/* * Copyright (c) 2017 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "inner.h" #define I15_LEN ((BR_MAX_EC_SIZE + 29) / 15) #define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1)) #define ORDER_LEN ((BR_MAX_EC_SIZE + 7) >> 3) /* see bearssl_ec.h */ size_t br_ecdsa_i15_sign_raw(const br_ec_impl *impl, const br_hash_class *hf, const void *hash_value, const br_ec_private_key *sk, void *sig) { /* * IMPORTANT: this code is fit only for curves with a prime * order. This is needed so that modular reduction of the X * coordinate of a point can be done with a simple subtraction. * We also rely on the last byte of the curve order to be distinct * from 0 and 1. */ const br_ec_curve_def *cd; uint16_t n[I15_LEN], r[I15_LEN], s[I15_LEN], x[I15_LEN]; uint16_t m[I15_LEN], k[I15_LEN], t1[I15_LEN], t2[I15_LEN]; unsigned char tt[ORDER_LEN << 1]; unsigned char eU[POINT_LEN]; size_t hash_len, nlen, ulen; uint16_t n0i; uint32_t ctl; br_hmac_drbg_context drbg; /* * If the curve is not supported, then exit with an error. */ if (((impl->supported_curves >> sk->curve) & 1) == 0) { return 0; } /* * Get the curve parameters (generator and order). */ switch (sk->curve) { case BR_EC_secp256r1: cd = &br_secp256r1; break; case BR_EC_secp384r1: cd = &br_secp384r1; break; case BR_EC_secp521r1: cd = &br_secp521r1; break; default: return 0; } /* * Get modulus. */ nlen = cd->order_len; br_i15_decode(n, cd->order, nlen); n0i = br_i15_ninv15(n[1]); /* * Get private key as an i15 integer. This also checks that the * private key is well-defined (not zero, and less than the * curve order). */ if (!br_i15_decode_mod(x, sk->x, sk->xlen, n)) { return 0; } if (br_i15_iszero(x)) { return 0; } /* * Get hash length. */ hash_len = (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK; /* * Truncate and reduce the hash value modulo the curve order. */ br_ecdsa_i15_bits2int(m, hash_value, hash_len, n[0]); br_i15_sub(m, n, br_i15_sub(m, n, 0) ^ 1); /* * RFC 6979 generation of the "k" value. * * The process uses HMAC_DRBG (with the hash function used to * process the message that is to be signed). The seed is the * concatenation of the encodings of the private key and * the hash value (after truncation and modular reduction). */ br_i15_encode(tt, nlen, x); br_i15_encode(tt + nlen, nlen, m); br_hmac_drbg_init(&drbg, hf, tt, nlen << 1); for (;;) { br_hmac_drbg_generate(&drbg, tt, nlen); br_ecdsa_i15_bits2int(k, tt, nlen, n[0]); if (br_i15_iszero(k)) { continue; } if (br_i15_sub(k, n, 0)) { break; } } /* * Compute k*G and extract the X coordinate, then reduce it * modulo the curve order. Since we support only curves with * prime order, that reduction is only a matter of computing * a subtraction. */ br_i15_encode(tt, nlen, k); ulen = impl->mulgen(eU, tt, nlen, sk->curve); br_i15_zero(r, n[0]); br_i15_decode(r, &eU[1], ulen >> 1); r[0] = n[0]; br_i15_sub(r, n, br_i15_sub(r, n, 0) ^ 1); /* * Compute 1/k in double-Montgomery representation. We do so by * first converting _from_ Montgomery representation (twice), * then using a modular exponentiation. */ br_i15_from_monty(k, n, n0i); br_i15_from_monty(k, n, n0i); memcpy(tt, cd->order, nlen); tt[nlen - 1] -= 2; br_i15_modpow(k, tt, nlen, n, n0i, t1, t2); /* * Compute s = (m+xr)/k (mod n). * The k[] array contains R^2/k (double-Montgomery representation); * we thus can use direct Montgomery multiplications and conversions * from Montgomery, avoiding any call to br_i15_to_monty() (which * is slower). */ br_i15_from_monty(m, n, n0i); br_i15_montymul(t1, x, r, n, n0i); ctl = br_i15_add(t1, m, 1); ctl |= br_i15_sub(t1, n, 0) ^ 1; br_i15_sub(t1, n, ctl); br_i15_montymul(s, t1, k, n, n0i); /* * Encode r and s in the signature. */ br_i15_encode(sig, nlen, r); br_i15_encode((unsigned char *)sig + nlen, nlen, s); return nlen << 1; }