]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp
Merge llvm, clang, lld and lldb trunk r291012, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AMDGPU / AMDGPUTargetTransformInfo.cpp
1 //===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // \file
11 // This file implements a TargetTransformInfo analysis pass specific to the
12 // AMDGPU target machine. It uses the target's detailed information to provide
13 // more precise answers to certain TTI queries, while letting the target
14 // independent and default TTI implementations handle the rest.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "AMDGPUTargetTransformInfo.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/BasicTTIImpl.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Target/CostTable.h"
27 #include "llvm/Target/TargetLowering.h"
28 using namespace llvm;
29
30 #define DEBUG_TYPE "AMDGPUtti"
31
32
33 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L,
34                                             TTI::UnrollingPreferences &UP) {
35   UP.Threshold = 300; // Twice the default.
36   UP.MaxCount = UINT_MAX;
37   UP.Partial = true;
38
39   // TODO: Do we want runtime unrolling?
40
41   for (const BasicBlock *BB : L->getBlocks()) {
42     const DataLayout &DL = BB->getModule()->getDataLayout();
43     for (const Instruction &I : *BB) {
44       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
45       if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
46         continue;
47
48       const Value *Ptr = GEP->getPointerOperand();
49       const AllocaInst *Alloca =
50           dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
51       if (Alloca) {
52         // We want to do whatever we can to limit the number of alloca
53         // instructions that make it through to the code generator.  allocas
54         // require us to use indirect addressing, which is slow and prone to
55         // compiler bugs.  If this loop does an address calculation on an
56         // alloca ptr, then we want to use a higher than normal loop unroll
57         // threshold. This will give SROA a better chance to eliminate these
58         // allocas.
59         //
60         // Don't use the maximum allowed value here as it will make some
61         // programs way too big.
62         UP.Threshold = 800;
63       }
64     }
65   }
66 }
67
68 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) {
69   if (Vec)
70     return 0;
71
72   // Number of VGPRs on SI.
73   if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
74     return 256;
75
76   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
77 }
78
79 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) {
80   return Vector ? 0 : 32;
81 }
82
83 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
84   switch (AddrSpace) {
85   case AMDGPUAS::GLOBAL_ADDRESS:
86   case AMDGPUAS::CONSTANT_ADDRESS:
87   case AMDGPUAS::FLAT_ADDRESS:
88     return 128;
89   case AMDGPUAS::LOCAL_ADDRESS:
90   case AMDGPUAS::REGION_ADDRESS:
91     return 64;
92   case AMDGPUAS::PRIVATE_ADDRESS:
93     return 8 * ST->getMaxPrivateElementSize();
94   default:
95     if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS &&
96         (AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
97          AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
98          (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
99           AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
100       return 128;
101     llvm_unreachable("unhandled address space");
102   }
103 }
104
105 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
106   // Semi-arbitrary large amount.
107   return 64;
108 }
109
110 int AMDGPUTTIImpl::getArithmeticInstrCost(
111     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
112     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
113     TTI::OperandValueProperties Opd2PropInfo) {
114
115   EVT OrigTy = TLI->getValueType(DL, Ty);
116   if (!OrigTy.isSimple()) {
117     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
118                                          Opd1PropInfo, Opd2PropInfo);
119   }
120
121   // Legalize the type.
122   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
123   int ISD = TLI->InstructionOpcodeToISD(Opcode);
124
125   // Because we don't have any legal vector operations, but the legal types, we
126   // need to account for split vectors.
127   unsigned NElts = LT.second.isVector() ?
128     LT.second.getVectorNumElements() : 1;
129
130   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
131
132   switch (ISD) {
133   case ISD::SHL:
134   case ISD::SRL:
135   case ISD::SRA: {
136     if (SLT == MVT::i64)
137       return get64BitInstrCost() * LT.first * NElts;
138
139     // i32
140     return getFullRateInstrCost() * LT.first * NElts;
141   }
142   case ISD::ADD:
143   case ISD::SUB:
144   case ISD::AND:
145   case ISD::OR:
146   case ISD::XOR: {
147     if (SLT == MVT::i64){
148       // and, or and xor are typically split into 2 VALU instructions.
149       return 2 * getFullRateInstrCost() * LT.first * NElts;
150     }
151
152     return LT.first * NElts * getFullRateInstrCost();
153   }
154   case ISD::MUL: {
155     const int QuarterRateCost = getQuarterRateInstrCost();
156     if (SLT == MVT::i64) {
157       const int FullRateCost = getFullRateInstrCost();
158       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
159     }
160
161     // i32
162     return QuarterRateCost * NElts * LT.first;
163   }
164   case ISD::FADD:
165   case ISD::FSUB:
166   case ISD::FMUL:
167     if (SLT == MVT::f64)
168       return LT.first * NElts * get64BitInstrCost();
169
170     if (SLT == MVT::f32 || SLT == MVT::f16)
171       return LT.first * NElts * getFullRateInstrCost();
172     break;
173
174   case ISD::FDIV:
175   case ISD::FREM:
176     // FIXME: frem should be handled separately. The fdiv in it is most of it,
177     // but the current lowering is also not entirely correct.
178     if (SLT == MVT::f64) {
179       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
180
181       // Add cost of workaround.
182       if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
183         Cost += 3 * getFullRateInstrCost();
184
185       return LT.first * Cost * NElts;
186     }
187
188     // Assuming no fp32 denormals lowering.
189     if (SLT == MVT::f32 || SLT == MVT::f16) {
190       assert(!ST->hasFP32Denormals() && "will change when supported");
191       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
192       return LT.first * NElts * Cost;
193     }
194
195     break;
196   default:
197     break;
198   }
199
200   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
201                                        Opd1PropInfo, Opd2PropInfo);
202 }
203
204 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
205   // XXX - For some reason this isn't called for switch.
206   switch (Opcode) {
207   case Instruction::Br:
208   case Instruction::Ret:
209     return 10;
210   default:
211     return BaseT::getCFInstrCost(Opcode);
212   }
213 }
214
215 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
216                                       unsigned Index) {
217   switch (Opcode) {
218   case Instruction::ExtractElement:
219   case Instruction::InsertElement:
220     // Extracts are just reads of a subregister, so are free. Inserts are
221     // considered free because we don't want to have any cost for scalarizing
222     // operations, and we don't have to copy into a different register class.
223
224     // Dynamic indexing isn't free and is best avoided.
225     return Index == ~0u ? 2 : 0;
226   default:
227     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
228   }
229 }
230
231 static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII,
232                                           const IntrinsicInst *I) {
233   switch (I->getIntrinsicID()) {
234   default:
235     return false;
236   case Intrinsic::not_intrinsic:
237     // This means we have an intrinsic that isn't defined in
238     // IntrinsicsAMDGPU.td
239     break;
240
241   case Intrinsic::amdgcn_workitem_id_x:
242   case Intrinsic::amdgcn_workitem_id_y:
243   case Intrinsic::amdgcn_workitem_id_z:
244   case Intrinsic::amdgcn_interp_mov:
245   case Intrinsic::amdgcn_interp_p1:
246   case Intrinsic::amdgcn_interp_p2:
247   case Intrinsic::amdgcn_mbcnt_hi:
248   case Intrinsic::amdgcn_mbcnt_lo:
249   case Intrinsic::r600_read_tidig_x:
250   case Intrinsic::r600_read_tidig_y:
251   case Intrinsic::r600_read_tidig_z:
252   case Intrinsic::amdgcn_image_atomic_swap:
253   case Intrinsic::amdgcn_image_atomic_add:
254   case Intrinsic::amdgcn_image_atomic_sub:
255   case Intrinsic::amdgcn_image_atomic_smin:
256   case Intrinsic::amdgcn_image_atomic_umin:
257   case Intrinsic::amdgcn_image_atomic_smax:
258   case Intrinsic::amdgcn_image_atomic_umax:
259   case Intrinsic::amdgcn_image_atomic_and:
260   case Intrinsic::amdgcn_image_atomic_or:
261   case Intrinsic::amdgcn_image_atomic_xor:
262   case Intrinsic::amdgcn_image_atomic_inc:
263   case Intrinsic::amdgcn_image_atomic_dec:
264   case Intrinsic::amdgcn_image_atomic_cmpswap:
265   case Intrinsic::amdgcn_buffer_atomic_swap:
266   case Intrinsic::amdgcn_buffer_atomic_add:
267   case Intrinsic::amdgcn_buffer_atomic_sub:
268   case Intrinsic::amdgcn_buffer_atomic_smin:
269   case Intrinsic::amdgcn_buffer_atomic_umin:
270   case Intrinsic::amdgcn_buffer_atomic_smax:
271   case Intrinsic::amdgcn_buffer_atomic_umax:
272   case Intrinsic::amdgcn_buffer_atomic_and:
273   case Intrinsic::amdgcn_buffer_atomic_or:
274   case Intrinsic::amdgcn_buffer_atomic_xor:
275   case Intrinsic::amdgcn_buffer_atomic_cmpswap:
276   case Intrinsic::amdgcn_ps_live:
277     return true;
278   }
279
280   StringRef Name = I->getCalledFunction()->getName();
281   switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) {
282   default:
283     return false;
284   case AMDGPUIntrinsic::SI_fs_interp:
285   case AMDGPUIntrinsic::SI_fs_constant:
286     return true;
287   }
288 }
289
290 static bool isArgPassedInSGPR(const Argument *A) {
291   const Function *F = A->getParent();
292
293   // Arguments to compute shaders are never a source of divergence.
294   if (!AMDGPU::isShader(F->getCallingConv()))
295     return true;
296
297   // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
298   if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) ||
299       F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal))
300     return true;
301
302   // Everything else is in VGPRs.
303   return false;
304 }
305
306 ///
307 /// \returns true if the result of the value could potentially be
308 /// different across workitems in a wavefront.
309 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {
310
311   if (const Argument *A = dyn_cast<Argument>(V))
312     return !isArgPassedInSGPR(A);
313
314   // Loads from the private address space are divergent, because threads
315   // can execute the load instruction with the same inputs and get different
316   // results.
317   //
318   // All other loads are not divergent, because if threads issue loads with the
319   // same arguments, they will always get the same result.
320   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
321     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
322
323   // Atomics are divergent because they are executed sequentially: when an
324   // atomic operation refers to the same address in each thread, then each
325   // thread after the first sees the value written by the previous thread as
326   // original value.
327   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
328     return true;
329
330   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
331     const TargetMachine &TM = getTLI()->getTargetMachine();
332     return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic);
333   }
334
335   // Assume all function calls are a source of divergence.
336   if (isa<CallInst>(V) || isa<InvokeInst>(V))
337     return true;
338
339   return false;
340 }