//===- Writer.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Writer.h" #include "Config.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Target.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/StringSaver.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace lld; using namespace lld::elf2; namespace { // The writer writes a SymbolTable result to a file. template class Writer { public: typedef typename ELFFile::uintX_t uintX_t; typedef typename ELFFile::Elf_Shdr Elf_Shdr; typedef typename ELFFile::Elf_Ehdr Elf_Ehdr; typedef typename ELFFile::Elf_Phdr Elf_Phdr; typedef typename ELFFile::Elf_Sym Elf_Sym; typedef typename ELFFile::Elf_Sym_Range Elf_Sym_Range; typedef typename ELFFile::Elf_Rela Elf_Rela; Writer(SymbolTable &S) : Symtab(S) {} void run(); private: void copyLocalSymbols(); void addReservedSymbols(); void createSections(); void addPredefinedSections(); template void scanRelocs(InputSectionBase &C, iterator_range *> Rels); void scanRelocs(InputSection &C); void scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec); void updateRelro(Elf_Phdr *Cur, Elf_Phdr *GnuRelroPhdr, uintX_t VA); void assignAddresses(); void buildSectionMap(); void fixAbsoluteSymbols(); void openFile(StringRef OutputPath); void writeHeader(); void writeSections(); bool isDiscarded(InputSectionBase *IS) const; StringRef getOutputSectionName(StringRef S) const; bool needsInterpSection() const { return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); } bool isOutputDynamic() const { return !Symtab.getSharedFiles().empty() || Config->Shared; } int getPhdrsNum() const; OutputSection *getBSS(); void addCommonSymbols(std::vector &Syms); void addCopyRelSymbols(std::vector *> &Syms); std::unique_ptr Buffer; BumpPtrAllocator Alloc; std::vector *> OutputSections; std::vector>> OwningSections; unsigned getNumSections() const { return OutputSections.size() + 1; } void addRelIpltSymbols(); void addStartEndSymbols(); void addStartStopSymbols(OutputSectionBase *Sec); void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, uintX_t VA, uintX_t Size, uintX_t Align); void copyPhdr(Elf_Phdr *PH, OutputSectionBase *From); bool HasRelro = false; SymbolTable &Symtab; std::vector Phdrs; uintX_t FileSize; uintX_t SectionHeaderOff; llvm::StringMap InputToOutputSection; }; } // anonymous namespace template static bool shouldUseRela() { ELFKind K = cast>(Config->FirstElf)->getELFKind(); return K == ELF64LEKind || K == ELF64BEKind; } template void lld::elf2::writeResult(SymbolTable *Symtab) { // Initialize output sections that are handled by Writer specially. // Don't reorder because the order of initialization matters. InterpSection Interp; Out::Interp = &Interp; StringTableSection ShStrTab(".shstrtab", false); Out::ShStrTab = &ShStrTab; StringTableSection StrTab(".strtab", false); if (!Config->StripAll) Out::StrTab = &StrTab; StringTableSection DynStrTab(".dynstr", true); Out::DynStrTab = &DynStrTab; GotSection Got; Out::Got = &Got; GotPltSection GotPlt; if (Target->supportsLazyRelocations()) Out::GotPlt = &GotPlt; PltSection Plt; Out::Plt = &Plt; std::unique_ptr> SymTab; if (!Config->StripAll) { SymTab.reset(new SymbolTableSection(*Symtab, *Out::StrTab)); Out::SymTab = SymTab.get(); } SymbolTableSection DynSymTab(*Symtab, *Out::DynStrTab); Out::DynSymTab = &DynSymTab; HashTableSection HashTab; if (Config->SysvHash) Out::HashTab = &HashTab; GnuHashTableSection GnuHashTab; if (Config->GnuHash) Out::GnuHashTab = &GnuHashTab; bool IsRela = shouldUseRela(); RelocationSection RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); Out::RelaDyn = &RelaDyn; RelocationSection RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela); if (Target->supportsLazyRelocations()) Out::RelaPlt = &RelaPlt; DynamicSection Dynamic(*Symtab); Out::Dynamic = &Dynamic; Writer(*Symtab).run(); } // The main function of the writer. template void Writer::run() { buildSectionMap(); if (!Config->DiscardAll) copyLocalSymbols(); addReservedSymbols(); createSections(); assignAddresses(); fixAbsoluteSymbols(); openFile(Config->OutputFile); writeHeader(); writeSections(); error(Buffer->commit()); } namespace { template struct SectionKey { typedef typename std::conditional::type uintX_t; StringRef Name; uint32_t Type; uintX_t Flags; uintX_t EntSize; }; } namespace llvm { template struct DenseMapInfo> { static SectionKey getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0, 0}; } static SectionKey getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0, 0}; } static unsigned getHashValue(const SectionKey &Val) { return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize); } static bool isEqual(const SectionKey &LHS, const SectionKey &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && LHS.EntSize == RHS.EntSize; } }; } // The reason we have to do this early scan is as follows // * To mmap the output file, we need to know the size // * For that, we need to know how many dynamic relocs we will have. // It might be possible to avoid this by outputting the file with write: // * Write the allocated output sections, computing addresses. // * Apply relocations, recording which ones require a dynamic reloc. // * Write the dynamic relocations. // * Write the rest of the file. template template void Writer::scanRelocs( InputSectionBase &C, iterator_range *> Rels) { typedef Elf_Rel_Impl RelType; const ObjectFile &File = *C.getFile(); for (const RelType &RI : Rels) { uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); SymbolBody *Body = File.getSymbolBody(SymIndex); uint32_t Type = RI.getType(Config->Mips64EL); if (Target->isGotRelative(Type)) HasGotOffRel = true; if (Target->isTlsLocalDynamicReloc(Type)) { if (Target->isTlsOptimized(Type, nullptr)) continue; if (Out::Got->addCurrentModuleTlsIndex()) Out::RelaDyn->addReloc({&C, &RI}); continue; } // Set "used" bit for --as-needed. if (Body && Body->isUndefined() && !Body->isWeak()) if (auto *S = dyn_cast>(Body->repl())) S->File->IsUsed = true; if (Body) Body = Body->repl(); if (Body && Body->isTls() && Target->isTlsGlobalDynamicReloc(Type)) { bool Opt = Target->isTlsOptimized(Type, Body); if (!Opt && Out::Got->addDynTlsEntry(Body)) { Out::RelaDyn->addReloc({&C, &RI}); Out::RelaDyn->addReloc({nullptr, nullptr}); Body->setUsedInDynamicReloc(); continue; } if (!canBePreempted(Body, true)) continue; } if (Body && Body->isTls() && !Target->isTlsDynReloc(Type, *Body)) continue; if (Target->relocNeedsDynRelative(Type)) { RelType *Rel = new (Alloc) RelType; Rel->setSymbolAndType(0, Target->getRelativeReloc(), Config->Mips64EL); Rel->r_offset = RI.r_offset; Out::RelaDyn->addReloc({&C, Rel}); } bool NeedsGot = false; bool NeedsPlt = false; if (Body) { if (auto *E = dyn_cast>(Body)) { if (E->NeedsCopy) continue; if (Target->needsCopyRel(Type, *Body)) E->NeedsCopy = true; } NeedsPlt = Target->relocNeedsPlt(Type, *Body); if (NeedsPlt) { if (Body->isInPlt()) continue; Out::Plt->addEntry(Body); } NeedsGot = Target->relocNeedsGot(Type, *Body); if (NeedsGot) { if (NeedsPlt && Target->supportsLazyRelocations()) { Out::GotPlt->addEntry(Body); } else { if (Body->isInGot()) continue; Out::Got->addEntry(Body); } } } // An STT_GNU_IFUNC symbol always uses a PLT entry, and all references // to the symbol go through the PLT. This is true even for a local // symbol, although local symbols normally do not require PLT entries. if (Body && isGnuIFunc(*Body)) { Body->setUsedInDynamicReloc(); Out::RelaPlt->addReloc({&C, &RI}); continue; } if (Config->EMachine == EM_MIPS && NeedsGot) { // MIPS ABI has special rules to process GOT entries // and doesn't require relocation entries for them. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf Body->setUsedInDynamicReloc(); continue; } bool CBP = canBePreempted(Body, NeedsGot); if (!CBP && (!Config->Shared || Target->isRelRelative(Type))) continue; if (CBP) Body->setUsedInDynamicReloc(); if (NeedsPlt && Target->supportsLazyRelocations()) Out::RelaPlt->addReloc({&C, &RI}); else Out::RelaDyn->addReloc({&C, &RI}); } } template void Writer::scanRelocs(InputSection &C) { if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) return; for (const Elf_Shdr *RelSec : C.RelocSections) scanRelocs(C, *RelSec); } template void Writer::scanRelocs(InputSectionBase &S, const Elf_Shdr &RelSec) { ELFFile &EObj = S.getFile()->getObj(); if (RelSec.sh_type == SHT_RELA) scanRelocs(S, EObj.relas(&RelSec)); else scanRelocs(S, EObj.rels(&RelSec)); } template static void reportUndefined(const SymbolTable &S, const SymbolBody &Sym) { if (Config->Shared && !Config->NoUndefined) return; ELFFileBase *SymFile = findFile(S.getObjectFiles(), &Sym); std::string Message = "undefined symbol: " + Sym.getName().str(); if (SymFile) Message += " in " + SymFile->getName().str(); if (Config->NoInhibitExec) warning(Message); else error(Message); } // Local symbols are not in the linker's symbol table. This function scans // each object file's symbol table to copy local symbols to the output. template void Writer::copyLocalSymbols() { for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (const Elf_Sym &Sym : F->getLocalSymbols()) { ErrorOr SymNameOrErr = Sym.getName(F->getStringTable()); error(SymNameOrErr); StringRef SymName = *SymNameOrErr; if (!shouldKeepInSymtab(*F, SymName, Sym)) continue; if (Out::SymTab) Out::SymTab->addLocalSymbol(SymName); } } } // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that // we would like to make sure appear is a specific order to maximize their // coverage by a single signed 16-bit offset from the TOC base pointer. // Conversely, the special .tocbss section should be first among all SHT_NOBITS // sections. This will put it next to the loaded special PPC64 sections (and, // thus, within reach of the TOC base pointer). static int getPPC64SectionRank(StringRef SectionName) { return StringSwitch(SectionName) .Case(".tocbss", 0) .Case(".branch_lt", 2) .Case(".toc", 3) .Case(".toc1", 4) .Case(".opd", 5) .Default(1); } template static bool isRelroSection(OutputSectionBase *Sec) { typename OutputSectionBase::uintX_t Flags = Sec->getFlags(); if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) return false; if (Flags & SHF_TLS) return true; uint32_t Type = Sec->getType(); if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_PREINIT_ARRAY) return true; if (Sec == Out::GotPlt) return Config->ZNow; if (Sec == Out::Dynamic || Sec == Out::Got) return true; StringRef S = Sec->getName(); return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || S == ".eh_frame"; } // Output section ordering is determined by this function. template static bool compareOutputSections(OutputSectionBase *A, OutputSectionBase *B) { typedef typename ELFFile::uintX_t uintX_t; uintX_t AFlags = A->getFlags(); uintX_t BFlags = B->getFlags(); // Allocatable sections go first to reduce the total PT_LOAD size and // so debug info doesn't change addresses in actual code. bool AIsAlloc = AFlags & SHF_ALLOC; bool BIsAlloc = BFlags & SHF_ALLOC; if (AIsAlloc != BIsAlloc) return AIsAlloc; // We don't have any special requirements for the relative order of // two non allocatable sections. if (!AIsAlloc) return false; // We want the read only sections first so that they go in the PT_LOAD // covering the program headers at the start of the file. bool AIsWritable = AFlags & SHF_WRITE; bool BIsWritable = BFlags & SHF_WRITE; if (AIsWritable != BIsWritable) return BIsWritable; // For a corresponding reason, put non exec sections first (the program // header PT_LOAD is not executable). bool AIsExec = AFlags & SHF_EXECINSTR; bool BIsExec = BFlags & SHF_EXECINSTR; if (AIsExec != BIsExec) return BIsExec; // If we got here we know that both A and B are in the same PT_LOAD. // The TLS initialization block needs to be a single contiguous block in a R/W // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS // sections are placed here as they don't take up virtual address space in the // PT_LOAD. bool AIsTls = AFlags & SHF_TLS; bool BIsTls = BFlags & SHF_TLS; if (AIsTls != BIsTls) return AIsTls; // The next requirement we have is to put nobits sections last. The // reason is that the only thing the dynamic linker will see about // them is a p_memsz that is larger than p_filesz. Seeing that it // zeros the end of the PT_LOAD, so that has to correspond to the // nobits sections. bool AIsNoBits = A->getType() == SHT_NOBITS; bool BIsNoBits = B->getType() == SHT_NOBITS; if (AIsNoBits != BIsNoBits) return BIsNoBits; // We place RelRo section before plain r/w ones. bool AIsRelRo = isRelroSection(A); bool BIsRelRo = isRelroSection(B); if (AIsRelRo != BIsRelRo) return AIsRelRo; // Some architectures have additional ordering restrictions for sections // within the same PT_LOAD. if (Config->EMachine == EM_PPC64) return getPPC64SectionRank(A->getName()) < getPPC64SectionRank(B->getName()); return false; } template OutputSection *Writer::getBSS() { if (!Out::Bss) { Out::Bss = new OutputSection(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); OwningSections.emplace_back(Out::Bss); OutputSections.push_back(Out::Bss); } return Out::Bss; } // Until this function is called, common symbols do not belong to any section. // This function adds them to end of BSS section. template void Writer::addCommonSymbols(std::vector &Syms) { typedef typename ELFFile::uintX_t uintX_t; if (Syms.empty()) return; // Sort the common symbols by alignment as an heuristic to pack them better. std::stable_sort(Syms.begin(), Syms.end(), [](const DefinedCommon *A, const DefinedCommon *B) { return A->MaxAlignment > B->MaxAlignment; }); uintX_t Off = getBSS()->getSize(); for (DefinedCommon *C : Syms) { uintX_t Align = C->MaxAlignment; Off = RoundUpToAlignment(Off, Align); C->OffsetInBSS = Off; Off += C->Size; } Out::Bss->setSize(Off); } // Reserve space in .bss for copy relocations. template void Writer::addCopyRelSymbols(std::vector *> &Syms) { if (Syms.empty()) return; uintX_t Off = getBSS()->getSize(); for (SharedSymbol *C : Syms) { const Elf_Sym &Sym = C->Sym; const Elf_Shdr *Sec = C->File->getSection(Sym); uintX_t SecAlign = Sec->sh_addralign; unsigned TrailingZeros = std::min(countTrailingZeros(SecAlign), countTrailingZeros((uintX_t)Sym.st_value)); uintX_t Align = 1 << TrailingZeros; Out::Bss->updateAlign(Align); Off = RoundUpToAlignment(Off, Align); C->OffsetInBSS = Off; Off += Sym.st_size; } Out::Bss->setSize(Off); } template StringRef Writer::getOutputSectionName(StringRef S) const { auto It = InputToOutputSection.find(S); if (It != std::end(InputToOutputSection)) return It->second; if (S.startswith(".text.")) return ".text"; if (S.startswith(".rodata.")) return ".rodata"; if (S.startswith(".data.rel.ro")) return ".data.rel.ro"; if (S.startswith(".data.")) return ".data"; if (S.startswith(".bss.")) return ".bss"; return S; } template void reportDiscarded(InputSectionBase *IS, const std::unique_ptr> &File) { if (!Config->PrintGcSections || !IS || IS->isLive()) return; llvm::errs() << "removing unused section from '" << IS->getSectionName() << "' in file '" << File->getName() << "'\n"; } template bool Writer::isDiscarded(InputSectionBase *IS) const { if (!IS || !IS->isLive() || IS == &InputSection::Discarded) return true; return InputToOutputSection.lookup(IS->getSectionName()) == "/DISCARD/"; } template static bool compareSections(OutputSectionBase *A, OutputSectionBase *B) { auto ItA = Config->OutputSections.find(A->getName()); auto ItEnd = std::end(Config->OutputSections); if (ItA == ItEnd) return compareOutputSections(A, B); auto ItB = Config->OutputSections.find(B->getName()); if (ItB == ItEnd) return compareOutputSections(A, B); return std::distance(ItA, ItB) > 0; } // The beginning and the ending of .rel[a].plt section are marked // with __rel[a]_iplt_{start,end} symbols if it is a statically linked // executable. The runtime needs these symbols in order to resolve // all IRELATIVE relocs on startup. For dynamic executables, we don't // need these symbols, since IRELATIVE relocs are resolved through GOT // and PLT. For details, see http://www.airs.com/blog/archives/403. template void Writer::addRelIpltSymbols() { if (isOutputDynamic() || !Out::RelaPlt) return; bool IsRela = shouldUseRela(); StringRef S = IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; if (Symtab.find(S)) Symtab.addAbsolute(S, ElfSym::RelaIpltStart); S = IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; if (Symtab.find(S)) Symtab.addAbsolute(S, ElfSym::RelaIpltEnd); } template static bool includeInSymtab(const SymbolBody &B) { if (!B.isUsedInRegularObj()) return false; // Don't include synthetic symbols like __init_array_start in every output. if (auto *U = dyn_cast>(&B)) if (&U->Sym == &ElfSym::IgnoreUndef) return false; return true; } static bool includeInDynamicSymtab(const SymbolBody &B) { uint8_t V = B.getVisibility(); if (V != STV_DEFAULT && V != STV_PROTECTED) return false; if (Config->ExportDynamic || Config->Shared) return true; return B.isUsedInDynamicReloc(); } // This class knows how to create an output section for a given // input section. Output section type is determined by various // factors, including input section's sh_flags, sh_type and // linker scripts. namespace { template class OutputSectionFactory { typedef typename ELFFile::Elf_Shdr Elf_Shdr; typedef typename ELFFile::uintX_t uintX_t; public: std::pair *, bool> create(InputSectionBase *C, StringRef OutsecName); OutputSectionBase *lookup(StringRef Name, uint32_t Type, uintX_t Flags); private: SectionKey createKey(InputSectionBase *C, StringRef OutsecName); OutputSectionBase *createAux(InputSectionBase *C, const SectionKey &Key); SmallDenseMap, OutputSectionBase *> Map; }; } template std::pair *, bool> OutputSectionFactory::create(InputSectionBase *C, StringRef OutsecName) { SectionKey Key = createKey(C, OutsecName); OutputSectionBase *&Sec = Map[Key]; if (Sec) return {Sec, false}; Sec = createAux(C, Key); return {Sec, true}; } template OutputSectionBase * OutputSectionFactory::createAux(InputSectionBase *C, const SectionKey &Key) { switch (C->SectionKind) { case InputSectionBase::Regular: return new OutputSection(Key.Name, Key.Type, Key.Flags); case InputSectionBase::EHFrame: return new EHOutputSection(Key.Name, Key.Type, Key.Flags); case InputSectionBase::Merge: return new MergeOutputSection(Key.Name, Key.Type, Key.Flags); case InputSectionBase::MipsReginfo: return new MipsReginfoOutputSection(); } llvm_unreachable("Unknown output section type"); } template OutputSectionBase *OutputSectionFactory::lookup(StringRef Name, uint32_t Type, uintX_t Flags) { return Map.lookup({Name, Type, Flags, 0}); } template SectionKey OutputSectionFactory::createKey(InputSectionBase *C, StringRef OutsecName) { const Elf_Shdr *H = C->getSectionHdr(); uintX_t Flags = H->sh_flags & ~SHF_GROUP; // For SHF_MERGE we create different output sections for each sh_entsize. // This makes each output section simple and keeps a single level // mapping from input to output. uintX_t EntSize = isa>(C) ? H->sh_entsize : 0; // GNU as can give .eh_frame secion type SHT_PROGBITS or SHT_X86_64_UNWIND // depending on the construct. We want to canonicalize it so that // there is only one .eh_frame in the end. uint32_t Type = H->sh_type; if (Type == SHT_PROGBITS && Config->EMachine == EM_X86_64 && isa>(C)) Type = SHT_X86_64_UNWIND; return SectionKey{OutsecName, Type, Flags, EntSize}; } // The linker is expected to define some symbols depending on // the linking result. This function defines such symbols. template void Writer::addReservedSymbols() { // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For // static linking the linker is required to optimize away any references to // __tls_get_addr, so it's not defined anywhere. Create a hidden definition // to avoid the undefined symbol error. if (!isOutputDynamic()) Symtab.addIgnored("__tls_get_addr"); // If the "_end" symbol is referenced, it is expected to point to the address // right after the data segment. Usually, this symbol points to the end // of .bss section or to the end of .data section if .bss section is absent. // The order of the sections can be affected by linker script, // so it is hard to predict which section will be the last one. // So, if this symbol is referenced, we just add the placeholder here // and update its value later. if (Symtab.find("_end")) Symtab.addAbsolute("_end", ElfSym::End); // If there is an undefined symbol "end", we should initialize it // with the same value as "_end". In any other case it should stay intact, // because it is an allowable name for a user symbol. if (SymbolBody *B = Symtab.find("end")) if (B->isUndefined()) Symtab.addAbsolute("end", ElfSym::End); } // Create output section objects and add them to OutputSections. template void Writer::createSections() { // Add .interp first because some loaders want to see that section // on the first page of the executable file when loaded into memory. if (needsInterpSection()) OutputSections.push_back(Out::Interp); // Create output sections for input object file sections. std::vector *> RegularSections; OutputSectionFactory Factory; for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (InputSectionBase *C : F->getSections()) { if (isDiscarded(C)) { reportDiscarded(C, F); continue; } OutputSectionBase *Sec; bool IsNew; std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C->getSectionName())); if (IsNew) { OwningSections.emplace_back(Sec); OutputSections.push_back(Sec); RegularSections.push_back(Sec); } Sec->addSection(C); } } Out::Bss = static_cast *>( Factory.lookup(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE)); // If we have a .opd section (used under PPC64 for function descriptors), // store a pointer to it here so that we can use it later when processing // relocations. Out::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC); Out::Dynamic->PreInitArraySec = Factory.lookup( ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC); Out::Dynamic->InitArraySec = Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC); Out::Dynamic->FiniArraySec = Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC); // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop // symbols for sections, so that the runtime can get the start and end // addresses of each section by section name. Add such symbols. addStartEndSymbols(); for (OutputSectionBase *Sec : RegularSections) addStartStopSymbols(Sec); // Scan relocations. This must be done after every symbol is declared so that // we can correctly decide if a dynamic relocation is needed. for (const std::unique_ptr> &F : Symtab.getObjectFiles()) { for (InputSectionBase *C : F->getSections()) { if (isDiscarded(C)) continue; if (auto *S = dyn_cast>(C)) scanRelocs(*S); else if (auto *S = dyn_cast>(C)) if (S->RelocSection) scanRelocs(*S, *S->RelocSection); } } // Define __rel[a]_iplt_{start,end} symbols if needed. addRelIpltSymbols(); // Now that we have defined all possible symbols including linker- // synthesized ones. Visit all symbols to give the finishing touches. std::vector CommonSymbols; std::vector *> CopyRelSymbols; for (auto &P : Symtab.getSymbols()) { SymbolBody *Body = P.second->Body; if (auto *U = dyn_cast(Body)) if (!U->isWeak() && !U->canKeepUndefined()) reportUndefined(Symtab, *Body); if (auto *C = dyn_cast(Body)) CommonSymbols.push_back(C); if (auto *SC = dyn_cast>(Body)) if (SC->NeedsCopy) CopyRelSymbols.push_back(SC); if (!includeInSymtab(*Body)) continue; if (Out::SymTab) Out::SymTab->addSymbol(Body); if (isOutputDynamic() && includeInDynamicSymtab(*Body)) Out::DynSymTab->addSymbol(Body); } addCommonSymbols(CommonSymbols); addCopyRelSymbols(CopyRelSymbols); // So far we have added sections from input object files. // This function adds linker-created Out::* sections. addPredefinedSections(); std::stable_sort(OutputSections.begin(), OutputSections.end(), compareSections); for (unsigned I = 0, N = OutputSections.size(); I < N; ++I) { OutputSections[I]->SectionIndex = I + 1; HasRelro |= (Config->ZRelro && isRelroSection(OutputSections[I])); } for (OutputSectionBase *Sec : OutputSections) Out::ShStrTab->add(Sec->getName()); // Finalizers fix each section's size. // .dynamic section's finalizer may add strings to .dynstr, // so finalize that early. // Likewise, .dynsym is finalized early since that may fill up .gnu.hash. Out::Dynamic->finalize(); if (isOutputDynamic()) Out::DynSymTab->finalize(); // Fill other section headers. for (OutputSectionBase *Sec : OutputSections) Sec->finalize(); } // This function add Out::* sections to OutputSections. template void Writer::addPredefinedSections() { auto Add = [&](OutputSectionBase *C) { if (C) OutputSections.push_back(C); }; // This order is not the same as the final output order // because we sort the sections using their attributes below. Add(Out::SymTab); Add(Out::ShStrTab); Add(Out::StrTab); if (isOutputDynamic()) { Add(Out::DynSymTab); Add(Out::GnuHashTab); Add(Out::HashTab); Add(Out::Dynamic); Add(Out::DynStrTab); if (Out::RelaDyn->hasRelocs()) Add(Out::RelaDyn); // This is a MIPS specific section to hold a space within the data segment // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. // See "Dynamic section" in Chapter 5 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS && !Config->Shared) { Out::MipsRldMap = new OutputSection(".rld_map", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE); Out::MipsRldMap->setSize(ELFT::Is64Bits ? 8 : 4); Out::MipsRldMap->updateAlign(ELFT::Is64Bits ? 8 : 4); OwningSections.emplace_back(Out::MipsRldMap); Add(Out::MipsRldMap); } } // We always need to add rel[a].plt to output if it has entries. // Even during static linking it can contain R_[*]_IRELATIVE relocations. if (Out::RelaPlt && Out::RelaPlt->hasRelocs()) { Add(Out::RelaPlt); Out::RelaPlt->Static = !isOutputDynamic(); } bool needsGot = !Out::Got->empty(); // We add the .got section to the result for dynamic MIPS target because // its address and properties are mentioned in the .dynamic section. if (Config->EMachine == EM_MIPS) needsGot |= isOutputDynamic(); // If we have a relocation that is relative to GOT (such as GOTOFFREL), // we need to emit a GOT even if it's empty. if (HasGotOffRel) needsGot = true; if (needsGot) Add(Out::Got); if (Out::GotPlt && !Out::GotPlt->empty()) Add(Out::GotPlt); if (!Out::Plt->empty()) Add(Out::Plt); } // The linker is expected to define SECNAME_start and SECNAME_end // symbols for a few sections. This function defines them. template void Writer::addStartEndSymbols() { auto Define = [&](StringRef Start, StringRef End, OutputSectionBase *OS) { if (OS) { Symtab.addSynthetic(Start, *OS, 0); Symtab.addSynthetic(End, *OS, OS->getSize()); } else { Symtab.addIgnored(Start); Symtab.addIgnored(End); } }; Define("__preinit_array_start", "__preinit_array_end", Out::Dynamic->PreInitArraySec); Define("__init_array_start", "__init_array_end", Out::Dynamic->InitArraySec); Define("__fini_array_start", "__fini_array_end", Out::Dynamic->FiniArraySec); } static bool isAlpha(char C) { return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; } static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } // Returns true if S is valid as a C language identifier. static bool isValidCIdentifier(StringRef S) { if (S.empty() || !isAlpha(S[0])) return false; return std::all_of(S.begin() + 1, S.end(), isAlnum); } // If a section name is valid as a C identifier (which is rare because of // the leading '.'), linkers are expected to define __start_ and // __stop_ symbols. They are at beginning and end of the section, // respectively. This is not requested by the ELF standard, but GNU ld and // gold provide the feature, and used by many programs. template void Writer::addStartStopSymbols(OutputSectionBase *Sec) { StringRef S = Sec->getName(); if (!isValidCIdentifier(S)) return; StringSaver Saver(Alloc); StringRef Start = Saver.save("__start_" + S); StringRef Stop = Saver.save("__stop_" + S); if (Symtab.isUndefined(Start)) Symtab.addSynthetic(Start, *Sec, 0); if (Symtab.isUndefined(Stop)) Symtab.addSynthetic(Stop, *Sec, Sec->getSize()); } template static bool needsPhdr(OutputSectionBase *Sec) { return Sec->getFlags() & SHF_ALLOC; } static uint32_t toPhdrFlags(uint64_t Flags) { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } template void Writer::updateRelro(Elf_Phdr *Cur, Elf_Phdr *GnuRelroPhdr, uintX_t VA) { if (!GnuRelroPhdr->p_type) setPhdr(GnuRelroPhdr, PT_GNU_RELRO, PF_R, Cur->p_offset, Cur->p_vaddr, VA - Cur->p_vaddr, 1 /*p_align*/); GnuRelroPhdr->p_filesz = VA - Cur->p_vaddr; GnuRelroPhdr->p_memsz = VA - Cur->p_vaddr; } // Visits all sections to create PHDRs and to assign incremental, // non-overlapping addresses to output sections. template void Writer::assignAddresses() { uintX_t VA = Target->getVAStart() + sizeof(Elf_Ehdr); uintX_t FileOff = sizeof(Elf_Ehdr); // Calculate and reserve the space for the program header first so that // the first section can start right after the program header. Phdrs.resize(getPhdrsNum()); size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size(); // The first phdr entry is PT_PHDR which describes the program header itself. setPhdr(&Phdrs[0], PT_PHDR, PF_R, FileOff, VA, PhdrSize, /*Align=*/8); FileOff += PhdrSize; VA += PhdrSize; // PT_INTERP must be the second entry if exists. int PhdrIdx = 0; Elf_Phdr *Interp = nullptr; if (needsInterpSection()) Interp = &Phdrs[++PhdrIdx]; // Add the first PT_LOAD segment for regular output sections. setPhdr(&Phdrs[++PhdrIdx], PT_LOAD, PF_R, 0, Target->getVAStart(), FileOff, Target->getPageSize()); Elf_Phdr GnuRelroPhdr = {}; Elf_Phdr TlsPhdr{}; bool RelroAligned = false; uintX_t ThreadBSSOffset = 0; // Create phdrs as we assign VAs and file offsets to all output sections. for (OutputSectionBase *Sec : OutputSections) { Elf_Phdr *PH = &Phdrs[PhdrIdx]; if (needsPhdr(Sec)) { uintX_t Flags = toPhdrFlags(Sec->getFlags()); bool InRelRo = Config->ZRelro && (Flags & PF_W) && isRelroSection(Sec); bool FirstNonRelRo = GnuRelroPhdr.p_type && !InRelRo && !RelroAligned; if (FirstNonRelRo || PH->p_flags != Flags) { VA = RoundUpToAlignment(VA, Target->getPageSize()); FileOff = RoundUpToAlignment(FileOff, Target->getPageSize()); if (FirstNonRelRo) RelroAligned = true; } if (PH->p_flags != Flags) { // Flags changed. Create a new PT_LOAD. PH = &Phdrs[++PhdrIdx]; setPhdr(PH, PT_LOAD, Flags, FileOff, VA, 0, Target->getPageSize()); } if (Sec->getFlags() & SHF_TLS) { if (!TlsPhdr.p_vaddr) setPhdr(&TlsPhdr, PT_TLS, PF_R, FileOff, VA, 0, Sec->getAlign()); if (Sec->getType() != SHT_NOBITS) VA = RoundUpToAlignment(VA, Sec->getAlign()); uintX_t TVA = RoundUpToAlignment(VA + ThreadBSSOffset, Sec->getAlign()); Sec->setVA(TVA); TlsPhdr.p_memsz += Sec->getSize(); if (Sec->getType() == SHT_NOBITS) { ThreadBSSOffset = TVA - VA + Sec->getSize(); } else { TlsPhdr.p_filesz += Sec->getSize(); VA += Sec->getSize(); } TlsPhdr.p_align = std::max(TlsPhdr.p_align, Sec->getAlign()); } else { VA = RoundUpToAlignment(VA, Sec->getAlign()); Sec->setVA(VA); VA += Sec->getSize(); if (InRelRo) updateRelro(PH, &GnuRelroPhdr, VA); } } FileOff = RoundUpToAlignment(FileOff, Sec->getAlign()); Sec->setFileOffset(FileOff); if (Sec->getType() != SHT_NOBITS) FileOff += Sec->getSize(); if (needsPhdr(Sec)) { PH->p_filesz = FileOff - PH->p_offset; PH->p_memsz = VA - PH->p_vaddr; } } if (TlsPhdr.p_vaddr) { // The TLS pointer goes after PT_TLS. At least glibc will align it, // so round up the size to make sure the offsets are correct. TlsPhdr.p_memsz = RoundUpToAlignment(TlsPhdr.p_memsz, TlsPhdr.p_align); Phdrs[++PhdrIdx] = TlsPhdr; Out::TlsPhdr = &Phdrs[PhdrIdx]; } // Add an entry for .dynamic. if (isOutputDynamic()) { Elf_Phdr *PH = &Phdrs[++PhdrIdx]; PH->p_type = PT_DYNAMIC; copyPhdr(PH, Out::Dynamic); } if (HasRelro) { Elf_Phdr *PH = &Phdrs[++PhdrIdx]; *PH = GnuRelroPhdr; } // PT_GNU_STACK is a special section to tell the loader to make the // pages for the stack non-executable. if (!Config->ZExecStack) { Elf_Phdr *PH = &Phdrs[++PhdrIdx]; PH->p_type = PT_GNU_STACK; PH->p_flags = PF_R | PF_W; } // Fix up PT_INTERP as we now know the address of .interp section. if (Interp) { Interp->p_type = PT_INTERP; copyPhdr(Interp, Out::Interp); } // Add space for section headers. SectionHeaderOff = RoundUpToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4); FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); // Update "_end" and "end" symbols so that they // point to the end of the data segment. ElfSym::End.st_value = VA; } // Returns the number of PHDR entries. template int Writer::getPhdrsNum() const { bool Tls = false; int I = 2; // 2 for PT_PHDR and first PT_LOAD if (needsInterpSection()) ++I; if (isOutputDynamic()) ++I; if (!Config->ZExecStack) ++I; uintX_t Last = PF_R; for (OutputSectionBase *Sec : OutputSections) { if (!needsPhdr(Sec)) continue; if (Sec->getFlags() & SHF_TLS) Tls = true; uintX_t Flags = toPhdrFlags(Sec->getFlags()); if (Last != Flags) { Last = Flags; ++I; } } if (Tls) ++I; if (HasRelro) ++I; return I; } static uint32_t getELFFlags() { if (Config->EMachine != EM_MIPS) return 0; // FIXME: In fact ELF flags depends on ELF flags of input object files // and selected emulation. For now just use hadr coded values. uint32_t V = EF_MIPS_ABI_O32 | EF_MIPS_CPIC | EF_MIPS_ARCH_32R2; if (Config->Shared) V |= EF_MIPS_PIC; return V; } template static typename ELFFile::uintX_t getEntryAddr() { if (Config->EntrySym) { if (SymbolBody *E = Config->EntrySym->repl()) return getSymVA(*E); return 0; } if (Config->EntryAddr != uint64_t(-1)) return Config->EntryAddr; return 0; } // This function is called after we have assigned address and size // to each section. This function fixes some predefined absolute // symbol values that depend on section address and size. template void Writer::fixAbsoluteSymbols() { // Update __rel[a]_iplt_{start,end} symbols so that they point // to beginning or ending of .rela.plt section, respectively. if (Out::RelaPlt) { uintX_t Start = Out::RelaPlt->getVA(); ElfSym::RelaIpltStart.st_value = Start; ElfSym::RelaIpltEnd.st_value = Start + Out::RelaPlt->getSize(); } // Update MIPS _gp absolute symbol so that it points to the static data. if (Config->EMachine == EM_MIPS) ElfSym::MipsGp.st_value = getMipsGpAddr(); } template void Writer::writeHeader() { uint8_t *Buf = Buffer->getBufferStart(); memcpy(Buf, "\177ELF", 4); // Write the ELF header. auto *EHdr = reinterpret_cast(Buf); EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little ? ELFDATA2LSB : ELFDATA2MSB; EHdr->e_ident[EI_VERSION] = EV_CURRENT; auto &FirstObj = cast>(*Config->FirstElf); EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC; EHdr->e_machine = FirstObj.getEMachine(); EHdr->e_version = EV_CURRENT; EHdr->e_entry = getEntryAddr(); EHdr->e_phoff = sizeof(Elf_Ehdr); EHdr->e_shoff = SectionHeaderOff; EHdr->e_flags = getELFFlags(); EHdr->e_ehsize = sizeof(Elf_Ehdr); EHdr->e_phentsize = sizeof(Elf_Phdr); EHdr->e_phnum = Phdrs.size(); EHdr->e_shentsize = sizeof(Elf_Shdr); EHdr->e_shnum = getNumSections(); EHdr->e_shstrndx = Out::ShStrTab->SectionIndex; // Write the program header table. memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0])); // Write the section header table. Note that the first table entry is null. auto SHdrs = reinterpret_cast(Buf + EHdr->e_shoff); for (OutputSectionBase *Sec : OutputSections) Sec->writeHeaderTo(++SHdrs); } template void Writer::openFile(StringRef Path) { ErrorOr> BufferOrErr = FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable); error(BufferOrErr, "failed to open " + Path); Buffer = std::move(*BufferOrErr); } // Write section contents to a mmap'ed file. template void Writer::writeSections() { uint8_t *Buf = Buffer->getBufferStart(); // PPC64 needs to process relocations in the .opd section before processing // relocations in code-containing sections. if (OutputSectionBase *Sec = Out::Opd) { Out::OpdBuf = Buf + Sec->getFileOff(); Sec->writeTo(Buf + Sec->getFileOff()); } for (OutputSectionBase *Sec : OutputSections) if (Sec != Out::Opd) Sec->writeTo(Buf + Sec->getFileOff()); } template void Writer::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, uintX_t VA, uintX_t Size, uintX_t Align) { PH->p_type = Type; PH->p_flags = Flags; PH->p_offset = FileOff; PH->p_vaddr = VA; PH->p_paddr = VA; PH->p_filesz = Size; PH->p_memsz = Size; PH->p_align = Align; } template void Writer::copyPhdr(Elf_Phdr *PH, OutputSectionBase *From) { PH->p_flags = toPhdrFlags(From->getFlags()); PH->p_offset = From->getFileOff(); PH->p_vaddr = From->getVA(); PH->p_paddr = From->getVA(); PH->p_filesz = From->getSize(); PH->p_memsz = From->getSize(); PH->p_align = From->getAlign(); } template void Writer::buildSectionMap() { for (const std::pair> &OutSec : Config->OutputSections) for (StringRef Name : OutSec.second) InputToOutputSection[Name] = OutSec.first; } template void lld::elf2::writeResult(SymbolTable *Symtab); template void lld::elf2::writeResult(SymbolTable *Symtab); template void lld::elf2::writeResult(SymbolTable *Symtab); template void lld::elf2::writeResult(SymbolTable *Symtab);