// Tests of Linux-specific functionality #ifdef __linux__ #include #include #include #include #include #include #include #include #include #include #include // Requires e.g. libcap-dev package for POSIX.1e capabilities headers #include #include #include #include #include #include #include #include #include #include #include "capsicum.h" #include "syscalls.h" #include "capsicum-test.h" TEST(Linux, TimerFD) { int fd = timerfd_create(CLOCK_MONOTONIC, 0); cap_rights_t r_ro; cap_rights_init(&r_ro, CAP_READ); cap_rights_t r_wo; cap_rights_init(&r_wo, CAP_WRITE); cap_rights_t r_rw; cap_rights_init(&r_rw, CAP_READ, CAP_WRITE); cap_rights_t r_rwpoll; cap_rights_init(&r_rwpoll, CAP_READ, CAP_WRITE, CAP_EVENT); int cap_fd_ro = dup(fd); EXPECT_OK(cap_fd_ro); EXPECT_OK(cap_rights_limit(cap_fd_ro, &r_ro)); int cap_fd_wo = dup(fd); EXPECT_OK(cap_fd_wo); EXPECT_OK(cap_rights_limit(cap_fd_wo, &r_wo)); int cap_fd_rw = dup(fd); EXPECT_OK(cap_fd_rw); EXPECT_OK(cap_rights_limit(cap_fd_rw, &r_rw)); int cap_fd_all = dup(fd); EXPECT_OK(cap_fd_all); EXPECT_OK(cap_rights_limit(cap_fd_all, &r_rwpoll)); struct itimerspec old_ispec; struct itimerspec ispec; ispec.it_interval.tv_sec = 0; ispec.it_interval.tv_nsec = 0; ispec.it_value.tv_sec = 0; ispec.it_value.tv_nsec = 100000000; // 100ms EXPECT_NOTCAPABLE(timerfd_settime(cap_fd_ro, 0, &ispec, NULL)); EXPECT_NOTCAPABLE(timerfd_settime(cap_fd_wo, 0, &ispec, &old_ispec)); EXPECT_OK(timerfd_settime(cap_fd_wo, 0, &ispec, NULL)); EXPECT_OK(timerfd_settime(cap_fd_rw, 0, &ispec, NULL)); EXPECT_OK(timerfd_settime(cap_fd_all, 0, &ispec, NULL)); EXPECT_NOTCAPABLE(timerfd_gettime(cap_fd_wo, &old_ispec)); EXPECT_OK(timerfd_gettime(cap_fd_ro, &old_ispec)); EXPECT_OK(timerfd_gettime(cap_fd_rw, &old_ispec)); EXPECT_OK(timerfd_gettime(cap_fd_all, &old_ispec)); // To be able to poll() for the timer pop, still need CAP_EVENT. struct pollfd poll_fd; for (int ii = 0; ii < 3; ii++) { poll_fd.revents = 0; poll_fd.events = POLLIN; switch (ii) { case 0: poll_fd.fd = cap_fd_ro; break; case 1: poll_fd.fd = cap_fd_wo; break; case 2: poll_fd.fd = cap_fd_rw; break; } // Poll immediately returns with POLLNVAL EXPECT_OK(poll(&poll_fd, 1, 400)); EXPECT_EQ(0, (poll_fd.revents & POLLIN)); EXPECT_NE(0, (poll_fd.revents & POLLNVAL)); } poll_fd.fd = cap_fd_all; EXPECT_OK(poll(&poll_fd, 1, 400)); EXPECT_NE(0, (poll_fd.revents & POLLIN)); EXPECT_EQ(0, (poll_fd.revents & POLLNVAL)); EXPECT_OK(timerfd_gettime(cap_fd_all, &old_ispec)); EXPECT_EQ(0, old_ispec.it_value.tv_sec); EXPECT_EQ(0, old_ispec.it_value.tv_nsec); EXPECT_EQ(0, old_ispec.it_interval.tv_sec); EXPECT_EQ(0, old_ispec.it_interval.tv_nsec); close(cap_fd_all); close(cap_fd_rw); close(cap_fd_wo); close(cap_fd_ro); close(fd); } FORK_TEST(Linux, SignalFD) { if (force_mt) { TEST_SKIPPED("multi-threaded run clashes with signals"); return; } pid_t me = getpid(); sigset_t mask; sigemptyset(&mask); sigaddset(&mask, SIGUSR1); // Block signals before registering against a new signal FD. EXPECT_OK(sigprocmask(SIG_BLOCK, &mask, NULL)); int fd = signalfd(-1, &mask, 0); EXPECT_OK(fd); cap_rights_t r_rs; cap_rights_init(&r_rs, CAP_READ, CAP_SEEK); cap_rights_t r_ws; cap_rights_init(&r_ws, CAP_WRITE, CAP_SEEK); cap_rights_t r_sig; cap_rights_init(&r_sig, CAP_FSIGNAL); cap_rights_t r_rssig; cap_rights_init(&r_rssig, CAP_FSIGNAL, CAP_READ, CAP_SEEK); cap_rights_t r_rssig_poll; cap_rights_init(&r_rssig_poll, CAP_FSIGNAL, CAP_READ, CAP_SEEK, CAP_EVENT); // Various capability variants. int cap_fd_none = dup(fd); EXPECT_OK(cap_fd_none); EXPECT_OK(cap_rights_limit(cap_fd_none, &r_ws)); int cap_fd_read = dup(fd); EXPECT_OK(cap_fd_read); EXPECT_OK(cap_rights_limit(cap_fd_read, &r_rs)); int cap_fd_sig = dup(fd); EXPECT_OK(cap_fd_sig); EXPECT_OK(cap_rights_limit(cap_fd_sig, &r_sig)); int cap_fd_sig_read = dup(fd); EXPECT_OK(cap_fd_sig_read); EXPECT_OK(cap_rights_limit(cap_fd_sig_read, &r_rssig)); int cap_fd_all = dup(fd); EXPECT_OK(cap_fd_all); EXPECT_OK(cap_rights_limit(cap_fd_all, &r_rssig_poll)); struct signalfd_siginfo fdsi; // Need CAP_READ to read the signal information kill(me, SIGUSR1); EXPECT_NOTCAPABLE(read(cap_fd_none, &fdsi, sizeof(struct signalfd_siginfo))); EXPECT_NOTCAPABLE(read(cap_fd_sig, &fdsi, sizeof(struct signalfd_siginfo))); int len = read(cap_fd_read, &fdsi, sizeof(struct signalfd_siginfo)); EXPECT_OK(len); EXPECT_EQ(sizeof(struct signalfd_siginfo), (size_t)len); EXPECT_EQ(SIGUSR1, (int)fdsi.ssi_signo); // Need CAP_FSIGNAL to modify the signal mask. sigemptyset(&mask); sigaddset(&mask, SIGUSR1); sigaddset(&mask, SIGUSR2); EXPECT_OK(sigprocmask(SIG_BLOCK, &mask, NULL)); EXPECT_NOTCAPABLE(signalfd(cap_fd_none, &mask, 0)); EXPECT_NOTCAPABLE(signalfd(cap_fd_read, &mask, 0)); EXPECT_EQ(cap_fd_sig, signalfd(cap_fd_sig, &mask, 0)); // Need CAP_EVENT to get notification of a signal in poll(2). kill(me, SIGUSR2); struct pollfd poll_fd; poll_fd.revents = 0; poll_fd.events = POLLIN; poll_fd.fd = cap_fd_sig_read; EXPECT_OK(poll(&poll_fd, 1, 400)); EXPECT_EQ(0, (poll_fd.revents & POLLIN)); EXPECT_NE(0, (poll_fd.revents & POLLNVAL)); poll_fd.fd = cap_fd_all; EXPECT_OK(poll(&poll_fd, 1, 400)); EXPECT_NE(0, (poll_fd.revents & POLLIN)); EXPECT_EQ(0, (poll_fd.revents & POLLNVAL)); } TEST(Linux, EventFD) { int fd = eventfd(0, 0); EXPECT_OK(fd); cap_rights_t r_rs; cap_rights_init(&r_rs, CAP_READ, CAP_SEEK); cap_rights_t r_ws; cap_rights_init(&r_ws, CAP_WRITE, CAP_SEEK); cap_rights_t r_rws; cap_rights_init(&r_rws, CAP_READ, CAP_WRITE, CAP_SEEK); cap_rights_t r_rwspoll; cap_rights_init(&r_rwspoll, CAP_READ, CAP_WRITE, CAP_SEEK, CAP_EVENT); int cap_ro = dup(fd); EXPECT_OK(cap_ro); EXPECT_OK(cap_rights_limit(cap_ro, &r_rs)); int cap_wo = dup(fd); EXPECT_OK(cap_wo); EXPECT_OK(cap_rights_limit(cap_wo, &r_ws)); int cap_rw = dup(fd); EXPECT_OK(cap_rw); EXPECT_OK(cap_rights_limit(cap_rw, &r_rws)); int cap_all = dup(fd); EXPECT_OK(cap_all); EXPECT_OK(cap_rights_limit(cap_all, &r_rwspoll)); pid_t child = fork(); if (child == 0) { // Child: write counter to eventfd uint64_t u = 42; EXPECT_NOTCAPABLE(write(cap_ro, &u, sizeof(u))); EXPECT_OK(write(cap_wo, &u, sizeof(u))); exit(HasFailure()); } sleep(1); // Allow child to write struct pollfd poll_fd; poll_fd.revents = 0; poll_fd.events = POLLIN; poll_fd.fd = cap_rw; EXPECT_OK(poll(&poll_fd, 1, 400)); EXPECT_EQ(0, (poll_fd.revents & POLLIN)); EXPECT_NE(0, (poll_fd.revents & POLLNVAL)); poll_fd.fd = cap_all; EXPECT_OK(poll(&poll_fd, 1, 400)); EXPECT_NE(0, (poll_fd.revents & POLLIN)); EXPECT_EQ(0, (poll_fd.revents & POLLNVAL)); uint64_t u; EXPECT_NOTCAPABLE(read(cap_wo, &u, sizeof(u))); EXPECT_OK(read(cap_ro, &u, sizeof(u))); EXPECT_EQ(42, (int)u); // Wait for the child. int status; EXPECT_EQ(child, waitpid(child, &status, 0)); int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1; EXPECT_EQ(0, rc); close(cap_all); close(cap_rw); close(cap_wo); close(cap_ro); close(fd); } FORK_TEST(Linux, epoll) { int sock_fds[2]; EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds)); // Queue some data. char buffer[4] = {1, 2, 3, 4}; EXPECT_OK(write(sock_fds[1], buffer, sizeof(buffer))); EXPECT_OK(cap_enter()); // Enter capability mode. int epoll_fd = epoll_create(1); EXPECT_OK(epoll_fd); cap_rights_t r_rs; cap_rights_init(&r_rs, CAP_READ, CAP_SEEK); cap_rights_t r_ws; cap_rights_init(&r_ws, CAP_WRITE, CAP_SEEK); cap_rights_t r_rws; cap_rights_init(&r_rws, CAP_READ, CAP_WRITE, CAP_SEEK); cap_rights_t r_rwspoll; cap_rights_init(&r_rwspoll, CAP_READ, CAP_WRITE, CAP_SEEK, CAP_EVENT); cap_rights_t r_epoll; cap_rights_init(&r_epoll, CAP_EPOLL_CTL); int cap_epoll_wo = dup(epoll_fd); EXPECT_OK(cap_epoll_wo); EXPECT_OK(cap_rights_limit(cap_epoll_wo, &r_ws)); int cap_epoll_ro = dup(epoll_fd); EXPECT_OK(cap_epoll_ro); EXPECT_OK(cap_rights_limit(cap_epoll_ro, &r_rs)); int cap_epoll_rw = dup(epoll_fd); EXPECT_OK(cap_epoll_rw); EXPECT_OK(cap_rights_limit(cap_epoll_rw, &r_rws)); int cap_epoll_poll = dup(epoll_fd); EXPECT_OK(cap_epoll_poll); EXPECT_OK(cap_rights_limit(cap_epoll_poll, &r_rwspoll)); int cap_epoll_ctl = dup(epoll_fd); EXPECT_OK(cap_epoll_ctl); EXPECT_OK(cap_rights_limit(cap_epoll_ctl, &r_epoll)); // Can only modify the FDs being monitored if the CAP_EPOLL_CTL right is present. struct epoll_event eev; memset(&eev, 0, sizeof(eev)); eev.events = EPOLLIN|EPOLLOUT|EPOLLPRI; EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_ro, EPOLL_CTL_ADD, sock_fds[0], &eev)); EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_wo, EPOLL_CTL_ADD, sock_fds[0], &eev)); EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_rw, EPOLL_CTL_ADD, sock_fds[0], &eev)); EXPECT_OK(epoll_ctl(cap_epoll_ctl, EPOLL_CTL_ADD, sock_fds[0], &eev)); eev.events = EPOLLIN|EPOLLOUT; EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_ro, EPOLL_CTL_MOD, sock_fds[0], &eev)); EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_wo, EPOLL_CTL_MOD, sock_fds[0], &eev)); EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_rw, EPOLL_CTL_MOD, sock_fds[0], &eev)); EXPECT_OK(epoll_ctl(cap_epoll_ctl, EPOLL_CTL_MOD, sock_fds[0], &eev)); // Running epoll_pwait(2) requires CAP_EVENT. eev.events = 0; EXPECT_NOTCAPABLE(epoll_pwait(cap_epoll_ro, &eev, 1, 100, NULL)); EXPECT_NOTCAPABLE(epoll_pwait(cap_epoll_wo, &eev, 1, 100, NULL)); EXPECT_NOTCAPABLE(epoll_pwait(cap_epoll_rw, &eev, 1, 100, NULL)); EXPECT_OK(epoll_pwait(cap_epoll_poll, &eev, 1, 100, NULL)); EXPECT_EQ(EPOLLIN, eev.events & EPOLLIN); EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_ro, EPOLL_CTL_DEL, sock_fds[0], &eev)); EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_wo, EPOLL_CTL_DEL, sock_fds[0], &eev)); EXPECT_NOTCAPABLE(epoll_ctl(cap_epoll_rw, EPOLL_CTL_DEL, sock_fds[0], &eev)); EXPECT_OK(epoll_ctl(epoll_fd, EPOLL_CTL_DEL, sock_fds[0], &eev)); close(cap_epoll_ctl); close(cap_epoll_poll); close(cap_epoll_rw); close(cap_epoll_ro); close(cap_epoll_wo); close(epoll_fd); close(sock_fds[1]); close(sock_fds[0]); } TEST(Linux, fstatat) { int fd = open(TmpFile("cap_fstatat"), O_CREAT|O_RDWR, 0644); EXPECT_OK(fd); unsigned char buffer[] = {1, 2, 3, 4}; EXPECT_OK(write(fd, buffer, sizeof(buffer))); cap_rights_t rights; int cap_rf = dup(fd); EXPECT_OK(cap_rf); EXPECT_OK(cap_rights_limit(cap_rf, cap_rights_init(&rights, CAP_READ, CAP_FSTAT))); int cap_ro = dup(fd); EXPECT_OK(cap_ro); EXPECT_OK(cap_rights_limit(cap_ro, cap_rights_init(&rights, CAP_READ))); struct stat info; EXPECT_OK(fstatat(fd, "", &info, AT_EMPTY_PATH)); EXPECT_NOTCAPABLE(fstatat(cap_ro, "", &info, AT_EMPTY_PATH)); EXPECT_OK(fstatat(cap_rf, "", &info, AT_EMPTY_PATH)); close(cap_ro); close(cap_rf); close(fd); int dir = open(tmpdir.c_str(), O_RDONLY); EXPECT_OK(dir); int dir_rf = dup(dir); EXPECT_OK(dir_rf); EXPECT_OK(cap_rights_limit(dir_rf, cap_rights_init(&rights, CAP_READ, CAP_FSTAT))); int dir_ro = dup(fd); EXPECT_OK(dir_ro); EXPECT_OK(cap_rights_limit(dir_ro, cap_rights_init(&rights, CAP_READ))); EXPECT_OK(fstatat(dir, "cap_fstatat", &info, AT_EMPTY_PATH)); EXPECT_NOTCAPABLE(fstatat(dir_ro, "cap_fstatat", &info, AT_EMPTY_PATH)); EXPECT_OK(fstatat(dir_rf, "cap_fstatat", &info, AT_EMPTY_PATH)); close(dir_ro); close(dir_rf); close(dir); unlink(TmpFile("cap_fstatat")); } // fanotify support may not be available at compile-time #ifdef __NR_fanotify_init TEST(Linux, fanotify) { REQUIRE_ROOT(); int fa_fd = fanotify_init(FAN_CLASS_NOTIF, O_RDWR); EXPECT_OK(fa_fd); if (fa_fd < 0) return; // May not be enabled cap_rights_t r_rs; cap_rights_init(&r_rs, CAP_READ, CAP_SEEK); cap_rights_t r_ws; cap_rights_init(&r_ws, CAP_WRITE, CAP_SEEK); cap_rights_t r_rws; cap_rights_init(&r_rws, CAP_READ, CAP_WRITE, CAP_SEEK); cap_rights_t r_rwspoll; cap_rights_init(&r_rwspoll, CAP_READ, CAP_WRITE, CAP_SEEK, CAP_EVENT); cap_rights_t r_rwsnotify; cap_rights_init(&r_rwsnotify, CAP_READ, CAP_WRITE, CAP_SEEK, CAP_NOTIFY); cap_rights_t r_rsl; cap_rights_init(&r_rsl, CAP_READ, CAP_SEEK, CAP_LOOKUP); cap_rights_t r_rslstat; cap_rights_init(&r_rslstat, CAP_READ, CAP_SEEK, CAP_LOOKUP, CAP_FSTAT); cap_rights_t r_rsstat; cap_rights_init(&r_rsstat, CAP_READ, CAP_SEEK, CAP_FSTAT); int cap_fd_ro = dup(fa_fd); EXPECT_OK(cap_fd_ro); EXPECT_OK(cap_rights_limit(cap_fd_ro, &r_rs)); int cap_fd_wo = dup(fa_fd); EXPECT_OK(cap_fd_wo); EXPECT_OK(cap_rights_limit(cap_fd_wo, &r_ws)); int cap_fd_rw = dup(fa_fd); EXPECT_OK(cap_fd_rw); EXPECT_OK(cap_rights_limit(cap_fd_rw, &r_rws)); int cap_fd_poll = dup(fa_fd); EXPECT_OK(cap_fd_poll); EXPECT_OK(cap_rights_limit(cap_fd_poll, &r_rwspoll)); int cap_fd_not = dup(fa_fd); EXPECT_OK(cap_fd_not); EXPECT_OK(cap_rights_limit(cap_fd_not, &r_rwsnotify)); int rc = mkdir(TmpFile("cap_notify"), 0755); EXPECT_TRUE(rc == 0 || errno == EEXIST); int dfd = open(TmpFile("cap_notify"), O_RDONLY); EXPECT_OK(dfd); int fd = open(TmpFile("cap_notify/file"), O_CREAT|O_RDWR, 0644); close(fd); int cap_dfd = dup(dfd); EXPECT_OK(cap_dfd); EXPECT_OK(cap_rights_limit(cap_dfd, &r_rslstat)); EXPECT_OK(cap_dfd); int cap_dfd_rs = dup(dfd); EXPECT_OK(cap_dfd_rs); EXPECT_OK(cap_rights_limit(cap_dfd_rs, &r_rs)); EXPECT_OK(cap_dfd_rs); int cap_dfd_rsstat = dup(dfd); EXPECT_OK(cap_dfd_rsstat); EXPECT_OK(cap_rights_limit(cap_dfd_rsstat, &r_rsstat)); EXPECT_OK(cap_dfd_rsstat); int cap_dfd_rsl = dup(dfd); EXPECT_OK(cap_dfd_rsl); EXPECT_OK(cap_rights_limit(cap_dfd_rsl, &r_rsl)); EXPECT_OK(cap_dfd_rsl); // Need CAP_NOTIFY to change what's monitored. EXPECT_NOTCAPABLE(fanotify_mark(cap_fd_ro, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY|FAN_EVENT_ON_CHILD, cap_dfd, NULL)); EXPECT_NOTCAPABLE(fanotify_mark(cap_fd_wo, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY|FAN_EVENT_ON_CHILD, cap_dfd, NULL)); EXPECT_NOTCAPABLE(fanotify_mark(cap_fd_rw, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY|FAN_EVENT_ON_CHILD, cap_dfd, NULL)); EXPECT_OK(fanotify_mark(cap_fd_not, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY|FAN_EVENT_ON_CHILD, cap_dfd, NULL)); // Need CAP_FSTAT on the thing monitored. EXPECT_NOTCAPABLE(fanotify_mark(cap_fd_not, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY|FAN_EVENT_ON_CHILD, cap_dfd_rs, NULL)); EXPECT_OK(fanotify_mark(cap_fd_not, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY|FAN_EVENT_ON_CHILD, cap_dfd_rsstat, NULL)); // Too add monitoring of a file under a dfd, need CAP_LOOKUP|CAP_FSTAT on the dfd. EXPECT_NOTCAPABLE(fanotify_mark(cap_fd_not, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY, cap_dfd_rsstat, "file")); EXPECT_NOTCAPABLE(fanotify_mark(cap_fd_not, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY, cap_dfd_rsl, "file")); EXPECT_OK(fanotify_mark(cap_fd_not, FAN_MARK_ADD, FAN_OPEN|FAN_MODIFY, cap_dfd, "file")); pid_t child = fork(); if (child == 0) { // Child: Perform activity in the directory under notify. sleep(1); unlink(TmpFile("cap_notify/temp")); int fd = open(TmpFile("cap_notify/temp"), O_CREAT|O_RDWR, 0644); close(fd); exit(0); } // Need CAP_EVENT to poll. struct pollfd poll_fd; poll_fd.revents = 0; poll_fd.events = POLLIN; poll_fd.fd = cap_fd_rw; EXPECT_OK(poll(&poll_fd, 1, 1400)); EXPECT_EQ(0, (poll_fd.revents & POLLIN)); EXPECT_NE(0, (poll_fd.revents & POLLNVAL)); poll_fd.fd = cap_fd_not; EXPECT_OK(poll(&poll_fd, 1, 1400)); EXPECT_EQ(0, (poll_fd.revents & POLLIN)); EXPECT_NE(0, (poll_fd.revents & POLLNVAL)); poll_fd.fd = cap_fd_poll; EXPECT_OK(poll(&poll_fd, 1, 1400)); EXPECT_NE(0, (poll_fd.revents & POLLIN)); EXPECT_EQ(0, (poll_fd.revents & POLLNVAL)); // Need CAP_READ to read. struct fanotify_event_metadata ev; memset(&ev, 0, sizeof(ev)); EXPECT_NOTCAPABLE(read(cap_fd_wo, &ev, sizeof(ev))); rc = read(fa_fd, &ev, sizeof(ev)); EXPECT_OK(rc); EXPECT_EQ((int)sizeof(struct fanotify_event_metadata), rc); EXPECT_EQ(child, ev.pid); EXPECT_NE(0, ev.fd); // TODO(drysdale): reinstate if/when capsicum-linux propagates rights // to fanotify-generated FDs. #ifdef OMIT // fanotify(7) gives us a FD for the changed file. This should // only have rights that are a subset of those for the original // monitored directory file descriptor. cap_rights_t rights; CAP_SET_ALL(&rights); EXPECT_OK(cap_rights_get(ev.fd, &rights)); EXPECT_RIGHTS_IN(&rights, &r_rslstat); #endif // Wait for the child. int status; EXPECT_EQ(child, waitpid(child, &status, 0)); rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1; EXPECT_EQ(0, rc); close(cap_dfd_rsstat); close(cap_dfd_rsl); close(cap_dfd_rs); close(cap_dfd); close(dfd); unlink(TmpFile("cap_notify/file")); unlink(TmpFile("cap_notify/temp")); rmdir(TmpFile("cap_notify")); close(cap_fd_not); close(cap_fd_poll); close(cap_fd_rw); close(cap_fd_wo); close(cap_fd_ro); close(fa_fd); } #endif TEST(Linux, inotify) { int i_fd = inotify_init(); EXPECT_OK(i_fd); cap_rights_t r_rs; cap_rights_init(&r_rs, CAP_READ, CAP_SEEK); cap_rights_t r_ws; cap_rights_init(&r_ws, CAP_WRITE, CAP_SEEK); cap_rights_t r_rws; cap_rights_init(&r_rws, CAP_READ, CAP_WRITE, CAP_SEEK); cap_rights_t r_rwsnotify; cap_rights_init(&r_rwsnotify, CAP_READ, CAP_WRITE, CAP_SEEK, CAP_NOTIFY); int cap_fd_ro = dup(i_fd); EXPECT_OK(cap_fd_ro); EXPECT_OK(cap_rights_limit(cap_fd_ro, &r_rs)); int cap_fd_wo = dup(i_fd); EXPECT_OK(cap_fd_wo); EXPECT_OK(cap_rights_limit(cap_fd_wo, &r_ws)); int cap_fd_rw = dup(i_fd); EXPECT_OK(cap_fd_rw); EXPECT_OK(cap_rights_limit(cap_fd_rw, &r_rws)); int cap_fd_all = dup(i_fd); EXPECT_OK(cap_fd_all); EXPECT_OK(cap_rights_limit(cap_fd_all, &r_rwsnotify)); int fd = open(TmpFile("cap_inotify"), O_CREAT|O_RDWR, 0644); EXPECT_NOTCAPABLE(inotify_add_watch(cap_fd_rw, TmpFile("cap_inotify"), IN_ACCESS|IN_MODIFY)); int wd = inotify_add_watch(i_fd, TmpFile("cap_inotify"), IN_ACCESS|IN_MODIFY); EXPECT_OK(wd); unsigned char buffer[] = {1, 2, 3, 4}; EXPECT_OK(write(fd, buffer, sizeof(buffer))); struct inotify_event iev; memset(&iev, 0, sizeof(iev)); EXPECT_NOTCAPABLE(read(cap_fd_wo, &iev, sizeof(iev))); int rc = read(cap_fd_ro, &iev, sizeof(iev)); EXPECT_OK(rc); EXPECT_EQ((int)sizeof(iev), rc); EXPECT_EQ(wd, iev.wd); EXPECT_NOTCAPABLE(inotify_rm_watch(cap_fd_wo, wd)); EXPECT_OK(inotify_rm_watch(cap_fd_all, wd)); close(fd); close(cap_fd_all); close(cap_fd_rw); close(cap_fd_wo); close(cap_fd_ro); close(i_fd); unlink(TmpFile("cap_inotify")); } TEST(Linux, ArchChange) { const char* prog_candidates[] = {"./mini-me.32", "./mini-me.x32", "./mini-me.64"}; const char* progs[] = {NULL, NULL, NULL}; char* argv_pass[] = {(char*)"to-come", (char*)"--capmode", NULL}; char* null_envp[] = {NULL}; int fds[3]; int count = 0; for (int ii = 0; ii < 3; ii++) { fds[count] = open(prog_candidates[ii], O_RDONLY); if (fds[count] >= 0) { progs[count] = prog_candidates[ii]; count++; } } if (count == 0) { TEST_SKIPPED("no different-architecture programs available"); return; } for (int ii = 0; ii < count; ii++) { // Fork-and-exec a binary of this architecture. pid_t child = fork(); if (child == 0) { EXPECT_OK(cap_enter()); // Enter capability mode if (verbose) fprintf(stderr, "[%d] call fexecve(%s, %s)\n", getpid_(), progs[ii], argv_pass[1]); argv_pass[0] = (char *)progs[ii]; int rc = fexecve_(fds[ii], argv_pass, null_envp); fprintf(stderr, "fexecve(%s) returned %d errno %d\n", progs[ii], rc, errno); exit(99); // Should not reach here. } int status; EXPECT_EQ(child, waitpid(child, &status, 0)); int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1; EXPECT_EQ(0, rc); close(fds[ii]); } } FORK_TEST(Linux, Namespace) { REQUIRE_ROOT(); pid_t me = getpid_(); // Create a new UTS namespace. EXPECT_OK(unshare(CLONE_NEWUTS)); // Open an FD to its symlink. char buffer[256]; sprintf(buffer, "/proc/%d/ns/uts", me); int ns_fd = open(buffer, O_RDONLY); cap_rights_t r_rwlstat; cap_rights_init(&r_rwlstat, CAP_READ, CAP_WRITE, CAP_LOOKUP, CAP_FSTAT); cap_rights_t r_rwlstatns; cap_rights_init(&r_rwlstatns, CAP_READ, CAP_WRITE, CAP_LOOKUP, CAP_FSTAT, CAP_SETNS); int cap_fd = dup(ns_fd); EXPECT_OK(cap_fd); EXPECT_OK(cap_rights_limit(cap_fd, &r_rwlstat)); int cap_fd_setns = dup(ns_fd); EXPECT_OK(cap_fd_setns); EXPECT_OK(cap_rights_limit(cap_fd_setns, &r_rwlstatns)); EXPECT_NOTCAPABLE(setns(cap_fd, CLONE_NEWUTS)); EXPECT_OK(setns(cap_fd_setns, CLONE_NEWUTS)); EXPECT_OK(cap_enter()); // Enter capability mode. // No setns(2) but unshare(2) is allowed. EXPECT_CAPMODE(setns(ns_fd, CLONE_NEWUTS)); EXPECT_OK(unshare(CLONE_NEWUTS)); } static void SendFD(int fd, int over) { struct msghdr mh; mh.msg_name = NULL; // No address needed mh.msg_namelen = 0; char buffer1[1024]; struct iovec iov[1]; iov[0].iov_base = buffer1; iov[0].iov_len = sizeof(buffer1); mh.msg_iov = iov; mh.msg_iovlen = 1; char buffer2[1024]; mh.msg_control = buffer2; mh.msg_controllen = CMSG_LEN(sizeof(int)); struct cmsghdr *cmptr = CMSG_FIRSTHDR(&mh); cmptr->cmsg_level = SOL_SOCKET; cmptr->cmsg_type = SCM_RIGHTS; cmptr->cmsg_len = CMSG_LEN(sizeof(int)); *(int *)CMSG_DATA(cmptr) = fd; buffer1[0] = 0; iov[0].iov_len = 1; int rc = sendmsg(over, &mh, 0); EXPECT_OK(rc); } static int ReceiveFD(int over) { struct msghdr mh; mh.msg_name = NULL; // No address needed mh.msg_namelen = 0; char buffer1[1024]; struct iovec iov[1]; iov[0].iov_base = buffer1; iov[0].iov_len = sizeof(buffer1); mh.msg_iov = iov; mh.msg_iovlen = 1; char buffer2[1024]; mh.msg_control = buffer2; mh.msg_controllen = sizeof(buffer2); int rc = recvmsg(over, &mh, 0); EXPECT_OK(rc); EXPECT_LE(CMSG_LEN(sizeof(int)), mh.msg_controllen); struct cmsghdr *cmptr = CMSG_FIRSTHDR(&mh); int fd = *(int*)CMSG_DATA(cmptr); EXPECT_EQ(CMSG_LEN(sizeof(int)), cmptr->cmsg_len); cmptr = CMSG_NXTHDR(&mh, cmptr); EXPECT_TRUE(cmptr == NULL); return fd; } static int shared_pd = -1; static int shared_sock_fds[2]; static int ChildFunc(void *arg) { // This function is running in a new PID namespace, and so is pid 1. if (verbose) fprintf(stderr, " ChildFunc: pid=%d, ppid=%d\n", getpid_(), getppid()); EXPECT_EQ(1, getpid_()); EXPECT_EQ(0, getppid()); // The shared process descriptor is outside our namespace, so we cannot // get its pid. if (verbose) fprintf(stderr, " ChildFunc: shared_pd=%d\n", shared_pd); pid_t shared_child = -1; EXPECT_OK(pdgetpid(shared_pd, &shared_child)); if (verbose) fprintf(stderr, " ChildFunc: corresponding pid=%d\n", shared_child); EXPECT_EQ(0, shared_child); // But we can pdkill() it even so. if (verbose) fprintf(stderr, " ChildFunc: call pdkill(pd=%d)\n", shared_pd); EXPECT_OK(pdkill(shared_pd, SIGINT)); int pd; pid_t child = pdfork(&pd, 0); EXPECT_OK(child); if (child == 0) { // Child: expect pid 2. if (verbose) fprintf(stderr, " child of ChildFunc: pid=%d, ppid=%d\n", getpid_(), getppid()); EXPECT_EQ(2, getpid_()); EXPECT_EQ(1, getppid()); while (true) { if (verbose) fprintf(stderr, " child of ChildFunc: \"I aten't dead\"\n"); sleep(1); } exit(0); } EXPECT_EQ(2, child); EXPECT_PID_ALIVE(child); if (verbose) fprintf(stderr, " ChildFunc: pdfork() -> pd=%d, corresponding pid=%d state='%c'\n", pd, child, ProcessState(child)); pid_t pid; EXPECT_OK(pdgetpid(pd, &pid)); EXPECT_EQ(child, pid); sleep(2); // Send the process descriptor over UNIX domain socket back to parent. SendFD(pd, shared_sock_fds[1]); // Wait for death of (grand)child, killed by our parent. if (verbose) fprintf(stderr, " ChildFunc: wait on pid=%d\n", child); int status; EXPECT_EQ(child, wait4(child, &status, __WALL, NULL)); if (verbose) fprintf(stderr, " ChildFunc: return 0\n"); return 0; } #define STACK_SIZE (1024 * 1024) static char child_stack[STACK_SIZE]; // TODO(drysdale): fork into a user namespace first so REQUIRE_ROOT can be removed. TEST(Linux, PidNamespacePdFork) { REQUIRE_ROOT(); // Pass process descriptors in both directions across a PID namespace boundary. // pdfork() off a child before we start, holding its process descriptor in a global // variable that's accessible to children. pid_t firstborn = pdfork(&shared_pd, 0); EXPECT_OK(firstborn); if (firstborn == 0) { while (true) { if (verbose) fprintf(stderr, " Firstborn: \"I aten't dead\"\n"); sleep(1); } exit(0); } EXPECT_PID_ALIVE(firstborn); if (verbose) fprintf(stderr, "Parent: pre-pdfork()ed pd=%d, pid=%d state='%c'\n", shared_pd, firstborn, ProcessState(firstborn)); sleep(2); // Prepare sockets to communicate with child process. EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, shared_sock_fds)); // Clone into a child process with a new pid namespace. pid_t child = clone(ChildFunc, child_stack + STACK_SIZE, CLONE_FILES|CLONE_NEWPID|SIGCHLD, NULL); EXPECT_OK(child); EXPECT_PID_ALIVE(child); if (verbose) fprintf(stderr, "Parent: child is %d state='%c'\n", child, ProcessState(child)); // Ensure the child runs. First thing it does is to kill our firstborn, using shared_pd. sleep(1); EXPECT_PID_DEAD(firstborn); // But we can still retrieve firstborn's PID, as it's not been reaped yet. pid_t child0; EXPECT_OK(pdgetpid(shared_pd, &child0)); EXPECT_EQ(firstborn, child0); if (verbose) fprintf(stderr, "Parent: check on firstborn: pdgetpid(pd=%d) -> child=%d state='%c'\n", shared_pd, child0, ProcessState(child0)); // Now reap it. int status; EXPECT_EQ(firstborn, waitpid(firstborn, &status, __WALL)); // Get the process descriptor of the child-of-child via socket transfer. int grandchild_pd = ReceiveFD(shared_sock_fds[0]); // Our notion of the pid associated with the grandchild is in the main PID namespace. pid_t grandchild; EXPECT_OK(pdgetpid(grandchild_pd, &grandchild)); EXPECT_NE(2, grandchild); if (verbose) fprintf(stderr, "Parent: pre-pdkill: pdgetpid(grandchild_pd=%d) -> grandchild=%d state='%c'\n", grandchild_pd, grandchild, ProcessState(grandchild)); EXPECT_PID_ALIVE(grandchild); // Kill the grandchild via the process descriptor. EXPECT_OK(pdkill(grandchild_pd, SIGINT)); usleep(10000); if (verbose) fprintf(stderr, "Parent: post-pdkill: pdgetpid(grandchild_pd=%d) -> grandchild=%d state='%c'\n", grandchild_pd, grandchild, ProcessState(grandchild)); EXPECT_PID_DEAD(grandchild); sleep(2); // Wait for the child. EXPECT_EQ(child, waitpid(child, &status, WNOHANG)); int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1; EXPECT_EQ(0, rc); close(shared_sock_fds[0]); close(shared_sock_fds[1]); close(shared_pd); close(grandchild_pd); } int NSInit(void *data) { // This function is running in a new PID namespace, and so is pid 1. if (verbose) fprintf(stderr, " NSInit: pid=%d, ppid=%d\n", getpid_(), getppid()); EXPECT_EQ(1, getpid_()); EXPECT_EQ(0, getppid()); int pd; pid_t child = pdfork(&pd, 0); EXPECT_OK(child); if (child == 0) { // Child: loop forever until terminated. if (verbose) fprintf(stderr, " child of NSInit: pid=%d, ppid=%d\n", getpid_(), getppid()); while (true) { if (verbose) fprintf(stderr, " child of NSInit: \"I aten't dead\"\n"); usleep(100000); } exit(0); } EXPECT_EQ(2, child); EXPECT_PID_ALIVE(child); if (verbose) fprintf(stderr, " NSInit: pdfork() -> pd=%d, corresponding pid=%d state='%c'\n", pd, child, ProcessState(child)); sleep(1); // Send the process descriptor over UNIX domain socket back to parent. SendFD(pd, shared_sock_fds[1]); close(pd); // Wait for a byte back in the other direction. int value; if (verbose) fprintf(stderr, " NSInit: block waiting for value\n"); read(shared_sock_fds[1], &value, sizeof(value)); if (verbose) fprintf(stderr, " NSInit: return 0\n"); return 0; } TEST(Linux, DeadNSInit) { REQUIRE_ROOT(); // Prepare sockets to communicate with child process. EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, shared_sock_fds)); // Clone into a child process with a new pid namespace. pid_t child = clone(NSInit, child_stack + STACK_SIZE, CLONE_FILES|CLONE_NEWPID|SIGCHLD, NULL); usleep(10000); EXPECT_OK(child); EXPECT_PID_ALIVE(child); if (verbose) fprintf(stderr, "Parent: child is %d state='%c'\n", child, ProcessState(child)); // Get the process descriptor of the child-of-child via socket transfer. int grandchild_pd = ReceiveFD(shared_sock_fds[0]); pid_t grandchild; EXPECT_OK(pdgetpid(grandchild_pd, &grandchild)); if (verbose) fprintf(stderr, "Parent: grandchild is %d state='%c'\n", grandchild, ProcessState(grandchild)); // Send an int to the child to trigger its termination. Grandchild should also // go, as its init process is gone. int zero = 0; if (verbose) fprintf(stderr, "Parent: write 0 to pipe\n"); write(shared_sock_fds[0], &zero, sizeof(zero)); EXPECT_PID_ZOMBIE(child); EXPECT_PID_GONE(grandchild); // Wait for the child. int status; EXPECT_EQ(child, waitpid(child, &status, WNOHANG)); int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1; EXPECT_EQ(0, rc); EXPECT_PID_GONE(child); close(shared_sock_fds[0]); close(shared_sock_fds[1]); close(grandchild_pd); if (verbose) { fprintf(stderr, "Parent: child %d in state='%c'\n", child, ProcessState(child)); fprintf(stderr, "Parent: grandchild %d in state='%c'\n", grandchild, ProcessState(grandchild)); } } TEST(Linux, DeadNSInit2) { REQUIRE_ROOT(); // Prepare sockets to communicate with child process. EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, shared_sock_fds)); // Clone into a child process with a new pid namespace. pid_t child = clone(NSInit, child_stack + STACK_SIZE, CLONE_FILES|CLONE_NEWPID|SIGCHLD, NULL); usleep(10000); EXPECT_OK(child); EXPECT_PID_ALIVE(child); if (verbose) fprintf(stderr, "Parent: child is %d state='%c'\n", child, ProcessState(child)); // Get the process descriptor of the child-of-child via socket transfer. int grandchild_pd = ReceiveFD(shared_sock_fds[0]); pid_t grandchild; EXPECT_OK(pdgetpid(grandchild_pd, &grandchild)); if (verbose) fprintf(stderr, "Parent: grandchild is %d state='%c'\n", grandchild, ProcessState(grandchild)); // Kill the grandchild EXPECT_OK(pdkill(grandchild_pd, SIGINT)); usleep(10000); EXPECT_PID_ZOMBIE(grandchild); // Close the process descriptor, so there are now no procdesc references to grandchild. close(grandchild_pd); // Send an int to the child to trigger its termination. Grandchild should also // go, as its init process is gone. int zero = 0; if (verbose) fprintf(stderr, "Parent: write 0 to pipe\n"); write(shared_sock_fds[0], &zero, sizeof(zero)); EXPECT_PID_ZOMBIE(child); EXPECT_PID_GONE(grandchild); // Wait for the child. int status; EXPECT_EQ(child, waitpid(child, &status, WNOHANG)); int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1; EXPECT_EQ(0, rc); close(shared_sock_fds[0]); close(shared_sock_fds[1]); if (verbose) { fprintf(stderr, "Parent: child %d in state='%c'\n", child, ProcessState(child)); fprintf(stderr, "Parent: grandchild %d in state='%c'\n", grandchild, ProcessState(grandchild)); } } #ifdef __x86_64__ FORK_TEST(Linux, CheckHighWord) { EXPECT_OK(cap_enter()); // Enter capability mode. int rc = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(1, rc); // no_new_privs = 1 // Set some of the high 32-bits of argument zero. uint64_t big_cmd = PR_GET_NO_NEW_PRIVS | 0x100000000LL; EXPECT_CAPMODE(syscall(__NR_prctl, big_cmd, 0, 0, 0, 0)); } #endif FORK_TEST(Linux, PrctlOpenatBeneath) { // Set no_new_privs = 1 EXPECT_OK(prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); int rc = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(1, rc); // no_new_privs = 1 // Set openat-beneath mode EXPECT_OK(prctl(PR_SET_OPENAT_BENEATH, 1, 0, 0, 0)); rc = prctl(PR_GET_OPENAT_BENEATH, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(1, rc); // openat_beneath = 1 // Clear openat-beneath mode EXPECT_OK(prctl(PR_SET_OPENAT_BENEATH, 0, 0, 0, 0)); rc = prctl(PR_GET_OPENAT_BENEATH, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(0, rc); // openat_beneath = 0 EXPECT_OK(cap_enter()); // Enter capability mode // Expect to be in openat_beneath mode rc = prctl(PR_GET_OPENAT_BENEATH, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(1, rc); // openat_beneath = 1 // Expect this to be immutable. EXPECT_CAPMODE(prctl(PR_SET_OPENAT_BENEATH, 0, 0, 0, 0)); rc = prctl(PR_GET_OPENAT_BENEATH, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(1, rc); // openat_beneath = 1 } FORK_TEST(Linux, NoNewPrivs) { if (getuid() == 0) { // If root, drop CAP_SYS_ADMIN POSIX.1e capability. struct __user_cap_header_struct hdr; hdr.version = _LINUX_CAPABILITY_VERSION_3; hdr.pid = getpid_(); struct __user_cap_data_struct data[3]; EXPECT_OK(capget(&hdr, &data[0])); data[0].effective &= ~(1 << CAP_SYS_ADMIN); data[0].permitted &= ~(1 << CAP_SYS_ADMIN); data[0].inheritable &= ~(1 << CAP_SYS_ADMIN); EXPECT_OK(capset(&hdr, &data[0])); } int rc = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(0, rc); // no_new_privs == 0 // Can't enter seccomp-bpf mode with no_new_privs == 0 struct sock_filter filter[] = { BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW) }; struct sock_fprog bpf; bpf.len = (sizeof(filter) / sizeof(filter[0])); bpf.filter = filter; rc = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bpf, 0, 0); EXPECT_EQ(-1, rc); EXPECT_EQ(EACCES, errno); // Set no_new_privs = 1 EXPECT_OK(prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); rc = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); EXPECT_OK(rc); EXPECT_EQ(1, rc); // no_new_privs = 1 // Can now turn on seccomp mode EXPECT_OK(prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bpf, 0, 0)); } /* Macros for BPF generation */ #define BPF_RETURN_ERRNO(err) \ BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ERRNO | (err & 0xFFFF)) #define BPF_KILL_PROCESS \ BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL) #define BPF_ALLOW \ BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW) #define EXAMINE_SYSCALL \ BPF_STMT(BPF_LD+BPF_W+BPF_ABS, offsetof(struct seccomp_data, nr)) #define ALLOW_SYSCALL(name) \ BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_##name, 0, 1), \ BPF_ALLOW #define KILL_SYSCALL(name) \ BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_##name, 0, 1), \ BPF_KILL_PROCESS #define FAIL_SYSCALL(name, err) \ BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_##name, 0, 1), \ BPF_RETURN_ERRNO(err) TEST(Linux, CapModeWithBPF) { pid_t child = fork(); EXPECT_OK(child); if (child == 0) { int fd = open(TmpFile("cap_bpf_capmode"), O_CREAT|O_RDWR, 0644); cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_SEEK, CAP_FSYNC); EXPECT_OK(cap_rights_limit(fd, &rights)); struct sock_filter filter[] = { EXAMINE_SYSCALL, FAIL_SYSCALL(fchmod, ENOMEM), FAIL_SYSCALL(fstat, ENOEXEC), ALLOW_SYSCALL(close), KILL_SYSCALL(fsync), BPF_ALLOW }; struct sock_fprog bpf = {.len = (sizeof(filter) / sizeof(filter[0])), .filter = filter}; // Set up seccomp-bpf first. EXPECT_OK(prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)); EXPECT_OK(prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bpf, 0, 0)); EXPECT_OK(cap_enter()); // Enter capability mode. // fchmod is allowed by Capsicum, but failed by BPF. EXPECT_SYSCALL_FAIL(ENOMEM, fchmod(fd, 0644)); // open is allowed by BPF, but failed by Capsicum EXPECT_SYSCALL_FAIL(ECAPMODE, open(TmpFile("cap_bpf_capmode"), O_RDONLY)); // fstat is failed by both BPF and Capsicum; tie-break is on errno struct stat buf; EXPECT_SYSCALL_FAIL(ENOEXEC, fstat(fd, &buf)); // fsync is allowed by Capsicum, but BPF's SIGSYS generation take precedence fsync(fd); // terminate with unhandled SIGSYS exit(0); } int status; EXPECT_EQ(child, waitpid(child, &status, 0)); EXPECT_TRUE(WIFSIGNALED(status)); EXPECT_EQ(SIGSYS, WTERMSIG(status)); unlink(TmpFile("cap_bpf_capmode")); } TEST(Linux, AIO) { int fd = open(TmpFile("cap_aio"), O_CREAT|O_RDWR, 0644); EXPECT_OK(fd); cap_rights_t r_rs; cap_rights_init(&r_rs, CAP_READ, CAP_SEEK); cap_rights_t r_ws; cap_rights_init(&r_ws, CAP_WRITE, CAP_SEEK); cap_rights_t r_rwssync; cap_rights_init(&r_rwssync, CAP_READ, CAP_WRITE, CAP_SEEK, CAP_FSYNC); int cap_ro = dup(fd); EXPECT_OK(cap_ro); EXPECT_OK(cap_rights_limit(cap_ro, &r_rs)); EXPECT_OK(cap_ro); int cap_wo = dup(fd); EXPECT_OK(cap_wo); EXPECT_OK(cap_rights_limit(cap_wo, &r_ws)); EXPECT_OK(cap_wo); int cap_all = dup(fd); EXPECT_OK(cap_all); EXPECT_OK(cap_rights_limit(cap_all, &r_rwssync)); EXPECT_OK(cap_all); // Linux: io_setup, io_submit, io_getevents, io_cancel, io_destroy aio_context_t ctx = 0; EXPECT_OK(syscall(__NR_io_setup, 10, &ctx)); unsigned char buffer[32] = {1, 2, 3, 4}; struct iocb req; memset(&req, 0, sizeof(req)); req.aio_reqprio = 0; req.aio_fildes = fd; uintptr_t bufaddr = (uintptr_t)buffer; req.aio_buf = (__u64)bufaddr; req.aio_nbytes = 4; req.aio_offset = 0; struct iocb* reqs[1] = {&req}; // Write operation req.aio_lio_opcode = IOCB_CMD_PWRITE; req.aio_fildes = cap_ro; EXPECT_NOTCAPABLE(syscall(__NR_io_submit, ctx, 1, reqs)); req.aio_fildes = cap_wo; EXPECT_OK(syscall(__NR_io_submit, ctx, 1, reqs)); // Sync operation req.aio_lio_opcode = IOCB_CMD_FSYNC; EXPECT_NOTCAPABLE(syscall(__NR_io_submit, ctx, 1, reqs)); req.aio_lio_opcode = IOCB_CMD_FDSYNC; EXPECT_NOTCAPABLE(syscall(__NR_io_submit, ctx, 1, reqs)); // Even with CAP_FSYNC, turns out fsync/fdsync aren't implemented req.aio_fildes = cap_all; EXPECT_FAIL_NOT_NOTCAPABLE(syscall(__NR_io_submit, ctx, 1, reqs)); req.aio_lio_opcode = IOCB_CMD_FSYNC; EXPECT_FAIL_NOT_NOTCAPABLE(syscall(__NR_io_submit, ctx, 1, reqs)); // Read operation req.aio_lio_opcode = IOCB_CMD_PREAD; req.aio_fildes = cap_wo; EXPECT_NOTCAPABLE(syscall(__NR_io_submit, ctx, 1, reqs)); req.aio_fildes = cap_ro; EXPECT_OK(syscall(__NR_io_submit, ctx, 1, reqs)); EXPECT_OK(syscall(__NR_io_destroy, ctx)); close(cap_all); close(cap_wo); close(cap_ro); close(fd); unlink(TmpFile("cap_aio")); } #ifndef KCMP_FILE #define KCMP_FILE 0 #endif TEST(Linux, Kcmp) { // This requires CONFIG_CHECKPOINT_RESTORE in kernel config. int fd = open("/etc/passwd", O_RDONLY); EXPECT_OK(fd); pid_t parent = getpid_(); errno = 0; int rc = syscall(__NR_kcmp, parent, parent, KCMP_FILE, fd, fd); if (rc == -1 && errno == ENOSYS) { TEST_SKIPPED("kcmp(2) gives -ENOSYS"); return; } pid_t child = fork(); if (child == 0) { // Child: limit rights on FD. child = getpid_(); EXPECT_OK(syscall(__NR_kcmp, parent, child, KCMP_FILE, fd, fd)); cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE); EXPECT_OK(cap_rights_limit(fd, &rights)); // A capability wrapping a normal FD is different (from a kcmp(2) perspective) // than the original file. EXPECT_NE(0, syscall(__NR_kcmp, parent, child, KCMP_FILE, fd, fd)); exit(HasFailure()); } // Wait for the child. int status; EXPECT_EQ(child, waitpid(child, &status, 0)); rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1; EXPECT_EQ(0, rc); close(fd); } TEST(Linux, ProcFS) { cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_SEEK); int fd = open("/etc/passwd", O_RDONLY); EXPECT_OK(fd); lseek(fd, 4, SEEK_SET); int cap = dup(fd); EXPECT_OK(cap); EXPECT_OK(cap_rights_limit(cap, &rights)); pid_t me = getpid_(); char buffer[1024]; sprintf(buffer, "/proc/%d/fdinfo/%d", me, cap); int procfd = open(buffer, O_RDONLY); EXPECT_OK(procfd) << " failed to open " << buffer; if (procfd < 0) return; int proccap = dup(procfd); EXPECT_OK(proccap); EXPECT_OK(cap_rights_limit(proccap, &rights)); EXPECT_OK(read(proccap, buffer, sizeof(buffer))); // The fdinfo should include the file pos of the underlying file EXPECT_NE((char*)NULL, strstr(buffer, "pos:\t4")); // ...and the rights of the Capsicum capability. EXPECT_NE((char*)NULL, strstr(buffer, "rights:\t0x")); close(procfd); close(proccap); close(cap); close(fd); } FORK_TEST(Linux, ProcessClocks) { pid_t self = getpid_(); pid_t child = fork(); EXPECT_OK(child); if (child == 0) { child = getpid_(); usleep(100000); exit(0); } EXPECT_OK(cap_enter()); // Enter capability mode. // Nefariously build a clock ID for the child's CPU time. // This relies on knowledge of the internal layout of clock IDs. clockid_t child_clock; child_clock = ((~child) << 3) | 0x0; struct timespec ts; memset(&ts, 0, sizeof(ts)); // TODO(drysdale): Should not be possible to retrieve info about a // different process, as the PID global namespace should be locked // down. EXPECT_OK(clock_gettime(child_clock, &ts)); if (verbose) fprintf(stderr, "[parent: %d] clock_gettime(child=%d->0x%08x) is %ld.%09ld \n", self, child, child_clock, (long)ts.tv_sec, (long)ts.tv_nsec); child_clock = ((~1) << 3) | 0x0; memset(&ts, 0, sizeof(ts)); EXPECT_OK(clock_gettime(child_clock, &ts)); if (verbose) fprintf(stderr, "[parent: %d] clock_gettime(init=1->0x%08x) is %ld.%09ld \n", self, child_clock, (long)ts.tv_sec, (long)ts.tv_nsec); // Orphan the child. } TEST(Linux, SetLease) { int fd_all = open(TmpFile("cap_lease"), O_CREAT|O_RDWR, 0644); EXPECT_OK(fd_all); int fd_rw = dup(fd_all); EXPECT_OK(fd_rw); cap_rights_t r_all; cap_rights_init(&r_all, CAP_READ, CAP_WRITE, CAP_FLOCK, CAP_FSIGNAL); EXPECT_OK(cap_rights_limit(fd_all, &r_all)); cap_rights_t r_rw; cap_rights_init(&r_rw, CAP_READ, CAP_WRITE); EXPECT_OK(cap_rights_limit(fd_rw, &r_rw)); EXPECT_NOTCAPABLE(fcntl(fd_rw, F_SETLEASE, F_WRLCK)); EXPECT_NOTCAPABLE(fcntl(fd_rw, F_GETLEASE)); if (!tmpdir_on_tmpfs) { // tmpfs doesn't support leases EXPECT_OK(fcntl(fd_all, F_SETLEASE, F_WRLCK)); EXPECT_EQ(F_WRLCK, fcntl(fd_all, F_GETLEASE)); EXPECT_OK(fcntl(fd_all, F_SETLEASE, F_UNLCK, 0)); EXPECT_EQ(F_UNLCK, fcntl(fd_all, F_GETLEASE)); } close(fd_all); close(fd_rw); unlink(TmpFile("cap_lease")); } TEST(Linux, InvalidRightsSyscall) { int fd = open(TmpFile("cap_invalid_rights"), O_RDONLY|O_CREAT, 0644); EXPECT_OK(fd); cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FCHMOD, CAP_FSTAT); // Use the raw syscall throughout. EXPECT_EQ(0, syscall(__NR_cap_rights_limit, fd, &rights, 0, 0, NULL, 0)); // Directly access the syscall, and find all unseemly manner of use for it. // - Invalid flags EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, &rights, 0, 0, NULL, 1)); EXPECT_EQ(EINVAL, errno); // - Specify an fcntl subright, but no CAP_FCNTL set EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, &rights, CAP_FCNTL_GETFL, 0, NULL, 0)); EXPECT_EQ(EINVAL, errno); // - Specify an ioctl subright, but no CAP_IOCTL set unsigned int ioctl1 = 1; EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, &rights, 0, 1, &ioctl1, 0)); EXPECT_EQ(EINVAL, errno); // - N ioctls, but null pointer passed EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, &rights, 0, 1, NULL, 0)); EXPECT_EQ(EINVAL, errno); // - Invalid nioctls EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, &rights, 0, -2, NULL, 0)); EXPECT_EQ(EINVAL, errno); // - Null primary rights EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, NULL, 0, 0, NULL, 0)); EXPECT_EQ(EFAULT, errno); // - Invalid index bitmask rights.cr_rights[0] |= 3ULL << 57; EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, &rights, 0, 0, NULL, 0)); EXPECT_EQ(EINVAL, errno); // - Invalid version rights.cr_rights[0] |= 2ULL << 62; EXPECT_EQ(-1, syscall(__NR_cap_rights_limit, fd, &rights, 0, 0, NULL, 0)); EXPECT_EQ(EINVAL, errno); close(fd); unlink(TmpFile("cap_invalid_rights")); } FORK_TEST_ON(Linux, OpenByHandleAt, TmpFile("cap_openbyhandle_testfile")) { REQUIRE_ROOT(); int dir = open(tmpdir.c_str(), O_RDONLY); EXPECT_OK(dir); int fd = openat(dir, "cap_openbyhandle_testfile", O_RDWR|O_CREAT, 0644); EXPECT_OK(fd); const char* message = "Saved text"; EXPECT_OK(write(fd, message, strlen(message))); close(fd); struct file_handle* fhandle = (struct file_handle*)malloc(sizeof(struct file_handle) + MAX_HANDLE_SZ); fhandle->handle_bytes = MAX_HANDLE_SZ; int mount_id; EXPECT_OK(name_to_handle_at(dir, "cap_openbyhandle_testfile", fhandle, &mount_id, 0)); fd = open_by_handle_at(dir, fhandle, O_RDONLY); EXPECT_OK(fd); char buffer[200]; EXPECT_OK(read(fd, buffer, 199)); EXPECT_EQ(std::string(message), std::string(buffer)); close(fd); // Cannot issue open_by_handle_at after entering capability mode. cap_enter(); EXPECT_CAPMODE(open_by_handle_at(dir, fhandle, O_RDONLY)); close(dir); } int getrandom_(void *buf, size_t buflen, unsigned int flags) { #ifdef __NR_getrandom return syscall(__NR_getrandom, buf, buflen, flags); #else errno = ENOSYS; return -1; #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 17, 0) #include // Requires 3.17 kernel FORK_TEST(Linux, GetRandom) { EXPECT_OK(cap_enter()); unsigned char buffer[1024]; unsigned char buffer2[1024]; EXPECT_OK(getrandom_(buffer, sizeof(buffer), GRND_NONBLOCK)); EXPECT_OK(getrandom_(buffer2, sizeof(buffer2), GRND_NONBLOCK)); EXPECT_NE(0, memcmp(buffer, buffer2, sizeof(buffer))); } #endif int memfd_create_(const char *name, unsigned int flags) { #ifdef __NR_memfd_create return syscall(__NR_memfd_create, name, flags); #else errno = ENOSYS; return -1; #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 17, 0) #include // Requires 3.17 kernel TEST(Linux, MemFDDeathTest) { int memfd = memfd_create_("capsicum-test", MFD_ALLOW_SEALING); if (memfd == -1 && errno == ENOSYS) { TEST_SKIPPED("memfd_create(2) gives -ENOSYS"); return; } const int LEN = 16; EXPECT_OK(ftruncate(memfd, LEN)); int memfd_ro = dup(memfd); int memfd_rw = dup(memfd); EXPECT_OK(memfd_ro); EXPECT_OK(memfd_rw); cap_rights_t rights; EXPECT_OK(cap_rights_limit(memfd_ro, cap_rights_init(&rights, CAP_MMAP_R, CAP_FSTAT))); EXPECT_OK(cap_rights_limit(memfd_rw, cap_rights_init(&rights, CAP_MMAP_RW, CAP_FCHMOD))); unsigned char *p_ro = (unsigned char *)mmap(NULL, LEN, PROT_READ, MAP_SHARED, memfd_ro, 0); EXPECT_NE((unsigned char *)MAP_FAILED, p_ro); unsigned char *p_rw = (unsigned char *)mmap(NULL, LEN, PROT_READ|PROT_WRITE, MAP_SHARED, memfd_rw, 0); EXPECT_NE((unsigned char *)MAP_FAILED, p_rw); EXPECT_EQ(MAP_FAILED, mmap(NULL, LEN, PROT_READ|PROT_WRITE, MAP_SHARED, memfd_ro, 0)); *p_rw = 42; EXPECT_EQ(42, *p_ro); EXPECT_DEATH(*p_ro = 42, ""); #ifndef F_ADD_SEALS // Hack for when libc6 does not yet include the updated linux/fcntl.h from kernel 3.17 #define _F_LINUX_SPECIFIC_BASE F_SETLEASE #define F_ADD_SEALS (_F_LINUX_SPECIFIC_BASE + 9) #define F_GET_SEALS (_F_LINUX_SPECIFIC_BASE + 10) #define F_SEAL_SEAL 0x0001 /* prevent further seals from being set */ #define F_SEAL_SHRINK 0x0002 /* prevent file from shrinking */ #define F_SEAL_GROW 0x0004 /* prevent file from growing */ #define F_SEAL_WRITE 0x0008 /* prevent writes */ #endif // Reading the seal information requires CAP_FSTAT. int seals = fcntl(memfd, F_GET_SEALS); EXPECT_OK(seals); if (verbose) fprintf(stderr, "seals are %08x on base fd\n", seals); int seals_ro = fcntl(memfd_ro, F_GET_SEALS); EXPECT_EQ(seals, seals_ro); if (verbose) fprintf(stderr, "seals are %08x on read-only fd\n", seals_ro); int seals_rw = fcntl(memfd_rw, F_GET_SEALS); EXPECT_NOTCAPABLE(seals_rw); // Fail to seal as a writable mapping exists. EXPECT_EQ(-1, fcntl(memfd_rw, F_ADD_SEALS, F_SEAL_WRITE)); EXPECT_EQ(EBUSY, errno); *p_rw = 42; // Seal the rw version; need to unmap first. munmap(p_rw, LEN); munmap(p_ro, LEN); EXPECT_OK(fcntl(memfd_rw, F_ADD_SEALS, F_SEAL_WRITE)); seals = fcntl(memfd, F_GET_SEALS); EXPECT_OK(seals); if (verbose) fprintf(stderr, "seals are %08x on base fd\n", seals); seals_ro = fcntl(memfd_ro, F_GET_SEALS); EXPECT_EQ(seals, seals_ro); if (verbose) fprintf(stderr, "seals are %08x on read-only fd\n", seals_ro); // Remove the CAP_FCHMOD right, can no longer add seals. EXPECT_OK(cap_rights_limit(memfd_rw, cap_rights_init(&rights, CAP_MMAP_RW))); EXPECT_NOTCAPABLE(fcntl(memfd_rw, F_ADD_SEALS, F_SEAL_WRITE)); close(memfd); close(memfd_ro); close(memfd_rw); } #endif #else void noop() {} #endif