vid);
2617         return (NULL);
2618 }
2619
2620 /*
2621  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2622  * against our list and return its name if we find a match.
2623  *
2624  * Note that since the Broadcom controller contains VPD support, we
2625  * try to get the device name string from the controller itself instead
2626  * of the compiled-in string. It guarantees we'll always announce the
2627  * right product name. We fall back to the compiled-in string when
2628  * VPD is unavailable or corrupt.
2629  */
2630 static int
2631 bge_probe(device_t dev)
2632 {
2633         char buf[96];
2634         char model[64];
2635         const struct bge_revision *br;
2636         const char *pname;
2637         struct bge_softc *sc = device_get_softc(dev);
2638         const struct bge_type *t = bge_devs;
2639         const struct bge_vendor *v;
2640         uint32_t id;
2641         uint16_t did, vid;
2642
2643         sc->bge_dev = dev;
2644         vid = pci_get_vendor(dev);
2645         did = pci_get_device(dev);
2646         while(t->bge_vid != 0) {
2647                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2648                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2649                             BGE_PCIMISCCTL_ASICREV_SHIFT;
2650                         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2651                                 /*
2652                                  * Find the ASCI revision.  Different chips
2653                                  * use different registers.
2654                                  */
2655                                 switch (pci_get_device(dev)) {
2656                                 case BCOM_DEVICEID_BCM5717:
2657                                 case BCOM_DEVICEID_BCM5718:
2658                                 case BCOM_DEVICEID_BCM5719:
2659                                 case BCOM_DEVICEID_BCM5720:
2660                                         id = pci_read_config(dev,
2661                                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2662                                         break;
2663                                 case BCOM_DEVICEID_BCM57761:
2664                                 case BCOM_DEVICEID_BCM57762:
2665                                 case BCOM_DEVICEID_BCM57765:
2666                                 case BCOM_DEVICEID_BCM57766:
2667                                 case BCOM_DEVICEID_BCM57781:
2668                                 case BCOM_DEVICEID_BCM57785:
2669                                 case BCOM_DEVICEID_BCM57791:
2670                                 case BCOM_DEVICEID_BCM57795:
2671                                         id = pci_read_config(dev,
2672                                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2673                                         break;
2674                                 default:
2675                                         id = pci_read_config(dev,
2676                                             BGE_PCI_PRODID_ASICREV, 4);
2677                                 }
2678                         }
2679                         br = bge_lookup_rev(id);
2680                         v = bge_lookup_vendor(vid);
2681                         if (bge_has_eaddr(sc) &&
2682                             pci_get_vpd_ident(dev, &pname) == 0)
2683                                 snprintf(model, 64, "%s", pname);
2684                         else
2685                                 snprintf(model, 64, "%s %s", v->v_name,
2686                                     br != NULL ? br->br_name :
2687                                     "NetXtreme Ethernet Controller");
2688                         snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2689                             br != NULL ? "" : "unknown ", id);
2690                         device_set_desc_copy(dev, buf);
2691                         return (0);
2692                 }
2693                 t++;
2694         }
2695
2696         return (ENXIO);
2697 }
2698
2699 static void
2700 bge_dma_free(struct bge_softc *sc)
2701 {
2702         int i;
2703
2704         /* Destroy DMA maps for RX buffers. */
2705         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2706                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2707                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2708                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2709         }
2710         if (sc->bge_cdata.bge_rx_std_sparemap)
2711                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2712                     sc->bge_cdata.bge_rx_std_sparemap);
2713
2714         /* Destroy DMA maps for jumbo RX buffers. */
2715         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2716                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2717                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2718                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2719         }
2720         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2721                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2722                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2723
2724         /* Destroy DMA maps for TX buffers. */
2725         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2726                 if (sc->bge_cdata.bge_tx_dmamap[i])
2727                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2728                             sc->bge_cdata.bge_tx_dmamap[i]);
2729         }
2730
2731         if (sc->bge_cdata.bge_rx_mtag)
2732                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2733         if (sc->bge_cdata.bge_mtag_jumbo)
2734                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2735         if (sc->bge_cdata.bge_tx_mtag)
2736                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2737
2738         /* Destroy standard RX ring. */
2739         if (sc->bge_cdata.bge_rx_std_ring_map)
2740                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2741                     sc->bge_cdata.bge_rx_std_ring_map);
2742         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2743                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2744                     sc->bge_ldata.bge_rx_std_ring,
2745                     sc->bge_cdata.bge_rx_std_ring_map);
2746
2747         if (sc->bge_cdata.bge_rx_std_ring_tag)
2748                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2749
2750         /* Destroy jumbo RX ring. */
2751         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2752                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2753                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2754
2755         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2756             sc->bge_ldata.bge_rx_jumbo_ring)
2757                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2758                     sc->bge_ldata.bge_rx_jumbo_ring,
2759                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2760
2761         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2762                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2763
2764         /* Destroy RX return ring. */
2765         if (sc->bge_cdata.bge_rx_return_ring_map)
2766                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2767                     sc->bge_cdata.bge_rx_return_ring_map);
2768
2769         if (sc->bge_cdata.bge_rx_return_ring_map &&
2770             sc->bge_ldata.bge_rx_return_ring)
2771                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2772                     sc->bge_ldata.bge_rx_return_ring,
2773                     sc->bge_cdata.bge_rx_return_ring_map);
2774
2775         if (sc->bge_cdata.bge_rx_return_ring_tag)
2776                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2777
2778         /* Destroy TX ring. */
2779         if (sc->bge_cdata.bge_tx_ring_map)
2780                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2781                     sc->bge_cdata.bge_tx_ring_map);
2782
2783         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2784                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2785                     sc->bge_ldata.bge_tx_ring,
2786                     sc->bge_cdata.bge_tx_ring_map);
2787
2788         if (sc->bge_cdata.bge_tx_ring_tag)
2789                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2790
2791         /* Destroy status block. */
2792         if (sc->bge_cdata.bge_status_map)
2793                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2794                     sc->bge_cdata.bge_status_map);
2795
2796         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2797                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2798                     sc->bge_ldata.bge_status_block,
2799                     sc->bge_cdata.bge_status_map);
2800
2801         if (sc->bge_cdata.bge_status_tag)
2802                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2803
2804         /* Destroy statistics block. */
2805         if (sc->bge_cdata.bge_stats_map)
2806                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2807                     sc->bge_cdata.bge_stats_map);
2808
2809         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2810                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2811                     sc->bge_ldata.bge_stats,
2812                     sc->bge_cdata.bge_stats_map);
2813
2814         if (sc->bge_cdata.bge_stats_tag)
2815                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2816
2817         if (sc->bge_cdata.bge_buffer_tag)
2818                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2819
2820         /* Destroy the parent tag. */
2821         if (sc->bge_cdata.bge_parent_tag)
2822                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2823 }
2824
2825 static int
2826 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2827     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2828     bus_addr_t *paddr, const char *msg)
2829 {
2830         struct bge_dmamap_arg ctx;
2831         bus_addr_t lowaddr;
2832         bus_size_t ring_end;
2833         int error;
2834
2835         lowaddr = BUS_SPACE_MAXADDR;
2836 again:
2837         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2838             alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2839             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2840         if (error != 0) {
2841                 device_printf(sc->bge_dev,
2842                     "could not create %s dma tag\n", msg);
2843                 return (ENOMEM);
2844         }
2845         /* Allocate DMA'able memory for ring. */
2846         error = bus_dmamem_alloc(*tag, (void **)ring,
2847             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2848         if (error != 0) {
2849                 device_printf(sc->bge_dev,
2850                     "could not allocate DMA'able memory for %s\n", msg);
2851                 return (ENOMEM);
2852         }
2853         /* Load the address of the ring. */
2854         ctx.bge_busaddr = 0;
2855         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2856             &ctx, BUS_DMA_NOWAIT);
2857         if (error != 0) {
2858                 device_printf(sc->bge_dev,
2859                     "could not load DMA'able memory for %s\n", msg);
2860                 return (ENOMEM);
2861         }
2862         *paddr = ctx.bge_busaddr;
2863         ring_end = *paddr + maxsize;
2864         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2865             BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2866                 /*
2867                  * 4GB boundary crossed.  Limit maximum allowable DMA
2868                  * address space to 32bit and try again.
2869                  */
2870                 bus_dmamap_unload(*tag, *map);
2871                 bus_dmamem_free(*tag, *ring, *map);
2872                 bus_dma_tag_destroy(*tag);
2873                 if (bootverbose)
2874                         device_printf(sc->bge_dev, "4GB boundary crossed, "
2875                             "limit DMA address space to 32bit for %s\n", msg);
2876                 *ring = NULL;
2877                 *tag = NULL;
2878                 *map = NULL;
2879                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
2880                 goto again;
2881         }
2882         return (0);
2883 }
2884
2885 static int
2886 bge_dma_alloc(struct bge_softc *sc)
2887 {
2888         bus_addr_t lowaddr;
2889         bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2890         int i, error;
2891
2892         lowaddr = BUS_SPACE_MAXADDR;
2893         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2894                 lowaddr = BGE_DMA_MAXADDR;
2895         /*
2896          * Allocate the parent bus DMA tag appropriate for PCI.
2897          */
2898         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2899             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2900             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2901             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2902         if (error != 0) {
2903                 device_printf(sc->bge_dev,
2904                     "could not allocate parent dma tag\n");
2905                 return (ENOMEM);
2906         }
2907
2908         /* Create tag for standard RX ring. */
2909         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2910             &sc->bge_cdata.bge_rx_std_ring_tag,
2911             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2912             &sc->bge_cdata.bge_rx_std_ring_map,
2913             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2914         if (error)
2915                 return (error);
2916
2917         /* Create tag for RX return ring. */
2918         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2919             &sc->bge_cdata.bge_rx_return_ring_tag,
2920             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2921             &sc->bge_cdata.bge_rx_return_ring_map,
2922             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2923         if (error)
2924                 return (error);
2925
2926         /* Create tag for TX ring. */
2927         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2928             &sc->bge_cdata.bge_tx_ring_tag,
2929             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2930             &sc->bge_cdata.bge_tx_ring_map,
2931             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2932         if (error)
2933                 return (error);
2934
2935         /*
2936          * Create tag for status block.
2937          * Because we only use single Tx/Rx/Rx return ring, use
2938          * minimum status block size except BCM5700 AX/BX which
2939          * seems to want to see full status block size regardless
2940          * of configured number of ring.
2941          */
2942         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2943             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2944                 sbsz = BGE_STATUS_BLK_SZ;
2945         else
2946                 sbsz = 32;
2947         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2948             &sc->bge_cdata.bge_status_tag,
2949             (uint8_t **)&sc->bge_ldata.bge_status_block,
2950             &sc->bge_cdata.bge_status_map,
2951             &sc->bge_ldata.bge_status_block_paddr, "status block");
2952         if (error)
2953                 return (error);
2954
2955         /* Create tag for statistics block. */
2956         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2957             &sc->bge_cdata.bge_stats_tag,
2958             (uint8_t **)&sc->bge_ldata.bge_stats,
2959             &sc->bge_cdata.bge_stats_map,
2960             &sc->bge_ldata.bge_stats_paddr, "statistics block");
2961         if (error)
2962                 return (error);
2963
2964         /* Create tag for jumbo RX ring. */
2965         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2966                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2967                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2968                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2969                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
2970                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2971                 if (error)
2972                         return (error);
2973         }
2974
2975         /* Create parent tag for buffers. */
2976         boundary = 0;
2977         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2978                 boundary = BGE_DMA_BNDRY;
2979                 /*
2980                  * XXX
2981                  * watchdog timeout issue was observed on BCM5704 which
2982                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2983                  * Both limiting DMA address space to 32bits and flushing
2984                  * mailbox write seem to address the issue.
2985                  */
2986                 if (sc->bge_pcixcap != 0)
2987                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
2988         }
2989         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2990             1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
2991             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2992             0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
2993         if (error != 0) {
2994                 device_printf(sc->bge_dev,
2995                     "could not allocate buffer dma tag\n");
2996                 return (ENOMEM);
2997         }
2998         /* Create tag for Tx mbufs. */
2999         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3000                 txsegsz = BGE_TSOSEG_SZ;
3001                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3002         } else {
3003                 txsegsz = MCLBYTES;
3004                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3005         }
3006         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3007             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3008             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3009             &sc->bge_cdata.bge_tx_mtag);
3010
3011         if (error) {
3012                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3013                 return (ENOMEM);
3014         }
3015
3016         /* Create tag for Rx mbufs. */
3017         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3018                 rxmaxsegsz = MJUM9BYTES;
3019         else
3020                 rxmaxsegsz = MCLBYTES;
3021         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3022             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3023             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3024
3025         if (error) {
3026                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3027                 return (ENOMEM);
3028         }
3029
3030         /* Create DMA maps for RX buffers. */
3031         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3032             &sc->bge_cdata.bge_rx_std_sparemap);
3033         if (error) {
3034                 device_printf(sc->bge_dev,
3035                     "can't create spare DMA map for RX\n");
3036                 return (ENOMEM);
3037         }
3038         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3039                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3040                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
3041                 if (error) {
3042                         device_printf(sc->bge_dev,
3043                             "can't create DMA map for RX\n");
3044                         return (ENOMEM);
3045                 }
3046         }
3047
3048         /* Create DMA maps for TX buffers. */
3049         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3050                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3051                             &sc->bge_cdata.bge_tx_dmamap[i]);
3052                 if (error) {
3053                         device_printf(sc->bge_dev,
3054                             "can't create DMA map for TX\n");
3055                         return (ENOMEM);
3056                 }
3057         }
3058
3059         /* Create tags for jumbo RX buffers. */
3060         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3061                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3062                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3063                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3064                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3065                 if (error) {
3066                         device_printf(sc->bge_dev,
3067                             "could not allocate jumbo dma tag\n");
3068                         return (ENOMEM);
3069                 }
3070                 /* Create DMA maps for jumbo RX buffers. */
3071                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3072                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3073                 if (error) {
3074                         device_printf(sc->bge_dev,
3075                             "can't create spare DMA map for jumbo RX\n");
3076                         return (ENOMEM);
3077                 }
3078                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3079                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3080                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3081                         if (error) {
3082                                 device_printf(sc->bge_dev,
3083                                     "can't create DMA map for jumbo RX\n");
3084                                 return (ENOMEM);
3085                         }
3086                 }
3087         }
3088
3089         return (0);
3090 }
3091
3092 /*
3093  * Return true if this device has more than one port.
3094  */
3095 static int
3096 bge_has_multiple_ports(struct bge_softc *sc)
3097 {
3098         device_t dev = sc->bge_dev;
3099         u_int b, d, f, fscan, s;
3100
3101         d = pci_get_domain(dev);
3102         b = pci_get_bus(dev);
3103         s = pci_get_slot(dev);
3104         f = pci_get_function(dev);
3105         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3106                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3107                         return (1);
3108         return (0);
3109 }
3110
3111 /*
3112  * Return true if MSI can be used with this device.
3113  */
3114 static int
3115 bge_can_use_msi(struct bge_softc *sc)
3116 {
3117         int can_use_msi = 0;
3118
3119         if (sc->bge_msi == 0)
3120                 return (0);
3121
3122         /* Disable MSI for polling(4). */
3123 #ifdef DEVICE_POLLING
3124         return (0);
3125 #endif
3126         switch (sc->bge_asicrev) {
3127         case BGE_ASICREV_BCM5714_A0:
3128         case BGE_ASICREV_BCM5714:
3129                 /*
3130                  * Apparently, MSI doesn't work when these chips are
3131                  * configured in single-port mode.
3132                  */
3133                 if (bge_has_multiple_ports(sc))
3134                         can_use_msi = 1;
3135                 break;
3136         case BGE_ASICREV_BCM5750:
3137                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3138                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3139                         can_use_msi = 1;
3140                 break;
3141         default:
3142                 if (BGE_IS_575X_PLUS(sc))
3143                         can_use_msi = 1;
3144         }
3145         return (can_use_msi);
3146 }
3147
3148 static int
3149 bge_mbox_reorder(struct bge_softc *sc)
3150 {
3151         /* Lists of PCI bridges that are known to reorder mailbox writes. */
3152         static const struct mbox_reorder {
3153                 const uint16_t vendor;
3154                 const uint16_t device;
3155                 const char *desc;
3156         } mbox_reorder_lists[] = {
3157                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3158         };
3159         devclass_t pci, pcib;
3160         device_t bus, dev;
3161         int i;
3162
3163         pci = devclass_find("pci");
3164         pcib = devclass_find("pcib");
3165         dev = sc->bge_dev;
3166         bus = device_get_parent(dev);
3167         for (;;) {
3168                 dev = device_get_parent(bus);
3169                 bus = device_get_parent(dev);
3170                 if (device_get_devclass(dev) != pcib)
3171                         break;
3172                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3173                         if (pci_get_vendor(dev) ==
3174                             mbox_reorder_lists[i].vendor &&
3175                             pci_get_device(dev) ==
3176                             mbox_reorder_lists[i].device) {
3177                                 device_printf(sc->bge_dev,
3178                                     "enabling MBOX workaround for %s\n",
3179                                     mbox_reorder_lists[i].desc);
3180                                 return (1);
3181                         }
3182                 }
3183                 if (device_get_devclass(bus) != pci)
3184                         break;
3185         }
3186         return (0);
3187 }
3188
3189 static void
3190 bge_devinfo(struct bge_softc *sc)
3191 {
3192         uint32_t cfg, clk;
3193
3194         device_printf(sc->bge_dev,
3195             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3196             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3197         if (sc->bge_flags & BGE_FLAG_PCIE)
3198                 printf("PCI-E\n");
3199         else if (sc->bge_flags & BGE_FLAG_PCIX) {
3200                 printf("PCI-X ");
3201                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3202                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3203                         clk = 133;
3204                 else {
3205                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3206                         switch (clk) {
3207                         case 0:
3208                                 clk = 33;
3209                                 break;
3210                         case 2:
3211                                 clk = 50;
3212                                 break;
3213                         case 4:
3214                                 clk = 66;
3215                                 break;
3216                         case 6:
3217                                 clk = 100;
3218                                 break;
3219                         case 7:
3220                                 clk = 133;
3221                                 break;
3222                         }
3223                 }
3224                 printf("%u MHz\n", clk);
3225         } else {
3226                 if (sc->bge_pcixcap != 0)
3227                         printf("PCI on PCI-X ");
3228                 else
3229                         printf("PCI ");
3230                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3231                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3232                         clk = 66;
3233                 else
3234                         clk = 33;
3235                 if (cfg & BGE_PCISTATE_32BIT_BUS)
3236                         printf("%u MHz; 32bit\n", clk);
3237                 else
3238                         printf("%u MHz; 64bit\n", clk);
3239         }
3240 }
3241
3242 static int
3243 bge_attach(device_t dev)
3244 {
3245         struct ifnet *ifp;
3246         struct bge_softc *sc;
3247         uint32_t hwcfg = 0, misccfg, pcistate;
3248         u_char eaddr[ETHER_ADDR_LEN];
3249         int capmask, error, msicount, reg, rid, trys;
3250
3251         sc = device_get_softc(dev);
3252         sc->bge_dev = dev;
3253
3254         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3255         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3256         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3257
3258         /*
3259          * Map control/status registers.
3260          */
3261         pci_enable_busmaster(dev);
3262
3263         rid = PCIR_BAR(0);
3264         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3265             RF_ACTIVE);
3266
3267         if (sc->bge_res == NULL) {
3268                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3269                 error = ENXIO;
3270                 goto fail;
3271         }
3272
3273         /* Save various chip information. */
3274         sc->bge_func_addr = pci_get_function(dev);
3275         sc->bge_chipid =
3276             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
3277             BGE_PCIMISCCTL_ASICREV_SHIFT;
3278         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
3279                 /*
3280                  * Find the ASCI revision.  Different chips use different
3281                  * registers.
3282                  */
3283                 switch (pci_get_device(dev)) {
3284                 case BCOM_DEVICEID_BCM5717:
3285                 case BCOM_DEVICEID_BCM5718:
3286                 case BCOM_DEVICEID_BCM5719:
3287                 case BCOM_DEVICEID_BCM5720:
3288                         sc->bge_chipid = pci_read_config(dev,
3289                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
3290                         break;
3291                 case BCOM_DEVICEID_BCM57761:
3292                 case BCOM_DEVICEID_BCM57762:
3293                 case BCOM_DEVICEID_BCM57765:
3294                 case BCOM_DEVICEID_BCM57766:
3295                 case BCOM_DEVICEID_BCM57781:
3296                 case BCOM_DEVICEID_BCM57785:
3297                 case BCOM_DEVICEID_BCM57791:
3298                 case BCOM_DEVICEID_BCM57795:
3299                         sc->bge_chipid = pci_read_config(dev,
3300                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
3301                         break;
3302                 default:
3303                         sc->bge_chipid = pci_read_config(dev,
3304                             BGE_PCI_PRODID_ASICREV, 4);
3305                 }
3306         }
3307         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3308         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3309
3310         /* Set default PHY address. */
3311         sc->bge_phy_addr = 1;
3312          /*
3313           * PHY address mapping for various devices.
3314           *
3315           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3316           * ---------+-------+-------+-------+-------+
3317           * BCM57XX  |   1   |   X   |   X   |   X   |
3318           * BCM5704  |   1   |   X   |   1   |   X   |
3319           * BCM5717  |   1   |   8   |   2   |   9   |
3320           * BCM5719  |   1   |   8   |   2   |   9   |
3321           * BCM5720  |   1   |   8   |   2   |   9   |
3322           *
3323           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3324           * ---------+-------+-------+-------+-------+
3325           * BCM57XX  |   X   |   X   |   X   |   X   |
3326           * BCM5704  |   X   |   X   |   X   |   X   |
3327           * BCM5717  |   X   |   X   |   X   |   X   |
3328           * BCM5719  |   3   |   10  |   4   |   11  |
3329           * BCM5720  |   X   |   X   |   X   |   X   |
3330           *
3331           * Other addresses may respond but they are not
3332           * IEEE compliant PHYs and should be ignored.
3333           */
3334         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3335             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3336             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3337                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3338                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3339                             BGE_SGDIGSTS_IS_SERDES)
3340                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3341                         else
3342                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3343                 } else {
3344                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3345                             BGE_CPMU_PHY_STRAP_IS_SERDES)
3346                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3347                         else
3348                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3349                 }
3350         }
3351
3352         if (bge_has_eaddr(sc))
3353                 sc->bge_flags |= BGE_FLAG_EADDR;
3354
3355         /* Save chipset family. */
3356         switch (sc->bge_asicrev) {
3357         case BGE_ASICREV_BCM57765:
3358         case BGE_ASICREV_BCM57766:
3359                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
3360                 /* FALLTHROUGH */
3361         case BGE_ASICREV_BCM5717:
3362         case BGE_ASICREV_BCM5719:
3363         case BGE_ASICREV_BCM5720:
3364                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3365                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3366                     BGE_FLAG_JUMBO_FRAME;
3367                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3368                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3369                         /* Jumbo frame on BCM5719 A0 does not work. */
3370                         sc->bge_flags &= ~BGE_FLAG_JUMBO;
3371                 }
3372                 break;
3373         case BGE_ASICREV_BCM5755:
3374         case BGE_ASICREV_BCM5761:
3375         case BGE_ASICREV_BCM5784:
3376         case BGE_ASICREV_BCM5785:
3377         case BGE_ASICREV_BCM5787:
3378         case BGE_ASICREV_BCM57780:
3379                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3380                     BGE_FLAG_5705_PLUS;
3381                 break;
3382         case BGE_ASICREV_BCM5700:
3383         case BGE_ASICREV_BCM5701:
3384         case BGE_ASICREV_BCM5703:
3385         case BGE_ASICREV_BCM5704:
3386                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3387                 break;
3388         case BGE_ASICREV_BCM5714_A0:
3389         case BGE_ASICREV_BCM5780:
3390         case BGE_ASICREV_BCM5714:
3391                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3392                 /* FALLTHROUGH */
3393         case BGE_ASICREV_BCM5750:
3394         case BGE_ASICREV_BCM5752:
3395         case BGE_ASICREV_BCM5906:
3396                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3397                 /* FALLTHROUGH */
3398         case BGE_ASICREV_BCM5705:
3399                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3400                 break;
3401         }
3402
3403         /* Identify chips with APE processor. */
3404         switch (sc->bge_asicrev) {
3405         case BGE_ASICREV_BCM5717:
3406         case BGE_ASICREV_BCM5719:
3407         case BGE_ASICREV_BCM5720:
3408         case BGE_ASICREV_BCM5761:
3409                 sc->bge_flags |= BGE_FLAG_APE;
3410                 break;
3411         }
3412
3413         /* Chips with APE need BAR2 access for APE registers/memory. */
3414         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3415                 rid = PCIR_BAR(2);
3416                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3417                     RF_ACTIVE);
3418                 if (sc->bge_res2 == NULL) {
3419                         device_printf (sc->bge_dev,
3420                             "couldn't map BAR2 memory\n");
3421                         error = ENXIO;
3422                         goto fail;
3423                 }
3424
3425                 /* Enable APE register/memory access by host driver. */
3426                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3427                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3428                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3429                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3430                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3431
3432                 bge_ape_lock_init(sc);
3433                 bge_ape_read_fw_ver(sc);
3434         }
3435
3436         /* Add SYSCTLs, requires the chipset family to be set. */
3437         bge_add_sysctls(sc);
3438
3439         /* Identify the chips that use an CPMU. */
3440         if (BGE_IS_5717_PLUS(sc) ||
3441             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3442             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3443             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3444             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3445                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3446         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3447                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3448         else
3449                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3450         /* Enable auto polling for BCM570[0-5]. */
3451         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3452                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3453
3454         /*
3455          * All Broadcom controllers have 4GB boundary DMA bug.
3456          * Whenever an address crosses a multiple of the 4GB boundary
3457          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3458          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3459          * state machine will lockup and cause the device to hang.
3460          */
3461         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3462
3463         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3464         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3465                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3466
3467         /*
3468          * BCM5719 cannot handle DMA requests for DMA segments that
3469          * have larger than 4KB in size.  However the maximum DMA
3470          * segment size created in DMA tag is 4KB for TSO, so we
3471          * wouldn't encounter the issue here.
3472          */
3473         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3474                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3475
3476         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3477         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3478                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3479                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3480                         sc->bge_flags |= BGE_FLAG_5788;
3481         }
3482
3483         capmask = BMSR_DEFCAPMASK;
3484         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3485             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3486             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3487             pci_get_vendor(dev) == BCOM_VENDORID &&
3488             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3489             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3490             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3491             (pci_get_vendor(dev) == BCOM_VENDORID &&
3492             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3493             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3494             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3495             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3496             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3497                 /* These chips are 10/100 only. */
3498                 capmask &= ~BMSR_EXTSTAT;
3499                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3500         }
3501
3502         /*
3503          * Some controllers seem to require a special firmware to use
3504          * TSO. But the firmware is not available to FreeBSD and Linux
3505          * claims that the TSO performed by the firmware is slower than
3506          * hardware based TSO. Moreover the firmware based TSO has one
3507          * known bug which can't handle TSO if ethernet header + IP/TCP
3508          * header is greater than 80 bytes. The workaround for the TSO
3509          * bug exist but it seems it's too expensive than not using
3510          * TSO at all. Some hardwares also have the TSO bug so limit
3511          * the TSO to the controllers that are not affected TSO issues
3512          * (e.g. 5755 or higher).
3513          */
3514         if (BGE_IS_5717_PLUS(sc)) {
3515                 /* BCM5717 requires different TSO configuration. */
3516                 sc->bge_flags |= BGE_FLAG_TSO3;
3517                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3518                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3519                         /* TSO on BCM5719 A0 does not work. */
3520                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3521                 }
3522         } else if (BGE_IS_5755_PLUS(sc)) {
3523                 /*
3524                  * BCM5754 and BCM5787 shares the same ASIC id so
3525                  * explicit device id check is required.
3526                  * Due to unknown reason TSO does not work on BCM5755M.
3527                  */
3528                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3529                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3530                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3531                         sc->bge_flags |= BGE_FLAG_TSO;
3532         }
3533
3534         /*
3535          * Check if this is a PCI-X or PCI Express device.
3536          */
3537         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3538                 /*
3539                  * Found a PCI Express capabilities register, this
3540                  * must be a PCI Express device.
3541                  */
3542                 sc->bge_flags |= BGE_FLAG_PCIE;
3543                 sc->bge_expcap = reg;
3544                 /* Extract supported maximum payload size. */
3545                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3546                     PCIER_DEVICE_CAP, 2);
3547                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3548                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3549                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3550                         sc->bge_expmrq = 2048;
3551                 else
3552                         sc->bge_expmrq = 4096;
3553                 pci_set_max_read_req(dev, sc->bge_expmrq);
3554         } else {
3555                 /*
3556                  * Check if the device is in PCI-X Mode.
3557                  * (This bit is not valid on PCI Express controllers.)
3558                  */
3559                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3560                         sc->bge_pcixcap = reg;
3561                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3562                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3563                         sc->bge_flags |= BGE_FLAG_PCIX;
3564         }
3565
3566         /*
3567          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3568          * not actually a MAC controller bug but an issue with the embedded
3569          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3570          */
3571         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3572                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3573         /*
3574          * Some PCI-X bridges are known to trigger write reordering to
3575          * the mailbox registers. Typical phenomena is watchdog timeouts
3576          * caused by out-of-order TX completions.  Enable workaround for
3577          * PCI-X devices that live behind these bridges.
3578          * Note, PCI-X controllers can run in PCI mode so we can't use
3579          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3580          */
3581         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3582                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3583         /*
3584          * Allocate the interrupt, using MSI if possible.  These devices
3585          * support 8 MSI messages, but only the first one is used in
3586          * normal operation.
3587          */
3588         rid = 0;
3589         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3590                 sc->bge_msicap = reg;
3591                 if (bge_can_use_msi(sc)) {
3592                         msicount = pci_msi_count(dev);
3593                         if (msicount > 1)
3594                                 msicount = 1;
3595                 } else
3596                         msicount = 0;
3597                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3598                         rid = 1;
3599                         sc->bge_flags |= BGE_FLAG_MSI;
3600                 }
3601         }
3602
3603         /*
3604          * All controllers except BCM5700 supports tagged status but
3605          * we use tagged status only for MSI case on BCM5717. Otherwise
3606          * MSI on BCM5717 does not work.
3607          */
3608 #ifndef DEVICE_POLLING
3609         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3610                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3611 #endif
3612
3613         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3614             RF_SHAREABLE | RF_ACTIVE);
3615
3616         if (sc->bge_irq == NULL) {
3617                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3618                 error = ENXIO;
3619                 goto fail;
3620         }
3621
3622         bge_devinfo(sc);
3623
3624         sc->bge_asf_mode = 0;
3625         /* No ASF if APE present. */
3626         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3627                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3628                     BGE_SRAM_DATA_SIG_MAGIC)) {
3629                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3630                             BGE_HWCFG_ASF) {
3631                                 sc->bge_asf_mode |= ASF_ENABLE;
3632                                 sc->bge_asf_mode |= ASF_STACKUP;
3633                                 if (BGE_IS_575X_PLUS(sc))
3634                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3635                         }
3636                 }
3637         }
3638
3639         bge_stop_fw(sc);
3640         bge_sig_pre_reset(sc, BGE_RESET_START);
3641         if (bge_reset(sc)) {
3642                 device_printf(sc->bge_dev, "chip reset failed\n");
3643                 error = ENXIO;
3644                 goto fail;
3645         }
3646
3647         bge_sig_legacy(sc, BGE_RESET_START);
3648         bge_sig_post_reset(sc, BGE_RESET_START);
3649
3650         if (bge_chipinit(sc)) {
3651                 device_printf(sc->bge_dev, "chip initialization failed\n");
3652                 error = ENXIO;
3653                 goto fail;
3654         }
3655
3656         error = bge_get_eaddr(sc, eaddr);
3657         if (error) {
3658                 device_printf(sc->bge_dev,
3659                     "failed to read station address\n");
3660                 error = ENXIO;
3661                 goto fail;
3662         }
3663
3664         /* 5705 limits RX return ring to 512 entries. */
3665         if (BGE_IS_5717_PLUS(sc))
3666                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3667         else if (BGE_IS_5705_PLUS(sc))
3668                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3669         else
3670                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3671
3672         if (bge_dma_alloc(sc)) {
3673                 device_printf(sc->bge_dev,
3674                     "failed to allocate DMA resources\n");
3675                 error = ENXIO;
3676                 goto fail;
3677         }
3678
3679         /* Set default tuneable values. */
3680         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3681         sc->bge_rx_coal_ticks = 150;
3682         sc->bge_tx_coal_ticks = 150;
3683         sc->bge_rx_max_coal_bds = 10;
3684         sc->bge_tx_max_coal_bds = 10;
3685
3686         /* Initialize checksum features to use. */
3687         sc->bge_csum_features = BGE_CSUM_FEATURES;
3688         if (sc->bge_forced_udpcsum != 0)
3689                 sc->bge_csum_features |= CSUM_UDP;
3690
3691         /* Set up ifnet structure */
3692         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3693         if (ifp == NULL) {
3694                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3695                 error = ENXIO;
3696                 goto fail;
3697         }
3698         ifp->if_softc = sc;
3699         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3700         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3701         ifp->if_ioctl = bge_ioctl;
3702         ifp->if_start = bge_start;
3703         ifp->if_init = bge_init;
3704         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3705         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3706         IFQ_SET_READY(&ifp->if_snd);
3707         ifp->if_hwassist = sc->bge_csum_features;
3708         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3709             IFCAP_VLAN_MTU;
3710         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3711                 ifp->if_hwassist |= CSUM_TSO;
3712                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3713         }
3714 #ifdef IFCAP_VLAN_HWCSUM
3715         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3716 #endif
3717         ifp->if_capenable = ifp->if_capabilities;
3718 #ifdef DEVICE_POLLING
3719         ifp->if_capabilities |= IFCAP_POLLING;
3720 #endif
3721
3722         /*
3723          * 5700 B0 chips do not support checksumming correctly due
3724          * to hardware bugs.
3725          */
3726         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3727                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
3728                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3729                 ifp->if_hwassist = 0;
3730         }
3731
3732         /*
3733          * Figure out what sort of media we have by checking the
3734          * hardware config word in the first 32k of NIC internal memory,
3735          * or fall back to examining the EEPROM if necessary.
3736          * Note: on some BCM5700 cards, this value appears to be unset.
3737          * If that's the case, we have to rely on identifying the NIC
3738          * by its PCI subsystem ID, as we do below for the SysKonnect
3739          * SK-9D41.
3740          */
3741         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3742                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3743         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3744             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3745                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3746                     sizeof(hwcfg))) {
3747                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3748                         error = ENXIO;
3749                         goto fail;
3750                 }
3751                 hwcfg = ntohl(hwcfg);
3752         }
3753
3754         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3755         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3756             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3757                 if (BGE_IS_5705_PLUS(sc)) {
3758                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3759                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3760                 } else
3761                         sc->bge_flags |= BGE_FLAG_TBI;
3762         }
3763
3764         /* Set various PHY bug flags. */
3765         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3766             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3767                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3768         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3769             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3770                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3771         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3772                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3773         if (pci_get_subvendor(dev) == DELL_VENDORID)
3774                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3775         if ((BGE_IS_5705_PLUS(sc)) &&
3776             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3777             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3778             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3779             !BGE_IS_5717_PLUS(sc)) {
3780                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3781                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3782                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3783                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3784                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3785                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3786                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3787                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3788                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3789                 } else
3790                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3791         }
3792
3793         /*
3794          * Don't enable Ethernet@WireSpeed for the 5700 or the
3795          * 5705 A0 and A1 chips.
3796          */
3797         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3798             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3799             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3800             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3801                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3802
3803         if (sc->bge_flags & BGE_FLAG_TBI) {
3804                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3805                     bge_ifmedia_sts);
3806                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3807                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3808                     0, NULL);
3809                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3810                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3811                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3812         } else {
3813                 /*
3814                  * Do transceiver setup and tell the firmware the
3815                  * driver is down so we can try to get access the
3816                  * probe if ASF is running.  Retry a couple of times
3817                  * if we get a conflict with the ASF firmware accessing
3818                  * the PHY.
3819                  */
3820                 trys = 0;
3821                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3822 again:
3823                 bge_asf_driver_up(sc);
3824
3825                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3826                     bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3827                     MIIF_DOPAUSE);
3828                 if (error != 0) {
3829                         if (trys++ < 4) {
3830                                 device_printf(sc->bge_dev, "Try again\n");
3831                                 bge_miibus_writereg(sc->bge_dev,
3832                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3833                                 goto again;
3834                         }
3835                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3836                         goto fail;
3837                 }
3838
3839                 /*
3840                  * Now tell the firmware we are going up after probing the PHY
3841                  */
3842                 if (sc->bge_asf_mode & ASF_STACKUP)
3843                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3844         }
3845
3846         /*
3847          * When using the BCM5701 in PCI-X mode, data corruption has
3848          * been observed in the first few bytes of some received packets.
3849          * Aligning the packet buffer in memory eliminates the corruption.
3850          * Unfortunately, this misaligns the packet payloads.  On platforms
3851          * which do not support unaligned accesses, we will realign the
3852          * payloads by copying the received packets.
3853          */
3854         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3855             sc->bge_flags & BGE_FLAG_PCIX)
3856                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3857
3858         /*
3859          * Call MI attach routine.
3860          */
3861         ether_ifattach(ifp, eaddr);
3862
3863         /* Tell upper layer we support long frames. */
3864         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3865
3866         /*
3867          * Hookup IRQ last.
3868          */
3869         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3870                 /* Take advantage of single-shot MSI. */
3871                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3872                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3873                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3874                     taskqueue_thread_enqueue, &sc->bge_tq);
3875                 if (sc->bge_tq == NULL) {
3876                         device_printf(dev, "could not create taskqueue.\n");
3877                         ether_ifdetach(ifp);
3878                         error = ENOMEM;
3879                         goto fail;
3880                 }
3881                 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3882                     device_get_nameunit(sc->bge_dev));
3883                 error = bus_setup_intr(dev, sc->bge_irq,
3884                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3885                     &sc->bge_intrhand);
3886         } else
3887                 error = bus_setup_intr(dev, sc->bge_irq,
3888                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3889                     &sc->bge_intrhand);
3890
3891         if (error) {
3892                 ether_ifdetach(ifp);
3893                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3894         }
3895
3896 fail:
3897         if (error)
3898                 bge_detach(dev);
3899         return (error);
3900 }
3901
3902 static int
3903 bge_detach(device_t dev)
3904 {
3905         struct bge_softc *sc;
3906         struct ifnet *ifp;
3907
3908         sc = device_get_softc(dev);
3909         ifp = sc->bge_ifp;
3910
3911 #ifdef DEVICE_POLLING
3912         if (ifp->if_capenable & IFCAP_POLLING)
3913                 ether_poll_deregister(ifp);
3914 #endif
3915
3916         if (device_is_attached(dev)) {
3917                 ether_ifdetach(ifp);
3918                 BGE_LOCK(sc);
3919                 bge_stop(sc);
3920                 BGE_UNLOCK(sc);
3921                 callout_drain(&sc->bge_stat_ch);
3922         }
3923
3924         if (sc->bge_tq)
3925                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3926
3927         if (sc->bge_flags & BGE_FLAG_TBI) {
3928                 ifmedia_removeall(&sc->bge_ifmedia);
3929         } else {
3930                 bus_generic_detach(dev);
3931                 device_delete_child(dev, sc->bge_miibus);
3932         }
3933
3934         bge_release_resources(sc);
3935
3936         return (0);
3937 }
3938
3939 static void
3940 bge_release_resources(struct bge_softc *sc)
3941 {
3942         device_t dev;
3943
3944         dev = sc->bge_dev;
3945
3946         if (sc->bge_tq != NULL)
3947                 taskqueue_free(sc->bge_tq);
3948
3949         if (sc->bge_intrhand != NULL)
3950                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3951
3952         if (sc->bge_irq != NULL)
3953                 bus_release_resource(dev, SYS_RES_IRQ,
3954                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3955
3956         if (sc->bge_flags & BGE_FLAG_MSI)
3957                 pci_release_msi(dev);
3958
3959         if (sc->bge_res != NULL)
3960                 bus_release_resource(dev, SYS_RES_MEMORY,
3961                     PCIR_BAR(0), sc->bge_res);
3962
3963         if (sc->bge_res2 != NULL)
3964                 bus_release_resource(dev, SYS_RES_MEMORY,
3965                     PCIR_BAR(2), sc->bge_res2);
3966
3967         if (sc->bge_ifp != NULL)
3968                 if_free(sc->bge_ifp);
3969
3970         bge_dma_free(sc);
3971
3972         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
3973                 BGE_LOCK_DESTROY(sc);
3974 }
3975
3976 static int
3977 bge_reset(struct bge_softc *sc)
3978 {
3979         device_t dev;
3980         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
3981         void (*write_op)(struct bge_softc *, int, int);
3982         uint16_t devctl;
3983         int i;
3984
3985         dev = sc->bge_dev;
3986
3987         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3988         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3989                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3990         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3991
3992         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3993             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3994                 if (sc->bge_flags & BGE_FLAG_PCIE)
3995                         write_op = bge_writemem_direct;
3996                 else
3997                         write_op = bge_writemem_ind;
3998         } else
3999                 write_op = bge_writereg_ind;
4000
4001         /* Take APE lock when performing reset. */
4002         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4003
4004         /* Save some important PCI state. */
4005         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4006         command = pci_read_config(dev, BGE_PCI_CMD, 4);
4007
4008         pci_write_config(dev, BGE_PCI_MISC_CTL,
4009             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4010             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4011
4012         /* Disable fastboot on controllers that support it. */
4013         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4014             BGE_IS_5755_PLUS(sc)) {
4015                 if (bootverbose)
4016                         device_printf(dev, "Disabling fastboot\n");
4017                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4018         }
4019
4020         /*
4021          * Write the magic number to SRAM at offset 0xB50.
4022          * When firmware finishes its initialization it will
4023          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4024          */
4025         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4026
4027         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4028
4029         /* XXX: Broadcom Linux driver. */
4030         if (sc->bge_flags & BGE_FLAG_PCIE) {
4031                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4032                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4033                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
4034                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
4035                 }
4036                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4037                         /* Prevent PCIE link training during global reset */
4038                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4039                         reset |= 1 << 29;
4040                 }
4041         }
4042
4043         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4044                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4045                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4046                     val | BGE_VCPU_STATUS_DRV_RESET);
4047                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4048                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4049                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4050         }
4051
4052         /*
4053          * Set GPHY Power Down Override to leave GPHY
4054          * powered up in D0 uninitialized.
4055          */
4056         if (BGE_IS_5705_PLUS(sc) &&
4057             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4058                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4059
4060         /* Issue global reset */
4061         write_op(sc, BGE_MISC_CFG, reset);
4062
4063         if (sc->bge_flags & BGE_FLAG_PCIE)
4064                 DELAY(100 * 1000);
4065         else
4066                 DELAY(1000);
4067
4068         /* XXX: Broadcom Linux driver. */
4069         if (sc->bge_flags & BGE_FLAG_PCIE) {
4070                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4071                         DELAY(500000); /* wait for link training to complete */
4072                         val = pci_read_config(dev, 0xC4, 4);
4073                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4074                 }
4075                 devctl = pci_read_config(dev,
4076                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4077                 /* Clear enable no snoop and disable relaxed ordering. */
4078                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4079                     PCIEM_CTL_NOSNOOP_ENABLE);
4080                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4081                     devctl, 2);
4082                 pci_set_max_read_req(dev, sc->bge_expmrq);
4083                 /* Clear error status. */
4084                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4085                     PCIEM_STA_CORRECTABLE_ERROR |
4086                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4087                     PCIEM_STA_UNSUPPORTED_REQ, 2);
4088         }
4089
4090         /* Reset some of the PCI state that got zapped by reset. */
4091         pci_write_config(dev, BGE_PCI_MISC_CTL,
4092             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4093             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4094         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4095         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4096             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4097                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4098         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4099                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4100                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4101                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4102         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4103         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4104         pci_write_config(dev, BGE_PCI_CMD, command, 4);
4105         /*
4106          * Disable PCI-X relaxed ordering to ensure status block update
4107          * comes first then packet buffer DMA. Otherwise driver may
4108          * read stale status block.
4109          */
4110         if (sc->bge_flags & BGE_FLAG_PCIX) {
4111                 devctl = pci_read_config(dev,
4112                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
4113                 devctl &= ~PCIXM_COMMAND_ERO;
4114                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4115                         devctl &= ~PCIXM_COMMAND_MAX_READ;
4116                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4117                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4118                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4119                             PCIXM_COMMAND_MAX_READ);
4120                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4121                 }
4122                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4123                     devctl, 2);
4124         }
4125         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
4126         if (BGE_IS_5714_FAMILY(sc)) {
4127                 /* This chip disables MSI on reset. */
4128                 if (sc->bge_flags & BGE_FLAG_MSI) {
4129                         val = pci_read_config(dev,
4130                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
4131                         pci_write_config(dev,
4132                             sc->bge_msicap + PCIR_MSI_CTRL,
4133                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
4134                         val = CSR_READ_4(sc, BGE_MSI_MODE);
4135                         CSR_WRITE_4(sc, BGE_MSI_MODE,
4136                             val | BGE_MSIMODE_ENABLE);
4137                 }
4138                 val = CSR_READ_4(sc, BGE_MARB_MODE);
4139                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4140         } else
4141                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4142
4143         /* Fix up byte swapping. */
4144         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4145
4146         val = CSR_READ_4(sc, BGE_MAC_MODE);
4147         val = (val & ~mac_mode_mask) | mac_mode;
4148         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4149         DELAY(40);
4150
4151         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4152
4153         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4154                 for (i = 0; i < BGE_TIMEOUT; i++) {
4155                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4156                         if (val & BGE_VCPU_STATUS_INIT_DONE)
4157                                 break;
4158                         DELAY(100);
4159                 }
4160                 if (i == BGE_TIMEOUT) {
4161                         device_printf(dev, "reset timed out\n");
4162                         return (1);
4163                 }
4164         } else {
4165                 /*
4166                  * Poll until we see the 1's complement of the magic number.
4167                  * This indicates that the firmware initialization is complete.
4168                  * We expect this to fail if no chip containing the Ethernet
4169                  * address is fitted though.
4170                  */
4171                 for (i = 0; i < BGE_TIMEOUT; i++) {
4172                         DELAY(10);
4173                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4174                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
4175                                 break;
4176                 }
4177
4178                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4179                         device_printf(dev,
4180                             "firmware handshake timed out, found 0x%08x\n",
4181                             val);
4182                 /* BCM57765 A0 needs additional time before accessing. */
4183                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4184                         DELAY(10 * 1000);       /* XXX */
4185         }
4186
4187         /*
4188          * The 5704 in TBI mode apparently needs some special
4189          * adjustment to insure the SERDES drive level is set
4190          * to 1.2V.
4191          */
4192         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4193             sc->bge_flags & BGE_FLAG_TBI) {
4194                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
4195                 val = (val & ~0xFFF) | 0x880;
4196                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4197         }
4198
4199         /* XXX: Broadcom Linux driver. */
4200         if (sc->bge_flags & BGE_FLAG_PCIE &&
4201             !BGE_IS_5717_PLUS(sc) &&
4202             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4203             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4204                 /* Enable Data FIFO protection. */
4205                 val = CSR_READ_4(sc, 0x7C00);
4206                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4207         }
4208
4209         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4210                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4211                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4212
4213         return (0);
4214 }
4215
4216 static __inline void
4217 bge_rxreuse_std(struct bge_softc *sc, int i)
4218 {
4219         struct bge_rx_bd *r;
4220
4221         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4222         r->bge_flags = BGE_RXBDFLAG_END;
4223         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4224         r->bge_idx = i;
4225         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4226 }
4227
4228 static __inline void
4229 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4230 {
4231         struct bge_extrx_bd *r;
4232
4233         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4234         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4235         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4236         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4237         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4238         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4239         r->bge_idx = i;
4240         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4241 }
4242
4243 /*
4244  * Frame reception handling. This is called if there's a frame
4245  * on the receive return list.
4246  *
4247  * Note: we have to be able to handle two possibilities here:
4248  * 1) the frame is from the jumbo receive ring
4249  * 2) the frame is from the standard receive ring
4250  */
4251
4252 static int
4253 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4254 {
4255         struct ifnet *ifp;
4256         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4257         uint16_t rx_cons;
4258
4259         rx_cons = sc->bge_rx_saved_considx;
4260
4261         /* Nothing to do. */
4262         if (rx_cons == rx_prod)
4263                 return (rx_npkts);
4264
4265         ifp = sc->bge_ifp;
4266
4267         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4268             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4269         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4270             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4271         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4272             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4273             (MCLBYTES - ETHER_ALIGN))
4274                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4275                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4276
4277         while (rx_cons != rx_prod) {
4278                 struct bge_rx_bd        *cur_rx;
4279                 uint32_t                rxidx;
4280                 struct mbuf             *m = NULL;
4281                 uint16_t                vlan_tag = 0;
4282                 int                     have_tag = 0;
4283
4284 #ifdef DEVICE_POLLING
4285                 if (ifp->if_capenable & IFCAP_POLLING) {
4286                         if (sc->rxcycles <= 0)
4287                                 break;
4288                         sc->rxcycles--;
4289                 }
4290 #endif
4291
4292                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4293
4294                 rxidx = cur_rx->bge_idx;
4295                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4296
4297                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4298                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4299                         have_tag = 1;
4300                         vlan_tag = cur_rx->bge_vlan_tag;
4301                 }
4302
4303                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4304                         jumbocnt++;
4305                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4306                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4307                                 bge_rxreuse_jumbo(sc, rxidx);
4308                                 continue;
4309                         }
4310                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4311                                 bge_rxreuse_jumbo(sc, rxidx);
4312                                 ifp->if_iqdrops++;
4313                                 continue;
4314                         }
4315                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4316                 } else {
4317                         stdcnt++;
4318                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4319                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4320                                 bge_rxreuse_std(sc, rxidx);
4321                                 continue;
4322                         }
4323                         if (bge_newbuf_std(sc, rxidx) != 0) {
4324                                 bge_rxreuse_std(sc, rxidx);
4325                                 ifp->if_iqdrops++;
4326                                 continue;
4327                         }
4328                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4329                 }
4330
4331                 ifp->if_ipackets++;
4332 #ifndef __NO_STRICT_ALIGNMENT
4333                 /*
4334                  * For architectures with strict alignment we must make sure
4335                  * the payload is aligned.
4336                  */
4337                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4338                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4339                             cur_rx->bge_len);
4340                         m->m_data += ETHER_ALIGN;
4341                 }
4342 #endif
4343                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4344                 m->m_pkthdr.rcvif = ifp;
4345
4346                 if (ifp->if_capenable & IFCAP_RXCSUM)
4347                         bge_rxcsum(sc, cur_rx, m);
4348
4349                 /*
4350                  * If we received a packet with a vlan tag,
4351                  * attach that information to the packet.
4352                  */
4353                 if (have_tag) {
4354                         m->m_pkthdr.ether_vtag = vlan_tag;
4355                         m->m_flags |= M_VLANTAG;
4356                 }
4357
4358                 if (holdlck != 0) {
4359                         BGE_UNLOCK(sc);
4360                         (*ifp->if_input)(ifp, m);
4361                         BGE_LOCK(sc);
4362                 } else
4363                         (*ifp->if_input)(ifp, m);
4364                 rx_npkts++;
4365
4366                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4367                         return (rx_npkts);
4368         }
4369
4370         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4371             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4372         if (stdcnt > 0)
4373                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4374                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4375
4376         if (jumbocnt > 0)
4377                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4378                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4379
4380         sc->bge_rx_saved_considx = rx_cons;
4381         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4382         if (stdcnt)
4383                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4384                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4385         if (jumbocnt)
4386                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4387                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4388 #ifdef notyet
4389         /*
4390          * This register wraps very quickly under heavy packet drops.
4391          * If you need correct statistics, you can enable this check.
4392          */
4393         if (BGE_IS_5705_PLUS(sc))
4394                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4395 #endif
4396         return (rx_npkts);
4397 }
4398
4399 static void
4400 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4401 {
4402
4403         if (BGE_IS_5717_PLUS(sc)) {
4404                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4405                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4406                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4407                                 if ((cur_rx->bge_error_flag &
4408                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4409                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4410                         }
4411                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4412                                 m->m_pkthdr.csum_data =
4413                                     cur_rx->bge_tcp_udp_csum;
4414                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4415                                     CSUM_PSEUDO_HDR;
4416                         }
4417                 }
4418         } else {
4419                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4420                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4421                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4422                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4423                 }
4424                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4425                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4426                         m->m_pkthdr.csum_data =
4427                             cur_rx->bge_tcp_udp_csum;
4428                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4429                             CSUM_PSEUDO_HDR;
4430                 }
4431         }
4432 }
4433
4434 static void
4435 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4436 {
4437         struct bge_tx_bd *cur_tx;
4438         struct ifnet *ifp;
4439
4440         BGE_LOCK_ASSERT(sc);
4441
4442         /* Nothing to do. */
4443         if (sc->bge_tx_saved_considx == tx_cons)
4444                 return;
4445
4446         ifp = sc->bge_ifp;
4447
4448         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4449             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4450         /*
4451          * Go through our tx ring and free mbufs for those
4452          * frames that have been sent.
4453          */
4454         while (sc->bge_tx_saved_considx != tx_cons) {
4455                 uint32_t                idx;
4456
4457                 idx = sc->bge_tx_saved_considx;
4458                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4459                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4460                         ifp->if_opackets++;
4461                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4462                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4463                             sc->bge_cdata.bge_tx_dmamap[idx],
4464                             BUS_DMASYNC_POSTWRITE);
4465                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4466                             sc->bge_cdata.bge_tx_dmamap[idx]);
4467                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4468                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4469                 }
4470                 sc->bge_txcnt--;
4471                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4472         }
4473
4474         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4475         if (sc->bge_txcnt == 0)
4476                 sc->bge_timer = 0;
4477 }
4478
4479 #ifdef DEVICE_POLLING
4480 static int
4481 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4482 {
4483         struct bge_softc *sc = ifp->if_softc;
4484         uint16_t rx_prod, tx_cons;
4485         uint32_t statusword;
4486         int rx_npkts = 0;
4487
4488         BGE_LOCK(sc);
4489         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4490                 BGE_UNLOCK(sc);
4491                 return (rx_npkts);
4492         }
4493
4494         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4495             sc->bge_cdata.bge_status_map,
4496             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4497         /* Fetch updates from the status block. */
4498         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4499         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4500
4501         statusword = sc->bge_ldata.bge_status_block->bge_status;
4502         /* Clear the status so the next pass only sees the changes. */
4503         sc->bge_ldata.bge_status_block->bge_status = 0;
4504
4505         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4506             sc->bge_cdata.bge_status_map,
4507             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4508
4509         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4510         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4511                 sc->bge_link_evt++;
4512
4513         if (cmd == POLL_AND_CHECK_STATUS)
4514                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4515                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4516                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4517                         bge_link_upd(sc);
4518
4519         sc->rxcycles = count;
4520         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4521         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4522                 BGE_UNLOCK(sc);
4523                 return (rx_npkts);
4524         }
4525         bge_txeof(sc, tx_cons);
4526         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4527                 bge_start_locked(ifp);
4528
4529         BGE_UNLOCK(sc);
4530         return (rx_npkts);
4531 }
4532 #endif /* DEVICE_POLLING */
4533
4534 static int
4535 bge_msi_intr(void *arg)
4536 {
4537         struct bge_softc *sc;
4538
4539         sc = (struct bge_softc *)arg;
4540         /*
4541          * This interrupt is not shared and controller already
4542          * disabled further interrupt.
4543          */
4544         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4545         return (FILTER_HANDLED);
4546 }
4547
4548 static void
4549 bge_intr_task(void *arg, int pending)
4550 {
4551         struct bge_softc *sc;
4552         struct ifnet *ifp;
4553         uint32_t status, status_tag;
4554         uint16_t rx_prod, tx_cons;
4555
4556         sc = (struct bge_softc *)arg;
4557         ifp = sc->bge_ifp;
4558
4559         BGE_LOCK(sc);
4560         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4561                 BGE_UNLOCK(sc);
4562                 return;
4563         }
4564
4565         /* Get updated status block. */
4566         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4567             sc->bge_cdata.bge_status_map,
4568             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4569
4570         /* Save producer/consumer indices. */
4571         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4572         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4573         status = sc->bge_ldata.bge_status_block->bge_status;
4574         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4575         /* Dirty the status flag. */
4576         sc->bge_ldata.bge_status_block->bge_status = 0;
4577         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4578             sc->bge_cdata.bge_status_map,
4579             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4580         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4581                 status_tag = 0;
4582
4583         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4584                 bge_link_upd(sc);
4585
4586         /* Let controller work. */
4587         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4588
4589         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4590             sc->bge_rx_saved_considx != rx_prod) {
4591                 /* Check RX return ring producer/consumer. */
4592                 BGE_UNLOCK(sc);
4593                 bge_rxeof(sc, rx_prod, 0);
4594                 BGE_LOCK(sc);
4595         }
4596         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4597                 /* Check TX ring producer/consumer. */
4598                 bge_txeof(sc, tx_cons);
4599                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4600                         bge_start_locked(ifp);
4601         }
4602         BGE_UNLOCK(sc);
4603 }
4604
4605 static void
4606 bge_intr(void *xsc)
4607 {
4608         struct bge_softc *sc;
4609         struct ifnet *ifp;
4610         uint32_t statusword;
4611         uint16_t rx_prod, tx_cons;
4612
4613         sc = xsc;
4614
4615         BGE_LOCK(sc);
4616
4617         ifp = sc->bge_ifp;
4618
4619 #ifdef DEVICE_POLLING
4620         if (ifp->if_capenable & IFCAP_POLLING) {
4621                 BGE_UNLOCK(sc);
4622                 return;
4623         }
4624 #endif
4625
4626         /*
4627          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4628          * disable interrupts by writing nonzero like we used to, since with
4629          * our current organization this just gives complications and
4630          * pessimizations for re-enabling interrupts.  We used to have races
4631          * instead of the necessary complications.  Disabling interrupts
4632          * would just reduce the chance of a status update while we are
4633          * running (by switching to the interrupt-mode coalescence
4634          * parameters), but this chance is already very low so it is more
4635          * efficient to get another interrupt than prevent it.
4636          *
4637          * We do the ack first to ensure another interrupt if there is a
4638          * status update after the ack.  We don't check for the status
4639          * changing later because it is more efficient to get another
4640          * interrupt than prevent it, not quite as above (not checking is
4641          * a smaller optimization than not toggling the interrupt enable,
4642          * since checking doesn't involve PCI accesses and toggling require
4643          * the status check).  So toggling would probably be a pessimization
4644          * even with MSI.  It would only be needed for using a task queue.
4645          */
4646         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4647
4648         /*
4649          * Do the mandatory PCI flush as well as get the link status.
4650          */
4651         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4652
4653         /* Make sure the descriptor ring indexes are coherent. */
4654         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4655             sc->bge_cdata.bge_status_map,
4656             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4657         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4658         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4659         sc->bge_ldata.bge_status_block->bge_status = 0;
4660         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4661             sc->bge_cdata.bge_status_map,
4662             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4663
4664         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4665             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4666             statusword || sc->bge_link_evt)
4667                 bge_link_upd(sc);
4668
4669         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4670                 /* Check RX return ring producer/consumer. */
4671                 bge_rxeof(sc, rx_prod, 1);
4672         }
4673
4674         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4675                 /* Check TX ring producer/consumer. */
4676                 bge_txeof(sc, tx_cons);
4677         }
4678
4679         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4680             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4681                 bge_start_locked(ifp);
4682
4683         BGE_UNLOCK(sc);
4684 }
4685
4686 static void
4687 bge_asf_driver_up(struct bge_softc *sc)
4688 {
4689         if (sc->bge_asf_mode & ASF_STACKUP) {
4690                 /* Send ASF heartbeat aprox. every 2s */
4691                 if (sc->bge_asf_count)
4692                         sc->bge_asf_count --;
4693                 else {
4694                         sc->bge_asf_count = 2;
4695                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4696                             BGE_FW_CMD_DRV_ALIVE);
4697                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4698                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4699                             BGE_FW_HB_TIMEOUT_SEC);
4700                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4701                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4702                             BGE_RX_CPU_DRV_EVENT);
4703                 }
4704         }
4705 }
4706
4707 static void
4708 bge_tick(void *xsc)
4709 {
4710         struct bge_softc *sc = xsc;
4711         struct mii_data *mii = NULL;
4712
4713         BGE_LOCK_ASSERT(sc);
4714
4715         /* Synchronize with possible callout reset/stop. */
4716         if (callout_pending(&sc->bge_stat_ch) ||
4717             !callout_active(&sc->bge_stat_ch))
4718                 return;
4719
4720         if (BGE_IS_5705_PLUS(sc))
4721                 bge_stats_update_regs(sc);
4722         else
4723                 bge_stats_update(sc);
4724
4725         /* XXX Add APE heartbeat check here? */
4726
4727         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4728                 mii = device_get_softc(sc->bge_miibus);
4729                 /*
4730                  * Do not touch PHY if we have link up. This could break
4731                  * IPMI/ASF mode or produce extra input errors
4732                  * (extra errors was reported for bcm5701 & bcm5704).
4733                  */
4734                 if (!sc->bge_link)
4735                         mii_tick(mii);
4736         } else {
4737                 /*
4738                  * Since in TBI mode auto-polling can't be used we should poll
4739                  * link status manually. Here we register pending link event
4740                  * and trigger interrupt.
4741                  */
4742 #ifdef DEVICE_POLLING
4743                 /* In polling mode we poll link state in bge_poll(). */
4744                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4745 #endif
4746                 {
4747                 sc->bge_link_evt++;
4748                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4749                     sc->bge_flags & BGE_FLAG_5788)
4750                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4751                 else
4752                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4753                 }
4754         }
4755
4756         bge_asf_driver_up(sc);
4757         bge_watchdog(sc);
4758
4759         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4760 }
4761
4762 static void
4763 bge_stats_update_regs(struct bge_softc *sc)
4764 {
4765         struct ifnet *ifp;
4766         struct bge_mac_stats *stats;
4767
4768         ifp = sc->bge_ifp;
4769         stats = &sc->bge_mac_stats;
4770
4771         stats->ifHCOutOctets +=
4772             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4773         stats->etherStatsCollisions +=
4774             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4775         stats->outXonSent +=
4776             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4777         stats->outXoffSent +=
4778             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4779         stats->dot3StatsInternalMacTransmitErrors +=
4780             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4781         stats->dot3StatsSingleCollisionFrames +=
4782             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4783         stats->dot3StatsMultipleCollisionFrames +=
4784             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4785         stats->dot3StatsDeferredTransmissions +=
4786             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4787         stats->dot3StatsExcessiveCollisions +=
4788             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4789         stats->dot3StatsLateCollisions +=
4790             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4791         stats->ifHCOutUcastPkts +=
4792             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4793         stats->ifHCOutMulticastPkts +=
4794             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4795         stats->ifHCOutBroadcastPkts +=
4796             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4797
4798         stats->ifHCInOctets +=
4799             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4800         stats->etherStatsFragments +=
4801             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4802         stats->ifHCInUcastPkts +=
4803             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4804         stats->ifHCInMulticastPkts +=
4805             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4806         stats->ifHCInBroadcastPkts +=
4807             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4808         stats->dot3StatsFCSErrors +=
4809             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4810         stats->dot3StatsAlignmentErrors +=
4811             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4812         stats->xonPauseFramesReceived +=
4813             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4814         stats->xoffPauseFramesReceived +=
4815             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4816         stats->macControlFramesReceived +=
4817             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4818         stats->xoffStateEntered +=
4819             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4820         stats->dot3StatsFramesTooLong +=
4821             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4822         stats->etherStatsJabbers +=
4823             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4824         stats->etherStatsUndersizePkts +=
4825             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4826
4827         stats->FramesDroppedDueToFilters +=
4828             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4829         stats->DmaWriteQueueFull +=
4830             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4831         stats->DmaWriteHighPriQueueFull +=
4832             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4833         stats->NoMoreRxBDs +=
4834             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4835         /*
4836          * XXX
4837          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4838          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4839          * includes number of unwanted multicast frames.  This comes
4840          * from silicon bug and known workaround to get rough(not
4841          * exact) counter is to enable interrupt on MBUF low water
4842          * attention.  This can be accomplished by setting
4843          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4844          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4845          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4846          * However that change would generate more interrupts and
4847          * there are still possibilities of losing multiple frames
4848          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4849          * Given that the workaround still would not get correct
4850          * counter I don't think it's worth to implement it.  So
4851          * ignore reading the counter on controllers that have the
4852          * silicon bug.
4853          */
4854         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4855             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4856             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4857                 stats->InputDiscards +=
4858                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4859         stats->InputErrors +=
4860             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4861         stats->RecvThresholdHit +=
4862             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4863
4864         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4865         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4866             stats->InputErrors);
4867 }
4868
4869 static void
4870 bge_stats_clear_regs(struct bge_softc *sc)
4871 {
4872
4873         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4874         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4875         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4876         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4877         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4878         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4879         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4880         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4881         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4882         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4883         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4884         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4885         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4886
4887         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4888         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4889         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4890         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4891         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4892         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4893         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4894         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4895         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4896         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4897         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4898         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4899         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4900         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4901
4902         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4903         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4904         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4905         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4906         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4907         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4908         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4909 }
4910
4911 static void
4912 bge_stats_update(struct bge_softc *sc)
4913 {
4914         struct ifnet *ifp;
4915         bus_size_t stats;
4916         uint32_t cnt;   /* current register value */
4917
4918         ifp = sc->bge_ifp;
4919
4920         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4921
4922 #define READ_STAT(sc, stats, stat) \
4923         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4924
4925         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4926         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4927         sc->bge_tx_collisions = cnt;
4928
4929         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4930         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4931         sc->bge_rx_nobds = cnt;
4932         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4933         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4934         sc->bge_rx_inerrs = cnt;
4935         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4936         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4937         sc->bge_rx_discards = cnt;
4938
4939         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4940         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4941         sc->bge_tx_discards = cnt;
4942
4943 #undef  READ_STAT
4944 }
4945
4946 /*
4947  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4948  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4949  * but when such padded frames employ the bge IP/TCP checksum offload,
4950  * the hardware checksum assist gives incorrect results (possibly
4951  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4952  * If we pad such runts with zeros, the onboard checksum comes out correct.
4953  */
4954 static __inline int
4955 bge_cksum_pad(struct mbuf *m)
4956 {
4957         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4958         struct mbuf *last;
4959
4960         /* If there's only the packet-header and we can pad there, use it. */
4961         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4962             M_TRAILINGSPACE(m) >= padlen) {
4963                 last = m;
4964         } else {
4965                 /*
4966                  * Walk packet chain to find last mbuf. We will either
4967                  * pad there, or append a new mbuf and pad it.
4968                  */
4969                 for (last = m; last->m_next != NULL; last = last->m_next);
4970                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4971                         /* Allocate new empty mbuf, pad it. Compact later. */
4972                         struct mbuf *n;
4973
4974                         MGET(n, M_NOWAIT, MT_DATA);
4975                         if (n == NULL)
4976                                 return (ENOBUFS);
4977                         n->m_len = 0;
4978                         last->m_next = n;
4979                         last = n;
4980                 }
4981         }
4982
4983         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
4984         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4985         last->m_len += padlen;
4986         m->m_pkthdr.len += padlen;
4987
4988         return (0);
4989 }
4990
4991 static struct mbuf *
4992 bge_check_short_dma(struct mbuf *m)
4993 {
4994         struct mbuf *n;
4995         int found;
4996
4997         /*
4998          * If device receive two back-to-back send BDs with less than
4999          * or equal to 8 total bytes then the device may hang.  The two
5000          * back-to-back send BDs must in the same frame for this failure
5001          * to occur.  Scan mbuf chains and see whether two back-to-back
5002          * send BDs are there. If this is the case, allocate new mbuf
5003          * and copy the frame to workaround the silicon bug.
5004          */
5005         for (n = m, found = 0; n != NULL; n = n->m_next) {
5006                 if (n->m_len < 8) {
5007                         found++;
5008                         if (found > 1)
5009                                 break;
5010                         continue;
5011                 }
5012                 found = 0;
5013         }
5014
5015         if (found > 1) {
5016                 n = m_defrag(m, M_NOWAIT);
5017                 if (n == NULL)
5018                         m_freem(m);
5019         } else
5020                 n = m;
5021         return (n);
5022 }
5023
5024 static struct mbuf *
5025 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5026     uint16_t *flags)
5027 {
5028         struct ip *ip;
5029         struct tcphdr *tcp;
5030         struct mbuf *n;
5031         uint16_t hlen;
5032         uint32_t poff;
5033
5034         if (M_WRITABLE(m) == 0) {
5035                 /* Get a writable copy. */
5036                 n = m_dup(m, M_NOWAIT);
5037                 m_freem(m);
5038                 if (n == NULL)
5039                         return (NULL);
5040                 m = n;
5041         }
5042         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5043         if (m == NULL)
5044                 return (NULL);
5045         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5046         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5047         m = m_pullup(m, poff + sizeof(struct tcphdr));
5048         if (m == NULL)
5049                 return (NULL);
5050         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5051         m = m_pullup(m, poff + (tcp->th_off << 2));
5052         if (m == NULL)
5053                 return (NULL);
5054         /*
5055          * It seems controller doesn't modify IP length and TCP pseudo
5056          * checksum. These checksum computed by upper stack should be 0.
5057          */
5058         *mss = m->m_pkthdr.tso_segsz;
5059         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5060         ip->ip_sum = 0;
5061         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5062         /* Clear pseudo checksum computed by TCP stack. */
5063         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5064         tcp->th_sum = 0;
5065         /*
5066          * Broadcom controllers uses different descriptor format for
5067          * TSO depending on ASIC revision. Due to TSO-capable firmware
5068          * license issue and lower performance of firmware based TSO
5069          * we only support hardware based TSO.
5070          */
5071         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5072         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5073         if (sc->bge_flags & BGE_FLAG_TSO3) {
5074                 /*
5075                  * For BCM5717 and newer controllers, hardware based TSO
5076                  * uses the 14 lower bits of the bge_mss field to store the
5077                  * MSS and the upper 2 bits to store the lowest 2 bits of
5078                  * the IP/TCP header length.  The upper 6 bits of the header
5079                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
5080                  * frames are supported.
5081                  */
5082                 *mss |= ((hlen & 0x3) << 14);
5083                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5084         } else {
5085                 /*
5086                  * For BCM5755 and newer controllers, hardware based TSO uses
5087                  * the lower 11 bits to store the MSS and the upper 5 bits to
5088                  * store the IP/TCP header length. Jumbo frames are not
5089                  * supported.
5090                  */
5091                 *mss |= (hlen << 11);
5092         }
5093         return (m);
5094 }
5095
5096 /*
5097  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5098  * pointers to descriptors.
5099  */
5100 static int
5101 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5102 {
5103         bus_dma_segment_t       segs[BGE_NSEG_NEW];
5104         bus_dmamap_t            map;
5105         struct bge_tx_bd        *d;
5106         struct mbuf             *m = *m_head;
5107         uint32_t                idx = *txidx;
5108         uint16_t                csum_flags, mss, vlan_tag;
5109         int                     nsegs, i, error;
5110
5111         csum_flags = 0;
5112         mss = 0;
5113         vlan_tag = 0;
5114         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5115             m->m_next != NULL) {
5116                 *m_head = bge_check_short_dma(m);
5117                 if (*m_head == NULL)
5118                         return (ENOBUFS);
5119                 m = *m_head;
5120         }
5121         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5122                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5123                 if (*m_head == NULL)
5124                         return (ENOBUFS);
5125                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5126                     BGE_TXBDFLAG_CPU_POST_DMA;
5127         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5128                 if (m->m_pkthdr.csum_flags & CSUM_IP)
5129                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5130                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5131                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5132                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5133                             (error = bge_cksum_pad(m)) != 0) {
5134                                 m_freem(m);
5135                                 *m_head = NULL;
5136                                 return (error);
5137                         }
5138                 }
5139         }
5140
5141         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5142                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5143                     m->m_pkthdr.len > ETHER_MAX_LEN)
5144                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5145                 if (sc->bge_forced_collapse > 0 &&
5146                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5147                         /*
5148                          * Forcedly collapse mbuf chains to overcome hardware
5149                          * limitation which only support a single outstanding
5150                          * DMA read operation.
5151                          */
5152                         if (sc->bge_forced_collapse == 1)
5153                                 m = m_defrag(m, M_NOWAIT);
5154                         else
5155                                 m = m_collapse(m, M_NOWAIT,
5156                                     sc->bge_forced_collapse);
5157                         if (m == NULL)
5158                                 m = *m_head;
5159                         *m_head = m;
5160                 }
5161         }
5162
5163         map = sc->bge_cdata.bge_tx_dmamap[idx];
5164         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5165             &nsegs, BUS_DMA_NOWAIT);
5166         if (error == EFBIG) {
5167                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5168                 if (m == NULL) {
5169                         m_freem(*m_head);
5170                         *m_head = NULL;
5171                         return (ENOBUFS);
5172                 }
5173                 *m_head = m;
5174                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5175                     m, segs, &nsegs, BUS_DMA_NOWAIT);
5176                 if (error) {
5177                         m_freem(m);
5178                         *m_head = NULL;
5179                         return (error);
5180                 }
5181         } else if (error != 0)
5182                 return (error);
5183
5184         /* Check if we have enough free send BDs. */
5185         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5186                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5187                 return (ENOBUFS);
5188         }
5189
5190         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5191
5192         if (m->m_flags & M_VLANTAG) {
5193                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5194                 vlan_tag = m->m_pkthdr.ether_vtag;
5195         }
5196         for (i = 0; ; i++) {
5197                 d = &sc->bge_ldata.bge_tx_ring[idx];
5198                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5199                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5200                 d->bge_len = segs[i].ds_len;
5201                 d->bge_flags = csum_flags;
5202                 d->bge_vlan_tag = vlan_tag;
5203                 d->bge_mss = mss;
5204                 if (i == nsegs - 1)
5205                         break;
5206                 BGE_INC(idx, BGE_TX_RING_CNT);
5207         }
5208
5209         /* Mark the last segment as end of packet... */
5210         d->bge_flags |= BGE_TXBDFLAG_END;
5211
5212         /*
5213          * Insure that the map for this transmission
5214          * is placed at the array index of the last descriptor
5215          * in this chain.
5216          */
5217         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5218         sc->bge_cdata.bge_tx_dmamap[idx] = map;
5219         sc->bge_cdata.bge_tx_chain[idx] = m;
5220         sc->bge_txcnt += nsegs;
5221
5222         BGE_INC(idx, BGE_TX_RING_CNT);
5223         *txidx = idx;
5224
5225         return (0);
5226 }
5227
5228 /*
5229  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5230  * to the mbuf data regions directly in the transmit descriptors.
5231  */
5232 static void
5233 bge_start_locked(struct ifnet *ifp)
5234 {
5235         struct bge_softc *sc;
5236         struct mbuf *m_head;
5237         uint32_t prodidx;
5238         int count;
5239
5240         sc = ifp->if_softc;
5241         BGE_LOCK_ASSERT(sc);
5242
5243         if (!sc->bge_link ||
5244             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5245             IFF_DRV_RUNNING)
5246                 return;
5247
5248         prodidx = sc->bge_tx_prodidx;
5249
5250         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5251                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5252                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5253                         break;
5254                 }
5255                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5256                 if (m_head == NULL)
5257                         break;
5258
5259                 /*
5260                  * Pack the data into the transmit ring. If we
5261                  * don't have room, set the OACTIVE flag and wait
5262                  * for the NIC to drain the ring.
5263                  */
5264                 if (bge_encap(sc, &m_head, &prodidx)) {
5265                         if (m_head == NULL)
5266                                 break;
5267                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5268                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5269                         break;
5270                 }
5271                 ++count;
5272
5273                 /*
5274                  * If there's a BPF listener, bounce a copy of this frame
5275                  * to him.
5276                  */
5277 #ifdef ETHER_BPF_MTAP
5278                 ETHER_BPF_MTAP(ifp, m_head);
5279 #else
5280                 BPF_MTAP(ifp, m_head);
5281 #endif
5282         }
5283
5284         if (count > 0) {
5285                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5286                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5287                 /* Transmit. */
5288                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5289                 /* 5700 b2 errata */
5290                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5291                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5292
5293                 sc->bge_tx_prodidx = prodidx;
5294
5295                 /*
5296                  * Set a timeout in case the chip goes out to lunch.
5297                  */
5298                 sc->bge_timer = 5;
5299         }
5300 }
5301
5302 /*
5303  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5304  * to the mbuf data regions directly in the transmit descriptors.
5305  */
5306 static void
5307 bge_start(struct ifnet *ifp)
5308 {
5309         struct bge_softc *sc;
5310
5311         sc = ifp->if_softc;
5312         BGE_LOCK(sc);
5313         bge_start_locked(ifp);
5314         BGE_UNLOCK(sc);
5315 }
5316
5317 static void
5318 bge_init_locked(struct bge_softc *sc)
5319 {
5320         struct ifnet *ifp;
5321         uint16_t *m;
5322         uint32_t mode;
5323
5324         BGE_LOCK_ASSERT(sc);
5325
5326         ifp = sc->bge_ifp;
5327
5328         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5329                 return;
5330
5331         /* Cancel pending I/O and flush buffers. */
5332         bge_stop(sc);
5333
5334         bge_stop_fw(sc);
5335         bge_sig_pre_reset(sc, BGE_RESET_START);
5336         bge_reset(sc);
5337         bge_sig_legacy(sc, BGE_RESET_START);
5338         bge_sig_post_reset(sc, BGE_RESET_START);
5339
5340         bge_chipinit(sc);
5341
5342         /*
5343          * Init the various state machines, ring
5344          * control blocks and firmware.
5345          */
5346         if (bge_blockinit(sc)) {
5347                 device_printf(sc->bge_dev, "initialization failure\n");
5348                 return;
5349         }
5350
5351         ifp = sc->bge_ifp;
5352
5353         /* Specify MTU. */
5354         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5355             ETHER_HDR_LEN + ETHER_CRC_LEN +
5356             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5357
5358         /* Load our MAC address. */
5359         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5360         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5361         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5362
5363         /* Program promiscuous mode. */
5364         bge_setpromisc(sc);
5365
5366         /* Program multicast filter. */
5367         bge_setmulti(sc);
5368
5369         /* Program VLAN tag stripping. */
5370         bge_setvlan(sc);
5371
5372         /* Override UDP checksum offloading. */
5373         if (sc->bge_forced_udpcsum == 0)
5374                 sc->bge_csum_features &= ~CSUM_UDP;
5375         else
5376                 sc->bge_csum_features |= CSUM_UDP;
5377         if (ifp->if_capabilities & IFCAP_TXCSUM &&
5378             ifp->if_capenable & IFCAP_TXCSUM) {
5379                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5380                 ifp->if_hwassist |= sc->bge_csum_features;
5381         }
5382
5383         /* Init RX ring. */
5384         if (bge_init_rx_ring_std(sc) != 0) {
5385                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5386                 bge_stop(sc);
5387                 return;
5388         }
5389
5390         /*
5391          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5392          * memory to insure that the chip has in fact read the first
5393          * entry of the ring.
5394          */
5395         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5396                 uint32_t                v, i;
5397                 for (i = 0; i < 10; i++) {
5398                         DELAY(20);
5399                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5400                         if (v == (MCLBYTES - ETHER_ALIGN))
5401                                 break;
5402                 }
5403                 if (i == 10)
5404                         device_printf (sc->bge_dev,
5405                             "5705 A0 chip failed to load RX ring\n");
5406         }
5407
5408         /* Init jumbo RX ring. */
5409         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5410             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5411             (MCLBYTES - ETHER_ALIGN)) {
5412                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5413                         device_printf(sc->bge_dev,
5414                             "no memory for jumbo Rx buffers.\n");
5415                         bge_stop(sc);
5416                         return;
5417                 }
5418         }
5419
5420         /* Init our RX return ring index. */
5421         sc->bge_rx_saved_considx = 0;
5422
5423         /* Init our RX/TX stat counters. */
5424         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5425
5426         /* Init TX ring. */
5427         bge_init_tx_ring(sc);
5428
5429         /* Enable TX MAC state machine lockup fix. */
5430         mode = CSR_READ_4(sc, BGE_TX_MODE);
5431         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5432                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5433         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5434                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5435                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5436                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5437         }
5438         /* Turn on transmitter. */
5439         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5440         DELAY(100);
5441
5442         /* Turn on receiver. */
5443         mode = CSR_READ_4(sc, BGE_RX_MODE);
5444         if (BGE_IS_5755_PLUS(sc))
5445                 mode |= BGE_RXMODE_IPV6_ENABLE;
5446         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5447         DELAY(10);
5448
5449         /*
5450          * Set the number of good frames to receive after RX MBUF
5451          * Low Watermark has been reached. After the RX MAC receives
5452          * this number of frames, it will drop subsequent incoming
5453          * frames until the MBUF High Watermark is reached.
5454          */
5455         if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
5456                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5457         else
5458                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5459
5460         /* Clear MAC statistics. */
5461         if (BGE_IS_5705_PLUS(sc))
5462                 bge_stats_clear_regs(sc);
5463
5464         /* Tell firmware we're alive. */
5465         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5466
5467 #ifdef DEVICE_POLLING
5468         /* Disable interrupts if we are polling. */
5469         if (ifp->if_capenable & IFCAP_POLLING) {
5470                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5471                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5472                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5473         } else
5474 #endif
5475
5476         /* Enable host interrupts. */
5477         {
5478         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5479         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5480         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5481         }
5482
5483         ifp->if_drv_flags |= IFF_DRV_RUNNING;
5484         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5485
5486         bge_ifmedia_upd_locked(ifp);
5487
5488         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5489 }
5490
5491 static void
5492 bge_init(void *xsc)
5493 {
5494         struct bge_softc *sc = xsc;
5495
5496         BGE_LOCK(sc);
5497         bge_init_locked(sc);
5498         BGE_UNLOCK(sc);
5499 }
5500
5501 /*
5502  * Set media options.
5503  */
5504 static int
5505 bge_ifmedia_upd(struct ifnet *ifp)
5506 {
5507         struct bge_softc *sc = ifp->if_softc;
5508         int res;
5509
5510         BGE_LOCK(sc);
5511         res = bge_ifmedia_upd_locked(ifp);
5512         BGE_UNLOCK(sc);
5513
5514         return (res);
5515 }
5516
5517 static int
5518 bge_ifmedia_upd_locked(struct ifnet *ifp)
5519 {
5520         struct bge_softc *sc = ifp->if_softc;
5521         struct mii_data *mii;
5522         struct mii_softc *miisc;
5523         struct ifmedia *ifm;
5524
5525         BGE_LOCK_ASSERT(sc);
5526
5527         ifm = &sc->bge_ifmedia;
5528
5529         /* If this is a 1000baseX NIC, enable the TBI port. */
5530         if (sc->bge_flags & BGE_FLAG_TBI) {
5531                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5532                         return (EINVAL);
5533                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5534                 case IFM_AUTO:
5535                         /*
5536                          * The BCM5704 ASIC appears to have a special
5537                          * mechanism for programming the autoneg
5538                          * advertisement registers in TBI mode.
5539                          */
5540                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5541                                 uint32_t sgdig;
5542                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5543                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5544                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5545                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5546                                         sgdig |= BGE_SGDIGCFG_AUTO |
5547                                             BGE_SGDIGCFG_PAUSE_CAP |
5548                                             BGE_SGDIGCFG_ASYM_PAUSE;
5549                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5550                                             sgdig | BGE_SGDIGCFG_SEND);
5551                                         DELAY(5);
5552                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5553                                 }
5554                         }
5555                         break;
5556                 case IFM_1000_SX:
5557                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5558                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5559                                     BGE_MACMODE_HALF_DUPLEX);
5560                         } else {
5561                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5562                                     BGE_MACMODE_HALF_DUPLEX);
5563                         }
5564                         DELAY(40);
5565                         break;
5566                 default:
5567                         return (EINVAL);
5568                 }
5569                 return (0);
5570         }
5571
5572         sc->bge_link_evt++;
5573         mii = device_get_softc(sc->bge_miibus);
5574         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5575                 PHY_RESET(miisc);
5576         mii_mediachg(mii);
5577
5578         /*
5579          * Force an interrupt so that we will call bge_link_upd
5580          * if needed and clear any pending link state attention.
5581          * Without this we are not getting any further interrupts
5582          * for link state changes and thus will not UP the link and
5583          * not be able to send in bge_start_locked. The only
5584          * way to get things working was to receive a packet and
5585          * get an RX intr.
5586          * bge_tick should help for fiber cards and we might not
5587          * need to do this here if BGE_FLAG_TBI is set but as
5588          * we poll for fiber anyway it should not harm.
5589          */
5590         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5591             sc->bge_flags & BGE_FLAG_5788)
5592                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5593         else
5594                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5595
5596         return (0);
5597 }
5598
5599 /*
5600  * Report current media status.
5601  */
5602 static void
5603 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5604 {
5605         struct bge_softc *sc = ifp->if_softc;
5606         struct mii_data *mii;
5607
5608         BGE_LOCK(sc);
5609
5610         if (sc->bge_flags & BGE_FLAG_TBI) {
5611                 ifmr->ifm_status = IFM_AVALID;
5612                 ifmr->ifm_active = IFM_ETHER;
5613                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5614                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5615                         ifmr->ifm_status |= IFM_ACTIVE;
5616                 else {
5617                         ifmr->ifm_active |= IFM_NONE;
5618                         BGE_UNLOCK(sc);
5619                         return;
5620                 }
5621                 ifmr->ifm_active |= IFM_1000_SX;
5622                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5623                         ifmr->ifm_active |= IFM_HDX;
5624                 else
5625                         ifmr->ifm_active |= IFM_FDX;
5626                 BGE_UNLOCK(sc);
5627                 return;
5628         }
5629
5630         mii = device_get_softc(sc->bge_miibus);
5631         mii_pollstat(mii);
5632         ifmr->ifm_active = mii->mii_media_active;
5633         ifmr->ifm_status = mii->mii_media_status;
5634
5635         BGE_UNLOCK(sc);
5636 }
5637
5638 static int
5639 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5640 {
5641         struct bge_softc *sc = ifp->if_softc;
5642         struct ifreq *ifr = (struct ifreq *) data;
5643         struct mii_data *mii;
5644         int flags, mask, error = 0;
5645
5646         switch (command) {
5647         case SIOCSIFMTU:
5648                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5649                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5650                         if (ifr->ifr_mtu < ETHERMIN ||
5651                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5652                                 error = EINVAL;
5653                                 break;
5654                         }
5655                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5656                         error = EINVAL;
5657                         break;
5658                 }
5659                 BGE_LOCK(sc);
5660                 if (ifp->if_mtu != ifr->ifr_mtu) {
5661                         ifp->if_mtu = ifr->ifr_mtu;
5662                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5663                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5664                                 bge_init_locked(sc);
5665                         }
5666                 }
5667                 BGE_UNLOCK(sc);
5668                 break;
5669         case SIOCSIFFLAGS:
5670                 BGE_LOCK(sc);
5671                 if (ifp->if_flags & IFF_UP) {
5672                         /*
5673                          * If only the state of the PROMISC flag changed,
5674                          * then just use the 'set promisc mode' command
5675                          * instead of reinitializing the entire NIC. Doing
5676                          * a full re-init means reloading the firmware and
5677                          * waiting for it to start up, which may take a
5678                          * second or two.  Similarly for ALLMULTI.
5679                          */
5680                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5681                                 flags = ifp->if_flags ^ sc->bge_if_flags;
5682                                 if (flags & IFF_PROMISC)
5683                                         bge_setpromisc(sc);
5684                                 if (flags & IFF_ALLMULTI)
5685                                         bge_setmulti(sc);
5686                         } else
5687                                 bge_init_locked(sc);
5688                 } else {
5689                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5690                                 bge_stop(sc);
5691                         }
5692                 }
5693                 sc->bge_if_flags = ifp->if_flags;
5694                 BGE_UNLOCK(sc);
5695                 error = 0;
5696                 break;
5697         case SIOCADDMULTI:
5698         case SIOCDELMULTI:
5699                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5700                         BGE_LOCK(sc);
5701                         bge_setmulti(sc);
5702                         BGE_UNLOCK(sc);
5703                         error = 0;
5704                 }
5705                 break;
5706         case SIOCSIFMEDIA:
5707         case SIOCGIFMEDIA:
5708                 if (sc->bge_flags & BGE_FLAG_TBI) {
5709                         error = ifmedia_ioctl(ifp, ifr,
5710                             &sc->bge_ifmedia, command);
5711                 } else {
5712                         mii = device_get_softc(sc->bge_miibus);
5713                         error = ifmedia_ioctl(ifp, ifr,
5714                             &mii->mii_media, command);
5715                 }
5716                 break;
5717         case SIOCSIFCAP:
5718                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5719 #ifdef DEVICE_POLLING
5720                 if (mask & IFCAP_POLLING) {
5721                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5722                                 error = ether_poll_register(bge_poll, ifp);
5723                                 if (error)
5724                                         return (error);
5725                                 BGE_LOCK(sc);
5726                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5727                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5728                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5729                                 ifp->if_capenable |= IFCAP_POLLING;
5730                                 BGE_UNLOCK(sc);
5731                         } else {
5732                                 error = ether_poll_deregister(ifp);
5733                                 /* Enable interrupt even in error case */
5734                                 BGE_LOCK(sc);
5735                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5736                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5737                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5738                                 ifp->if_capenable &= ~IFCAP_POLLING;
5739                                 BGE_UNLOCK(sc);
5740                         }
5741                 }
5742 #endif
5743                 if ((mask & IFCAP_TXCSUM) != 0 &&
5744                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5745                         ifp->if_capenable ^= IFCAP_TXCSUM;
5746                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5747                                 ifp->if_hwassist |= sc->bge_csum_features;
5748                         else
5749                                 ifp->if_hwassist &= ~sc->bge_csum_features;
5750                 }
5751
5752                 if ((mask & IFCAP_RXCSUM) != 0 &&
5753                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5754                         ifp->if_capenable ^= IFCAP_RXCSUM;
5755
5756                 if ((mask & IFCAP_TSO4) != 0 &&
5757                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5758                         ifp->if_capenable ^= IFCAP_TSO4;
5759                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5760                                 ifp->if_hwassist |= CSUM_TSO;
5761                         else
5762                                 ifp->if_hwassist &= ~CSUM_TSO;
5763                 }
5764
5765                 if (mask & IFCAP_VLAN_MTU) {
5766                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
5767                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5768                         bge_init(sc);
5769                 }
5770
5771                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5772                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5773                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5774                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5775                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5776                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5777                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5778                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5779                         BGE_LOCK(sc);
5780                         bge_setvlan(sc);
5781                         BGE_UNLOCK(sc);
5782                 }
5783 #ifdef VLAN_CAPABILITIES
5784                 VLAN_CAPABILITIES(ifp);
5785 #endif
5786                 break;
5787         default:
5788                 error = ether_ioctl(ifp, command, data);
5789                 break;
5790         }
5791
5792         return (error);
5793 }
5794
5795 static void
5796 bge_watchdog(struct bge_softc *sc)
5797 {
5798         struct ifnet *ifp;
5799
5800         BGE_LOCK_ASSERT(sc);
5801
5802         if (sc->bge_timer == 0 || --sc->bge_timer)
5803                 return;
5804
5805         ifp = sc->bge_ifp;
5806
5807         if_printf(ifp, "watchdog timeout -- resetting\n");
5808
5809         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5810         bge_init_locked(sc);
5811
5812         ifp->if_oerrors++;
5813 }
5814
5815 static void
5816 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5817 {
5818         int i;
5819
5820         BGE_CLRBIT(sc, reg, bit);
5821
5822         for (i = 0; i < BGE_TIMEOUT; i++) {
5823                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5824                         return;
5825                 DELAY(100);
5826         }
5827 }
5828
5829 /*
5830  * Stop the adapter and free any mbufs allocated to the
5831  * RX and TX lists.
5832  */
5833 static void
5834 bge_stop(struct bge_softc *sc)
5835 {
5836         struct ifnet *ifp;
5837
5838         BGE_LOCK_ASSERT(sc);
5839
5840         ifp = sc->bge_ifp;
5841
5842         callout_stop(&sc->bge_stat_ch);
5843
5844         /* Disable host interrupts. */
5845         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5846         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5847
5848         /*
5849          * Tell firmware we're shutting down.
5850          */
5851         bge_stop_fw(sc);
5852         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5853
5854         /*
5855          * Disable all of the receiver blocks.
5856          */
5857         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5858         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5859         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5860         if (BGE_IS_5700_FAMILY(sc))
5861                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5862         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5863         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5864         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5865
5866         /*
5867          * Disable all of the transmit blocks.
5868          */
5869         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5870         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5871         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5872         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5873         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5874         if (BGE_IS_5700_FAMILY(sc))
5875                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5876         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5877
5878         /*
5879          * Shut down all of the memory managers and related
5880          * state machines.
5881          */
5882         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5883         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5884         if (BGE_IS_5700_FAMILY(sc))
5885                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5886
5887         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5888         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5889         if (!(BGE_IS_5705_PLUS(sc))) {
5890                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5891                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5892         }
5893         /* Update MAC statistics. */
5894         if (BGE_IS_5705_PLUS(sc))
5895                 bge_stats_update_regs(sc);
5896
5897         bge_reset(sc);
5898         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5899         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5900
5901         /*
5902          * Keep the ASF firmware running if up.
5903          */
5904         if (sc->bge_asf_mode & ASF_STACKUP)
5905                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5906         else
5907                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5908
5909         /* Free the RX lists. */
5910         bge_free_rx_ring_std(sc);
5911
5912         /* Free jumbo RX list. */
5913         if (BGE_IS_JUMBO_CAPABLE(sc))
5914                 bge_free_rx_ring_jumbo(sc);
5915
5916         /* Free TX buffers. */
5917         bge_free_tx_ring(sc);
5918
5919         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5920
5921         /* Clear MAC's link state (PHY may still have link UP). */
5922         if (bootverbose && sc->bge_link)
5923                 if_printf(sc->bge_ifp, "link DOWN\n");
5924         sc->bge_link = 0;
5925
5926         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5927 }
5928
5929 /*
5930  * Stop all chip I/O so that the kernel's probe routines don't
5931  * get confused by errant DMAs when rebooting.
5932  */
5933 static int
5934 bge_shutdown(device_t dev)
5935 {
5936         struct bge_softc *sc;
5937
5938         sc = device_get_softc(dev);
5939         BGE_LOCK(sc);
5940         bge_stop(sc);
5941         BGE_UNLOCK(sc);
5942
5943         return (0);
5944 }
5945
5946 static int
5947 bge_suspend(device_t dev)
5948 {
5949         struct bge_softc *sc;
5950
5951         sc = device_get_softc(dev);
5952         BGE_LOCK(sc);
5953         bge_stop(sc);
5954         BGE_UNLOCK(sc);
5955
5956         return (0);
5957 }
5958
5959 static int
5960 bge_resume(device_t dev)
5961 {
5962         struct bge_softc *sc;
5963         struct ifnet *ifp;
5964
5965         sc = device_get_softc(dev);
5966         BGE_LOCK(sc);
5967         ifp = sc->bge_ifp;
5968         if (ifp->if_flags & IFF_UP) {
5969                 bge_init_locked(sc);
5970                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5971                         bge_start_locked(ifp);
5972         }
5973         BGE_UNLOCK(sc);
5974
5975         return (0);
5976 }
5977
5978 static void
5979 bge_link_upd(struct bge_softc *sc)
5980 {
5981         struct mii_data *mii;
5982         uint32_t link, status;
5983
5984         BGE_LOCK_ASSERT(sc);
5985
5986         /* Clear 'pending link event' flag. */
5987         sc->bge_link_evt = 0;
5988
5989         /*
5990          * Process link state changes.
5991          * Grrr. The link status word in the status block does
5992          * not work correctly on the BCM5700 rev AX and BX chips,
5993          * according to all available information. Hence, we have
5994          * to enable MII interrupts in order to properly obtain
5995          * async link changes. Unfortunately, this also means that
5996          * we have to read the MAC status register to detect link
5997          * changes, thereby adding an additional register access to
5998          * the interrupt handler.
5999          *
6000          * XXX: perhaps link state detection procedure used for
6001          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6002          */
6003
6004         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6005             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6006                 status = CSR_READ_4(sc, BGE_MAC_STS);
6007                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6008                         mii = device_get_softc(sc->bge_miibus);
6009                         mii_pollstat(mii);
6010                         if (!sc->bge_link &&
6011                             mii->mii_media_status & IFM_ACTIVE &&
6012                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6013                                 sc->bge_link++;
6014                                 if (bootverbose)
6015                                         if_printf(sc->bge_ifp, "link UP\n");
6016                         } else if (sc->bge_link &&
6017                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6018                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6019                                 sc->bge_link = 0;
6020                                 if (bootverbose)
6021                                         if_printf(sc->bge_ifp, "link DOWN\n");
6022                         }
6023
6024                         /* Clear the interrupt. */
6025                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6026                             BGE_EVTENB_MI_INTERRUPT);
6027                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6028                             BRGPHY_MII_ISR);
6029                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6030                             BRGPHY_MII_IMR, BRGPHY_INTRS);
6031                 }
6032                 return;
6033         }
6034
6035         if (sc->bge_flags & BGE_FLAG_TBI) {
6036                 status = CSR_READ_4(sc, BGE_MAC_STS);
6037                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6038                         if (!sc->bge_link) {
6039                                 sc->bge_link++;
6040                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6041                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
6042                                             BGE_MACMODE_TBI_SEND_CFGS);
6043                                         DELAY(40);
6044                                 }
6045                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6046                                 if (bootverbose)
6047                                         if_printf(sc->bge_ifp, "link UP\n");
6048                                 if_link_state_change(sc->bge_ifp,
6049                                     LINK_STATE_UP);
6050                         }
6051                 } else if (sc->bge_link) {
6052                         sc->bge_link = 0;
6053                         if (bootverbose)
6054                                 if_printf(sc->bge_ifp, "link DOWN\n");
6055                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6056                 }
6057         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6058                 /*
6059                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6060                  * in status word always set. Workaround this bug by reading
6061                  * PHY link status directly.
6062                  */
6063                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6064
6065                 if (link != sc->bge_link ||
6066                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6067                         mii = device_get_softc(sc->bge_miibus);
6068                         mii_pollstat(mii);
6069                         if (!sc->bge_link &&
6070                             mii->mii_media_status & IFM_ACTIVE &&
6071                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6072                                 sc->bge_link++;
6073                                 if (bootverbose)
6074                                         if_printf(sc->bge_ifp, "link UP\n");
6075                         } else if (sc->bge_link &&
6076                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6077                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6078                                 sc->bge_link = 0;
6079                                 if (bootverbose)
6080                                         if_printf(sc->bge_ifp, "link DOWN\n");
6081                         }
6082                 }
6083         } else {
6084                 /*
6085                  * For controllers that call mii_tick, we have to poll
6086                  * link status.
6087                  */
6088                 mii = device_get_softc(sc->bge_miibus);
6089                 mii_pollstat(mii);
6090                 bge_miibus_statchg(sc->bge_dev);
6091         }
6092
6093         /* Disable MAC attention when link is up. */
6094         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6095             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6096             BGE_MACSTAT_LINK_CHANGED);
6097 }
6098
6099 static void
6100 bge_add_sysctls(struct bge_softc *sc)
6101 {
6102         struct sysctl_ctx_list *ctx;
6103         struct sysctl_oid_list *children;
6104         char tn[32];
6105         int unit;
6106
6107         ctx = device_get_sysctl_ctx(sc->bge_dev);
6108         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6109
6110 #ifdef BGE_REGISTER_DEBUG
6111         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6112             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6113             "Debug Information");
6114
6115         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6116             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6117             "MAC Register Read");
6118
6119         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6120             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6121             "APE Register Read");
6122
6123         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6124             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6125             "Memory Read");
6126
6127 #endif
6128
6129         unit = device_get_unit(sc->bge_dev);
6130         /*
6131          * A common design characteristic for many Broadcom client controllers
6132          * is that they only support a single outstanding DMA read operation
6133          * on the PCIe bus. This means that it will take twice as long to fetch
6134          * a TX frame that is split into header and payload buffers as it does
6135          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6136          * these controllers, coalescing buffers to reduce the number of memory
6137          * reads is effective way to get maximum performance(about 940Mbps).
6138          * Without collapsing TX buffers the maximum TCP bulk transfer
6139          * performance is about 850Mbps. However forcing coalescing mbufs
6140          * consumes a lot of CPU cycles, so leave it off by default.
6141          */
6142         sc->bge_forced_collapse = 0;
6143         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6144         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6145         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6146             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6147             "Number of fragmented TX buffers of a frame allowed before "
6148             "forced collapsing");
6149
6150         sc->bge_msi = 1;
6151         snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6152         TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6153         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6154             CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6155
6156         /*
6157          * It seems all Broadcom controllers have a bug that can generate UDP
6158          * datagrams with checksum value 0 when TX UDP checksum offloading is
6159          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6160          * Even though the probability of generating such UDP datagrams is
6161          * low, I don't want to see FreeBSD boxes to inject such datagrams
6162          * into network so disable UDP checksum offloading by default.  Users
6163          * still override this behavior by setting a sysctl variable,
6164          * dev.bge.0.forced_udpcsum.
6165          */
6166         sc->bge_forced_udpcsum = 0;
6167         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6168         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6169         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6170             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6171             "Enable UDP checksum offloading even if controller can "
6172             "generate UDP checksum value 0");
6173
6174         if (BGE_IS_5705_PLUS(sc))
6175                 bge_add_sysctl_stats_regs(sc, ctx, children);
6176         else
6177                 bge_add_sysctl_stats(sc, ctx, children);
6178 }
6179
6180 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6181         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6182             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6183             desc)
6184
6185 static void
6186 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6187     struct sysctl_oid_list *parent)
6188 {
6189         struct sysctl_oid *tree;
6190         struct sysctl_oid_list *children, *schildren;
6191
6192         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6193             NULL, "BGE Statistics");
6194         schildren = children = SYSCTL_CHILDREN(tree);
6195         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6196             children, COSFramesDroppedDueToFilters,
6197             "FramesDroppedDueToFilters");
6198         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6199             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6200         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6201             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6202         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6203             children, nicNoMoreRxBDs, "NoMoreRxBDs");
6204         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6205             children, ifInDiscards, "InputDiscards");
6206         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6207             children, ifInErrors, "InputErrors");
6208         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6209             children, nicRecvThresholdHit, "RecvThresholdHit");
6210         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6211             children, nicDmaReadQueueFull, "DmaReadQueueFull");
6212         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6213             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6214         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6215             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6216         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6217             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6218         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6219             children, nicRingStatusUpdate, "RingStatusUpdate");
6220         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6221             children, nicInterrupts, "Interrupts");
6222         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6223             children, nicAvoidedInterrupts, "AvoidedInterrupts");
6224         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6225             children, nicSendThresholdHit, "SendThresholdHit");
6226
6227         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6228             NULL, "BGE RX Statistics");
6229         children = SYSCTL_CHILDREN(tree);
6230         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6231             children, rxstats.ifHCInOctets, "ifHCInOctets");
6232         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6233             children, rxstats.etherStatsFragments, "Fragments");
6234         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6235             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6236         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6237             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6238         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6239             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6240         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6241             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6242         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6243             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6244         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6245             children, rxstats.xoffPauseFramesReceived,
6246             "xoffPauseFramesReceived");
6247         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6248             children, rxstats.macControlFramesReceived,
6249             "ControlFramesReceived");
6250         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6251             children, rxstats.xoffStateEntered, "xoffStateEntered");
6252         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6253             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6254         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6255             children, rxstats.etherStatsJabbers, "Jabbers");
6256         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6257             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6258         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6259             children, rxstats.inRangeLengthError, "inRangeLengthError");
6260         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6261             children, rxstats.outRangeLengthError, "outRangeLengthError");
6262
6263         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6264             NULL, "BGE TX Statistics");
6265         children = SYSCTL_CHILDREN(tree);
6266         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6267             children, txstats.ifHCOutOctets, "ifHCOutOctets");
6268         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6269             children, txstats.etherStatsCollisions, "Collisions");
6270         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6271             children, txstats.outXonSent, "XonSent");
6272         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6273             children, txstats.outXoffSent, "XoffSent");
6274         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6275             children, txstats.flowControlDone, "flowControlDone");
6276         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6277             children, txstats.dot3StatsInternalMacTransmitErrors,
6278             "InternalMacTransmitErrors");
6279         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6280             children, txstats.dot3StatsSingleCollisionFrames,
6281             "SingleCollisionFrames");
6282         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6283             children, txstats.dot3StatsMultipleCollisionFrames,
6284             "MultipleCollisionFrames");
6285         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6286             children, txstats.dot3StatsDeferredTransmissions,
6287             "DeferredTransmissions");
6288         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6289             children, txstats.dot3StatsExcessiveCollisions,
6290             "ExcessiveCollisions");
6291         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6292             children, txstats.dot3StatsLateCollisions,
6293             "LateCollisions");
6294         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6295             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6296         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6297             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6298         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6299             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6300         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6301             children, txstats.dot3StatsCarrierSenseErrors,
6302             "CarrierSenseErrors");
6303         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6304             children, txstats.ifOutDiscards, "Discards");
6305         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6306             children, txstats.ifOutErrors, "Errors");
6307 }
6308
6309 #undef BGE_SYSCTL_STAT
6310
6311 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
6312             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6313
6314 static void
6315 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6316     struct sysctl_oid_list *parent)
6317 {
6318         struct sysctl_oid *tree;
6319         struct sysctl_oid_list *child, *schild;
6320         struct bge_mac_stats *stats;
6321
6322         stats = &sc->bge_mac_stats;
6323         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6324             NULL, "BGE Statistics");
6325         schild = child = SYSCTL_CHILDREN(tree);
6326         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6327             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6328         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6329             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6330         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6331             &stats->DmaWriteHighPriQueueFull,
6332             "NIC DMA Write High Priority Queue Full");
6333         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6334             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6335         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6336             &stats->InputDiscards, "Discarded Input Frames");
6337         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6338             &stats->InputErrors, "Input Errors");
6339         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6340             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6341
6342         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6343             NULL, "BGE RX Statistics");
6344         child = SYSCTL_CHILDREN(tree);
6345         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6346             &stats->ifHCInOctets, "Inbound Octets");
6347         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6348             &stats->etherStatsFragments, "Fragments");
6349         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6350             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6351         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6352             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6353         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6354             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6355         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6356             &stats->dot3StatsFCSErrors, "FCS Errors");
6357         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6358             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6359         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6360             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6361         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6362             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6363         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6364             &stats->macControlFramesReceived, "MAC Control Frames Received");
6365         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6366             &stats->xoffStateEntered, "XOFF State Entered");
6367         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6368             &stats->dot3StatsFramesTooLong, "Frames Too Long");
6369         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6370             &stats->etherStatsJabbers, "Jabbers");
6371         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6372             &stats->etherStatsUndersizePkts, "Undersized Packets");
6373
6374         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6375             NULL, "BGE TX Statistics");
6376         child = SYSCTL_CHILDREN(tree);
6377         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6378             &stats->ifHCOutOctets, "Outbound Octets");
6379         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6380             &stats->etherStatsCollisions, "TX Collisions");
6381         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6382             &stats->outXonSent, "XON Sent");
6383         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6384             &stats->outXoffSent, "XOFF Sent");
6385         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6386             &stats->dot3StatsInternalMacTransmitErrors,
6387             "Internal MAC TX Errors");
6388         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6389             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6390         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6391             &stats->dot3StatsMultipleCollisionFrames,
6392             "Multiple Collision Frames");
6393         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6394             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6395         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6396             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6397         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6398             &stats->dot3StatsLateCollisions, "Late Collisions");
6399         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6400             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6401         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6402             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6403         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6404             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6405 }
6406
6407 #undef  BGE_SYSCTL_STAT_ADD64
6408
6409 static int
6410 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6411 {
6412         struct bge_softc *sc;
6413         uint32_t result;
6414         int offset;
6415
6416         sc = (struct bge_softc *)arg1;
6417         offset = arg2;
6418         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6419             offsetof(bge_hostaddr, bge_addr_lo));
6420         return (sysctl_handle_int(oidp, &result, 0, req));
6421 }
6422
6423 #ifdef BGE_REGISTER_DEBUG
6424 static int
6425 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6426 {
6427         struct bge_softc *sc;
6428         uint16_t *sbdata;
6429         int error, result, sbsz;
6430         int i, j;
6431
6432         result = -1;
6433         error = sysctl_handle_int(oidp, &result, 0, req);
6434         if (error || (req->newptr == NULL))
6435                 return (error);
6436
6437         if (result == 1) {
6438                 sc = (struct bge_softc *)arg1;
6439
6440                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6441                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6442                         sbsz = BGE_STATUS_BLK_SZ;
6443                 else
6444                         sbsz = 32;
6445                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6446                 printf("Status Block:\n");
6447                 BGE_LOCK(sc);
6448                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6449                     sc->bge_cdata.bge_status_map,
6450                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6451                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6452                         printf("%06x:", i);
6453                         for (j = 0; j < 8; j++)
6454                                 printf(" %04x", sbdata[i++]);
6455                         printf("\n");
6456                 }
6457
6458                 printf("Registers:\n");
6459                 for (i = 0x800; i < 0xA00; ) {
6460                         printf("%06x:", i);
6461                         for (j = 0; j < 8; j++) {
6462                                 printf(" %08x", CSR_READ_4(sc, i));
6463                                 i += 4;
6464                         }
6465                         printf("\n");
6466                 }
6467                 BGE_UNLOCK(sc);
6468
6469                 printf("Hardware Flags:\n");
6470                 if (BGE_IS_5717_PLUS(sc))
6471                         printf(" - 5717 Plus\n");
6472                 if (BGE_IS_5755_PLUS(sc))
6473                         printf(" - 5755 Plus\n");
6474                 if (BGE_IS_575X_PLUS(sc))
6475                         printf(" - 575X Plus\n");
6476                 if (BGE_IS_5705_PLUS(sc))
6477                         printf(" - 5705 Plus\n");
6478                 if (BGE_IS_5714_FAMILY(sc))
6479                         printf(" - 5714 Family\n");
6480                 if (BGE_IS_5700_FAMILY(sc))
6481                         printf(" - 5700 Family\n");
6482                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6483                         printf(" - Supports Jumbo Frames\n");
6484                 if (sc->bge_flags & BGE_FLAG_PCIX)
6485                         printf(" - PCI-X Bus\n");
6486                 if (sc->bge_flags & BGE_FLAG_PCIE)
6487                         printf(" - PCI Express Bus\n");
6488                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6489                         printf(" - No 3 LEDs\n");
6490                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6491                         printf(" - RX Alignment Bug\n");
6492         }
6493
6494         return (error);
6495 }
6496
6497 static int
6498 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6499 {
6500         struct bge_softc *sc;
6501         int error;
6502         uint16_t result;
6503         uint32_t val;
6504
6505         result = -1;
6506         error = sysctl_handle_int(oidp, &result, 0, req);
6507         if (error || (req->newptr == NULL))
6508                 return (error);
6509
6510         if (result < 0x8000) {
6511                 sc = (struct bge_softc *)arg1;
6512                 val = CSR_READ_4(sc, result);
6513                 printf("reg 0x%06X = 0x%08X\n", result, val);
6514         }
6515
6516         return (error);
6517 }
6518
6519 static int
6520 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6521 {
6522         struct bge_softc *sc;
6523         int error;
6524         uint16_t result;
6525         uint32_t val;
6526
6527         result = -1;
6528         error = sysctl_handle_int(oidp, &result, 0, req);
6529         if (error || (req->newptr == NULL))
6530                 return (error);
6531
6532         if (result < 0x8000) {
6533                 sc = (struct bge_softc *)arg1;
6534                 val = APE_READ_4(sc, result);
6535                 printf("reg 0x%06X = 0x%08X\n", result, val);
6536         }
6537
6538         return (error);
6539 }
6540
6541 static int
6542 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6543 {
6544         struct bge_softc *sc;
6545         int error;
6546         uint16_t result;
6547         uint32_t val;
6548
6549         result = -1;
6550         error = sysctl_handle_int(oidp, &result, 0, req);
6551         if (error || (req->newptr == NULL))
6552                 return (error);
6553
6554         if (result < 0x8000) {
6555                 sc = (struct bge_softc *)arg1;
6556                 val = bge_readmem_ind(sc, result);
6557                 printf("mem 0x%06X = 0x%08X\n", result, val);
6558         }
6559
6560         return (error);
6561 }
6562 #endif
6563
6564 static int
6565 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6566 {
6567
6568         if (sc->bge_flags & BGE_FLAG_EADDR)
6569                 return (1);
6570
6571 #ifdef __sparc64__
6572         OF_getetheraddr(sc->bge_dev, ether_addr);
6573         return (0);
6574 #endif
6575         return (1);
6576 }
6577
6578 static int
6579 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6580 {
6581         uint32_t mac_addr;
6582
6583         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6584         if ((mac_addr >> 16) == 0x484b) {
6585                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6586                 ether_addr[1] = (uint8_t)mac_addr;
6587                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6588                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6589                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6590                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6591                 ether_addr[5] = (uint8_t)mac_addr;
6592                 return (0);
6593         }
6594         return (1);
6595 }
6596
6597 static int
6598 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6599 {
6600         int mac_offset = BGE_EE_MAC_OFFSET;
6601
6602         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6603                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6604
6605         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6606             ETHER_ADDR_LEN));
6607 }
6608
6609 static int
6610 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6611 {
6612
6613         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6614                 return (1);
6615
6616         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6617            ETHER_ADDR_LEN));
6618 }
6619
6620 static int
6621 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6622 {
6623         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6624                 /* NOTE: Order is critical */
6625                 bge_get_eaddr_fw,
6626                 bge_get_eaddr_mem,
6627                 bge_get_eaddr_nvram,
6628                 bge_get_eaddr_eeprom,
6629                 NULL
6630         };
6631         const bge_eaddr_fcn_t *func;
6632
6633         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6634                 if ((*func)(sc, eaddr) == 0)
6635                         break;
6636         }
6637         return (*func == NULL ? ENXIO : 0);
6638 }