]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - sys/dev/drm2/i915/intel_ringbuffer.c
Copy stable/10@r272459 to releng/10.1 as part of
[FreeBSD/releng/10.1.git] / sys / dev / drm2 / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <dev/drm2/drmP.h>
34 #include <dev/drm2/drm.h>
35 #include <dev/drm2/i915/i915_drm.h>
36 #include <dev/drm2/i915/i915_drv.h>
37 #include <dev/drm2/i915/intel_drv.h>
38 #include <dev/drm2/i915/intel_ringbuffer.h>
39 #include <sys/sched.h>
40 #include <sys/sf_buf.h>
41
42 /*
43  * 965+ support PIPE_CONTROL commands, which provide finer grained control
44  * over cache flushing.
45  */
46 struct pipe_control {
47         struct drm_i915_gem_object *obj;
48         volatile u32 *cpu_page;
49         u32 gtt_offset;
50 };
51
52 void
53 i915_trace_irq_get(struct intel_ring_buffer *ring, uint32_t seqno)
54 {
55
56         if (ring->trace_irq_seqno == 0) {
57                 mtx_lock(&ring->irq_lock);
58                 if (ring->irq_get(ring))
59                         ring->trace_irq_seqno = seqno;
60                 mtx_unlock(&ring->irq_lock);
61         }
62 }
63
64 static inline int ring_space(struct intel_ring_buffer *ring)
65 {
66         int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
67         if (space < 0)
68                 space += ring->size;
69         return space;
70 }
71
72 static int
73 render_ring_flush(struct intel_ring_buffer *ring,
74                   uint32_t      invalidate_domains,
75                   uint32_t      flush_domains)
76 {
77         struct drm_device *dev = ring->dev;
78         uint32_t cmd;
79         int ret;
80
81         /*
82          * read/write caches:
83          *
84          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
85          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
86          * also flushed at 2d versus 3d pipeline switches.
87          *
88          * read-only caches:
89          *
90          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
91          * MI_READ_FLUSH is set, and is always flushed on 965.
92          *
93          * I915_GEM_DOMAIN_COMMAND may not exist?
94          *
95          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
96          * invalidated when MI_EXE_FLUSH is set.
97          *
98          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
99          * invalidated with every MI_FLUSH.
100          *
101          * TLBs:
102          *
103          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
104          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
105          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
106          * are flushed at any MI_FLUSH.
107          */
108
109         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
110         if ((invalidate_domains|flush_domains) &
111             I915_GEM_DOMAIN_RENDER)
112                 cmd &= ~MI_NO_WRITE_FLUSH;
113         if (INTEL_INFO(dev)->gen < 4) {
114                 /*
115                  * On the 965, the sampler cache always gets flushed
116                  * and this bit is reserved.
117                  */
118                 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
119                         cmd |= MI_READ_FLUSH;
120         }
121         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
122                 cmd |= MI_EXE_FLUSH;
123
124         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
125             (IS_G4X(dev) || IS_GEN5(dev)))
126                 cmd |= MI_INVALIDATE_ISP;
127
128         ret = intel_ring_begin(ring, 2);
129         if (ret)
130                 return ret;
131
132         intel_ring_emit(ring, cmd);
133         intel_ring_emit(ring, MI_NOOP);
134         intel_ring_advance(ring);
135
136         return 0;
137 }
138
139 /**
140  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
141  * implementing two workarounds on gen6.  From section 1.4.7.1
142  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
143  *
144  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
145  * produced by non-pipelined state commands), software needs to first
146  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
147  * 0.
148  *
149  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
150  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
151  *
152  * And the workaround for these two requires this workaround first:
153  *
154  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
155  * BEFORE the pipe-control with a post-sync op and no write-cache
156  * flushes.
157  *
158  * And this last workaround is tricky because of the requirements on
159  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
160  * volume 2 part 1:
161  *
162  *     "1 of the following must also be set:
163  *      - Render Target Cache Flush Enable ([12] of DW1)
164  *      - Depth Cache Flush Enable ([0] of DW1)
165  *      - Stall at Pixel Scoreboard ([1] of DW1)
166  *      - Depth Stall ([13] of DW1)
167  *      - Post-Sync Operation ([13] of DW1)
168  *      - Notify Enable ([8] of DW1)"
169  *
170  * The cache flushes require the workaround flush that triggered this
171  * one, so we can't use it.  Depth stall would trigger the same.
172  * Post-sync nonzero is what triggered this second workaround, so we
173  * can't use that one either.  Notify enable is IRQs, which aren't
174  * really our business.  That leaves only stall at scoreboard.
175  */
176 static int
177 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
178 {
179         struct pipe_control *pc = ring->private;
180         u32 scratch_addr = pc->gtt_offset + 128;
181         int ret;
182
183
184         ret = intel_ring_begin(ring, 6);
185         if (ret)
186                 return ret;
187
188         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
189         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
190                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
191         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
192         intel_ring_emit(ring, 0); /* low dword */
193         intel_ring_emit(ring, 0); /* high dword */
194         intel_ring_emit(ring, MI_NOOP);
195         intel_ring_advance(ring);
196
197         ret = intel_ring_begin(ring, 6);
198         if (ret)
199                 return ret;
200
201         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
202         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
203         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
204         intel_ring_emit(ring, 0);
205         intel_ring_emit(ring, 0);
206         intel_ring_emit(ring, MI_NOOP);
207         intel_ring_advance(ring);
208
209         return 0;
210 }
211
212 static int
213 gen6_render_ring_flush(struct intel_ring_buffer *ring,
214                          u32 invalidate_domains, u32 flush_domains)
215 {
216         u32 flags = 0;
217         struct pipe_control *pc = ring->private;
218         u32 scratch_addr = pc->gtt_offset + 128;
219         int ret;
220
221         /* Force SNB workarounds for PIPE_CONTROL flushes */
222         intel_emit_post_sync_nonzero_flush(ring);
223
224         /* Just flush everything.  Experiments have shown that reducing the
225          * number of bits based on the write domains has little performance
226          * impact.
227          */
228         flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229         flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
230         flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
231         flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232         flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
233         flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
234         flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
235
236         ret = intel_ring_begin(ring, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, flags);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
243         intel_ring_emit(ring, 0); /* lower dword */
244         intel_ring_emit(ring, 0); /* uppwer dword */
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static void ring_write_tail(struct intel_ring_buffer *ring,
252                             uint32_t value)
253 {
254         drm_i915_private_t *dev_priv = ring->dev->dev_private;
255         I915_WRITE_TAIL(ring, value);
256 }
257
258 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
259 {
260         drm_i915_private_t *dev_priv = ring->dev->dev_private;
261         uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
262                         RING_ACTHD(ring->mmio_base) : ACTHD;
263
264         return I915_READ(acthd_reg);
265 }
266
267 static int init_ring_common(struct intel_ring_buffer *ring)
268 {
269         drm_i915_private_t *dev_priv = ring->dev->dev_private;
270         struct drm_i915_gem_object *obj = ring->obj;
271         uint32_t head;
272
273         /* Stop the ring if it's running. */
274         I915_WRITE_CTL(ring, 0);
275         I915_WRITE_HEAD(ring, 0);
276         ring->write_tail(ring, 0);
277
278         /* Initialize the ring. */
279         I915_WRITE_START(ring, obj->gtt_offset);
280         head = I915_READ_HEAD(ring) & HEAD_ADDR;
281
282         /* G45 ring initialization fails to reset head to zero */
283         if (head != 0) {
284                 DRM_DEBUG("%s head not reset to zero "
285                               "ctl %08x head %08x tail %08x start %08x\n",
286                               ring->name,
287                               I915_READ_CTL(ring),
288                               I915_READ_HEAD(ring),
289                               I915_READ_TAIL(ring),
290                               I915_READ_START(ring));
291
292                 I915_WRITE_HEAD(ring, 0);
293
294                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
295                         DRM_ERROR("failed to set %s head to zero "
296                                   "ctl %08x head %08x tail %08x start %08x\n",
297                                   ring->name,
298                                   I915_READ_CTL(ring),
299                                   I915_READ_HEAD(ring),
300                                   I915_READ_TAIL(ring),
301                                   I915_READ_START(ring));
302                 }
303         }
304
305         I915_WRITE_CTL(ring,
306                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
307                         | RING_VALID);
308
309         /* If the head is still not zero, the ring is dead */
310         if (_intel_wait_for(ring->dev,
311             (I915_READ_CTL(ring) & RING_VALID) != 0 &&
312              I915_READ_START(ring) == obj->gtt_offset &&
313              (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
314             50, 1, "915rii")) {
315                 DRM_ERROR("%s initialization failed "
316                                 "ctl %08x head %08x tail %08x start %08x\n",
317                                 ring->name,
318                                 I915_READ_CTL(ring),
319                                 I915_READ_HEAD(ring),
320                                 I915_READ_TAIL(ring),
321                                 I915_READ_START(ring));
322                 return -EIO;
323         }
324
325         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
326                 i915_kernel_lost_context(ring->dev);
327         else {
328                 ring->head = I915_READ_HEAD(ring);
329                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
330                 ring->space = ring_space(ring);
331         }
332
333         return 0;
334 }
335
336 static int
337 init_pipe_control(struct intel_ring_buffer *ring)
338 {
339         struct pipe_control *pc;
340         struct drm_i915_gem_object *obj;
341         int ret;
342
343         if (ring->private)
344                 return 0;
345
346         pc = malloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
347         if (!pc)
348                 return -ENOMEM;
349
350         obj = i915_gem_alloc_object(ring->dev, 4096);
351         if (obj == NULL) {
352                 DRM_ERROR("Failed to allocate seqno page\n");
353                 ret = -ENOMEM;
354                 goto err;
355         }
356
357         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
358
359         ret = i915_gem_object_pin(obj, 4096, true);
360         if (ret)
361                 goto err_unref;
362
363         pc->gtt_offset = obj->gtt_offset;
364         pc->cpu_page = (uint32_t *)kva_alloc(PAGE_SIZE);
365         if (pc->cpu_page == NULL)
366                 goto err_unpin;
367         pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
368         pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
369             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
370
371         pc->obj = obj;
372         ring->private = pc;
373         return 0;
374
375 err_unpin:
376         i915_gem_object_unpin(obj);
377 err_unref:
378         drm_gem_object_unreference(&obj->base);
379 err:
380         free(pc, DRM_I915_GEM);
381         return ret;
382 }
383
384 static void
385 cleanup_pipe_control(struct intel_ring_buffer *ring)
386 {
387         struct pipe_control *pc = ring->private;
388         struct drm_i915_gem_object *obj;
389
390         if (!ring->private)
391                 return;
392
393         obj = pc->obj;
394         pmap_qremove((vm_offset_t)pc->cpu_page, 1);
395         kva_free((uintptr_t)pc->cpu_page, PAGE_SIZE);
396         i915_gem_object_unpin(obj);
397         drm_gem_object_unreference(&obj->base);
398
399         free(pc, DRM_I915_GEM);
400         ring->private = NULL;
401 }
402
403 static int init_render_ring(struct intel_ring_buffer *ring)
404 {
405         struct drm_device *dev = ring->dev;
406         struct drm_i915_private *dev_priv = dev->dev_private;
407         int ret = init_ring_common(ring);
408
409         if (INTEL_INFO(dev)->gen > 3) {
410                 int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
411                 I915_WRITE(MI_MODE, mode);
412                 if (IS_GEN7(dev))
413                         I915_WRITE(GFX_MODE_GEN7,
414                                    GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
415                                    GFX_MODE_ENABLE(GFX_REPLAY_MODE));
416         }
417
418         if (INTEL_INFO(dev)->gen >= 5) {
419                 ret = init_pipe_control(ring);
420                 if (ret)
421                         return ret;
422         }
423
424
425         if (IS_GEN6(dev)) {
426                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
427                  * "If this bit is set, STCunit will have LRA as replacement
428                  *  policy. [...] This bit must be reset.  LRA replacement
429                  *  policy is not supported."
430                  */
431                 I915_WRITE(CACHE_MODE_0,
432                            CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
433
434                 /* This is not explicitly set for GEN6, so read the register.
435                  * see intel_ring_mi_set_context() for why we care.
436                  * TODO: consider explicitly setting the bit for GEN5
437                  */
438                 ring->itlb_before_ctx_switch =
439                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
440         }
441
442         if (INTEL_INFO(dev)->gen >= 6) {
443                 I915_WRITE(INSTPM,
444                            INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
445         }
446
447         return ret;
448 }
449
450 static void render_ring_cleanup(struct intel_ring_buffer *ring)
451 {
452         if (!ring->private)
453                 return;
454
455         cleanup_pipe_control(ring);
456 }
457
458 static void
459 update_mboxes(struct intel_ring_buffer *ring,
460             u32 seqno,
461             u32 mmio_offset)
462 {
463         intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
464                               MI_SEMAPHORE_GLOBAL_GTT |
465                               MI_SEMAPHORE_REGISTER |
466                               MI_SEMAPHORE_UPDATE);
467         intel_ring_emit(ring, seqno);
468         intel_ring_emit(ring, mmio_offset);
469 }
470
471 /**
472  * gen6_add_request - Update the semaphore mailbox registers
473  * 
474  * @ring - ring that is adding a request
475  * @seqno - return seqno stuck into the ring
476  *
477  * Update the mailbox registers in the *other* rings with the current seqno.
478  * This acts like a signal in the canonical semaphore.
479  */
480 static int
481 gen6_add_request(struct intel_ring_buffer *ring,
482                  u32 *seqno)
483 {
484         u32 mbox1_reg;
485         u32 mbox2_reg;
486         int ret;
487
488         ret = intel_ring_begin(ring, 10);
489         if (ret)
490                 return ret;
491
492         mbox1_reg = ring->signal_mbox[0];
493         mbox2_reg = ring->signal_mbox[1];
494
495         *seqno = i915_gem_next_request_seqno(ring);
496
497         update_mboxes(ring, *seqno, mbox1_reg);
498         update_mboxes(ring, *seqno, mbox2_reg);
499         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
500         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
501         intel_ring_emit(ring, *seqno);
502         intel_ring_emit(ring, MI_USER_INTERRUPT);
503         intel_ring_advance(ring);
504
505         return 0;
506 }
507
508 /**
509  * intel_ring_sync - sync the waiter to the signaller on seqno
510  *
511  * @waiter - ring that is waiting
512  * @signaller - ring which has, or will signal
513  * @seqno - seqno which the waiter will block on
514  */
515 static int
516 intel_ring_sync(struct intel_ring_buffer *waiter,
517                 struct intel_ring_buffer *signaller,
518                 int ring,
519                 u32 seqno)
520 {
521         int ret;
522         u32 dw1 = MI_SEMAPHORE_MBOX |
523                   MI_SEMAPHORE_COMPARE |
524                   MI_SEMAPHORE_REGISTER;
525
526         ret = intel_ring_begin(waiter, 4);
527         if (ret)
528                 return ret;
529
530         intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
531         intel_ring_emit(waiter, seqno);
532         intel_ring_emit(waiter, 0);
533         intel_ring_emit(waiter, MI_NOOP);
534         intel_ring_advance(waiter);
535
536         return 0;
537 }
538
539 int render_ring_sync_to(struct intel_ring_buffer *waiter,
540     struct intel_ring_buffer *signaller, u32 seqno);
541 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
542     struct intel_ring_buffer *signaller, u32 seqno);
543 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
544     struct intel_ring_buffer *signaller, u32 seqno);
545
546 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
547 int
548 render_ring_sync_to(struct intel_ring_buffer *waiter,
549                     struct intel_ring_buffer *signaller,
550                     u32 seqno)
551 {
552         KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
553             ("valid RCS semaphore"));
554         return intel_ring_sync(waiter,
555                                signaller,
556                                RCS,
557                                seqno);
558 }
559
560 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
561 int
562 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
563                       struct intel_ring_buffer *signaller,
564                       u32 seqno)
565 {
566         KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
567             ("Valid VCS semaphore"));
568         return intel_ring_sync(waiter,
569                                signaller,
570                                VCS,
571                                seqno);
572 }
573
574 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
575 int
576 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
577                       struct intel_ring_buffer *signaller,
578                       u32 seqno)
579 {
580         KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
581             ("Valid BCS semaphore"));
582         return intel_ring_sync(waiter,
583                                signaller,
584                                BCS,
585                                seqno);
586 }
587
588 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
589 do {                                                                    \
590         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
591                  PIPE_CONTROL_DEPTH_STALL);                             \
592         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
593         intel_ring_emit(ring__, 0);                                                     \
594         intel_ring_emit(ring__, 0);                                                     \
595 } while (0)
596
597 static int
598 pc_render_add_request(struct intel_ring_buffer *ring,
599                       uint32_t *result)
600 {
601         u32 seqno = i915_gem_next_request_seqno(ring);
602         struct pipe_control *pc = ring->private;
603         u32 scratch_addr = pc->gtt_offset + 128;
604         int ret;
605
606         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
607          * incoherent with writes to memory, i.e. completely fubar,
608          * so we need to use PIPE_NOTIFY instead.
609          *
610          * However, we also need to workaround the qword write
611          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
612          * memory before requesting an interrupt.
613          */
614         ret = intel_ring_begin(ring, 32);
615         if (ret)
616                 return ret;
617
618         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
619                         PIPE_CONTROL_WRITE_FLUSH |
620                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
621         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
622         intel_ring_emit(ring, seqno);
623         intel_ring_emit(ring, 0);
624         PIPE_CONTROL_FLUSH(ring, scratch_addr);
625         scratch_addr += 128; /* write to separate cachelines */
626         PIPE_CONTROL_FLUSH(ring, scratch_addr);
627         scratch_addr += 128;
628         PIPE_CONTROL_FLUSH(ring, scratch_addr);
629         scratch_addr += 128;
630         PIPE_CONTROL_FLUSH(ring, scratch_addr);
631         scratch_addr += 128;
632         PIPE_CONTROL_FLUSH(ring, scratch_addr);
633         scratch_addr += 128;
634         PIPE_CONTROL_FLUSH(ring, scratch_addr);
635         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
636                         PIPE_CONTROL_WRITE_FLUSH |
637                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
638                         PIPE_CONTROL_NOTIFY);
639         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
640         intel_ring_emit(ring, seqno);
641         intel_ring_emit(ring, 0);
642         intel_ring_advance(ring);
643
644         *result = seqno;
645         return 0;
646 }
647
648 static int
649 render_ring_add_request(struct intel_ring_buffer *ring,
650                         uint32_t *result)
651 {
652         u32 seqno = i915_gem_next_request_seqno(ring);
653         int ret;
654
655         ret = intel_ring_begin(ring, 4);
656         if (ret)
657                 return ret;
658
659         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
660         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
661         intel_ring_emit(ring, seqno);
662         intel_ring_emit(ring, MI_USER_INTERRUPT);
663         intel_ring_advance(ring);
664
665         *result = seqno;
666         return 0;
667 }
668
669  static u32
670 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
671 {
672         struct drm_device *dev = ring->dev;
673
674         /* Workaround to force correct ordering between irq and seqno writes on
675          * ivb (and maybe also on snb) by reading from a CS register (like
676          * ACTHD) before reading the status page. */
677         if (/* IS_GEN6(dev) || */IS_GEN7(dev))
678                 intel_ring_get_active_head(ring);
679         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
680 }
681
682 static uint32_t
683 ring_get_seqno(struct intel_ring_buffer *ring)
684 {
685         if (ring->status_page.page_addr == NULL)
686                 return (-1);
687         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
688 }
689
690 static uint32_t
691 pc_render_get_seqno(struct intel_ring_buffer *ring)
692 {
693         struct pipe_control *pc = ring->private;
694         if (pc != NULL)
695                 return pc->cpu_page[0];
696         else
697                 return (-1);
698 }
699
700 static void
701 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
702 {
703         dev_priv->gt_irq_mask &= ~mask;
704         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
705         POSTING_READ(GTIMR);
706 }
707
708 static void
709 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
710 {
711         dev_priv->gt_irq_mask |= mask;
712         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
713         POSTING_READ(GTIMR);
714 }
715
716 static void
717 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
718 {
719         dev_priv->irq_mask &= ~mask;
720         I915_WRITE(IMR, dev_priv->irq_mask);
721         POSTING_READ(IMR);
722 }
723
724 static void
725 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
726 {
727         dev_priv->irq_mask |= mask;
728         I915_WRITE(IMR, dev_priv->irq_mask);
729         POSTING_READ(IMR);
730 }
731
732 static bool
733 render_ring_get_irq(struct intel_ring_buffer *ring)
734 {
735         struct drm_device *dev = ring->dev;
736         drm_i915_private_t *dev_priv = dev->dev_private;
737
738         if (!dev->irq_enabled)
739                 return false;
740
741         mtx_assert(&ring->irq_lock, MA_OWNED);
742         if (ring->irq_refcount++ == 0) {
743                 if (HAS_PCH_SPLIT(dev))
744                         ironlake_enable_irq(dev_priv,
745                                             GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
746                 else
747                         i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
748         }
749
750         return true;
751 }
752
753 static void
754 render_ring_put_irq(struct intel_ring_buffer *ring)
755 {
756         struct drm_device *dev = ring->dev;
757         drm_i915_private_t *dev_priv = dev->dev_private;
758
759         mtx_assert(&ring->irq_lock, MA_OWNED);
760         if (--ring->irq_refcount == 0) {
761                 if (HAS_PCH_SPLIT(dev))
762                         ironlake_disable_irq(dev_priv,
763                                              GT_USER_INTERRUPT |
764                                              GT_PIPE_NOTIFY);
765                 else
766                         i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
767         }
768 }
769
770 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
771 {
772         struct drm_device *dev = ring->dev;
773         drm_i915_private_t *dev_priv = dev->dev_private;
774         uint32_t mmio = 0;
775
776         /* The ring status page addresses are no longer next to the rest of
777          * the ring registers as of gen7.
778          */
779         if (IS_GEN7(dev)) {
780                 switch (ring->id) {
781                 case RCS:
782                         mmio = RENDER_HWS_PGA_GEN7;
783                         break;
784                 case BCS:
785                         mmio = BLT_HWS_PGA_GEN7;
786                         break;
787                 case VCS:
788                         mmio = BSD_HWS_PGA_GEN7;
789                         break;
790                 }
791         } else if (IS_GEN6(dev)) {
792                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
793         } else {
794                 mmio = RING_HWS_PGA(ring->mmio_base);
795         }
796
797         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
798         POSTING_READ(mmio);
799 }
800
801 static int
802 bsd_ring_flush(struct intel_ring_buffer *ring,
803                uint32_t     invalidate_domains,
804                uint32_t     flush_domains)
805 {
806         int ret;
807
808         ret = intel_ring_begin(ring, 2);
809         if (ret)
810                 return ret;
811
812         intel_ring_emit(ring, MI_FLUSH);
813         intel_ring_emit(ring, MI_NOOP);
814         intel_ring_advance(ring);
815         return 0;
816 }
817
818 static int
819 ring_add_request(struct intel_ring_buffer *ring,
820                  uint32_t *result)
821 {
822         uint32_t seqno;
823         int ret;
824
825         ret = intel_ring_begin(ring, 4);
826         if (ret)
827                 return ret;
828
829         seqno = i915_gem_next_request_seqno(ring);
830
831         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
832         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
833         intel_ring_emit(ring, seqno);
834         intel_ring_emit(ring, MI_USER_INTERRUPT);
835         intel_ring_advance(ring);
836
837         *result = seqno;
838         return 0;
839 }
840
841 static bool
842 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
843 {
844         struct drm_device *dev = ring->dev;
845         drm_i915_private_t *dev_priv = dev->dev_private;
846
847         if (!dev->irq_enabled)
848                return false;
849
850         gen6_gt_force_wake_get(dev_priv);
851
852         mtx_assert(&ring->irq_lock, MA_OWNED);
853         if (ring->irq_refcount++ == 0) {
854                 ring->irq_mask &= ~rflag;
855                 I915_WRITE_IMR(ring, ring->irq_mask);
856                 ironlake_enable_irq(dev_priv, gflag);
857         }
858
859         return true;
860 }
861
862 static void
863 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
864 {
865         struct drm_device *dev = ring->dev;
866         drm_i915_private_t *dev_priv = dev->dev_private;
867
868         mtx_assert(&ring->irq_lock, MA_OWNED);
869         if (--ring->irq_refcount == 0) {
870                 ring->irq_mask |= rflag;
871                 I915_WRITE_IMR(ring, ring->irq_mask);
872                 ironlake_disable_irq(dev_priv, gflag);
873         }
874
875         gen6_gt_force_wake_put(dev_priv);
876 }
877
878 static bool
879 bsd_ring_get_irq(struct intel_ring_buffer *ring)
880 {
881         struct drm_device *dev = ring->dev;
882         drm_i915_private_t *dev_priv = dev->dev_private;
883
884         if (!dev->irq_enabled)
885                 return false;
886
887         mtx_assert(&ring->irq_lock, MA_OWNED);
888         if (ring->irq_refcount++ == 0) {
889                 if (IS_G4X(dev))
890                         i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
891                 else
892                         ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
893         }
894
895         return true;
896 }
897 static void
898 bsd_ring_put_irq(struct intel_ring_buffer *ring)
899 {
900         struct drm_device *dev = ring->dev;
901         drm_i915_private_t *dev_priv = dev->dev_private;
902
903         mtx_assert(&ring->irq_lock, MA_OWNED);
904         if (--ring->irq_refcount == 0) {
905                 if (IS_G4X(dev))
906                         i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
907                 else
908                         ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
909         }
910 }
911
912 static int
913 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
914     uint32_t length)
915 {
916         int ret;
917
918         ret = intel_ring_begin(ring, 2);
919         if (ret)
920                 return ret;
921
922         intel_ring_emit(ring,
923                         MI_BATCH_BUFFER_START | (2 << 6) |
924                         MI_BATCH_NON_SECURE_I965);
925         intel_ring_emit(ring, offset);
926         intel_ring_advance(ring);
927
928         return 0;
929 }
930
931 static int
932 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
933                                 uint32_t offset, uint32_t len)
934 {
935         struct drm_device *dev = ring->dev;
936         int ret;
937
938         if (IS_I830(dev) || IS_845G(dev)) {
939                 ret = intel_ring_begin(ring, 4);
940                 if (ret)
941                         return ret;
942
943                 intel_ring_emit(ring, MI_BATCH_BUFFER);
944                 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
945                 intel_ring_emit(ring, offset + len - 8);
946                 intel_ring_emit(ring, 0);
947         } else {
948                 ret = intel_ring_begin(ring, 2);
949                 if (ret)
950                         return ret;
951
952                 if (INTEL_INFO(dev)->gen >= 4) {
953                         intel_ring_emit(ring,
954                                         MI_BATCH_BUFFER_START | (2 << 6) |
955                                         MI_BATCH_NON_SECURE_I965);
956                         intel_ring_emit(ring, offset);
957                 } else {
958                         intel_ring_emit(ring,
959                                         MI_BATCH_BUFFER_START | (2 << 6));
960                         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
961                 }
962         }
963         intel_ring_advance(ring);
964
965         return 0;
966 }
967
968 static void cleanup_status_page(struct intel_ring_buffer *ring)
969 {
970         drm_i915_private_t *dev_priv = ring->dev->dev_private;
971         struct drm_i915_gem_object *obj;
972
973         obj = ring->status_page.obj;
974         if (obj == NULL)
975                 return;
976
977         pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
978         kva_free((vm_offset_t)ring->status_page.page_addr,
979             PAGE_SIZE);
980         i915_gem_object_unpin(obj);
981         drm_gem_object_unreference(&obj->base);
982         ring->status_page.obj = NULL;
983
984         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
985 }
986
987 static int init_status_page(struct intel_ring_buffer *ring)
988 {
989         struct drm_device *dev = ring->dev;
990         drm_i915_private_t *dev_priv = dev->dev_private;
991         struct drm_i915_gem_object *obj;
992         int ret;
993
994         obj = i915_gem_alloc_object(dev, 4096);
995         if (obj == NULL) {
996                 DRM_ERROR("Failed to allocate status page\n");
997                 ret = -ENOMEM;
998                 goto err;
999         }
1000
1001         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1002
1003         ret = i915_gem_object_pin(obj, 4096, true);
1004         if (ret != 0) {
1005                 goto err_unref;
1006         }
1007
1008         ring->status_page.gfx_addr = obj->gtt_offset;
1009         ring->status_page.page_addr = (void *)kva_alloc(PAGE_SIZE);
1010         if (ring->status_page.page_addr == NULL) {
1011                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1012                 goto err_unpin;
1013         }
1014         pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1015             1);
1016         pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1017             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1018         ring->status_page.obj = obj;
1019         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1020
1021         intel_ring_setup_status_page(ring);
1022         DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1023                         ring->name, ring->status_page.gfx_addr);
1024
1025         return 0;
1026
1027 err_unpin:
1028         i915_gem_object_unpin(obj);
1029 err_unref:
1030         drm_gem_object_unreference(&obj->base);
1031 err:
1032         return ret;
1033 }
1034
1035 static
1036 int intel_init_ring_buffer(struct drm_device *dev,
1037                            struct intel_ring_buffer *ring)
1038 {
1039         struct drm_i915_gem_object *obj;
1040         int ret;
1041
1042         ring->dev = dev;
1043         INIT_LIST_HEAD(&ring->active_list);
1044         INIT_LIST_HEAD(&ring->request_list);
1045         INIT_LIST_HEAD(&ring->gpu_write_list);
1046
1047         mtx_init(&ring->irq_lock, "ringb", NULL, MTX_DEF);
1048         ring->irq_mask = ~0;
1049
1050         if (I915_NEED_GFX_HWS(dev)) {
1051                 ret = init_status_page(ring);
1052                 if (ret)
1053                         return ret;
1054         }
1055
1056         obj = i915_gem_alloc_object(dev, ring->size);
1057         if (obj == NULL) {
1058                 DRM_ERROR("Failed to allocate ringbuffer\n");
1059                 ret = -ENOMEM;
1060                 goto err_hws;
1061         }
1062
1063         ring->obj = obj;
1064
1065         ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1066         if (ret)
1067                 goto err_unref;
1068
1069         ring->map.size = ring->size;
1070         ring->map.offset = dev->agp->base + obj->gtt_offset;
1071         ring->map.type = 0;
1072         ring->map.flags = 0;
1073         ring->map.mtrr = 0;
1074
1075         drm_core_ioremap_wc(&ring->map, dev);
1076         if (ring->map.virtual == NULL) {
1077                 DRM_ERROR("Failed to map ringbuffer.\n");
1078                 ret = -EINVAL;
1079                 goto err_unpin;
1080         }
1081
1082         ring->virtual_start = ring->map.virtual;
1083         ret = ring->init(ring);
1084         if (ret)
1085                 goto err_unmap;
1086
1087         /* Workaround an erratum on the i830 which causes a hang if
1088          * the TAIL pointer points to within the last 2 cachelines
1089          * of the buffer.
1090          */
1091         ring->effective_size = ring->size;
1092         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1093                 ring->effective_size -= 128;
1094
1095         return 0;
1096
1097 err_unmap:
1098         drm_core_ioremapfree(&ring->map, dev);
1099 err_unpin:
1100         i915_gem_object_unpin(obj);
1101 err_unref:
1102         drm_gem_object_unreference(&obj->base);
1103         ring->obj = NULL;
1104 err_hws:
1105         cleanup_status_page(ring);
1106         return ret;
1107 }
1108
1109 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1110 {
1111         struct drm_i915_private *dev_priv;
1112         int ret;
1113
1114         if (ring->obj == NULL)
1115                 return;
1116
1117         /* Disable the ring buffer. The ring must be idle at this point */
1118         dev_priv = ring->dev->dev_private;
1119         ret = intel_wait_ring_idle(ring);
1120         I915_WRITE_CTL(ring, 0);
1121
1122         drm_core_ioremapfree(&ring->map, ring->dev);
1123
1124         i915_gem_object_unpin(ring->obj);
1125         drm_gem_object_unreference(&ring->obj->base);
1126         ring->obj = NULL;
1127
1128         if (ring->cleanup)
1129                 ring->cleanup(ring);
1130
1131         cleanup_status_page(ring);
1132 }
1133
1134 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1135 {
1136         unsigned int *virt;
1137         int rem = ring->size - ring->tail;
1138
1139         if (ring->space < rem) {
1140                 int ret = intel_wait_ring_buffer(ring, rem);
1141                 if (ret)
1142                         return ret;
1143         }
1144
1145         virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1146         rem /= 8;
1147         while (rem--) {
1148                 *virt++ = MI_NOOP;
1149                 *virt++ = MI_NOOP;
1150         }
1151
1152         ring->tail = 0;
1153         ring->space = ring_space(ring);
1154
1155         return 0;
1156 }
1157
1158 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1159 {
1160         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1161         bool was_interruptible;
1162         int ret;
1163
1164         /* XXX As we have not yet audited all the paths to check that
1165          * they are ready for ERESTARTSYS from intel_ring_begin, do not
1166          * allow us to be interruptible by a signal.
1167          */
1168         was_interruptible = dev_priv->mm.interruptible;
1169         dev_priv->mm.interruptible = false;
1170
1171         ret = i915_wait_request(ring, seqno, true);
1172
1173         dev_priv->mm.interruptible = was_interruptible;
1174
1175         return ret;
1176 }
1177
1178 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1179 {
1180         struct drm_i915_gem_request *request;
1181         u32 seqno = 0;
1182         int ret;
1183
1184         i915_gem_retire_requests_ring(ring);
1185
1186         if (ring->last_retired_head != -1) {
1187                 ring->head = ring->last_retired_head;
1188                 ring->last_retired_head = -1;
1189                 ring->space = ring_space(ring);
1190                 if (ring->space >= n)
1191                         return 0;
1192         }
1193
1194         list_for_each_entry(request, &ring->request_list, list) {
1195                 int space;
1196
1197                 if (request->tail == -1)
1198                         continue;
1199
1200                 space = request->tail - (ring->tail + 8);
1201                 if (space < 0)
1202                         space += ring->size;
1203                 if (space >= n) {
1204                         seqno = request->seqno;
1205                         break;
1206                 }
1207
1208                 /* Consume this request in case we need more space than
1209                  * is available and so need to prevent a race between
1210                  * updating last_retired_head and direct reads of
1211                  * I915_RING_HEAD. It also provides a nice sanity check.
1212                  */
1213                 request->tail = -1;
1214         }
1215
1216         if (seqno == 0)
1217                 return -ENOSPC;
1218
1219         ret = intel_ring_wait_seqno(ring, seqno);
1220         if (ret)
1221                 return ret;
1222
1223         if (ring->last_retired_head == -1)
1224                 return -ENOSPC;
1225
1226         ring->head = ring->last_retired_head;
1227         ring->last_retired_head = -1;
1228         ring->space = ring_space(ring);
1229         if (ring->space < n)
1230                 return -ENOSPC;
1231
1232         return 0;
1233 }
1234
1235 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1236 {
1237         struct drm_device *dev = ring->dev;
1238         struct drm_i915_private *dev_priv = dev->dev_private;
1239         int end;
1240         int ret;
1241
1242         ret = intel_ring_wait_request(ring, n);
1243         if (ret != -ENOSPC)
1244                 return ret;
1245
1246         CTR1(KTR_DRM, "ring_wait_begin %s", ring->name);
1247         if (drm_core_check_feature(dev, DRIVER_GEM))
1248                 /* With GEM the hangcheck timer should kick us out of the loop,
1249                  * leaving it early runs the risk of corrupting GEM state (due
1250                  * to running on almost untested codepaths). But on resume
1251                  * timers don't work yet, so prevent a complete hang in that
1252                  * case by choosing an insanely large timeout. */
1253                 end = ticks + hz * 60;
1254         else
1255                 end = ticks + hz * 3;
1256         do {
1257                 ring->head = I915_READ_HEAD(ring);
1258                 ring->space = ring_space(ring);
1259                 if (ring->space >= n) {
1260                         CTR1(KTR_DRM, "ring_wait_end %s", ring->name);
1261                         return 0;
1262                 }
1263
1264 #if 0
1265                 if (dev->primary->master) {
1266                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1267                         if (master_priv->sarea_priv)
1268                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1269                 }
1270 #else
1271                 if (dev_priv->sarea_priv)
1272                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1273 #endif
1274
1275                 pause("915rng", 1);
1276                 if (atomic_load_acq_32(&dev_priv->mm.wedged) != 0) {
1277                         CTR1(KTR_DRM, "ring_wait_end %s wedged", ring->name);
1278                         return -EAGAIN;
1279                 }
1280         } while (!time_after(ticks, end));
1281         CTR1(KTR_DRM, "ring_wait_end %s busy", ring->name);
1282         return -EBUSY;
1283 }
1284
1285 int intel_ring_begin(struct intel_ring_buffer *ring,
1286                      int num_dwords)
1287 {
1288         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1289         int n = 4*num_dwords;
1290         int ret;
1291
1292         if (atomic_load_acq_int(&dev_priv->mm.wedged))
1293                 return -EIO;
1294
1295         if (ring->tail + n > ring->effective_size) {
1296                 ret = intel_wrap_ring_buffer(ring);
1297                 if (ret != 0)
1298                         return ret;
1299         }
1300
1301         if (ring->space < n) {
1302                 ret = intel_wait_ring_buffer(ring, n);
1303                 if (ret != 0)
1304                         return ret;
1305         }
1306
1307         ring->space -= n;
1308         return 0;
1309 }
1310
1311 void intel_ring_advance(struct intel_ring_buffer *ring)
1312 {
1313         ring->tail &= ring->size - 1;
1314         ring->write_tail(ring, ring->tail);
1315 }
1316
1317 static const struct intel_ring_buffer render_ring = {
1318         .name                   = "render ring",
1319         .id                     = RCS,
1320         .mmio_base              = RENDER_RING_BASE,
1321         .size                   = 32 * PAGE_SIZE,
1322         .init                   = init_render_ring,
1323         .write_tail             = ring_write_tail,
1324         .flush                  = render_ring_flush,
1325         .add_request            = render_ring_add_request,
1326         .get_seqno              = ring_get_seqno,
1327         .irq_get                = render_ring_get_irq,
1328         .irq_put                = render_ring_put_irq,
1329         .dispatch_execbuffer    = render_ring_dispatch_execbuffer,
1330         .cleanup                = render_ring_cleanup,
1331         .sync_to                = render_ring_sync_to,
1332         .semaphore_register     = {MI_SEMAPHORE_SYNC_INVALID,
1333                                    MI_SEMAPHORE_SYNC_RV,
1334                                    MI_SEMAPHORE_SYNC_RB},
1335         .signal_mbox            = {GEN6_VRSYNC, GEN6_BRSYNC},
1336 };
1337
1338 /* ring buffer for bit-stream decoder */
1339
1340 static const struct intel_ring_buffer bsd_ring = {
1341         .name                   = "bsd ring",
1342         .id                     = VCS,
1343         .mmio_base              = BSD_RING_BASE,
1344         .size                   = 32 * PAGE_SIZE,
1345         .init                   = init_ring_common,
1346         .write_tail             = ring_write_tail,
1347         .flush                  = bsd_ring_flush,
1348         .add_request            = ring_add_request,
1349         .get_seqno              = ring_get_seqno,
1350         .irq_get                = bsd_ring_get_irq,
1351         .irq_put                = bsd_ring_put_irq,
1352         .dispatch_execbuffer    = ring_dispatch_execbuffer,
1353 };
1354
1355
1356 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1357                                      uint32_t value)
1358 {
1359         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1360
1361         /* Every tail move must follow the sequence below */
1362         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1363             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1364             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1365         I915_WRITE(GEN6_BSD_RNCID, 0x0);
1366
1367         if (_intel_wait_for(ring->dev,
1368             (I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1369              GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0, 50,
1370             true, "915g6i") != 0)
1371                 DRM_ERROR("timed out waiting for IDLE Indicator\n");
1372
1373         I915_WRITE_TAIL(ring, value);
1374         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1375             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1376             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1377 }
1378
1379 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1380                            uint32_t invalidate, uint32_t flush)
1381 {
1382         uint32_t cmd;
1383         int ret;
1384
1385         ret = intel_ring_begin(ring, 4);
1386         if (ret)
1387                 return ret;
1388
1389         cmd = MI_FLUSH_DW;
1390         if (invalidate & I915_GEM_GPU_DOMAINS)
1391                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1392         intel_ring_emit(ring, cmd);
1393         intel_ring_emit(ring, 0);
1394         intel_ring_emit(ring, 0);
1395         intel_ring_emit(ring, MI_NOOP);
1396         intel_ring_advance(ring);
1397         return 0;
1398 }
1399
1400 static int
1401 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1402                               uint32_t offset, uint32_t len)
1403 {
1404         int ret;
1405
1406         ret = intel_ring_begin(ring, 2);
1407         if (ret)
1408                 return ret;
1409
1410         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1411         /* bit0-7 is the length on GEN6+ */
1412         intel_ring_emit(ring, offset);
1413         intel_ring_advance(ring);
1414
1415         return 0;
1416 }
1417
1418 static bool
1419 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1420 {
1421         return gen6_ring_get_irq(ring,
1422                                  GT_USER_INTERRUPT,
1423                                  GEN6_RENDER_USER_INTERRUPT);
1424 }
1425
1426 static void
1427 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1428 {
1429         return gen6_ring_put_irq(ring,
1430                                  GT_USER_INTERRUPT,
1431                                  GEN6_RENDER_USER_INTERRUPT);
1432 }
1433
1434 static bool
1435 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1436 {
1437         return gen6_ring_get_irq(ring,
1438                                  GT_GEN6_BSD_USER_INTERRUPT,
1439                                  GEN6_BSD_USER_INTERRUPT);
1440 }
1441
1442 static void
1443 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1444 {
1445         return gen6_ring_put_irq(ring,
1446                                  GT_GEN6_BSD_USER_INTERRUPT,
1447                                  GEN6_BSD_USER_INTERRUPT);
1448 }
1449
1450 /* ring buffer for Video Codec for Gen6+ */
1451 static const struct intel_ring_buffer gen6_bsd_ring = {
1452         .name                   = "gen6 bsd ring",
1453         .id                     = VCS,
1454         .mmio_base              = GEN6_BSD_RING_BASE,
1455         .size                   = 32 * PAGE_SIZE,
1456         .init                   = init_ring_common,
1457         .write_tail             = gen6_bsd_ring_write_tail,
1458         .flush                  = gen6_ring_flush,
1459         .add_request            = gen6_add_request,
1460         .get_seqno              = gen6_ring_get_seqno,
1461         .irq_get                = gen6_bsd_ring_get_irq,
1462         .irq_put                = gen6_bsd_ring_put_irq,
1463         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1464         .sync_to                = gen6_bsd_ring_sync_to,
1465         .semaphore_register     = {MI_SEMAPHORE_SYNC_VR,
1466                                    MI_SEMAPHORE_SYNC_INVALID,
1467                                    MI_SEMAPHORE_SYNC_VB},
1468         .signal_mbox            = {GEN6_RVSYNC, GEN6_BVSYNC},
1469 };
1470
1471 /* Blitter support (SandyBridge+) */
1472
1473 static bool
1474 blt_ring_get_irq(struct intel_ring_buffer *ring)
1475 {
1476         return gen6_ring_get_irq(ring,
1477                                  GT_BLT_USER_INTERRUPT,
1478                                  GEN6_BLITTER_USER_INTERRUPT);
1479 }
1480
1481 static void
1482 blt_ring_put_irq(struct intel_ring_buffer *ring)
1483 {
1484         gen6_ring_put_irq(ring,
1485                           GT_BLT_USER_INTERRUPT,
1486                           GEN6_BLITTER_USER_INTERRUPT);
1487 }
1488
1489 static int blt_ring_flush(struct intel_ring_buffer *ring,
1490                           uint32_t invalidate, uint32_t flush)
1491 {
1492         uint32_t cmd;
1493         int ret;
1494
1495         ret = intel_ring_begin(ring, 4);
1496         if (ret)
1497                 return ret;
1498
1499         cmd = MI_FLUSH_DW;
1500         if (invalidate & I915_GEM_DOMAIN_RENDER)
1501                 cmd |= MI_INVALIDATE_TLB;
1502         intel_ring_emit(ring, cmd);
1503         intel_ring_emit(ring, 0);
1504         intel_ring_emit(ring, 0);
1505         intel_ring_emit(ring, MI_NOOP);
1506         intel_ring_advance(ring);
1507         return 0;
1508 }
1509
1510 static const struct intel_ring_buffer gen6_blt_ring = {
1511         .name                   = "blt ring",
1512         .id                     = BCS,
1513         .mmio_base              = BLT_RING_BASE,
1514         .size                   = 32 * PAGE_SIZE,
1515         .init                   = init_ring_common,
1516         .write_tail             = ring_write_tail,
1517         .flush                  = blt_ring_flush,
1518         .add_request            = gen6_add_request,
1519         .get_seqno              = gen6_ring_get_seqno,
1520         .irq_get                = blt_ring_get_irq,
1521         .irq_put                = blt_ring_put_irq,
1522         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1523         .sync_to                = gen6_blt_ring_sync_to,
1524         .semaphore_register     = {MI_SEMAPHORE_SYNC_BR,
1525                                    MI_SEMAPHORE_SYNC_BV,
1526                                    MI_SEMAPHORE_SYNC_INVALID},
1527         .signal_mbox            = {GEN6_RBSYNC, GEN6_VBSYNC},
1528 };
1529
1530 int intel_init_render_ring_buffer(struct drm_device *dev)
1531 {
1532         drm_i915_private_t *dev_priv = dev->dev_private;
1533         struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1534
1535         *ring = render_ring;
1536         if (INTEL_INFO(dev)->gen >= 6) {
1537                 ring->add_request = gen6_add_request;
1538                 ring->flush = gen6_render_ring_flush;
1539                 ring->irq_get = gen6_render_ring_get_irq;
1540                 ring->irq_put = gen6_render_ring_put_irq;
1541                 ring->get_seqno = gen6_ring_get_seqno;
1542         } else if (IS_GEN5(dev)) {
1543                 ring->add_request = pc_render_add_request;
1544                 ring->get_seqno = pc_render_get_seqno;
1545         }
1546
1547         if (!I915_NEED_GFX_HWS(dev)) {
1548                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1549                 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1550         }
1551
1552         return intel_init_ring_buffer(dev, ring);
1553 }
1554
1555 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1556     uint32_t size)
1557 {
1558         drm_i915_private_t *dev_priv = dev->dev_private;
1559         struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1560
1561         *ring = render_ring;
1562         if (INTEL_INFO(dev)->gen >= 6) {
1563                 ring->add_request = gen6_add_request;
1564                 ring->irq_get = gen6_render_ring_get_irq;
1565                 ring->irq_put = gen6_render_ring_put_irq;
1566         } else if (IS_GEN5(dev)) {
1567                 ring->add_request = pc_render_add_request;
1568                 ring->get_seqno = pc_render_get_seqno;
1569         }
1570
1571         ring->dev = dev;
1572         INIT_LIST_HEAD(&ring->active_list);
1573         INIT_LIST_HEAD(&ring->request_list);
1574         INIT_LIST_HEAD(&ring->gpu_write_list);
1575
1576         ring->size = size;
1577         ring->effective_size = ring->size;
1578         if (IS_I830(ring->dev))
1579                 ring->effective_size -= 128;
1580
1581         ring->map.offset = start;
1582         ring->map.size = size;
1583         ring->map.type = 0;
1584         ring->map.flags = 0;
1585         ring->map.mtrr = 0;
1586
1587         drm_core_ioremap_wc(&ring->map, dev);
1588         if (ring->map.virtual == NULL) {
1589                 DRM_ERROR("can not ioremap virtual address for"
1590                           " ring buffer\n");
1591                 return -ENOMEM;
1592         }
1593
1594         ring->virtual_start = (void *)ring->map.virtual;
1595         return 0;
1596 }
1597
1598 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1599 {
1600         drm_i915_private_t *dev_priv = dev->dev_private;
1601         struct intel_ring_buffer *ring = &dev_priv->rings[VCS];
1602
1603         if (IS_GEN6(dev) || IS_GEN7(dev))
1604                 *ring = gen6_bsd_ring;
1605         else
1606                 *ring = bsd_ring;
1607
1608         return intel_init_ring_buffer(dev, ring);
1609 }
1610
1611 int intel_init_blt_ring_buffer(struct drm_device *dev)
1612 {
1613         drm_i915_private_t *dev_priv = dev->dev_private;
1614         struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
1615
1616         *ring = gen6_blt_ring;
1617
1618         return intel_init_ring_buffer(dev, ring);
1619 }