/* * Copyright (c) 2017 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "inner.h" #if BR_INT128 || BR_UMUL128 #if BR_INT128 #define MUL128(hi, lo, x, y) do { \ unsigned __int128 mul128tmp; \ mul128tmp = (unsigned __int128)(x) * (unsigned __int128)(y); \ (hi) = (uint64_t)(mul128tmp >> 64); \ (lo) = (uint64_t)mul128tmp; \ } while (0) #elif BR_UMUL128 #include #define MUL128(hi, lo, x, y) do { \ (lo) = _umul128((x), (y), &(hi)); \ } while (0) #endif #define MASK42 ((uint64_t)0x000003FFFFFFFFFF) #define MASK44 ((uint64_t)0x00000FFFFFFFFFFF) /* * The "accumulator" word is nominally a 130-bit value. We split it into * words of 44 bits, each held in a 64-bit variable. * * If the current accumulator is a = a0 + a1*W + a2*W^2 (where W = 2^44) * and r = r0 + r1*W + r2*W^2, then: * * a*r = (a0*r0) * + (a0*r1 + a1*r0) * W * + (a0*r2 + a1*r1 + a2*r0) * W^2 * + (a1*r2 + a2*r1) * W^3 * + (a2*r2) * W^4 * * We want to reduce that value modulo p = 2^130-5, so W^3 = 20 mod p, * and W^4 = 20*W mod p. Thus, if we define u1 = 20*r1 and u2 = 20*r2, * then the equations above become: * * b0 = a0*r0 + a1*u2 + a2*u1 * b1 = a0*r1 + a1*r0 + a2*u2 * b2 = a0*r2 + a1*r1 + a2*r0 * * In order to make u1 fit in 44 bits, we can change these equations * into: * * b0 = a0*r0 + a1*u2 + a2*t1 * b1 = a0*r1 + a1*r0 + a2*t2 * b2 = a0*r2 + a1*r1 + a2*r0 * * Where t1 is u1 truncated to 44 bits, and t2 is u2 added to the extra * bits of u1. Note that since r is clamped down to a 124-bit value, the * values u2 and t2 fit on 44 bits too. * * The bx values are larger than 44 bits, so we may split them into a * lower half (cx, 44 bits) and an upper half (dx). The new values for * the accumulator are then: * * e0 = c0 + 20*d2 * e1 = c1 + d0 * e2 = c2 + d1 * * The equations allow for some room, i.e. the ax values may be larger * than 44 bits. Similarly, the ex values will usually be larger than * the ax. Thus, some sort of carry propagation must be done regularly, * though not necessarily at each iteration. In particular, we do not * need to compute the additions (for the bx values) over 128-bit * quantities; we can stick to 64-bit computations. * * * Since the 128-bit result of a 64x64 multiplication is actually * represented over two 64-bit registers, it is cheaper to arrange for * any split that happens between the "high" and "low" halves to be on * that 64-bit boundary. This is done by left shifting the rx, ux and tx * by 20 bits (since they all fit on 44 bits each, this shift is * always possible). */ static void poly1305_inner_big(uint64_t *acc, uint64_t *r, const void *data, size_t len) { #define MX(hi, lo, m0, m1, m2) do { \ uint64_t mxhi, mxlo; \ MUL128(mxhi, mxlo, a0, m0); \ (hi) = mxhi; \ (lo) = mxlo >> 20; \ MUL128(mxhi, mxlo, a1, m1); \ (hi) += mxhi; \ (lo) += mxlo >> 20; \ MUL128(mxhi, mxlo, a2, m2); \ (hi) += mxhi; \ (lo) += mxlo >> 20; \ } while (0) const unsigned char *buf; uint64_t a0, a1, a2; uint64_t r0, r1, r2, t1, t2, u2; r0 = r[0]; r1 = r[1]; r2 = r[2]; t1 = r[3]; t2 = r[4]; u2 = r[5]; a0 = acc[0]; a1 = acc[1]; a2 = acc[2]; buf = data; while (len > 0) { uint64_t v0, v1, v2; uint64_t c0, c1, c2, d0, d1, d2; v0 = br_dec64le(buf + 0); v1 = br_dec64le(buf + 8); v2 = v1 >> 24; v1 = ((v0 >> 44) | (v1 << 20)) & MASK44; v0 &= MASK44; a0 += v0; a1 += v1; a2 += v2 + ((uint64_t)1 << 40); MX(d0, c0, r0, u2, t1); MX(d1, c1, r1, r0, t2); MX(d2, c2, r2, r1, r0); a0 = c0 + 20 * d2; a1 = c1 + d0; a2 = c2 + d1; v0 = br_dec64le(buf + 16); v1 = br_dec64le(buf + 24); v2 = v1 >> 24; v1 = ((v0 >> 44) | (v1 << 20)) & MASK44; v0 &= MASK44; a0 += v0; a1 += v1; a2 += v2 + ((uint64_t)1 << 40); MX(d0, c0, r0, u2, t1); MX(d1, c1, r1, r0, t2); MX(d2, c2, r2, r1, r0); a0 = c0 + 20 * d2; a1 = c1 + d0; a2 = c2 + d1; v0 = br_dec64le(buf + 32); v1 = br_dec64le(buf + 40); v2 = v1 >> 24; v1 = ((v0 >> 44) | (v1 << 20)) & MASK44; v0 &= MASK44; a0 += v0; a1 += v1; a2 += v2 + ((uint64_t)1 << 40); MX(d0, c0, r0, u2, t1); MX(d1, c1, r1, r0, t2); MX(d2, c2, r2, r1, r0); a0 = c0 + 20 * d2; a1 = c1 + d0; a2 = c2 + d1; v0 = br_dec64le(buf + 48); v1 = br_dec64le(buf + 56); v2 = v1 >> 24; v1 = ((v0 >> 44) | (v1 << 20)) & MASK44; v0 &= MASK44; a0 += v0; a1 += v1; a2 += v2 + ((uint64_t)1 << 40); MX(d0, c0, r0, u2, t1); MX(d1, c1, r1, r0, t2); MX(d2, c2, r2, r1, r0); a0 = c0 + 20 * d2; a1 = c1 + d0; a2 = c2 + d1; a1 += a0 >> 44; a0 &= MASK44; a2 += a1 >> 44; a1 &= MASK44; a0 += 20 * (a2 >> 44); a2 &= MASK44; buf += 64; len -= 64; } acc[0] = a0; acc[1] = a1; acc[2] = a2; #undef MX } static void poly1305_inner_small(uint64_t *acc, uint64_t *r, const void *data, size_t len) { const unsigned char *buf; uint64_t a0, a1, a2; uint64_t r0, r1, r2, t1, t2, u2; r0 = r[0]; r1 = r[1]; r2 = r[2]; t1 = r[3]; t2 = r[4]; u2 = r[5]; a0 = acc[0]; a1 = acc[1]; a2 = acc[2]; buf = data; while (len > 0) { uint64_t v0, v1, v2; uint64_t c0, c1, c2, d0, d1, d2; unsigned char tmp[16]; if (len < 16) { memcpy(tmp, buf, len); memset(tmp + len, 0, (sizeof tmp) - len); buf = tmp; len = 16; } v0 = br_dec64le(buf + 0); v1 = br_dec64le(buf + 8); v2 = v1 >> 24; v1 = ((v0 >> 44) | (v1 << 20)) & MASK44; v0 &= MASK44; a0 += v0; a1 += v1; a2 += v2 + ((uint64_t)1 << 40); #define MX(hi, lo, m0, m1, m2) do { \ uint64_t mxhi, mxlo; \ MUL128(mxhi, mxlo, a0, m0); \ (hi) = mxhi; \ (lo) = mxlo >> 20; \ MUL128(mxhi, mxlo, a1, m1); \ (hi) += mxhi; \ (lo) += mxlo >> 20; \ MUL128(mxhi, mxlo, a2, m2); \ (hi) += mxhi; \ (lo) += mxlo >> 20; \ } while (0) MX(d0, c0, r0, u2, t1); MX(d1, c1, r1, r0, t2); MX(d2, c2, r2, r1, r0); #undef MX a0 = c0 + 20 * d2; a1 = c1 + d0; a2 = c2 + d1; a1 += a0 >> 44; a0 &= MASK44; a2 += a1 >> 44; a1 &= MASK44; a0 += 20 * (a2 >> 44); a2 &= MASK44; buf += 16; len -= 16; } acc[0] = a0; acc[1] = a1; acc[2] = a2; } static inline void poly1305_inner(uint64_t *acc, uint64_t *r, const void *data, size_t len) { if (len >= 64) { size_t len2; len2 = len & ~(size_t)63; poly1305_inner_big(acc, r, data, len2); data = (const unsigned char *)data + len2; len -= len2; } if (len > 0) { poly1305_inner_small(acc, r, data, len); } } /* see bearssl_block.h */ void br_poly1305_ctmulq_run(const void *key, const void *iv, void *data, size_t len, const void *aad, size_t aad_len, void *tag, br_chacha20_run ichacha, int encrypt) { unsigned char pkey[32], foot[16]; uint64_t r[6], acc[3], r0, r1; uint32_t v0, v1, v2, v3, v4; uint64_t w0, w1, w2, w3; uint32_t ctl; /* * Compute the MAC key. The 'r' value is the first 16 bytes of * pkey[]. */ memset(pkey, 0, sizeof pkey); ichacha(key, iv, 0, pkey, sizeof pkey); /* * If encrypting, ChaCha20 must run first, followed by Poly1305. * When decrypting, the operations are reversed. */ if (encrypt) { ichacha(key, iv, 1, data, len); } /* * Run Poly1305. We must process the AAD, then ciphertext, then * the footer (with the lengths). Note that the AAD and ciphertext * are meant to be padded with zeros up to the next multiple of 16, * and the length of the footer is 16 bytes as well. */ /* * Apply the "clamping" on r. */ pkey[ 3] &= 0x0F; pkey[ 4] &= 0xFC; pkey[ 7] &= 0x0F; pkey[ 8] &= 0xFC; pkey[11] &= 0x0F; pkey[12] &= 0xFC; pkey[15] &= 0x0F; /* * Decode the 'r' value into 44-bit words, left-shifted by 20 bits. * Also compute the u1 and u2 values. */ r0 = br_dec64le(pkey + 0); r1 = br_dec64le(pkey + 8); r[0] = r0 << 20; r[1] = ((r0 >> 24) | (r1 << 40)) & ~(uint64_t)0xFFFFF; r[2] = (r1 >> 4) & ~(uint64_t)0xFFFFF; r1 = 20 * (r[1] >> 20); r[3] = r1 << 20; r[5] = 20 * r[2]; r[4] = (r[5] + (r1 >> 24)) & ~(uint64_t)0xFFFFF; /* * Accumulator is 0. */ acc[0] = 0; acc[1] = 0; acc[2] = 0; /* * Process the additional authenticated data, ciphertext, and * footer in due order. */ br_enc64le(foot, (uint64_t)aad_len); br_enc64le(foot + 8, (uint64_t)len); poly1305_inner(acc, r, aad, aad_len); poly1305_inner(acc, r, data, len); poly1305_inner_small(acc, r, foot, sizeof foot); /* * Finalise modular reduction. At that point, the value consists * in three 44-bit values (the lowest one might be slightly above * 2^44). Two loops shall be sufficient. */ acc[1] += (acc[0] >> 44); acc[0] &= MASK44; acc[2] += (acc[1] >> 44); acc[1] &= MASK44; acc[0] += 5 * (acc[2] >> 42); acc[2] &= MASK42; acc[1] += (acc[0] >> 44); acc[0] &= MASK44; acc[2] += (acc[1] >> 44); acc[1] &= MASK44; acc[0] += 5 * (acc[2] >> 42); acc[2] &= MASK42; /* * The value may still fall in the 2^130-5..2^130-1 range, in * which case we must reduce it again. The code below selects, * in constant-time, between 'acc' and 'acc-p'. We encode the * value over four 32-bit integers to finish the operation. */ v0 = (uint32_t)acc[0]; v1 = (uint32_t)(acc[0] >> 32) | ((uint32_t)acc[1] << 12); v2 = (uint32_t)(acc[1] >> 20) | ((uint32_t)acc[2] << 24); v3 = (uint32_t)(acc[2] >> 8); v4 = (uint32_t)(acc[2] >> 40); ctl = GT(v0, 0xFFFFFFFA); ctl &= EQ(v1, 0xFFFFFFFF); ctl &= EQ(v2, 0xFFFFFFFF); ctl &= EQ(v3, 0xFFFFFFFF); ctl &= EQ(v4, 0x00000003); v0 = MUX(ctl, v0 + 5, v0); v1 = MUX(ctl, 0, v1); v2 = MUX(ctl, 0, v2); v3 = MUX(ctl, 0, v3); /* * Add the "s" value. This is done modulo 2^128. Don't forget * carry propagation... */ w0 = (uint64_t)v0 + (uint64_t)br_dec32le(pkey + 16); w1 = (uint64_t)v1 + (uint64_t)br_dec32le(pkey + 20) + (w0 >> 32); w2 = (uint64_t)v2 + (uint64_t)br_dec32le(pkey + 24) + (w1 >> 32); w3 = (uint64_t)v3 + (uint64_t)br_dec32le(pkey + 28) + (w2 >> 32); v0 = (uint32_t)w0; v1 = (uint32_t)w1; v2 = (uint32_t)w2; v3 = (uint32_t)w3; /* * Encode the tag. */ br_enc32le((unsigned char *)tag + 0, v0); br_enc32le((unsigned char *)tag + 4, v1); br_enc32le((unsigned char *)tag + 8, v2); br_enc32le((unsigned char *)tag + 12, v3); /* * If decrypting, then ChaCha20 runs _after_ Poly1305. */ if (!encrypt) { ichacha(key, iv, 1, data, len); } } /* see bearssl_block.h */ br_poly1305_run br_poly1305_ctmulq_get(void) { return &br_poly1305_ctmulq_run; } #else /* see bearssl_block.h */ br_poly1305_run br_poly1305_ctmulq_get(void) { return 0; } #endif