]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - sys/dev/isci/isci_controller.c
Copy stable/10@r272459 to releng/10.1 as part of
[FreeBSD/releng/10.1.git] / sys / dev / isci / isci_controller.c
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   * Redistributions of source code must retain the above copyright
12  *     notice, this list of conditions and the following disclaimer.
13  *   * Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in
15  *     the documentation and/or other materials provided with the
16  *     distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <dev/isci/isci.h>
35
36 #include <sys/conf.h>
37 #include <sys/malloc.h>
38
39 #include <cam/cam_periph.h>
40 #include <cam/cam_xpt_periph.h>
41
42 #include <dev/isci/scil/sci_memory_descriptor_list.h>
43 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
44
45 #include <dev/isci/scil/scif_controller.h>
46 #include <dev/isci/scil/scif_library.h>
47 #include <dev/isci/scil/scif_io_request.h>
48 #include <dev/isci/scil/scif_task_request.h>
49 #include <dev/isci/scil/scif_remote_device.h>
50 #include <dev/isci/scil/scif_domain.h>
51 #include <dev/isci/scil/scif_user_callback.h>
52 #include <dev/isci/scil/scic_sgpio.h>
53
54 #include <dev/led/led.h>
55
56 void isci_action(struct cam_sim *sim, union ccb *ccb);
57 void isci_poll(struct cam_sim *sim);
58
59 #define ccb_sim_ptr sim_priv.entries[0].ptr
60
61 /**
62  * @brief This user callback will inform the user that the controller has
63  *        had a serious unexpected error.  The user should not the error,
64  *        disable interrupts, and wait for current ongoing processing to
65  *        complete.  Subsequently, the user should reset the controller.
66  *
67  * @param[in]  controller This parameter specifies the controller that had
68  *                        an error.
69  *
70  * @return none
71  */
72 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
73     SCI_CONTROLLER_ERROR error)
74 {
75
76         isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
77             error);
78 }
79
80 /**
81  * @brief This user callback will inform the user that the controller has
82  *        finished the start process.
83  *
84  * @param[in]  controller This parameter specifies the controller that was
85  *             started.
86  * @param[in]  completion_status This parameter specifies the results of
87  *             the start operation.  SCI_SUCCESS indicates successful
88  *             completion.
89  *
90  * @return none
91  */
92 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
93     SCI_STATUS completion_status)
94 {
95         uint32_t index;
96         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
97             sci_object_get_association(controller);
98
99         isci_controller->is_started = TRUE;
100
101         /* Set bits for all domains.  We will clear them one-by-one once
102          *  the domains complete discovery, or return error when calling
103          *  scif_domain_discover.  Once all bits are clear, we will register
104          *  the controller with CAM.
105          */
106         isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
107
108         for(index = 0; index < SCI_MAX_DOMAINS; index++) {
109                 SCI_STATUS status;
110                 SCI_DOMAIN_HANDLE_T domain =
111                     isci_controller->domain[index].sci_object;
112
113                 status = scif_domain_discover(
114                         domain,
115                         scif_domain_get_suggested_discover_timeout(domain),
116                         DEVICE_TIMEOUT
117                 );
118
119                 if (status != SCI_SUCCESS)
120                 {
121                         isci_controller_domain_discovery_complete(
122                             isci_controller, &isci_controller->domain[index]);
123                 }
124         }
125 }
126
127 /**
128  * @brief This user callback will inform the user that the controller has
129  *        finished the stop process. Note, after user calls
130  *        scif_controller_stop(), before user receives this controller stop
131  *        complete callback, user should not expect any callback from
132  *        framework, such like scif_cb_domain_change_notification().
133  *
134  * @param[in]  controller This parameter specifies the controller that was
135  *             stopped.
136  * @param[in]  completion_status This parameter specifies the results of
137  *             the stop operation.  SCI_SUCCESS indicates successful
138  *             completion.
139  *
140  * @return none
141  */
142 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
143     SCI_STATUS completion_status)
144 {
145         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
146             sci_object_get_association(controller);
147
148         isci_controller->is_started = FALSE;
149 }
150
151 static void
152 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
153 {
154         SCI_PHYSICAL_ADDRESS *phys_addr = arg;
155
156         *phys_addr = seg[0].ds_addr;
157 }
158
159 /**
160  * @brief This method will be invoked to allocate memory dynamically.
161  *
162  * @param[in]  controller This parameter represents the controller
163  *             object for which to allocate memory.
164  * @param[out] mde This parameter represents the memory descriptor to
165  *             be filled in by the user that will reference the newly
166  *             allocated memory.
167  *
168  * @return none
169  */
170 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
171     SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
172 {
173         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
174             sci_object_get_association(controller);
175
176         /*
177          * Note this routine is only used for buffers needed to translate
178          * SCSI UNMAP commands to ATA DSM commands for SATA disks.
179          *
180          * We first try to pull a buffer from the controller's pool, and only
181          * call contigmalloc if one isn't there.
182          */
183         if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
184                 sci_pool_get(isci_controller->unmap_buffer_pool,
185                     mde->virtual_address);
186         } else
187                 mde->virtual_address = contigmalloc(PAGE_SIZE,
188                     M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
189                     mde->constant_memory_alignment, 0);
190
191         if (mde->virtual_address != NULL)
192                 bus_dmamap_load(isci_controller->buffer_dma_tag,
193                     NULL, mde->virtual_address, PAGE_SIZE,
194                     isci_single_map, &mde->physical_address,
195                     BUS_DMA_NOWAIT);
196 }
197
198 /**
199  * @brief This method will be invoked to allocate memory dynamically.
200  *
201  * @param[in]  controller This parameter represents the controller
202  *             object for which to allocate memory.
203  * @param[out] mde This parameter represents the memory descriptor to
204  *             be filled in by the user that will reference the newly
205  *             allocated memory.
206  *
207  * @return none
208  */
209 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
210     SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
211 {
212         struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
213             sci_object_get_association(controller);
214
215         /*
216          * Put the buffer back into the controller's buffer pool, rather
217          * than invoking configfree.  This helps reduce chance we won't
218          * have buffers available when system is under memory pressure.
219          */ 
220         sci_pool_put(isci_controller->unmap_buffer_pool,
221             mde->virtual_address);
222 }
223
224 void isci_controller_construct(struct ISCI_CONTROLLER *controller,
225     struct isci_softc *isci)
226 {
227         SCI_CONTROLLER_HANDLE_T scif_controller_handle;
228
229         scif_library_allocate_controller(isci->sci_library_handle,
230             &scif_controller_handle);
231
232         scif_controller_construct(isci->sci_library_handle,
233             scif_controller_handle, NULL);
234
235         controller->isci = isci;
236         controller->scif_controller_handle = scif_controller_handle;
237
238         /* This allows us to later use
239          *  sci_object_get_association(scif_controller_handle)
240          * inside of a callback routine to get our struct ISCI_CONTROLLER object
241          */
242         sci_object_set_association(scif_controller_handle, (void *)controller);
243
244         controller->is_started = FALSE;
245         controller->is_frozen = FALSE;
246         controller->release_queued_ccbs = FALSE;
247         controller->sim = NULL;
248         controller->initial_discovery_mask = 0;
249
250         sci_fast_list_init(&controller->pending_device_reset_list);
251
252         mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
253
254         uint32_t domain_index;
255
256         for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
257                 isci_domain_construct( &controller->domain[domain_index],
258                     domain_index, controller);
259         }
260
261         controller->timer_memory = malloc(
262             sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
263             M_NOWAIT | M_ZERO);
264
265         sci_pool_initialize(controller->timer_pool);
266
267         struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
268             controller->timer_memory;
269
270         for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
271                 sci_pool_put(controller->timer_pool, timer++);
272         }
273
274         sci_pool_initialize(controller->unmap_buffer_pool);
275 }
276
277 static void isci_led_fault_func(void *priv, int onoff)
278 {
279         struct ISCI_PHY *phy = priv;
280
281         /* map onoff to the fault LED */
282         phy->led_fault = onoff;
283         scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 
284                 phy->led_fault, phy->led_locate, 0);
285 }
286
287 static void isci_led_locate_func(void *priv, int onoff)
288 {
289         struct ISCI_PHY *phy = priv;
290
291         /* map onoff to the locate LED */
292         phy->led_locate = onoff;
293         scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 
294                 phy->led_fault, phy->led_locate, 0);
295 }
296
297 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
298 {
299         SCIC_USER_PARAMETERS_T scic_user_parameters;
300         SCI_CONTROLLER_HANDLE_T scic_controller_handle;
301         char led_name[64];
302         unsigned long tunable;
303         uint32_t io_shortage;
304         uint32_t fail_on_timeout;
305         int i;
306
307         scic_controller_handle =
308             scif_controller_get_scic_handle(controller->scif_controller_handle);
309
310         if (controller->isci->oem_parameters_found == TRUE)
311         {
312                 scic_oem_parameters_set(
313                     scic_controller_handle,
314                     &controller->oem_parameters,
315                     (uint8_t)(controller->oem_parameters_version));
316         }
317
318         scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
319
320         if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
321                 scic_user_parameters.sds1.no_outbound_task_timeout =
322                     (uint8_t)tunable;
323
324         if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
325                 scic_user_parameters.sds1.ssp_max_occupancy_timeout =
326                     (uint16_t)tunable;
327
328         if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
329                 scic_user_parameters.sds1.stp_max_occupancy_timeout =
330                     (uint16_t)tunable;
331
332         if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
333                 scic_user_parameters.sds1.ssp_inactivity_timeout =
334                     (uint16_t)tunable;
335
336         if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
337                 scic_user_parameters.sds1.stp_inactivity_timeout =
338                     (uint16_t)tunable;
339
340         if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
341                 for (i = 0; i < SCI_MAX_PHYS; i++)
342                         scic_user_parameters.sds1.phys[i].max_speed_generation =
343                             (uint8_t)tunable;
344
345         scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
346
347         /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
348          *  a workaround - one per domain.
349          */
350         controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
351
352         if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
353             &controller->queue_depth)) {
354                 controller->queue_depth = max(1, min(controller->queue_depth,
355                     SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
356         }
357
358         /* Reserve one request so that we can ensure we have one available TC
359          *  to do internal device resets.
360          */
361         controller->sim_queue_depth = controller->queue_depth - 1;
362
363         /* Although we save one TC to do internal device resets, it is possible
364          *  we could end up using several TCs for simultaneous device resets
365          *  while at the same time having CAM fill our controller queue.  To
366          *  simulate this condition, and how our driver handles it, we can set
367          *  this io_shortage parameter, which will tell CAM that we have a
368          *  large queue depth than we really do.
369          */
370         io_shortage = 0;
371         TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
372         controller->sim_queue_depth += io_shortage;
373
374         fail_on_timeout = 1;
375         TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout);
376         /* Attach to CAM using xpt_bus_register now, then immediately freeze
377          *  the simq.  It will get released later when initial domain discovery
378          *  is complete.
379          */
380         controller->has_been_scanned = FALSE;
381         mtx_lock(&controller->lock);
382         isci_controller_attach_to_cam(controller);
383         xpt_freeze_simq(controller->sim, 1);
384         mtx_unlock(&controller->lock);
385
386         for (i = 0; i < SCI_MAX_PHYS; i++) {
387                 controller->phys[i].handle = scic_controller_handle;
388                 controller->phys[i].index = i;
389
390                 /* fault */
391                 controller->phys[i].led_fault = 0;
392                 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
393                 controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
394                     &controller->phys[i], led_name);
395                         
396                 /* locate */
397                 controller->phys[i].led_locate = 0;
398                 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
399                 controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
400                     &controller->phys[i], led_name);
401         }
402
403         return (scif_controller_initialize(controller->scif_controller_handle));
404 }
405
406 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
407 {
408         int error;
409         device_t device =  controller->isci->device;
410         uint32_t max_segment_size = isci_io_request_get_max_io_size();
411         uint32_t status = 0;
412         struct ISCI_MEMORY *uncached_controller_memory =
413             &controller->uncached_controller_memory;
414         struct ISCI_MEMORY *cached_controller_memory =
415             &controller->cached_controller_memory;
416         struct ISCI_MEMORY *request_memory =
417             &controller->request_memory;
418         POINTER_UINT virtual_address;
419         bus_addr_t physical_address;
420
421         controller->mdl = sci_controller_get_memory_descriptor_list_handle(
422             controller->scif_controller_handle);
423
424         uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
425             controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
426
427         error = isci_allocate_dma_buffer(device, uncached_controller_memory);
428
429         if (error != 0)
430             return (error);
431
432         sci_mdl_decorator_assign_memory( controller->mdl,
433             SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
434             uncached_controller_memory->virtual_address,
435             uncached_controller_memory->physical_address);
436
437         cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
438             controller->mdl,
439             SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
440         );
441
442         error = isci_allocate_dma_buffer(device, cached_controller_memory);
443
444         if (error != 0)
445             return (error);
446
447         sci_mdl_decorator_assign_memory(controller->mdl,
448             SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
449             cached_controller_memory->virtual_address,
450             cached_controller_memory->physical_address);
451
452         request_memory->size =
453             controller->queue_depth * isci_io_request_get_object_size();
454
455         error = isci_allocate_dma_buffer(device, request_memory);
456
457         if (error != 0)
458             return (error);
459
460         /* For STP PIO testing, we want to ensure we can force multiple SGLs
461          *  since this has been a problem area in SCIL.  This tunable parameter
462          *  will allow us to force DMA segments to a smaller size, ensuring
463          *  that even if a physically contiguous buffer is attached to this
464          *  I/O, the DMA subsystem will pass us multiple segments in our DMA
465          *  load callback.
466          */
467         TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
468
469         /* Create DMA tag for our I/O requests.  Then we can create DMA maps based off
470          *  of this tag and store them in each of our ISCI_IO_REQUEST objects.  This
471          *  will enable better performance than creating the DMA maps everytime we get
472          *  an I/O.
473          */
474         status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0,
475             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
476             isci_io_request_get_max_io_size(),
477             SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL,
478             &controller->buffer_dma_tag);
479
480         sci_pool_initialize(controller->request_pool);
481
482         virtual_address = request_memory->virtual_address;
483         physical_address = request_memory->physical_address;
484
485         for (int i = 0; i < controller->queue_depth; i++) {
486                 struct ISCI_REQUEST *request =
487                     (struct ISCI_REQUEST *)virtual_address;
488
489                 isci_request_construct(request,
490                     controller->scif_controller_handle,
491                     controller->buffer_dma_tag, physical_address);
492
493                 sci_pool_put(controller->request_pool, request);
494
495                 virtual_address += isci_request_get_object_size();
496                 physical_address += isci_request_get_object_size();
497         }
498
499         uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
500             scif_remote_device_get_object_size();
501
502         controller->remote_device_memory = (uint8_t *) malloc(
503             remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
504             M_NOWAIT | M_ZERO);
505
506         sci_pool_initialize(controller->remote_device_pool);
507
508         uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
509
510         for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
511                 struct ISCI_REMOTE_DEVICE *remote_device =
512                     (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
513
514                 controller->remote_device[i] = NULL;
515                 remote_device->index = i;
516                 remote_device->is_resetting = FALSE;
517                 remote_device->frozen_lun_mask = 0;
518                 sci_fast_list_element_init(remote_device,
519                     &remote_device->pending_device_reset_element);
520                 TAILQ_INIT(&remote_device->queued_ccbs);
521                 remote_device->release_queued_ccb = FALSE;
522                 remote_device->queued_ccb_in_progress = NULL;
523
524                 /*
525                  * For the first SCI_MAX_DOMAINS device objects, do not put
526                  *  them in the pool, rather assign them to each domain.  This
527                  *  ensures that any device attached directly to port "i" will
528                  *  always get CAM target id "i".
529                  */
530                 if (i < SCI_MAX_DOMAINS)
531                         controller->domain[i].da_remote_device = remote_device;
532                 else
533                         sci_pool_put(controller->remote_device_pool,
534                             remote_device);
535                 remote_device_memory_ptr += remote_device_size;
536         }
537
538         return (0);
539 }
540
541 void isci_controller_start(void *controller_handle)
542 {
543         struct ISCI_CONTROLLER *controller =
544             (struct ISCI_CONTROLLER *)controller_handle;
545         SCI_CONTROLLER_HANDLE_T scif_controller_handle =
546             controller->scif_controller_handle;
547
548         scif_controller_start(scif_controller_handle,
549             scif_controller_get_suggested_start_timeout(scif_controller_handle));
550
551         scic_controller_enable_interrupts(
552             scif_controller_get_scic_handle(controller->scif_controller_handle));
553 }
554
555 void isci_controller_domain_discovery_complete(
556     struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
557 {
558         if (!isci_controller->has_been_scanned)
559         {
560                 /* Controller has not been scanned yet.  We'll clear
561                  *  the discovery bit for this domain, then check if all bits
562                  *  are now clear.  That would indicate that all domains are
563                  *  done with discovery and we can then proceed with initial
564                  *  scan.
565                  */
566
567                 isci_controller->initial_discovery_mask &=
568                     ~(1 << isci_domain->index);
569
570                 if (isci_controller->initial_discovery_mask == 0) {
571                         struct isci_softc *driver = isci_controller->isci;
572                         uint8_t next_index = isci_controller->index + 1;
573
574                         isci_controller->has_been_scanned = TRUE;
575
576                         /* Unfreeze simq to allow initial scan to proceed. */
577                         xpt_release_simq(isci_controller->sim, TRUE);
578
579 #if __FreeBSD_version < 800000
580                         /* When driver is loaded after boot, we need to
581                          *  explicitly rescan here for versions <8.0, because
582                          *  CAM only automatically scans new buses at boot
583                          *  time.
584                          */
585                         union ccb *ccb = xpt_alloc_ccb_nowait();
586
587                         xpt_create_path(&ccb->ccb_h.path, NULL,
588                             cam_sim_path(isci_controller->sim),
589                             CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
590
591                         xpt_rescan(ccb);
592 #endif
593
594                         if (next_index < driver->controller_count) {
595                                 /*  There are more controllers that need to
596                                  *   start.  So start the next one.
597                                  */
598                                 isci_controller_start(
599                                     &driver->controllers[next_index]);
600                         }
601                         else
602                         {
603                                 /* All controllers have been started and completed discovery.
604                                  *  Disestablish the config hook while will signal to the
605                                  *  kernel during boot that it is safe to try to find and
606                                  *  mount the root partition.
607                                  */
608                                 config_intrhook_disestablish(
609                                     &driver->config_hook);
610                         }
611                 }
612         }
613 }
614
615 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
616 {
617         struct isci_softc *isci = controller->isci;
618         device_t parent = device_get_parent(isci->device);
619         int unit = device_get_unit(isci->device);
620         struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
621
622         if(isci_devq == NULL) {
623                 isci_log_message(0, "ISCI", "isci_devq is NULL \n");
624                 return (-1);
625         }
626
627         controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
628             controller, unit, &controller->lock, controller->sim_queue_depth,
629             controller->sim_queue_depth, isci_devq);
630
631         if(controller->sim == NULL) {
632                 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
633                 cam_simq_free(isci_devq);
634                 return (-1);
635         }
636
637         if(xpt_bus_register(controller->sim, parent, controller->index)
638             != CAM_SUCCESS) {
639                 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
640                 cam_sim_free(controller->sim, TRUE);
641                 mtx_unlock(&controller->lock);
642                 return (-1);
643         }
644
645         if(xpt_create_path(&controller->path, NULL,
646             cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
647             CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
648                 isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
649                 xpt_bus_deregister(cam_sim_path(controller->sim));
650                 cam_sim_free(controller->sim, TRUE);
651                 mtx_unlock(&controller->lock);
652                 return (-1);
653         }
654
655         return (0);
656 }
657
658 void isci_poll(struct cam_sim *sim)
659 {
660         struct ISCI_CONTROLLER *controller =
661             (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
662
663         isci_interrupt_poll_handler(controller);
664 }
665
666 void isci_action(struct cam_sim *sim, union ccb *ccb)
667 {
668         struct ISCI_CONTROLLER *controller =
669             (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
670
671         switch ( ccb->ccb_h.func_code ) {
672         case XPT_PATH_INQ:
673                 {
674                         struct ccb_pathinq *cpi = &ccb->cpi;
675                         int bus = cam_sim_bus(sim);
676                         ccb->ccb_h.ccb_sim_ptr = sim;
677                         cpi->version_num = 1;
678                         cpi->hba_inquiry = PI_TAG_ABLE;
679                         cpi->target_sprt = 0;
680                         cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
681                             PIM_UNMAPPED;
682                         cpi->hba_eng_cnt = 0;
683                         cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
684                         cpi->max_lun = ISCI_MAX_LUN;
685 #if __FreeBSD_version >= 800102
686                         cpi->maxio = isci_io_request_get_max_io_size();
687 #endif
688                         cpi->unit_number = cam_sim_unit(sim);
689                         cpi->bus_id = bus;
690                         cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
691                         cpi->base_transfer_speed = 300000;
692                         strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
693                         strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
694                         strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
695                         cpi->transport = XPORT_SAS;
696                         cpi->transport_version = 0;
697                         cpi->protocol = PROTO_SCSI;
698                         cpi->protocol_version = SCSI_REV_SPC2;
699                         cpi->ccb_h.status = CAM_REQ_CMP;
700                         xpt_done(ccb);
701                 }
702                 break;
703         case XPT_GET_TRAN_SETTINGS:
704                 {
705                         struct ccb_trans_settings *general_settings = &ccb->cts;
706                         struct ccb_trans_settings_sas *sas_settings =
707                             &general_settings->xport_specific.sas;
708                         struct ccb_trans_settings_scsi *scsi_settings =
709                             &general_settings->proto_specific.scsi;
710                         struct ISCI_REMOTE_DEVICE *remote_device;
711
712                         remote_device = controller->remote_device[ccb->ccb_h.target_id];
713
714                         if (remote_device == NULL) {
715                                 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
716                                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
717                                 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
718                                 xpt_done(ccb);
719                                 break;
720                         }
721
722                         general_settings->protocol = PROTO_SCSI;
723                         general_settings->transport = XPORT_SAS;
724                         general_settings->protocol_version = SCSI_REV_SPC2;
725                         general_settings->transport_version = 0;
726                         scsi_settings->valid = CTS_SCSI_VALID_TQ;
727                         scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
728                         ccb->ccb_h.status &= ~CAM_STATUS_MASK;
729                         ccb->ccb_h.status |= CAM_REQ_CMP;
730
731                         sas_settings->bitrate =
732                             isci_remote_device_get_bitrate(remote_device);
733
734                         if (sas_settings->bitrate != 0)
735                                 sas_settings->valid = CTS_SAS_VALID_SPEED;
736
737                         xpt_done(ccb);
738                 }
739                 break;
740         case XPT_SCSI_IO:
741                 isci_io_request_execute_scsi_io(ccb, controller);
742                 break;
743 #if __FreeBSD_version >= 900026
744         case XPT_SMP_IO:
745                 isci_io_request_execute_smp_io(ccb, controller);
746                 break;
747 #endif
748         case XPT_SET_TRAN_SETTINGS:
749                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
750                 ccb->ccb_h.status |= CAM_REQ_CMP;
751                 xpt_done(ccb);
752                 break;
753         case XPT_CALC_GEOMETRY:
754                 cam_calc_geometry(&ccb->ccg, /*extended*/1);
755                 xpt_done(ccb);
756                 break;
757         case XPT_RESET_DEV:
758                 {
759                         struct ISCI_REMOTE_DEVICE *remote_device =
760                             controller->remote_device[ccb->ccb_h.target_id];
761
762                         if (remote_device != NULL)
763                                 isci_remote_device_reset(remote_device, ccb);
764                         else {
765                                 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
766                                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
767                                 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
768                                 xpt_done(ccb);
769                         }
770                 }
771                 break;
772         case XPT_RESET_BUS:
773                 ccb->ccb_h.status = CAM_REQ_CMP;
774                 xpt_done(ccb);
775                 break;
776         default:
777                 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
778                     ccb->ccb_h.func_code);
779                 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
780                 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
781                 ccb->ccb_h.status |= CAM_REQ_INVALID;
782                 xpt_done(ccb);
783                 break;
784         }
785 }
786
787 /*
788  * Unfortunately, SCIL doesn't cleanly handle retry conditions.
789  *  CAM_REQUEUE_REQ works only when no one is using the pass(4) interface.  So
790  *  when SCIL denotes an I/O needs to be retried (typically because of mixing
791  *  tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
792  *  these I/O internally.  Once SCIL completes an I/O to this device, or we get
793  *  a ready notification, we will retry the first I/O on the queue.
794  *  Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
795  *  the context of the completion handler, so we need to retry these I/O after
796  *  the completion handler is done executing.
797  */
798 void
799 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
800 {
801         struct ISCI_REMOTE_DEVICE *dev;
802         struct ccb_hdr *ccb_h;
803         int dev_idx;
804
805         KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
806
807         controller->release_queued_ccbs = FALSE;
808         for (dev_idx = 0;
809              dev_idx < SCI_MAX_REMOTE_DEVICES;
810              dev_idx++) {
811
812                 dev = controller->remote_device[dev_idx];
813                 if (dev != NULL &&
814                     dev->release_queued_ccb == TRUE &&
815                     dev->queued_ccb_in_progress == NULL) {
816                         dev->release_queued_ccb = FALSE;
817                         ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
818
819                         if (ccb_h == NULL)
820                                 continue;
821
822                         isci_log_message(1, "ISCI", "release %p %x\n", ccb_h,
823                             ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]);
824
825                         dev->queued_ccb_in_progress = (union ccb *)ccb_h;
826                         isci_io_request_execute_scsi_io(
827                             (union ccb *)ccb_h, controller);
828                 }
829         }
830 }