]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp
Add GNU regex from glibc 2.17.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / DeclCXX.cpp
1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/Basic/IdentifierTable.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 using namespace clang;
26
27 //===----------------------------------------------------------------------===//
28 // Decl Allocation/Deallocation Method Implementations
29 //===----------------------------------------------------------------------===//
30
31 void AccessSpecDecl::anchor() { }
32
33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
35   return new (Mem) AccessSpecDecl(EmptyShell());
36 }
37
38 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
39   : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
40     Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
41     Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
42     HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
43     HasMutableFields(false), HasOnlyCMembers(true),
44     HasInClassInitializer(false), HasUninitializedReferenceMember(false),
45     NeedOverloadResolutionForMoveConstructor(false),
46     NeedOverloadResolutionForMoveAssignment(false),
47     NeedOverloadResolutionForDestructor(false),
48     DefaultedMoveConstructorIsDeleted(false),
49     DefaultedMoveAssignmentIsDeleted(false),
50     DefaultedDestructorIsDeleted(false),
51     HasTrivialSpecialMembers(SMF_All),
52     DeclaredNonTrivialSpecialMembers(0),
53     HasIrrelevantDestructor(true),
54     HasConstexprNonCopyMoveConstructor(false),
55     DefaultedDefaultConstructorIsConstexpr(true),
56     HasConstexprDefaultConstructor(false),
57     HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
58     UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
59     ImplicitCopyConstructorHasConstParam(true),
60     ImplicitCopyAssignmentHasConstParam(true),
61     HasDeclaredCopyConstructorWithConstParam(false),
62     HasDeclaredCopyAssignmentWithConstParam(false),
63     FailedImplicitMoveConstructor(false), FailedImplicitMoveAssignment(false),
64     IsLambda(false), NumBases(0), NumVBases(0), Bases(), VBases(),
65     Definition(D), FirstFriend(0) {
66 }
67
68 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
69   return Bases.get(Definition->getASTContext().getExternalSource());
70 }
71
72 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
73   return VBases.get(Definition->getASTContext().getExternalSource());
74 }
75
76 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
77                              SourceLocation StartLoc, SourceLocation IdLoc,
78                              IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
79   : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
80     DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
81     TemplateOrInstantiation() { }
82
83 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
84                                      DeclContext *DC, SourceLocation StartLoc,
85                                      SourceLocation IdLoc, IdentifierInfo *Id,
86                                      CXXRecordDecl* PrevDecl,
87                                      bool DelayTypeCreation) {
88   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
89                                            Id, PrevDecl);
90   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
91
92   // FIXME: DelayTypeCreation seems like such a hack
93   if (!DelayTypeCreation)
94     C.getTypeDeclType(R, PrevDecl);
95   return R;
96 }
97
98 CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
99                                            TypeSourceInfo *Info, SourceLocation Loc,
100                                            bool Dependent) {
101   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc,
102                                            0, 0);
103   R->IsBeingDefined = true;
104   R->DefinitionData = new (C) struct LambdaDefinitionData(R, Info, Dependent);
105   R->MayHaveOutOfDateDef = false;
106   C.getTypeDeclType(R, /*PrevDecl=*/0);
107   return R;
108 }
109
110 CXXRecordDecl *
111 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
112   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
113   CXXRecordDecl *R = new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0,
114                                              SourceLocation(), SourceLocation(),
115                                              0, 0);
116   R->MayHaveOutOfDateDef = false;
117   return R;
118 }
119
120 void
121 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
122                         unsigned NumBases) {
123   ASTContext &C = getASTContext();
124
125   if (!data().Bases.isOffset() && data().NumBases > 0)
126     C.Deallocate(data().getBases());
127
128   if (NumBases) {
129     // C++ [dcl.init.aggr]p1:
130     //   An aggregate is [...] a class with [...] no base classes [...].
131     data().Aggregate = false;
132
133     // C++ [class]p4:
134     //   A POD-struct is an aggregate class...
135     data().PlainOldData = false;
136   }
137
138   // The set of seen virtual base types.
139   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
140   
141   // The virtual bases of this class.
142   SmallVector<const CXXBaseSpecifier *, 8> VBases;
143
144   data().Bases = new(C) CXXBaseSpecifier [NumBases];
145   data().NumBases = NumBases;
146   for (unsigned i = 0; i < NumBases; ++i) {
147     data().getBases()[i] = *Bases[i];
148     // Keep track of inherited vbases for this base class.
149     const CXXBaseSpecifier *Base = Bases[i];
150     QualType BaseType = Base->getType();
151     // Skip dependent types; we can't do any checking on them now.
152     if (BaseType->isDependentType())
153       continue;
154     CXXRecordDecl *BaseClassDecl
155       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
156
157     // A class with a non-empty base class is not empty.
158     // FIXME: Standard ref?
159     if (!BaseClassDecl->isEmpty()) {
160       if (!data().Empty) {
161         // C++0x [class]p7:
162         //   A standard-layout class is a class that:
163         //    [...]
164         //    -- either has no non-static data members in the most derived
165         //       class and at most one base class with non-static data members,
166         //       or has no base classes with non-static data members, and
167         // If this is the second non-empty base, then neither of these two
168         // clauses can be true.
169         data().IsStandardLayout = false;
170       }
171
172       data().Empty = false;
173       data().HasNoNonEmptyBases = false;
174     }
175     
176     // C++ [class.virtual]p1:
177     //   A class that declares or inherits a virtual function is called a 
178     //   polymorphic class.
179     if (BaseClassDecl->isPolymorphic())
180       data().Polymorphic = true;
181
182     // C++0x [class]p7:
183     //   A standard-layout class is a class that: [...]
184     //    -- has no non-standard-layout base classes
185     if (!BaseClassDecl->isStandardLayout())
186       data().IsStandardLayout = false;
187
188     // Record if this base is the first non-literal field or base.
189     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
190       data().HasNonLiteralTypeFieldsOrBases = true;
191     
192     // Now go through all virtual bases of this base and add them.
193     for (CXXRecordDecl::base_class_iterator VBase =
194           BaseClassDecl->vbases_begin(),
195          E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
196       // Add this base if it's not already in the list.
197       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) {
198         VBases.push_back(VBase);
199
200         // C++11 [class.copy]p8:
201         //   The implicitly-declared copy constructor for a class X will have
202         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
203         //   has a copy constructor whose first parameter is of type
204         //   'const B&' or 'const volatile B&' [...]
205         if (CXXRecordDecl *VBaseDecl = VBase->getType()->getAsCXXRecordDecl())
206           if (!VBaseDecl->hasCopyConstructorWithConstParam())
207             data().ImplicitCopyConstructorHasConstParam = false;
208       }
209     }
210
211     if (Base->isVirtual()) {
212       // Add this base if it's not already in the list.
213       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
214         VBases.push_back(Base);
215
216       // C++0x [meta.unary.prop] is_empty:
217       //    T is a class type, but not a union type, with ... no virtual base
218       //    classes
219       data().Empty = false;
220
221       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
222       //   A [default constructor, copy/move constructor, or copy/move assignment
223       //   operator for a class X] is trivial [...] if:
224       //    -- class X has [...] no virtual base classes
225       data().HasTrivialSpecialMembers &= SMF_Destructor;
226
227       // C++0x [class]p7:
228       //   A standard-layout class is a class that: [...]
229       //    -- has [...] no virtual base classes
230       data().IsStandardLayout = false;
231
232       // C++11 [dcl.constexpr]p4:
233       //   In the definition of a constexpr constructor [...]
234       //    -- the class shall not have any virtual base classes
235       data().DefaultedDefaultConstructorIsConstexpr = false;
236     } else {
237       // C++ [class.ctor]p5:
238       //   A default constructor is trivial [...] if:
239       //    -- all the direct base classes of its class have trivial default
240       //       constructors.
241       if (!BaseClassDecl->hasTrivialDefaultConstructor())
242         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
243
244       // C++0x [class.copy]p13:
245       //   A copy/move constructor for class X is trivial if [...]
246       //    [...]
247       //    -- the constructor selected to copy/move each direct base class
248       //       subobject is trivial, and
249       if (!BaseClassDecl->hasTrivialCopyConstructor())
250         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
251       // If the base class doesn't have a simple move constructor, we'll eagerly
252       // declare it and perform overload resolution to determine which function
253       // it actually calls. If it does have a simple move constructor, this
254       // check is correct.
255       if (!BaseClassDecl->hasTrivialMoveConstructor())
256         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
257
258       // C++0x [class.copy]p27:
259       //   A copy/move assignment operator for class X is trivial if [...]
260       //    [...]
261       //    -- the assignment operator selected to copy/move each direct base
262       //       class subobject is trivial, and
263       if (!BaseClassDecl->hasTrivialCopyAssignment())
264         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
265       // If the base class doesn't have a simple move assignment, we'll eagerly
266       // declare it and perform overload resolution to determine which function
267       // it actually calls. If it does have a simple move assignment, this
268       // check is correct.
269       if (!BaseClassDecl->hasTrivialMoveAssignment())
270         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
271
272       // C++11 [class.ctor]p6:
273       //   If that user-written default constructor would satisfy the
274       //   requirements of a constexpr constructor, the implicitly-defined
275       //   default constructor is constexpr.
276       if (!BaseClassDecl->hasConstexprDefaultConstructor())
277         data().DefaultedDefaultConstructorIsConstexpr = false;
278     }
279
280     // C++ [class.ctor]p3:
281     //   A destructor is trivial if all the direct base classes of its class
282     //   have trivial destructors.
283     if (!BaseClassDecl->hasTrivialDestructor())
284       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
285
286     if (!BaseClassDecl->hasIrrelevantDestructor())
287       data().HasIrrelevantDestructor = false;
288
289     // C++11 [class.copy]p18:
290     //   The implicitly-declared copy assignment oeprator for a class X will
291     //   have the form 'X& X::operator=(const X&)' if each direct base class B
292     //   of X has a copy assignment operator whose parameter is of type 'const
293     //   B&', 'const volatile B&', or 'B' [...]
294     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
295       data().ImplicitCopyAssignmentHasConstParam = false;
296
297     // C++11 [class.copy]p8:
298     //   The implicitly-declared copy constructor for a class X will have
299     //   the form 'X::X(const X&)' if each direct [...] base class B of X
300     //   has a copy constructor whose first parameter is of type
301     //   'const B&' or 'const volatile B&' [...]
302     if (!BaseClassDecl->hasCopyConstructorWithConstParam())
303       data().ImplicitCopyConstructorHasConstParam = false;
304
305     // A class has an Objective-C object member if... or any of its bases
306     // has an Objective-C object member.
307     if (BaseClassDecl->hasObjectMember())
308       setHasObjectMember(true);
309     
310     if (BaseClassDecl->hasVolatileMember())
311       setHasVolatileMember(true);
312
313     // Keep track of the presence of mutable fields.
314     if (BaseClassDecl->hasMutableFields())
315       data().HasMutableFields = true;
316
317     if (BaseClassDecl->hasUninitializedReferenceMember())
318       data().HasUninitializedReferenceMember = true;
319
320     addedClassSubobject(BaseClassDecl);
321   }
322   
323   if (VBases.empty())
324     return;
325
326   // Create base specifier for any direct or indirect virtual bases.
327   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
328   data().NumVBases = VBases.size();
329   for (int I = 0, E = VBases.size(); I != E; ++I) {
330     QualType Type = VBases[I]->getType();
331     if (!Type->isDependentType())
332       addedClassSubobject(Type->getAsCXXRecordDecl());
333     data().getVBases()[I] = *VBases[I];
334   }
335 }
336
337 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
338   // C++11 [class.copy]p11:
339   //   A defaulted copy/move constructor for a class X is defined as
340   //   deleted if X has:
341   //    -- a direct or virtual base class B that cannot be copied/moved [...]
342   //    -- a non-static data member of class type M (or array thereof)
343   //       that cannot be copied or moved [...]
344   if (!Subobj->hasSimpleMoveConstructor())
345     data().NeedOverloadResolutionForMoveConstructor = true;
346
347   // C++11 [class.copy]p23:
348   //   A defaulted copy/move assignment operator for a class X is defined as
349   //   deleted if X has:
350   //    -- a direct or virtual base class B that cannot be copied/moved [...]
351   //    -- a non-static data member of class type M (or array thereof)
352   //        that cannot be copied or moved [...]
353   if (!Subobj->hasSimpleMoveAssignment())
354     data().NeedOverloadResolutionForMoveAssignment = true;
355
356   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
357   //   A defaulted [ctor or dtor] for a class X is defined as
358   //   deleted if X has:
359   //    -- any direct or virtual base class [...] has a type with a destructor
360   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
361   //    -- any non-static data member has a type with a destructor
362   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
363   if (!Subobj->hasSimpleDestructor()) {
364     data().NeedOverloadResolutionForMoveConstructor = true;
365     data().NeedOverloadResolutionForDestructor = true;
366   }
367 }
368
369 /// Callback function for CXXRecordDecl::forallBases that acknowledges
370 /// that it saw a base class.
371 static bool SawBase(const CXXRecordDecl *, void *) {
372   return true;
373 }
374
375 bool CXXRecordDecl::hasAnyDependentBases() const {
376   if (!isDependentContext())
377     return false;
378
379   return !forallBases(SawBase, 0);
380 }
381
382 bool CXXRecordDecl::isTriviallyCopyable() const {
383   // C++0x [class]p5:
384   //   A trivially copyable class is a class that:
385   //   -- has no non-trivial copy constructors,
386   if (hasNonTrivialCopyConstructor()) return false;
387   //   -- has no non-trivial move constructors,
388   if (hasNonTrivialMoveConstructor()) return false;
389   //   -- has no non-trivial copy assignment operators,
390   if (hasNonTrivialCopyAssignment()) return false;
391   //   -- has no non-trivial move assignment operators, and
392   if (hasNonTrivialMoveAssignment()) return false;
393   //   -- has a trivial destructor.
394   if (!hasTrivialDestructor()) return false;
395
396   return true;
397 }
398
399 void CXXRecordDecl::markedVirtualFunctionPure() {
400   // C++ [class.abstract]p2: 
401   //   A class is abstract if it has at least one pure virtual function.
402   data().Abstract = true;
403 }
404
405 void CXXRecordDecl::addedMember(Decl *D) {
406   if (!D->isImplicit() &&
407       !isa<FieldDecl>(D) &&
408       !isa<IndirectFieldDecl>(D) &&
409       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
410         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
411     data().HasOnlyCMembers = false;
412
413   // Ignore friends and invalid declarations.
414   if (D->getFriendObjectKind() || D->isInvalidDecl())
415     return;
416   
417   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
418   if (FunTmpl)
419     D = FunTmpl->getTemplatedDecl();
420   
421   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
422     if (Method->isVirtual()) {
423       // C++ [dcl.init.aggr]p1:
424       //   An aggregate is an array or a class with [...] no virtual functions.
425       data().Aggregate = false;
426       
427       // C++ [class]p4:
428       //   A POD-struct is an aggregate class...
429       data().PlainOldData = false;
430       
431       // Virtual functions make the class non-empty.
432       // FIXME: Standard ref?
433       data().Empty = false;
434
435       // C++ [class.virtual]p1:
436       //   A class that declares or inherits a virtual function is called a 
437       //   polymorphic class.
438       data().Polymorphic = true;
439
440       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
441       //   A [default constructor, copy/move constructor, or copy/move
442       //   assignment operator for a class X] is trivial [...] if:
443       //    -- class X has no virtual functions [...]
444       data().HasTrivialSpecialMembers &= SMF_Destructor;
445
446       // C++0x [class]p7:
447       //   A standard-layout class is a class that: [...]
448       //    -- has no virtual functions
449       data().IsStandardLayout = false;
450     }
451   }
452
453   // Notify the listener if an implicit member was added after the definition
454   // was completed.
455   if (!isBeingDefined() && D->isImplicit())
456     if (ASTMutationListener *L = getASTMutationListener())
457       L->AddedCXXImplicitMember(data().Definition, D);
458
459   // The kind of special member this declaration is, if any.
460   unsigned SMKind = 0;
461
462   // Handle constructors.
463   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
464     if (!Constructor->isImplicit()) {
465       // Note that we have a user-declared constructor.
466       data().UserDeclaredConstructor = true;
467
468       // C++ [class]p4:
469       //   A POD-struct is an aggregate class [...]
470       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
471       // type is technically an aggregate in C++0x since it wouldn't be in 03.
472       data().PlainOldData = false;
473     }
474
475     // Technically, "user-provided" is only defined for special member
476     // functions, but the intent of the standard is clearly that it should apply
477     // to all functions.
478     bool UserProvided = Constructor->isUserProvided();
479
480     if (Constructor->isDefaultConstructor()) {
481       SMKind |= SMF_DefaultConstructor;
482
483       if (UserProvided)
484         data().UserProvidedDefaultConstructor = true;
485       if (Constructor->isConstexpr())
486         data().HasConstexprDefaultConstructor = true;
487     }
488
489     if (!FunTmpl) {
490       unsigned Quals;
491       if (Constructor->isCopyConstructor(Quals)) {
492         SMKind |= SMF_CopyConstructor;
493
494         if (Quals & Qualifiers::Const)
495           data().HasDeclaredCopyConstructorWithConstParam = true;
496       } else if (Constructor->isMoveConstructor())
497         SMKind |= SMF_MoveConstructor;
498     }
499
500     // Record if we see any constexpr constructors which are neither copy
501     // nor move constructors.
502     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
503       data().HasConstexprNonCopyMoveConstructor = true;
504
505     // C++ [dcl.init.aggr]p1:
506     //   An aggregate is an array or a class with no user-declared
507     //   constructors [...].
508     // C++0x [dcl.init.aggr]p1:
509     //   An aggregate is an array or a class with no user-provided
510     //   constructors [...].
511     if (getASTContext().getLangOpts().CPlusPlus11
512           ? UserProvided : !Constructor->isImplicit())
513       data().Aggregate = false;
514   }
515
516   // Handle destructors.
517   if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
518     SMKind |= SMF_Destructor;
519
520     if (!DD->isImplicit())
521       data().HasIrrelevantDestructor = false;
522
523     // C++11 [class.dtor]p5:
524     //   A destructor is trivial if [...] the destructor is not virtual.
525     if (DD->isVirtual())
526       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
527   }
528
529   // Handle member functions.
530   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
531     if (Method->isCopyAssignmentOperator()) {
532       SMKind |= SMF_CopyAssignment;
533
534       const ReferenceType *ParamTy =
535         Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
536       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
537         data().HasDeclaredCopyAssignmentWithConstParam = true;
538     }
539
540     if (Method->isMoveAssignmentOperator())
541       SMKind |= SMF_MoveAssignment;
542
543     // Keep the list of conversion functions up-to-date.
544     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
545       // FIXME: We intentionally don't use the decl's access here because it
546       // hasn't been set yet.  That's really just a misdesign in Sema.
547       if (Conversion->getPrimaryTemplate()) {
548         // We don't record specializations.
549       } else if (FunTmpl) {
550         if (FunTmpl->getPreviousDecl())
551           data().Conversions.replace(FunTmpl->getPreviousDecl(),
552                                      FunTmpl);
553         else
554           data().Conversions.addDecl(getASTContext(), FunTmpl);
555       } else {
556         if (Conversion->getPreviousDecl())
557           data().Conversions.replace(Conversion->getPreviousDecl(),
558                                      Conversion);
559         else
560           data().Conversions.addDecl(getASTContext(), Conversion);
561       }
562     }
563
564     if (SMKind) {
565       // If this is the first declaration of a special member, we no longer have
566       // an implicit trivial special member.
567       data().HasTrivialSpecialMembers &=
568         data().DeclaredSpecialMembers | ~SMKind;
569
570       if (!Method->isImplicit() && !Method->isUserProvided()) {
571         // This method is user-declared but not user-provided. We can't work out
572         // whether it's trivial yet (not until we get to the end of the class).
573         // We'll handle this method in finishedDefaultedOrDeletedMember.
574       } else if (Method->isTrivial())
575         data().HasTrivialSpecialMembers |= SMKind;
576       else
577         data().DeclaredNonTrivialSpecialMembers |= SMKind;
578
579       // Note when we have declared a declared special member, and suppress the
580       // implicit declaration of this special member.
581       data().DeclaredSpecialMembers |= SMKind;
582
583       if (!Method->isImplicit()) {
584         data().UserDeclaredSpecialMembers |= SMKind;
585
586         // C++03 [class]p4:
587         //   A POD-struct is an aggregate class that has [...] no user-defined
588         //   copy assignment operator and no user-defined destructor.
589         //
590         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
591         // aggregates could not have any constructors, clear it even for an
592         // explicitly defaulted or deleted constructor.
593         // type is technically an aggregate in C++0x since it wouldn't be in 03.
594         //
595         // Also, a user-declared move assignment operator makes a class non-POD.
596         // This is an extension in C++03.
597         data().PlainOldData = false;
598       }
599     }
600
601     return;
602   }
603
604   // Handle non-static data members.
605   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
606     // C++ [class.bit]p2:
607     //   A declaration for a bit-field that omits the identifier declares an 
608     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be 
609     //   initialized.
610     if (Field->isUnnamedBitfield())
611       return;
612     
613     // C++ [dcl.init.aggr]p1:
614     //   An aggregate is an array or a class (clause 9) with [...] no
615     //   private or protected non-static data members (clause 11).
616     //
617     // A POD must be an aggregate.    
618     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
619       data().Aggregate = false;
620       data().PlainOldData = false;
621     }
622
623     // C++0x [class]p7:
624     //   A standard-layout class is a class that:
625     //    [...]
626     //    -- has the same access control for all non-static data members,
627     switch (D->getAccess()) {
628     case AS_private:    data().HasPrivateFields = true;   break;
629     case AS_protected:  data().HasProtectedFields = true; break;
630     case AS_public:     data().HasPublicFields = true;    break;
631     case AS_none:       llvm_unreachable("Invalid access specifier");
632     };
633     if ((data().HasPrivateFields + data().HasProtectedFields +
634          data().HasPublicFields) > 1)
635       data().IsStandardLayout = false;
636
637     // Keep track of the presence of mutable fields.
638     if (Field->isMutable())
639       data().HasMutableFields = true;
640     
641     // C++0x [class]p9:
642     //   A POD struct is a class that is both a trivial class and a 
643     //   standard-layout class, and has no non-static data members of type 
644     //   non-POD struct, non-POD union (or array of such types).
645     //
646     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
647     // that does not explicitly have no lifetime makes the class a non-POD.
648     // However, we delay setting PlainOldData to false in this case so that
649     // Sema has a chance to diagnostic causes where the same class will be
650     // non-POD with Automatic Reference Counting but a POD without ARC.
651     // In this case, the class will become a non-POD class when we complete
652     // the definition.
653     ASTContext &Context = getASTContext();
654     QualType T = Context.getBaseElementType(Field->getType());
655     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
656       if (!Context.getLangOpts().ObjCAutoRefCount ||
657           T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
658         setHasObjectMember(true);
659     } else if (!T.isPODType(Context))
660       data().PlainOldData = false;
661     
662     if (T->isReferenceType()) {
663       if (!Field->hasInClassInitializer())
664         data().HasUninitializedReferenceMember = true;
665
666       // C++0x [class]p7:
667       //   A standard-layout class is a class that:
668       //    -- has no non-static data members of type [...] reference,
669       data().IsStandardLayout = false;
670     }
671
672     // Record if this field is the first non-literal or volatile field or base.
673     if (!T->isLiteralType() || T.isVolatileQualified())
674       data().HasNonLiteralTypeFieldsOrBases = true;
675
676     if (Field->hasInClassInitializer()) {
677       data().HasInClassInitializer = true;
678
679       // C++11 [class]p5:
680       //   A default constructor is trivial if [...] no non-static data member
681       //   of its class has a brace-or-equal-initializer.
682       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
683
684       // C++11 [dcl.init.aggr]p1:
685       //   An aggregate is a [...] class with [...] no
686       //   brace-or-equal-initializers for non-static data members.
687       data().Aggregate = false;
688
689       // C++11 [class]p10:
690       //   A POD struct is [...] a trivial class.
691       data().PlainOldData = false;
692     }
693
694     // C++11 [class.copy]p23:
695     //   A defaulted copy/move assignment operator for a class X is defined
696     //   as deleted if X has:
697     //    -- a non-static data member of reference type
698     if (T->isReferenceType())
699       data().DefaultedMoveAssignmentIsDeleted = true;
700
701     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
702       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
703       if (FieldRec->getDefinition()) {
704         addedClassSubobject(FieldRec);
705
706         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
707         //   A defaulted [special member] for a class X is defined as
708         //   deleted if:
709         //    -- X is a union-like class that has a variant member with a
710         //       non-trivial [corresponding special member]
711         if (isUnion()) {
712           if (FieldRec->hasNonTrivialMoveConstructor())
713             data().DefaultedMoveConstructorIsDeleted = true;
714           if (FieldRec->hasNonTrivialMoveAssignment())
715             data().DefaultedMoveAssignmentIsDeleted = true;
716           if (FieldRec->hasNonTrivialDestructor())
717             data().DefaultedDestructorIsDeleted = true;
718         }
719
720         // C++0x [class.ctor]p5:
721         //   A default constructor is trivial [...] if:
722         //    -- for all the non-static data members of its class that are of
723         //       class type (or array thereof), each such class has a trivial
724         //       default constructor.
725         if (!FieldRec->hasTrivialDefaultConstructor())
726           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
727
728         // C++0x [class.copy]p13:
729         //   A copy/move constructor for class X is trivial if [...]
730         //    [...]
731         //    -- for each non-static data member of X that is of class type (or
732         //       an array thereof), the constructor selected to copy/move that
733         //       member is trivial;
734         if (!FieldRec->hasTrivialCopyConstructor())
735           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
736         // If the field doesn't have a simple move constructor, we'll eagerly
737         // declare the move constructor for this class and we'll decide whether
738         // it's trivial then.
739         if (!FieldRec->hasTrivialMoveConstructor())
740           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
741
742         // C++0x [class.copy]p27:
743         //   A copy/move assignment operator for class X is trivial if [...]
744         //    [...]
745         //    -- for each non-static data member of X that is of class type (or
746         //       an array thereof), the assignment operator selected to
747         //       copy/move that member is trivial;
748         if (!FieldRec->hasTrivialCopyAssignment())
749           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
750         // If the field doesn't have a simple move assignment, we'll eagerly
751         // declare the move assignment for this class and we'll decide whether
752         // it's trivial then.
753         if (!FieldRec->hasTrivialMoveAssignment())
754           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
755
756         if (!FieldRec->hasTrivialDestructor())
757           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
758         if (!FieldRec->hasIrrelevantDestructor())
759           data().HasIrrelevantDestructor = false;
760         if (FieldRec->hasObjectMember())
761           setHasObjectMember(true);
762         if (FieldRec->hasVolatileMember())
763           setHasVolatileMember(true);
764
765         // C++0x [class]p7:
766         //   A standard-layout class is a class that:
767         //    -- has no non-static data members of type non-standard-layout
768         //       class (or array of such types) [...]
769         if (!FieldRec->isStandardLayout())
770           data().IsStandardLayout = false;
771
772         // C++0x [class]p7:
773         //   A standard-layout class is a class that:
774         //    [...]
775         //    -- has no base classes of the same type as the first non-static
776         //       data member.
777         // We don't want to expend bits in the state of the record decl
778         // tracking whether this is the first non-static data member so we
779         // cheat a bit and use some of the existing state: the empty bit.
780         // Virtual bases and virtual methods make a class non-empty, but they
781         // also make it non-standard-layout so we needn't check here.
782         // A non-empty base class may leave the class standard-layout, but not
783         // if we have arrived here, and have at least on non-static data
784         // member. If IsStandardLayout remains true, then the first non-static
785         // data member must come through here with Empty still true, and Empty
786         // will subsequently be set to false below.
787         if (data().IsStandardLayout && data().Empty) {
788           for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
789                                                         BE = bases_end();
790                BI != BE; ++BI) {
791             if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
792               data().IsStandardLayout = false;
793               break;
794             }
795           }
796         }
797         
798         // Keep track of the presence of mutable fields.
799         if (FieldRec->hasMutableFields())
800           data().HasMutableFields = true;
801
802         // C++11 [class.copy]p13:
803         //   If the implicitly-defined constructor would satisfy the
804         //   requirements of a constexpr constructor, the implicitly-defined
805         //   constructor is constexpr.
806         // C++11 [dcl.constexpr]p4:
807         //    -- every constructor involved in initializing non-static data
808         //       members [...] shall be a constexpr constructor
809         if (!Field->hasInClassInitializer() &&
810             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
811           // The standard requires any in-class initializer to be a constant
812           // expression. We consider this to be a defect.
813           data().DefaultedDefaultConstructorIsConstexpr = false;
814
815         // C++11 [class.copy]p8:
816         //   The implicitly-declared copy constructor for a class X will have
817         //   the form 'X::X(const X&)' if [...] for all the non-static data
818         //   members of X that are of a class type M (or array thereof), each
819         //   such class type has a copy constructor whose first parameter is
820         //   of type 'const M&' or 'const volatile M&'.
821         if (!FieldRec->hasCopyConstructorWithConstParam())
822           data().ImplicitCopyConstructorHasConstParam = false;
823
824         // C++11 [class.copy]p18:
825         //   The implicitly-declared copy assignment oeprator for a class X will
826         //   have the form 'X& X::operator=(const X&)' if [...] for all the
827         //   non-static data members of X that are of a class type M (or array
828         //   thereof), each such class type has a copy assignment operator whose
829         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
830         if (!FieldRec->hasCopyAssignmentWithConstParam())
831           data().ImplicitCopyAssignmentHasConstParam = false;
832
833         if (FieldRec->hasUninitializedReferenceMember() &&
834             !Field->hasInClassInitializer())
835           data().HasUninitializedReferenceMember = true;
836       }
837     } else {
838       // Base element type of field is a non-class type.
839       if (!T->isLiteralType() ||
840           (!Field->hasInClassInitializer() && !isUnion()))
841         data().DefaultedDefaultConstructorIsConstexpr = false;
842
843       // C++11 [class.copy]p23:
844       //   A defaulted copy/move assignment operator for a class X is defined
845       //   as deleted if X has:
846       //    -- a non-static data member of const non-class type (or array
847       //       thereof)
848       if (T.isConstQualified())
849         data().DefaultedMoveAssignmentIsDeleted = true;
850     }
851
852     // C++0x [class]p7:
853     //   A standard-layout class is a class that:
854     //    [...]
855     //    -- either has no non-static data members in the most derived
856     //       class and at most one base class with non-static data members,
857     //       or has no base classes with non-static data members, and
858     // At this point we know that we have a non-static data member, so the last
859     // clause holds.
860     if (!data().HasNoNonEmptyBases)
861       data().IsStandardLayout = false;
862
863     // If this is not a zero-length bit-field, then the class is not empty.
864     if (data().Empty) {
865       if (!Field->isBitField() ||
866           (!Field->getBitWidth()->isTypeDependent() &&
867            !Field->getBitWidth()->isValueDependent() &&
868            Field->getBitWidthValue(Context) != 0))
869         data().Empty = false;
870     }
871   }
872   
873   // Handle using declarations of conversion functions.
874   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
875     if (Shadow->getDeclName().getNameKind()
876           == DeclarationName::CXXConversionFunctionName)
877       data().Conversions.addDecl(getASTContext(), Shadow, Shadow->getAccess());
878 }
879
880 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
881   assert(!D->isImplicit() && !D->isUserProvided());
882
883   // The kind of special member this declaration is, if any.
884   unsigned SMKind = 0;
885
886   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
887     if (Constructor->isDefaultConstructor()) {
888       SMKind |= SMF_DefaultConstructor;
889       if (Constructor->isConstexpr())
890         data().HasConstexprDefaultConstructor = true;
891     }
892     if (Constructor->isCopyConstructor())
893       SMKind |= SMF_CopyConstructor;
894     else if (Constructor->isMoveConstructor())
895       SMKind |= SMF_MoveConstructor;
896     else if (Constructor->isConstexpr())
897       // We may now know that the constructor is constexpr.
898       data().HasConstexprNonCopyMoveConstructor = true;
899   } else if (isa<CXXDestructorDecl>(D))
900     SMKind |= SMF_Destructor;
901   else if (D->isCopyAssignmentOperator())
902     SMKind |= SMF_CopyAssignment;
903   else if (D->isMoveAssignmentOperator())
904     SMKind |= SMF_MoveAssignment;
905
906   // Update which trivial / non-trivial special members we have.
907   // addedMember will have skipped this step for this member.
908   if (D->isTrivial())
909     data().HasTrivialSpecialMembers |= SMKind;
910   else
911     data().DeclaredNonTrivialSpecialMembers |= SMKind;
912 }
913
914 bool CXXRecordDecl::isCLike() const {
915   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
916       !TemplateOrInstantiation.isNull())
917     return false;
918   if (!hasDefinition())
919     return true;
920
921   return isPOD() && data().HasOnlyCMembers;
922 }
923
924 void CXXRecordDecl::getCaptureFields(
925        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
926        FieldDecl *&ThisCapture) const {
927   Captures.clear();
928   ThisCapture = 0;
929
930   LambdaDefinitionData &Lambda = getLambdaData();
931   RecordDecl::field_iterator Field = field_begin();
932   for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
933        C != CEnd; ++C, ++Field) {
934     if (C->capturesThis()) {
935       ThisCapture = *Field;
936       continue;
937     }
938
939     Captures[C->getCapturedVar()] = *Field;
940   }
941 }
942
943
944 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
945   QualType T;
946   if (isa<UsingShadowDecl>(Conv))
947     Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
948   if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
949     T = ConvTemp->getTemplatedDecl()->getResultType();
950   else 
951     T = cast<CXXConversionDecl>(Conv)->getConversionType();
952   return Context.getCanonicalType(T);
953 }
954
955 /// Collect the visible conversions of a base class.
956 ///
957 /// \param Record a base class of the class we're considering
958 /// \param InVirtual whether this base class is a virtual base (or a base
959 ///   of a virtual base)
960 /// \param Access the access along the inheritance path to this base
961 /// \param ParentHiddenTypes the conversions provided by the inheritors
962 ///   of this base
963 /// \param Output the set to which to add conversions from non-virtual bases
964 /// \param VOutput the set to which to add conversions from virtual bases
965 /// \param HiddenVBaseCs the set of conversions which were hidden in a
966 ///   virtual base along some inheritance path
967 static void CollectVisibleConversions(ASTContext &Context,
968                                       CXXRecordDecl *Record,
969                                       bool InVirtual,
970                                       AccessSpecifier Access,
971                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
972                                       ASTUnresolvedSet &Output,
973                                       UnresolvedSetImpl &VOutput,
974                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
975   // The set of types which have conversions in this class or its
976   // subclasses.  As an optimization, we don't copy the derived set
977   // unless it might change.
978   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
979   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
980
981   // Collect the direct conversions and figure out which conversions
982   // will be hidden in the subclasses.
983   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
984   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
985   if (ConvI != ConvE) {
986     HiddenTypesBuffer = ParentHiddenTypes;
987     HiddenTypes = &HiddenTypesBuffer;
988
989     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
990       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
991       bool Hidden = ParentHiddenTypes.count(ConvType);
992       if (!Hidden)
993         HiddenTypesBuffer.insert(ConvType);
994
995       // If this conversion is hidden and we're in a virtual base,
996       // remember that it's hidden along some inheritance path.
997       if (Hidden && InVirtual)
998         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
999
1000       // If this conversion isn't hidden, add it to the appropriate output.
1001       else if (!Hidden) {
1002         AccessSpecifier IAccess
1003           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1004
1005         if (InVirtual)
1006           VOutput.addDecl(I.getDecl(), IAccess);
1007         else
1008           Output.addDecl(Context, I.getDecl(), IAccess);
1009       }
1010     }
1011   }
1012
1013   // Collect information recursively from any base classes.
1014   for (CXXRecordDecl::base_class_iterator
1015          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
1016     const RecordType *RT = I->getType()->getAs<RecordType>();
1017     if (!RT) continue;
1018
1019     AccessSpecifier BaseAccess
1020       = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
1021     bool BaseInVirtual = InVirtual || I->isVirtual();
1022
1023     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1024     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1025                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1026   }
1027 }
1028
1029 /// Collect the visible conversions of a class.
1030 ///
1031 /// This would be extremely straightforward if it weren't for virtual
1032 /// bases.  It might be worth special-casing that, really.
1033 static void CollectVisibleConversions(ASTContext &Context,
1034                                       CXXRecordDecl *Record,
1035                                       ASTUnresolvedSet &Output) {
1036   // The collection of all conversions in virtual bases that we've
1037   // found.  These will be added to the output as long as they don't
1038   // appear in the hidden-conversions set.
1039   UnresolvedSet<8> VBaseCs;
1040   
1041   // The set of conversions in virtual bases that we've determined to
1042   // be hidden.
1043   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1044
1045   // The set of types hidden by classes derived from this one.
1046   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1047
1048   // Go ahead and collect the direct conversions and add them to the
1049   // hidden-types set.
1050   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1051   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1052   Output.append(Context, ConvI, ConvE);
1053   for (; ConvI != ConvE; ++ConvI)
1054     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1055
1056   // Recursively collect conversions from base classes.
1057   for (CXXRecordDecl::base_class_iterator
1058          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
1059     const RecordType *RT = I->getType()->getAs<RecordType>();
1060     if (!RT) continue;
1061
1062     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1063                               I->isVirtual(), I->getAccessSpecifier(),
1064                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1065   }
1066
1067   // Add any unhidden conversions provided by virtual bases.
1068   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1069          I != E; ++I) {
1070     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1071       Output.addDecl(Context, I.getDecl(), I.getAccess());
1072   }
1073 }
1074
1075 /// getVisibleConversionFunctions - get all conversion functions visible
1076 /// in current class; including conversion function templates.
1077 std::pair<CXXRecordDecl::conversion_iterator,CXXRecordDecl::conversion_iterator>
1078 CXXRecordDecl::getVisibleConversionFunctions() {
1079   // If root class, all conversions are visible.
1080   if (bases_begin() == bases_end())
1081     return std::make_pair(data().Conversions.begin(), data().Conversions.end());
1082   // If visible conversion list is already evaluated, return it.
1083   if (!data().ComputedVisibleConversions) {
1084     CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
1085     data().ComputedVisibleConversions = true;
1086   }
1087   return std::make_pair(data().VisibleConversions.begin(),
1088                         data().VisibleConversions.end());
1089 }
1090
1091 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1092   // This operation is O(N) but extremely rare.  Sema only uses it to
1093   // remove UsingShadowDecls in a class that were followed by a direct
1094   // declaration, e.g.:
1095   //   class A : B {
1096   //     using B::operator int;
1097   //     operator int();
1098   //   };
1099   // This is uncommon by itself and even more uncommon in conjunction
1100   // with sufficiently large numbers of directly-declared conversions
1101   // that asymptotic behavior matters.
1102
1103   ASTUnresolvedSet &Convs = data().Conversions;
1104   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1105     if (Convs[I].getDecl() == ConvDecl) {
1106       Convs.erase(I);
1107       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1108              && "conversion was found multiple times in unresolved set");
1109       return;
1110     }
1111   }
1112
1113   llvm_unreachable("conversion not found in set!");
1114 }
1115
1116 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1117   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1118     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1119   
1120   return 0;
1121 }
1122
1123 void 
1124 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1125                                              TemplateSpecializationKind TSK) {
1126   assert(TemplateOrInstantiation.isNull() && 
1127          "Previous template or instantiation?");
1128   assert(!isa<ClassTemplateSpecializationDecl>(this));
1129   TemplateOrInstantiation 
1130     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1131 }
1132
1133 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1134   if (const ClassTemplateSpecializationDecl *Spec
1135         = dyn_cast<ClassTemplateSpecializationDecl>(this))
1136     return Spec->getSpecializationKind();
1137   
1138   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1139     return MSInfo->getTemplateSpecializationKind();
1140   
1141   return TSK_Undeclared;
1142 }
1143
1144 void 
1145 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1146   if (ClassTemplateSpecializationDecl *Spec
1147       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1148     Spec->setSpecializationKind(TSK);
1149     return;
1150   }
1151   
1152   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1153     MSInfo->setTemplateSpecializationKind(TSK);
1154     return;
1155   }
1156   
1157   llvm_unreachable("Not a class template or member class specialization");
1158 }
1159
1160 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1161   ASTContext &Context = getASTContext();
1162   QualType ClassType = Context.getTypeDeclType(this);
1163
1164   DeclarationName Name
1165     = Context.DeclarationNames.getCXXDestructorName(
1166                                           Context.getCanonicalType(ClassType));
1167
1168   DeclContext::lookup_const_result R = lookup(Name);
1169   if (R.empty())
1170     return 0;
1171
1172   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
1173   return Dtor;
1174 }
1175
1176 void CXXRecordDecl::completeDefinition() {
1177   completeDefinition(0);
1178 }
1179
1180 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1181   RecordDecl::completeDefinition();
1182   
1183   if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
1184     // Objective-C Automatic Reference Counting:
1185     //   If a class has a non-static data member of Objective-C pointer
1186     //   type (or array thereof), it is a non-POD type and its
1187     //   default constructor (if any), copy constructor, move constructor,
1188     //   copy assignment operator, move assignment operator, and destructor are
1189     //   non-trivial.
1190     struct DefinitionData &Data = data();
1191     Data.PlainOldData = false;
1192     Data.HasTrivialSpecialMembers = 0;
1193     Data.HasIrrelevantDestructor = false;
1194   }
1195   
1196   // If the class may be abstract (but hasn't been marked as such), check for
1197   // any pure final overriders.
1198   if (mayBeAbstract()) {
1199     CXXFinalOverriderMap MyFinalOverriders;
1200     if (!FinalOverriders) {
1201       getFinalOverriders(MyFinalOverriders);
1202       FinalOverriders = &MyFinalOverriders;
1203     }
1204     
1205     bool Done = false;
1206     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 
1207                                      MEnd = FinalOverriders->end();
1208          M != MEnd && !Done; ++M) {
1209       for (OverridingMethods::iterator SO = M->second.begin(), 
1210                                     SOEnd = M->second.end();
1211            SO != SOEnd && !Done; ++SO) {
1212         assert(SO->second.size() > 0 && 
1213                "All virtual functions have overridding virtual functions");
1214         
1215         // C++ [class.abstract]p4:
1216         //   A class is abstract if it contains or inherits at least one
1217         //   pure virtual function for which the final overrider is pure
1218         //   virtual.
1219         if (SO->second.front().Method->isPure()) {
1220           data().Abstract = true;
1221           Done = true;
1222           break;
1223         }
1224       }
1225     }
1226   }
1227   
1228   // Set access bits correctly on the directly-declared conversions.
1229   for (UnresolvedSetIterator I = data().Conversions.begin(), 
1230                              E = data().Conversions.end(); 
1231        I != E; ++I)
1232     I.setAccess((*I)->getAccess());
1233 }
1234
1235 bool CXXRecordDecl::mayBeAbstract() const {
1236   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1237       isDependentContext())
1238     return false;
1239   
1240   for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
1241                                              BEnd = bases_end();
1242        B != BEnd; ++B) {
1243     CXXRecordDecl *BaseDecl 
1244       = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
1245     if (BaseDecl->isAbstract())
1246       return true;
1247   }
1248   
1249   return false;
1250 }
1251
1252 void CXXMethodDecl::anchor() { }
1253
1254 bool CXXMethodDecl::isStatic() const {
1255   const CXXMethodDecl *MD = this;
1256   for (;;) {
1257     const CXXMethodDecl *C = MD->getCanonicalDecl();
1258     if (C != MD) {
1259       MD = C;
1260       continue;
1261     }
1262
1263     FunctionTemplateSpecializationInfo *Info =
1264       MD->getTemplateSpecializationInfo();
1265     if (!Info)
1266       break;
1267     MD = cast<CXXMethodDecl>(Info->getTemplate()->getTemplatedDecl());
1268   }
1269
1270   if (MD->getStorageClass() == SC_Static)
1271     return true;
1272
1273   DeclarationName Name = getDeclName();
1274   // [class.free]p1:
1275   // Any allocation function for a class T is a static member
1276   // (even if not explicitly declared static).
1277   if (Name.getCXXOverloadedOperator() == OO_New ||
1278       Name.getCXXOverloadedOperator() == OO_Array_New)
1279     return true;
1280
1281   // [class.free]p6 Any deallocation function for a class X is a static member
1282   // (even if not explicitly declared static).
1283   if (Name.getCXXOverloadedOperator() == OO_Delete ||
1284       Name.getCXXOverloadedOperator() == OO_Array_Delete)
1285     return true;
1286
1287   return false;
1288 }
1289
1290 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1291                                  const CXXMethodDecl *BaseMD) {
1292   for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
1293          E = DerivedMD->end_overridden_methods(); I != E; ++I) {
1294     const CXXMethodDecl *MD = *I;
1295     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1296       return true;
1297     if (recursivelyOverrides(MD, BaseMD))
1298       return true;
1299   }
1300   return false;
1301 }
1302
1303 CXXMethodDecl *
1304 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1305                                              bool MayBeBase) {
1306   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1307     return this;
1308
1309   // Lookup doesn't work for destructors, so handle them separately.
1310   if (isa<CXXDestructorDecl>(this)) {
1311     CXXMethodDecl *MD = RD->getDestructor();
1312     if (MD) {
1313       if (recursivelyOverrides(MD, this))
1314         return MD;
1315       if (MayBeBase && recursivelyOverrides(this, MD))
1316         return MD;
1317     }
1318     return NULL;
1319   }
1320
1321   lookup_const_result Candidates = RD->lookup(getDeclName());
1322   for (NamedDecl * const * I = Candidates.begin(); I != Candidates.end(); ++I) {
1323     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I);
1324     if (!MD)
1325       continue;
1326     if (recursivelyOverrides(MD, this))
1327       return MD;
1328     if (MayBeBase && recursivelyOverrides(this, MD))
1329       return MD;
1330   }
1331
1332   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1333          E = RD->bases_end(); I != E; ++I) {
1334     const RecordType *RT = I->getType()->getAs<RecordType>();
1335     if (!RT)
1336       continue;
1337     const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1338     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1339     if (T)
1340       return T;
1341   }
1342
1343   return NULL;
1344 }
1345
1346 CXXMethodDecl *
1347 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1348                       SourceLocation StartLoc,
1349                       const DeclarationNameInfo &NameInfo,
1350                       QualType T, TypeSourceInfo *TInfo,
1351                       StorageClass SC, bool isInline,
1352                       bool isConstexpr, SourceLocation EndLocation) {
1353   return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
1354                                SC, isInline, isConstexpr,
1355                                EndLocation);
1356 }
1357
1358 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1359   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
1360   return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(), 
1361                                  DeclarationNameInfo(), QualType(),
1362                                  0, SC_None, false, false,
1363                                  SourceLocation());
1364 }
1365
1366 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1367   if (getOverloadedOperator() != OO_Delete &&
1368       getOverloadedOperator() != OO_Array_Delete)
1369     return false;
1370
1371   // C++ [basic.stc.dynamic.deallocation]p2:
1372   //   A template instance is never a usual deallocation function,
1373   //   regardless of its signature.
1374   if (getPrimaryTemplate())
1375     return false;
1376
1377   // C++ [basic.stc.dynamic.deallocation]p2:
1378   //   If a class T has a member deallocation function named operator delete 
1379   //   with exactly one parameter, then that function is a usual (non-placement)
1380   //   deallocation function. [...]
1381   if (getNumParams() == 1)
1382     return true;
1383   
1384   // C++ [basic.stc.dynamic.deallocation]p2:
1385   //   [...] If class T does not declare such an operator delete but does 
1386   //   declare a member deallocation function named operator delete with 
1387   //   exactly two parameters, the second of which has type std::size_t (18.1),
1388   //   then this function is a usual deallocation function.
1389   ASTContext &Context = getASTContext();
1390   if (getNumParams() != 2 ||
1391       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1392                                       Context.getSizeType()))
1393     return false;
1394                  
1395   // This function is a usual deallocation function if there are no 
1396   // single-parameter deallocation functions of the same kind.
1397   DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
1398   for (DeclContext::lookup_const_result::iterator I = R.begin(), E = R.end();
1399        I != E; ++I) {
1400     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1401       if (FD->getNumParams() == 1)
1402         return false;
1403   }
1404   
1405   return true;
1406 }
1407
1408 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1409   // C++0x [class.copy]p17:
1410   //  A user-declared copy assignment operator X::operator= is a non-static 
1411   //  non-template member function of class X with exactly one parameter of 
1412   //  type X, X&, const X&, volatile X& or const volatile X&.
1413   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1414       /*non-static*/ isStatic() || 
1415       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate())
1416     return false;
1417       
1418   QualType ParamType = getParamDecl(0)->getType();
1419   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1420     ParamType = Ref->getPointeeType();
1421   
1422   ASTContext &Context = getASTContext();
1423   QualType ClassType
1424     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1425   return Context.hasSameUnqualifiedType(ClassType, ParamType);
1426 }
1427
1428 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1429   // C++0x [class.copy]p19:
1430   //  A user-declared move assignment operator X::operator= is a non-static
1431   //  non-template member function of class X with exactly one parameter of type
1432   //  X&&, const X&&, volatile X&&, or const volatile X&&.
1433   if (getOverloadedOperator() != OO_Equal || isStatic() ||
1434       getPrimaryTemplate() || getDescribedFunctionTemplate())
1435     return false;
1436
1437   QualType ParamType = getParamDecl(0)->getType();
1438   if (!isa<RValueReferenceType>(ParamType))
1439     return false;
1440   ParamType = ParamType->getPointeeType();
1441
1442   ASTContext &Context = getASTContext();
1443   QualType ClassType
1444     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1445   return Context.hasSameUnqualifiedType(ClassType, ParamType);
1446 }
1447
1448 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1449   assert(MD->isCanonicalDecl() && "Method is not canonical!");
1450   assert(!MD->getParent()->isDependentContext() &&
1451          "Can't add an overridden method to a class template!");
1452   assert(MD->isVirtual() && "Method is not virtual!");
1453
1454   getASTContext().addOverriddenMethod(this, MD);
1455 }
1456
1457 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1458   if (isa<CXXConstructorDecl>(this)) return 0;
1459   return getASTContext().overridden_methods_begin(this);
1460 }
1461
1462 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1463   if (isa<CXXConstructorDecl>(this)) return 0;
1464   return getASTContext().overridden_methods_end(this);
1465 }
1466
1467 unsigned CXXMethodDecl::size_overridden_methods() const {
1468   if (isa<CXXConstructorDecl>(this)) return 0;
1469   return getASTContext().overridden_methods_size(this);
1470 }
1471
1472 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1473   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1474   // If the member function is declared const, the type of this is const X*,
1475   // if the member function is declared volatile, the type of this is
1476   // volatile X*, and if the member function is declared const volatile,
1477   // the type of this is const volatile X*.
1478
1479   assert(isInstance() && "No 'this' for static methods!");
1480
1481   QualType ClassTy = C.getTypeDeclType(getParent());
1482   ClassTy = C.getQualifiedType(ClassTy,
1483                                Qualifiers::fromCVRMask(getTypeQualifiers()));
1484   return C.getPointerType(ClassTy);
1485 }
1486
1487 bool CXXMethodDecl::hasInlineBody() const {
1488   // If this function is a template instantiation, look at the template from 
1489   // which it was instantiated.
1490   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1491   if (!CheckFn)
1492     CheckFn = this;
1493   
1494   const FunctionDecl *fn;
1495   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1496 }
1497
1498 bool CXXMethodDecl::isLambdaStaticInvoker() const {
1499   return getParent()->isLambda() && 
1500          getIdentifier() && getIdentifier()->getName() == "__invoke";
1501 }
1502
1503
1504 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1505                                        TypeSourceInfo *TInfo, bool IsVirtual,
1506                                        SourceLocation L, Expr *Init,
1507                                        SourceLocation R,
1508                                        SourceLocation EllipsisLoc)
1509   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), 
1510     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 
1511     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1512 {
1513 }
1514
1515 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1516                                        FieldDecl *Member,
1517                                        SourceLocation MemberLoc,
1518                                        SourceLocation L, Expr *Init,
1519                                        SourceLocation R)
1520   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1521     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1522     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1523 {
1524 }
1525
1526 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1527                                        IndirectFieldDecl *Member,
1528                                        SourceLocation MemberLoc,
1529                                        SourceLocation L, Expr *Init,
1530                                        SourceLocation R)
1531   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1532     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1533     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1534 {
1535 }
1536
1537 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1538                                        TypeSourceInfo *TInfo,
1539                                        SourceLocation L, Expr *Init, 
1540                                        SourceLocation R)
1541   : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1542     LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1543     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1544 {
1545 }
1546
1547 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1548                                        FieldDecl *Member,
1549                                        SourceLocation MemberLoc,
1550                                        SourceLocation L, Expr *Init,
1551                                        SourceLocation R,
1552                                        VarDecl **Indices,
1553                                        unsigned NumIndices)
1554   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 
1555     LParenLoc(L), RParenLoc(R), IsVirtual(false),
1556     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1557 {
1558   VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1559   memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1560 }
1561
1562 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1563                                                FieldDecl *Member, 
1564                                                SourceLocation MemberLoc,
1565                                                SourceLocation L, Expr *Init,
1566                                                SourceLocation R,
1567                                                VarDecl **Indices,
1568                                                unsigned NumIndices) {
1569   void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1570                                sizeof(VarDecl *) * NumIndices,
1571                                llvm::alignOf<CXXCtorInitializer>());
1572   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1573                                       Indices, NumIndices);
1574 }
1575
1576 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1577   if (isBaseInitializer())
1578     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1579   else
1580     return TypeLoc();
1581 }
1582
1583 const Type *CXXCtorInitializer::getBaseClass() const {
1584   if (isBaseInitializer())
1585     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1586   else
1587     return 0;
1588 }
1589
1590 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1591   if (isAnyMemberInitializer())
1592     return getMemberLocation();
1593
1594   if (isInClassMemberInitializer())
1595     return getAnyMember()->getLocation();
1596   
1597   if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1598     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1599   
1600   return SourceLocation();
1601 }
1602
1603 SourceRange CXXCtorInitializer::getSourceRange() const {
1604   if (isInClassMemberInitializer()) {
1605     FieldDecl *D = getAnyMember();
1606     if (Expr *I = D->getInClassInitializer())
1607       return I->getSourceRange();
1608     return SourceRange();
1609   }
1610
1611   return SourceRange(getSourceLocation(), getRParenLoc());
1612 }
1613
1614 void CXXConstructorDecl::anchor() { }
1615
1616 CXXConstructorDecl *
1617 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1618   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
1619   return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
1620                                       QualType(), 0, false, false, false,false);
1621 }
1622
1623 CXXConstructorDecl *
1624 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1625                            SourceLocation StartLoc,
1626                            const DeclarationNameInfo &NameInfo,
1627                            QualType T, TypeSourceInfo *TInfo,
1628                            bool isExplicit, bool isInline,
1629                            bool isImplicitlyDeclared, bool isConstexpr) {
1630   assert(NameInfo.getName().getNameKind()
1631          == DeclarationName::CXXConstructorName &&
1632          "Name must refer to a constructor");
1633   return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
1634                                     isExplicit, isInline, isImplicitlyDeclared,
1635                                     isConstexpr);
1636 }
1637
1638 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1639   assert(isDelegatingConstructor() && "Not a delegating constructor!");
1640   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1641   if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1642     return Construct->getConstructor();
1643   
1644   return 0;
1645 }
1646
1647 bool CXXConstructorDecl::isDefaultConstructor() const {
1648   // C++ [class.ctor]p5:
1649   //   A default constructor for a class X is a constructor of class
1650   //   X that can be called without an argument.
1651   return (getNumParams() == 0) ||
1652          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1653 }
1654
1655 bool
1656 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1657   return isCopyOrMoveConstructor(TypeQuals) &&
1658          getParamDecl(0)->getType()->isLValueReferenceType();
1659 }
1660
1661 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1662   return isCopyOrMoveConstructor(TypeQuals) &&
1663     getParamDecl(0)->getType()->isRValueReferenceType();
1664 }
1665
1666 /// \brief Determine whether this is a copy or move constructor.
1667 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1668   // C++ [class.copy]p2:
1669   //   A non-template constructor for class X is a copy constructor
1670   //   if its first parameter is of type X&, const X&, volatile X& or
1671   //   const volatile X&, and either there are no other parameters
1672   //   or else all other parameters have default arguments (8.3.6).
1673   // C++0x [class.copy]p3:
1674   //   A non-template constructor for class X is a move constructor if its
1675   //   first parameter is of type X&&, const X&&, volatile X&&, or 
1676   //   const volatile X&&, and either there are no other parameters or else 
1677   //   all other parameters have default arguments.
1678   if ((getNumParams() < 1) ||
1679       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1680       (getPrimaryTemplate() != 0) ||
1681       (getDescribedFunctionTemplate() != 0))
1682     return false;
1683   
1684   const ParmVarDecl *Param = getParamDecl(0);
1685   
1686   // Do we have a reference type? 
1687   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1688   if (!ParamRefType)
1689     return false;
1690   
1691   // Is it a reference to our class type?
1692   ASTContext &Context = getASTContext();
1693   
1694   CanQualType PointeeType
1695     = Context.getCanonicalType(ParamRefType->getPointeeType());
1696   CanQualType ClassTy 
1697     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1698   if (PointeeType.getUnqualifiedType() != ClassTy)
1699     return false;
1700   
1701   // FIXME: other qualifiers?
1702   
1703   // We have a copy or move constructor.
1704   TypeQuals = PointeeType.getCVRQualifiers();
1705   return true;  
1706 }
1707
1708 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1709   // C++ [class.conv.ctor]p1:
1710   //   A constructor declared without the function-specifier explicit
1711   //   that can be called with a single parameter specifies a
1712   //   conversion from the type of its first parameter to the type of
1713   //   its class. Such a constructor is called a converting
1714   //   constructor.
1715   if (isExplicit() && !AllowExplicit)
1716     return false;
1717
1718   return (getNumParams() == 0 &&
1719           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1720          (getNumParams() == 1) ||
1721          (getNumParams() > 1 &&
1722           (getParamDecl(1)->hasDefaultArg() ||
1723            getParamDecl(1)->isParameterPack()));
1724 }
1725
1726 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1727   if ((getNumParams() < 1) ||
1728       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1729       (getPrimaryTemplate() == 0) ||
1730       (getDescribedFunctionTemplate() != 0))
1731     return false;
1732
1733   const ParmVarDecl *Param = getParamDecl(0);
1734
1735   ASTContext &Context = getASTContext();
1736   CanQualType ParamType = Context.getCanonicalType(Param->getType());
1737   
1738   // Is it the same as our our class type?
1739   CanQualType ClassTy 
1740     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1741   if (ParamType.getUnqualifiedType() != ClassTy)
1742     return false;
1743   
1744   return true;  
1745 }
1746
1747 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1748   // Hack: we store the inherited constructor in the overridden method table
1749   method_iterator It = getASTContext().overridden_methods_begin(this);
1750   if (It == getASTContext().overridden_methods_end(this))
1751     return 0;
1752
1753   return cast<CXXConstructorDecl>(*It);
1754 }
1755
1756 void
1757 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1758   // Hack: we store the inherited constructor in the overridden method table
1759   assert(getASTContext().overridden_methods_size(this) == 0 &&
1760          "Base ctor already set.");
1761   getASTContext().addOverriddenMethod(this, BaseCtor);
1762 }
1763
1764 void CXXDestructorDecl::anchor() { }
1765
1766 CXXDestructorDecl *
1767 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1768   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
1769   return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1770                                    QualType(), 0, false, false);
1771 }
1772
1773 CXXDestructorDecl *
1774 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1775                           SourceLocation StartLoc,
1776                           const DeclarationNameInfo &NameInfo,
1777                           QualType T, TypeSourceInfo *TInfo,
1778                           bool isInline, bool isImplicitlyDeclared) {
1779   assert(NameInfo.getName().getNameKind()
1780          == DeclarationName::CXXDestructorName &&
1781          "Name must refer to a destructor");
1782   return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
1783                                    isImplicitlyDeclared);
1784 }
1785
1786 void CXXConversionDecl::anchor() { }
1787
1788 CXXConversionDecl *
1789 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1790   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
1791   return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
1792                                      QualType(), 0, false, false, false,
1793                                      SourceLocation());
1794 }
1795
1796 CXXConversionDecl *
1797 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1798                           SourceLocation StartLoc,
1799                           const DeclarationNameInfo &NameInfo,
1800                           QualType T, TypeSourceInfo *TInfo,
1801                           bool isInline, bool isExplicit,
1802                           bool isConstexpr, SourceLocation EndLocation) {
1803   assert(NameInfo.getName().getNameKind()
1804          == DeclarationName::CXXConversionFunctionName &&
1805          "Name must refer to a conversion function");
1806   return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
1807                                    isInline, isExplicit, isConstexpr,
1808                                    EndLocation);
1809 }
1810
1811 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
1812   return isImplicit() && getParent()->isLambda() &&
1813          getConversionType()->isBlockPointerType();
1814 }
1815
1816 void LinkageSpecDecl::anchor() { }
1817
1818 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1819                                          DeclContext *DC,
1820                                          SourceLocation ExternLoc,
1821                                          SourceLocation LangLoc,
1822                                          LanguageIDs Lang,
1823                                          SourceLocation RBraceLoc) {
1824   return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
1825 }
1826
1827 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1828   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
1829   return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
1830                                    lang_c, SourceLocation());
1831 }
1832
1833 void UsingDirectiveDecl::anchor() { }
1834
1835 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1836                                                SourceLocation L,
1837                                                SourceLocation NamespaceLoc,
1838                                            NestedNameSpecifierLoc QualifierLoc,
1839                                                SourceLocation IdentLoc,
1840                                                NamedDecl *Used,
1841                                                DeclContext *CommonAncestor) {
1842   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1843     Used = NS->getOriginalNamespace();
1844   return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1845                                     IdentLoc, Used, CommonAncestor);
1846 }
1847
1848 UsingDirectiveDecl *
1849 UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1850   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
1851   return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
1852                                       NestedNameSpecifierLoc(),
1853                                       SourceLocation(), 0, 0);
1854 }
1855
1856 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1857   if (NamespaceAliasDecl *NA =
1858         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1859     return NA->getNamespace();
1860   return cast_or_null<NamespaceDecl>(NominatedNamespace);
1861 }
1862
1863 void NamespaceDecl::anchor() { }
1864
1865 NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline, 
1866                              SourceLocation StartLoc,
1867                              SourceLocation IdLoc, IdentifierInfo *Id,
1868                              NamespaceDecl *PrevDecl)
1869   : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
1870     LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline) 
1871 {
1872   setPreviousDeclaration(PrevDecl);
1873   
1874   if (PrevDecl)
1875     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
1876 }
1877
1878 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
1879                                      bool Inline, SourceLocation StartLoc,
1880                                      SourceLocation IdLoc, IdentifierInfo *Id,
1881                                      NamespaceDecl *PrevDecl) {
1882   return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
1883 }
1884
1885 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1886   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
1887   return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(), 
1888                                  0, 0);
1889 }
1890
1891 void NamespaceAliasDecl::anchor() { }
1892
1893 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
1894                                                SourceLocation UsingLoc,
1895                                                SourceLocation AliasLoc,
1896                                                IdentifierInfo *Alias,
1897                                            NestedNameSpecifierLoc QualifierLoc,
1898                                                SourceLocation IdentLoc,
1899                                                NamedDecl *Namespace) {
1900   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
1901     Namespace = NS->getOriginalNamespace();
1902   return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, 
1903                                     QualifierLoc, IdentLoc, Namespace);
1904 }
1905
1906 NamespaceAliasDecl *
1907 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1908   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
1909   return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
1910                                       NestedNameSpecifierLoc(), 
1911                                       SourceLocation(), 0);
1912 }
1913
1914 void UsingShadowDecl::anchor() { }
1915
1916 UsingShadowDecl *
1917 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1918   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
1919   return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
1920 }
1921
1922 UsingDecl *UsingShadowDecl::getUsingDecl() const {
1923   const UsingShadowDecl *Shadow = this;
1924   while (const UsingShadowDecl *NextShadow =
1925          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
1926     Shadow = NextShadow;
1927   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
1928 }
1929
1930 void UsingDecl::anchor() { }
1931
1932 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
1933   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
1934          "declaration already in set");
1935   assert(S->getUsingDecl() == this);
1936
1937   if (FirstUsingShadow.getPointer())
1938     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
1939   FirstUsingShadow.setPointer(S);
1940 }
1941
1942 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
1943   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
1944          "declaration not in set");
1945   assert(S->getUsingDecl() == this);
1946
1947   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
1948
1949   if (FirstUsingShadow.getPointer() == S) {
1950     FirstUsingShadow.setPointer(
1951       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
1952     S->UsingOrNextShadow = this;
1953     return;
1954   }
1955
1956   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
1957   while (Prev->UsingOrNextShadow != S)
1958     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
1959   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
1960   S->UsingOrNextShadow = this;
1961 }
1962
1963 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
1964                              NestedNameSpecifierLoc QualifierLoc,
1965                              const DeclarationNameInfo &NameInfo,
1966                              bool IsTypeNameArg) {
1967   return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
1968 }
1969
1970 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1971   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
1972   return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
1973                              DeclarationNameInfo(), false);
1974 }
1975
1976 void UnresolvedUsingValueDecl::anchor() { }
1977
1978 UnresolvedUsingValueDecl *
1979 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
1980                                  SourceLocation UsingLoc,
1981                                  NestedNameSpecifierLoc QualifierLoc,
1982                                  const DeclarationNameInfo &NameInfo) {
1983   return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
1984                                           QualifierLoc, NameInfo);
1985 }
1986
1987 UnresolvedUsingValueDecl *
1988 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1989   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
1990   return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
1991                                             NestedNameSpecifierLoc(),
1992                                             DeclarationNameInfo());
1993 }
1994
1995 void UnresolvedUsingTypenameDecl::anchor() { }
1996
1997 UnresolvedUsingTypenameDecl *
1998 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
1999                                     SourceLocation UsingLoc,
2000                                     SourceLocation TypenameLoc,
2001                                     NestedNameSpecifierLoc QualifierLoc,
2002                                     SourceLocation TargetNameLoc,
2003                                     DeclarationName TargetName) {
2004   return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
2005                                              QualifierLoc, TargetNameLoc,
2006                                              TargetName.getAsIdentifierInfo());
2007 }
2008
2009 UnresolvedUsingTypenameDecl *
2010 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2011   void *Mem = AllocateDeserializedDecl(C, ID, 
2012                                        sizeof(UnresolvedUsingTypenameDecl));
2013   return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
2014                                                SourceLocation(),
2015                                                NestedNameSpecifierLoc(),
2016                                                SourceLocation(),
2017                                                0);
2018 }
2019
2020 void StaticAssertDecl::anchor() { }
2021
2022 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2023                                            SourceLocation StaticAssertLoc,
2024                                            Expr *AssertExpr,
2025                                            StringLiteral *Message,
2026                                            SourceLocation RParenLoc,
2027                                            bool Failed) {
2028   return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2029                                   RParenLoc, Failed);
2030 }
2031
2032 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, 
2033                                                        unsigned ID) {
2034   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
2035   return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,
2036                                     SourceLocation(), false);
2037 }
2038
2039 static const char *getAccessName(AccessSpecifier AS) {
2040   switch (AS) {
2041     case AS_none:
2042       llvm_unreachable("Invalid access specifier!");
2043     case AS_public:
2044       return "public";
2045     case AS_private:
2046       return "private";
2047     case AS_protected:
2048       return "protected";
2049   }
2050   llvm_unreachable("Invalid access specifier!");
2051 }
2052
2053 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2054                                            AccessSpecifier AS) {
2055   return DB << getAccessName(AS);
2056 }
2057
2058 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2059                                            AccessSpecifier AS) {
2060   return DB << getAccessName(AS);
2061 }