//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the BitVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_BITVECTOR_H #define LLVM_ADT_BITVECTOR_H #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include #include #include namespace llvm { class BitVector { typedef unsigned long BitWord; enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, "Unsupported word size"); MutableArrayRef Bits; // Actual bits. unsigned Size; // Size of bitvector in bits. public: typedef unsigned size_type; // Encapsulation of a single bit. class reference { friend class BitVector; BitWord *WordRef; unsigned BitPos; public: reference(BitVector &b, unsigned Idx) { WordRef = &b.Bits[Idx / BITWORD_SIZE]; BitPos = Idx % BITWORD_SIZE; } reference() = delete; reference(const reference&) = default; reference &operator=(reference t) { *this = bool(t); return *this; } reference& operator=(bool t) { if (t) *WordRef |= BitWord(1) << BitPos; else *WordRef &= ~(BitWord(1) << BitPos); return *this; } operator bool() const { return ((*WordRef) & (BitWord(1) << BitPos)) != 0; } }; /// BitVector default ctor - Creates an empty bitvector. BitVector() : Size(0) {} /// BitVector ctor - Creates a bitvector of specified number of bits. All /// bits are initialized to the specified value. explicit BitVector(unsigned s, bool t = false) : Size(s) { size_t Capacity = NumBitWords(s); Bits = allocate(Capacity); init_words(Bits, t); if (t) clear_unused_bits(); } /// BitVector copy ctor. BitVector(const BitVector &RHS) : Size(RHS.size()) { if (Size == 0) { Bits = MutableArrayRef(); return; } size_t Capacity = NumBitWords(RHS.size()); Bits = allocate(Capacity); std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord)); } BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) { RHS.Bits = MutableArrayRef(); RHS.Size = 0; } ~BitVector() { std::free(Bits.data()); } /// empty - Tests whether there are no bits in this bitvector. bool empty() const { return Size == 0; } /// size - Returns the number of bits in this bitvector. size_type size() const { return Size; } /// count - Returns the number of bits which are set. size_type count() const { unsigned NumBits = 0; for (unsigned i = 0; i < NumBitWords(size()); ++i) NumBits += countPopulation(Bits[i]); return NumBits; } /// any - Returns true if any bit is set. bool any() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return true; return false; } /// all - Returns true if all bits are set. bool all() const { for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) if (Bits[i] != ~0UL) return false; // If bits remain check that they are ones. The unused bits are always zero. if (unsigned Remainder = Size % BITWORD_SIZE) return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; return true; } /// none - Returns true if none of the bits are set. bool none() const { return !any(); } /// find_first - Returns the index of the first set bit, -1 if none /// of the bits are set. int find_first() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); return -1; } /// find_last - Returns the index of the last set bit, -1 if none of the bits /// are set. int find_last() const { if (Size == 0) return -1; unsigned N = NumBitWords(size()); assert(N > 0); unsigned i = N - 1; while (i > 0 && Bits[i] == BitWord(0)) --i; return int((i + 1) * BITWORD_SIZE - countLeadingZeros(Bits[i])) - 1; } /// find_first_unset - Returns the index of the first unset bit, -1 if all /// of the bits are set. int find_first_unset() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != ~0UL) { unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Bits[i]); return Result < size() ? Result : -1; } return -1; } /// find_last_unset - Returns the index of the last unset bit, -1 if all of /// the bits are set. int find_last_unset() const { if (Size == 0) return -1; const unsigned N = NumBitWords(size()); assert(N > 0); unsigned i = N - 1; BitWord W = Bits[i]; // The last word in the BitVector has some unused bits, so we need to set // them all to 1 first. Set them all to 1 so they don't get treated as // valid unset bits. unsigned UnusedCount = BITWORD_SIZE - size() % BITWORD_SIZE; W |= maskLeadingOnes(UnusedCount); while (W == ~BitWord(0) && --i > 0) W = Bits[i]; return int((i + 1) * BITWORD_SIZE - countLeadingOnes(W)) - 1; } /// find_next - Returns the index of the next set bit following the /// "Prev" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { ++Prev; if (Prev >= Size) return -1; unsigned WordPos = Prev / BITWORD_SIZE; unsigned BitPos = Prev % BITWORD_SIZE; BitWord Copy = Bits[WordPos]; // Mask off previous bits. Copy &= ~0UL << BitPos; if (Copy != 0) return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); // Check subsequent words. for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); return -1; } /// find_next_unset - Returns the index of the next usnet bit following the /// "Prev" bit. Returns -1 if all remaining bits are set. int find_next_unset(unsigned Prev) const { ++Prev; if (Prev >= Size) return -1; unsigned WordPos = Prev / BITWORD_SIZE; unsigned BitPos = Prev % BITWORD_SIZE; BitWord Copy = Bits[WordPos]; // Mask in previous bits. BitWord Mask = (1 << BitPos) - 1; Copy |= Mask; if (Copy != ~0UL) return next_unset_in_word(WordPos, Copy); // Check subsequent words. for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) if (Bits[i] != ~0UL) return next_unset_in_word(i, Bits[i]); return -1; } /// clear - Clear all bits. void clear() { Size = 0; } /// resize - Grow or shrink the bitvector. void resize(unsigned N, bool t = false) { if (N > getBitCapacity()) { unsigned OldCapacity = Bits.size(); grow(N); init_words(Bits.drop_front(OldCapacity), t); } // Set any old unused bits that are now included in the BitVector. This // may set bits that are not included in the new vector, but we will clear // them back out below. if (N > Size) set_unused_bits(t); // Update the size, and clear out any bits that are now unused unsigned OldSize = Size; Size = N; if (t || N < OldSize) clear_unused_bits(); } void reserve(unsigned N) { if (N > getBitCapacity()) grow(N); } // Set, reset, flip BitVector &set() { init_words(Bits, true); clear_unused_bits(); return *this; } BitVector &set(unsigned Idx) { assert(Bits.data() && "Bits never allocated"); Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); return *this; } /// set - Efficiently set a range of bits in [I, E) BitVector &set(unsigned I, unsigned E) { assert(I <= E && "Attempted to set backwards range!"); assert(E <= size() && "Attempted to set out-of-bounds range!"); if (I == E) return *this; if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = 1UL << (E % BITWORD_SIZE); BitWord IMask = 1UL << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] |= Mask; return *this; } BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] |= PrefixMask; I = alignTo(I, BITWORD_SIZE); for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = ~0UL; BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; if (I < E) Bits[I / BITWORD_SIZE] |= PostfixMask; return *this; } BitVector &reset() { init_words(Bits, false); return *this; } BitVector &reset(unsigned Idx) { Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); return *this; } /// reset - Efficiently reset a range of bits in [I, E) BitVector &reset(unsigned I, unsigned E) { assert(I <= E && "Attempted to reset backwards range!"); assert(E <= size() && "Attempted to reset out-of-bounds range!"); if (I == E) return *this; if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = 1UL << (E % BITWORD_SIZE); BitWord IMask = 1UL << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] &= ~Mask; return *this; } BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] &= ~PrefixMask; I = alignTo(I, BITWORD_SIZE); for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = 0UL; BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; if (I < E) Bits[I / BITWORD_SIZE] &= ~PostfixMask; return *this; } BitVector &flip() { for (unsigned i = 0; i < NumBitWords(size()); ++i) Bits[i] = ~Bits[i]; clear_unused_bits(); return *this; } BitVector &flip(unsigned Idx) { Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); return *this; } // Indexing. reference operator[](unsigned Idx) { assert (Idx < Size && "Out-of-bounds Bit access."); return reference(*this, Idx); } bool operator[](unsigned Idx) const { assert (Idx < Size && "Out-of-bounds Bit access."); BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; } bool test(unsigned Idx) const { return (*this)[Idx]; } /// Test if any common bits are set. bool anyCommon(const BitVector &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) if (Bits[i] & RHS.Bits[i]) return true; return false; } // Comparison operators. bool operator==(const BitVector &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) if (Bits[i] != RHS.Bits[i]) return false; // Verify that any extra words are all zeros. if (i != ThisWords) { for (; i != ThisWords; ++i) if (Bits[i]) return false; } else if (i != RHSWords) { for (; i != RHSWords; ++i) if (RHS.Bits[i]) return false; } return true; } bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } /// Intersection, union, disjoint union. BitVector &operator&=(const BitVector &RHS) { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= RHS.Bits[i]; // Any bits that are just in this bitvector become zero, because they aren't // in the RHS bit vector. Any words only in RHS are ignored because they // are already zero in the LHS. for (; i != ThisWords; ++i) Bits[i] = 0; return *this; } /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. BitVector &reset(const BitVector &RHS) { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= ~RHS.Bits[i]; return *this; } /// test - Check if (This - RHS) is zero. /// This is the same as reset(RHS) and any(). bool test(const BitVector &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) if ((Bits[i] & ~RHS.Bits[i]) != 0) return true; for (; i != ThisWords ; ++i) if (Bits[i] != 0) return true; return false; } BitVector &operator|=(const BitVector &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) Bits[i] |= RHS.Bits[i]; return *this; } BitVector &operator^=(const BitVector &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) Bits[i] ^= RHS.Bits[i]; return *this; } BitVector &operator>>=(unsigned N) { assert(N <= Size); if (LLVM_UNLIKELY(empty() || N == 0)) return *this; unsigned NumWords = NumBitWords(Size); assert(NumWords >= 1); wordShr(N / BITWORD_SIZE); unsigned BitDistance = N % BITWORD_SIZE; if (BitDistance == 0) return *this; // When the shift size is not a multiple of the word size, then we have // a tricky situation where each word in succession needs to extract some // of the bits from the next word and or them into this word while // shifting this word to make room for the new bits. This has to be done // for every word in the array. // Since we're shifting each word right, some bits will fall off the end // of each word to the right, and empty space will be created on the left. // The final word in the array will lose bits permanently, so starting at // the beginning, work forwards shifting each word to the right, and // OR'ing in the bits from the end of the next word to the beginning of // the current word. // Example: // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right // by 4 bits. // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD // Step 3: Word[1] >>= 4 ; 0x0EEFF001 // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001 // Step 5: Word[2] >>= 4 ; 0x02334455 // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 } const BitWord Mask = maskTrailingOnes(BitDistance); const unsigned LSH = BITWORD_SIZE - BitDistance; for (unsigned I = 0; I < NumWords - 1; ++I) { Bits[I] >>= BitDistance; Bits[I] |= (Bits[I + 1] & Mask) << LSH; } Bits[NumWords - 1] >>= BitDistance; return *this; } BitVector &operator<<=(unsigned N) { assert(N <= Size); if (LLVM_UNLIKELY(empty() || N == 0)) return *this; unsigned NumWords = NumBitWords(Size); assert(NumWords >= 1); wordShl(N / BITWORD_SIZE); unsigned BitDistance = N % BITWORD_SIZE; if (BitDistance == 0) return *this; // When the shift size is not a multiple of the word size, then we have // a tricky situation where each word in succession needs to extract some // of the bits from the previous word and or them into this word while // shifting this word to make room for the new bits. This has to be done // for every word in the array. This is similar to the algorithm outlined // in operator>>=, but backwards. // Since we're shifting each word left, some bits will fall off the end // of each word to the left, and empty space will be created on the right. // The first word in the array will lose bits permanently, so starting at // the end, work backwards shifting each word to the left, and OR'ing // in the bits from the end of the next word to the beginning of the // current word. // Example: // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left // by 4 bits. // Step 1: Word[2] <<= 4 ; 0x23344550 // Step 2: Word[2] |= 0x0000000E ; 0x2334455E // Step 3: Word[1] <<= 4 ; 0xEFF00110 // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A // Step 5: Word[0] <<= 4 ; 0xABBCCDD0 // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E } const BitWord Mask = maskLeadingOnes(BitDistance); const unsigned RSH = BITWORD_SIZE - BitDistance; for (int I = NumWords - 1; I > 0; --I) { Bits[I] <<= BitDistance; Bits[I] |= (Bits[I - 1] & Mask) >> RSH; } Bits[0] <<= BitDistance; clear_unused_bits(); return *this; } // Assignment operator. const BitVector &operator=(const BitVector &RHS) { if (this == &RHS) return *this; Size = RHS.size(); unsigned RHSWords = NumBitWords(Size); if (Size <= getBitCapacity()) { if (Size) std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord)); clear_unused_bits(); return *this; } // Grow the bitvector to have enough elements. unsigned NewCapacity = RHSWords; assert(NewCapacity > 0 && "negative capacity?"); auto NewBits = allocate(NewCapacity); std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord)); // Destroy the old bits. std::free(Bits.data()); Bits = NewBits; return *this; } const BitVector &operator=(BitVector &&RHS) { if (this == &RHS) return *this; std::free(Bits.data()); Bits = RHS.Bits; Size = RHS.Size; RHS.Bits = MutableArrayRef(); RHS.Size = 0; return *this; } void swap(BitVector &RHS) { std::swap(Bits, RHS.Bits); std::swap(Size, RHS.Size); } //===--------------------------------------------------------------------===// // Portable bit mask operations. //===--------------------------------------------------------------------===// // // These methods all operate on arrays of uint32_t, each holding 32 bits. The // fixed word size makes it easier to work with literal bit vector constants // in portable code. // // The LSB in each word is the lowest numbered bit. The size of a portable // bit mask is always a whole multiple of 32 bits. If no bit mask size is // given, the bit mask is assumed to cover the entire BitVector. /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. /// This computes "*this |= Mask". void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } /// clearBitsInMask - Clear any bits in this vector that are set in Mask. /// Don't resize. This computes "*this &= ~Mask". void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. /// Don't resize. This computes "*this |= ~Mask". void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. /// Don't resize. This computes "*this &= Mask". void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } private: /// \brief Perform a logical left shift of \p Count words by moving everything /// \p Count words to the right in memory. /// /// While confusing, words are stored from least significant at Bits[0] to /// most significant at Bits[NumWords-1]. A logical shift left, however, /// moves the current least significant bit to a higher logical index, and /// fills the previous least significant bits with 0. Thus, we actually /// need to move the bytes of the memory to the right, not to the left. /// Example: /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000] /// represents a BitVector where 0xBBBBAAAA contain the least significant /// bits. So if we want to shift the BitVector left by 2 words, we need to /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a /// memmove which moves right, not left. void wordShl(uint32_t Count) { if (Count == 0) return; uint32_t NumWords = NumBitWords(Size); auto Src = Bits.take_front(NumWords).drop_back(Count); auto Dest = Bits.take_front(NumWords).drop_front(Count); // Since we always move Word-sized chunks of data with src and dest both // aligned to a word-boundary, we don't need to worry about endianness // here. std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord)); std::memset(Bits.data(), 0, Count * sizeof(BitWord)); clear_unused_bits(); } /// \brief Perform a logical right shift of \p Count words by moving those /// words to the left in memory. See wordShl for more information. /// void wordShr(uint32_t Count) { if (Count == 0) return; uint32_t NumWords = NumBitWords(Size); auto Src = Bits.take_front(NumWords).drop_front(Count); auto Dest = Bits.take_front(NumWords).drop_back(Count); assert(Dest.size() == Src.size()); std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord)); std::memset(Dest.end(), 0, Count * sizeof(BitWord)); } MutableArrayRef allocate(size_t NumWords) { BitWord *RawBits = (BitWord *)std::malloc(NumWords * sizeof(BitWord)); return MutableArrayRef(RawBits, NumWords); } int next_unset_in_word(int WordIndex, BitWord Word) const { unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word); return Result < size() ? Result : -1; } unsigned NumBitWords(unsigned S) const { return (S + BITWORD_SIZE-1) / BITWORD_SIZE; } // Set the unused bits in the high words. void set_unused_bits(bool t = true) { // Set high words first. unsigned UsedWords = NumBitWords(Size); if (Bits.size() > UsedWords) init_words(Bits.drop_front(UsedWords), t); // Then set any stray high bits of the last used word. unsigned ExtraBits = Size % BITWORD_SIZE; if (ExtraBits) { BitWord ExtraBitMask = ~0UL << ExtraBits; if (t) Bits[UsedWords-1] |= ExtraBitMask; else Bits[UsedWords-1] &= ~ExtraBitMask; } } // Clear the unused bits in the high words. void clear_unused_bits() { set_unused_bits(false); } void grow(unsigned NewSize) { size_t NewCapacity = std::max(NumBitWords(NewSize), Bits.size() * 2); assert(NewCapacity > 0 && "realloc-ing zero space"); BitWord *NewBits = (BitWord *)std::realloc(Bits.data(), NewCapacity * sizeof(BitWord)); Bits = MutableArrayRef(NewBits, NewCapacity); clear_unused_bits(); } void init_words(MutableArrayRef B, bool t) { if (B.size() > 0) memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord)); } template void applyMask(const uint32_t *Mask, unsigned MaskWords) { static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); MaskWords = std::min(MaskWords, (size() + 31) / 32); const unsigned Scale = BITWORD_SIZE / 32; unsigned i; for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { BitWord BW = Bits[i]; // This inner loop should unroll completely when BITWORD_SIZE > 32. for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) BW |= BitWord(M) << b; else BW &= ~(BitWord(M) << b); } Bits[i] = BW; } for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) Bits[i] |= BitWord(M) << b; else Bits[i] &= ~(BitWord(M) << b); } if (AddBits) clear_unused_bits(); } public: /// Return the size (in bytes) of the bit vector. size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); } size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; } }; static inline size_t capacity_in_bytes(const BitVector &X) { return X.getMemorySize(); } } // end namespace llvm namespace std { /// Implement std::swap in terms of BitVector swap. inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); } } // end namespace std #endif // LLVM_ADT_BITVECTOR_H