/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include /* * This file contains the implementation of a re-entrant read * reader/writer lock (aka "rrwlock"). * * This is a normal reader/writer lock with the additional feature * of allowing threads who have already obtained a read lock to * re-enter another read lock (re-entrant read) - even if there are * waiting writers. * * Callers who have not obtained a read lock give waiting writers priority. * * The rrwlock_t lock does not allow re-entrant writers, nor does it * allow a re-entrant mix of reads and writes (that is, it does not * allow a caller who has already obtained a read lock to be able to * then grab a write lock without first dropping all read locks, and * vice versa). * * The rrwlock_t uses tsd (thread specific data) to keep a list of * nodes (rrw_node_t), where each node keeps track of which specific * lock (rrw_node_t::rn_rrl) the thread has grabbed. Since re-entering * should be rare, a thread that grabs multiple reads on the same rrwlock_t * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the * tsd list can represent a different rrwlock_t. This allows a thread * to enter multiple and unique rrwlock_ts for read locks at the same time. * * Since using tsd exposes some overhead, the rrwlock_t only needs to * keep tsd data when writers are waiting. If no writers are waiting, then * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd * is needed. Once a writer attempts to grab the lock, readers then * keep tsd data and bump the linked readers count (rr_linked_rcount). * * If there are waiting writers and there are anonymous readers, then a * reader doesn't know if it is a re-entrant lock. But since it may be one, * we allow the read to proceed (otherwise it could deadlock). Since once * waiting writers are active, readers no longer bump the anonymous count, * the anonymous readers will eventually flush themselves out. At this point, * readers will be able to tell if they are a re-entrant lock (have a * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then * we must let the proceed. If they are not, then the reader blocks for the * waiting writers. Hence, we do not starve writers. */ /* global key for TSD */ uint_t rrw_tsd_key; typedef struct rrw_node { struct rrw_node *rn_next; rrwlock_t *rn_rrl; } rrw_node_t; static rrw_node_t * rrn_find(rrwlock_t *rrl) { rrw_node_t *rn; if (refcount_count(&rrl->rr_linked_rcount) == 0) return (NULL); for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) { if (rn->rn_rrl == rrl) return (rn); } return (NULL); } /* * Add a node to the head of the singly linked list. */ static void rrn_add(rrwlock_t *rrl) { rrw_node_t *rn; rn = kmem_alloc(sizeof (*rn), KM_SLEEP); rn->rn_rrl = rrl; rn->rn_next = tsd_get(rrw_tsd_key); VERIFY(tsd_set(rrw_tsd_key, rn) == 0); } /* * If a node is found for 'rrl', then remove the node from this * thread's list and return TRUE; otherwise return FALSE. */ static boolean_t rrn_find_and_remove(rrwlock_t *rrl) { rrw_node_t *rn; rrw_node_t *prev = NULL; if (refcount_count(&rrl->rr_linked_rcount) == 0) return (B_FALSE); for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) { if (rn->rn_rrl == rrl) { if (prev) prev->rn_next = rn->rn_next; else VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0); kmem_free(rn, sizeof (*rn)); return (B_TRUE); } prev = rn; } return (B_FALSE); } void rrw_init(rrwlock_t *rrl) { mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL); rrl->rr_writer = NULL; refcount_create(&rrl->rr_anon_rcount); refcount_create(&rrl->rr_linked_rcount); rrl->rr_writer_wanted = B_FALSE; } void rrw_destroy(rrwlock_t *rrl) { mutex_destroy(&rrl->rr_lock); cv_destroy(&rrl->rr_cv); ASSERT(rrl->rr_writer == NULL); refcount_destroy(&rrl->rr_anon_rcount); refcount_destroy(&rrl->rr_linked_rcount); } static void rrw_enter_read(rrwlock_t *rrl, void *tag) { mutex_enter(&rrl->rr_lock); #if !defined(DEBUG) && defined(_KERNEL) if (!rrl->rr_writer && !rrl->rr_writer_wanted) { rrl->rr_anon_rcount.rc_count++; mutex_exit(&rrl->rr_lock); return; } DTRACE_PROBE(zfs__rrwfastpath__rdmiss); #endif ASSERT(rrl->rr_writer != curthread); ASSERT(refcount_count(&rrl->rr_anon_rcount) >= 0); while (rrl->rr_writer || (rrl->rr_writer_wanted && refcount_is_zero(&rrl->rr_anon_rcount) && rrn_find(rrl) == NULL)) cv_wait(&rrl->rr_cv, &rrl->rr_lock); if (rrl->rr_writer_wanted) { /* may or may not be a re-entrant enter */ rrn_add(rrl); (void) refcount_add(&rrl->rr_linked_rcount, tag); } else { (void) refcount_add(&rrl->rr_anon_rcount, tag); } ASSERT(rrl->rr_writer == NULL); mutex_exit(&rrl->rr_lock); } static void rrw_enter_write(rrwlock_t *rrl) { mutex_enter(&rrl->rr_lock); ASSERT(rrl->rr_writer != curthread); while (refcount_count(&rrl->rr_anon_rcount) > 0 || refcount_count(&rrl->rr_linked_rcount) > 0 || rrl->rr_writer != NULL) { rrl->rr_writer_wanted = B_TRUE; cv_wait(&rrl->rr_cv, &rrl->rr_lock); } rrl->rr_writer_wanted = B_FALSE; rrl->rr_writer = curthread; mutex_exit(&rrl->rr_lock); } void rrw_enter(rrwlock_t *rrl, krw_t rw, void *tag) { if (rw == RW_READER) rrw_enter_read(rrl, tag); else rrw_enter_write(rrl); } void rrw_exit(rrwlock_t *rrl, void *tag) { mutex_enter(&rrl->rr_lock); #if !defined(DEBUG) && defined(_KERNEL) if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) { rrl->rr_anon_rcount.rc_count--; if (rrl->rr_anon_rcount.rc_count == 0) cv_broadcast(&rrl->rr_cv); mutex_exit(&rrl->rr_lock); return; } DTRACE_PROBE(zfs__rrwfastpath__exitmiss); #endif ASSERT(!refcount_is_zero(&rrl->rr_anon_rcount) || !refcount_is_zero(&rrl->rr_linked_rcount) || rrl->rr_writer != NULL); if (rrl->rr_writer == NULL) { int64_t count; if (rrn_find_and_remove(rrl)) count = refcount_remove(&rrl->rr_linked_rcount, tag); else count = refcount_remove(&rrl->rr_anon_rcount, tag); if (count == 0) cv_broadcast(&rrl->rr_cv); } else { ASSERT(rrl->rr_writer == curthread); ASSERT(refcount_is_zero(&rrl->rr_anon_rcount) && refcount_is_zero(&rrl->rr_linked_rcount)); rrl->rr_writer = NULL; cv_broadcast(&rrl->rr_cv); } mutex_exit(&rrl->rr_lock); } boolean_t rrw_held(rrwlock_t *rrl, krw_t rw) { boolean_t held; mutex_enter(&rrl->rr_lock); if (rw == RW_WRITER) { held = (rrl->rr_writer == curthread); } else { held = (!refcount_is_zero(&rrl->rr_anon_rcount) || !refcount_is_zero(&rrl->rr_linked_rcount)); } mutex_exit(&rrl->rr_lock); return (held); }