//===-- xray_interface.cpp --------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of XRay, a dynamic runtime instrumentation system. // // Implementation of the API functions. // //===----------------------------------------------------------------------===// #include "xray_interface_internal.h" #include #include #include #include #include #include #include "sanitizer_common/sanitizer_common.h" #include "xray_defs.h" namespace __xray { #if defined(__x86_64__) // FIXME: The actual length is 11 bytes. Why was length 12 passed to mprotect() // ? static const int16_t cSledLength = 12; #elif defined(__aarch64__) static const int16_t cSledLength = 32; #elif defined(__arm__) static const int16_t cSledLength = 28; #else #error "Unsupported CPU Architecture" #endif /* CPU architecture */ // This is the function to call when we encounter the entry or exit sleds. std::atomic XRayPatchedFunction{nullptr}; // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will undo // any successful mprotect(...) changes. This is used to make a page writeable // and executable, and upon destruction if it was successful in doing so returns // the page into a read-only and executable page. // // This is only used specifically for runtime-patching of the XRay // instrumentation points. This assumes that the executable pages are originally // read-and-execute only. class MProtectHelper { void *PageAlignedAddr; std::size_t MProtectLen; bool MustCleanup; public: explicit MProtectHelper(void *PageAlignedAddr, std::size_t MProtectLen) XRAY_NEVER_INSTRUMENT : PageAlignedAddr(PageAlignedAddr), MProtectLen(MProtectLen), MustCleanup(false) {} int MakeWriteable() XRAY_NEVER_INSTRUMENT { auto R = mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_WRITE | PROT_EXEC); if (R != -1) MustCleanup = true; return R; } ~MProtectHelper() XRAY_NEVER_INSTRUMENT { if (MustCleanup) { mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC); } } }; } // namespace __xray extern std::atomic XRayInitialized; extern std::atomic<__xray::XRaySledMap> XRayInstrMap; int __xray_set_handler(void (*entry)(int32_t, XRayEntryType)) XRAY_NEVER_INSTRUMENT { if (XRayInitialized.load(std::memory_order_acquire)) { __xray::XRayPatchedFunction.store(entry, std::memory_order_release); return 1; } return 0; } int __xray_remove_handler() XRAY_NEVER_INSTRUMENT { return __xray_set_handler(nullptr); } std::atomic XRayPatching{false}; using namespace __xray; // FIXME: Figure out whether we can move this class to sanitizer_common instead // as a generic "scope guard". template class CleanupInvoker { Function Fn; public: explicit CleanupInvoker(Function Fn) XRAY_NEVER_INSTRUMENT : Fn(Fn) {} CleanupInvoker(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = default; CleanupInvoker(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = default; CleanupInvoker & operator=(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = delete; CleanupInvoker &operator=(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = delete; ~CleanupInvoker() XRAY_NEVER_INSTRUMENT { Fn(); } }; template CleanupInvoker ScopeCleanup(Function Fn) XRAY_NEVER_INSTRUMENT { return CleanupInvoker{Fn}; } // ControlPatching implements the common internals of the patching/unpatching // implementation. |Enable| defines whether we're enabling or disabling the // runtime XRay instrumentation. XRayPatchingStatus ControlPatching(bool Enable) XRAY_NEVER_INSTRUMENT { if (!XRayInitialized.load(std::memory_order_acquire)) return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. static bool NotPatching = false; if (!XRayPatching.compare_exchange_strong(NotPatching, true, std::memory_order_acq_rel, std::memory_order_acquire)) { return XRayPatchingStatus::ONGOING; // Already patching. } bool PatchingSuccess = false; auto XRayPatchingStatusResetter = ScopeCleanup([&PatchingSuccess] { if (!PatchingSuccess) { XRayPatching.store(false, std::memory_order_release); } }); // Step 1: Compute the function id, as a unique identifier per function in the // instrumentation map. XRaySledMap InstrMap = XRayInstrMap.load(std::memory_order_acquire); if (InstrMap.Entries == 0) return XRayPatchingStatus::NOT_INITIALIZED; const uint64_t PageSize = GetPageSizeCached(); if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { Report("System page size is not a power of two: %lld\n", PageSize); return XRayPatchingStatus::FAILED; } uint32_t FuncId = 1; uint64_t CurFun = 0; for (std::size_t I = 0; I < InstrMap.Entries; I++) { auto Sled = InstrMap.Sleds[I]; auto F = Sled.Function; if (CurFun == 0) CurFun = F; if (F != CurFun) { ++FuncId; CurFun = F; } // While we're here, we should patch the nop sled. To do that we mprotect // the page containing the function to be writeable. void *PageAlignedAddr = reinterpret_cast(Sled.Address & ~(PageSize - 1)); std::size_t MProtectLen = (Sled.Address + cSledLength) - reinterpret_cast(PageAlignedAddr); MProtectHelper Protector(PageAlignedAddr, MProtectLen); if (Protector.MakeWriteable() == -1) { printf("Failed mprotect: %d\n", errno); return XRayPatchingStatus::FAILED; } bool Success = false; switch (Sled.Kind) { case XRayEntryType::ENTRY: Success = patchFunctionEntry(Enable, FuncId, Sled); break; case XRayEntryType::EXIT: Success = patchFunctionExit(Enable, FuncId, Sled); break; case XRayEntryType::TAIL: Success = patchFunctionTailExit(Enable, FuncId, Sled); break; default: Report("Unsupported sled kind: %d\n", int(Sled.Kind)); continue; } (void)Success; } XRayPatching.store(false, std::memory_order_release); PatchingSuccess = true; return XRayPatchingStatus::SUCCESS; } XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT { return ControlPatching(true); } XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT { return ControlPatching(false); }