//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some templates that are useful if you are working with the // STL at all. // // No library is required when using these functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include // for std::all_of #include #include // for std::size_t #include // for qsort #include #include #include #include #include #include // for std::pair #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { // Only used by compiler if both template types are the same. Useful when // using SFINAE to test for the existence of member functions. template struct SameType; namespace detail { template using IterOfRange = decltype(std::begin(std::declval())); template using ValueOfRange = typename std::remove_reference()))>::type; } // End detail namespace //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// template struct identity : public std::unary_function { Ty &operator()(Ty &self) const { return self; } const Ty &operator()(const Ty &self) const { return self; } }; template struct less_ptr : public std::binary_function { bool operator()(const Ty* left, const Ty* right) const { return *left < *right; } }; template struct greater_ptr : public std::binary_function { bool operator()(const Ty* left, const Ty* right) const { return *right < *left; } }; /// An efficient, type-erasing, non-owning reference to a callable. This is /// intended for use as the type of a function parameter that is not used /// after the function in question returns. /// /// This class does not own the callable, so it is not in general safe to store /// a function_ref. template class function_ref; template class function_ref { Ret (*callback)(intptr_t callable, Params ...params); intptr_t callable; template static Ret callback_fn(intptr_t callable, Params ...params) { return (*reinterpret_cast(callable))( std::forward(params)...); } public: function_ref() : callback(nullptr) {} template function_ref(Callable &&callable, typename std::enable_if< !std::is_same::type, function_ref>::value>::type * = nullptr) : callback(callback_fn::type>), callable(reinterpret_cast(&callable)) {} Ret operator()(Params ...params) const { return callback(callable, std::forward(params)...); } operator bool() const { return callback; } }; // deleter - Very very very simple method that is used to invoke operator // delete on something. It is used like this: // // for_each(V.begin(), B.end(), deleter); // template inline void deleter(T *Ptr) { delete Ptr; } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// // mapped_iterator - This is a simple iterator adapter that causes a function to // be applied whenever operator* is invoked on the iterator. // template class mapped_iterator { RootIt current; UnaryFunc Fn; public: typedef typename std::iterator_traits::iterator_category iterator_category; typedef typename std::iterator_traits::difference_type difference_type; typedef decltype(std::declval()(*std::declval())) value_type; typedef void pointer; //typedef typename UnaryFunc::result_type *pointer; typedef void reference; // Can't modify value returned by fn typedef RootIt iterator_type; inline const RootIt &getCurrent() const { return current; } inline const UnaryFunc &getFunc() const { return Fn; } inline explicit mapped_iterator(const RootIt &I, UnaryFunc F) : current(I), Fn(F) {} inline value_type operator*() const { // All this work to do this return Fn(*current); // little change } mapped_iterator &operator++() { ++current; return *this; } mapped_iterator &operator--() { --current; return *this; } mapped_iterator operator++(int) { mapped_iterator __tmp = *this; ++current; return __tmp; } mapped_iterator operator--(int) { mapped_iterator __tmp = *this; --current; return __tmp; } mapped_iterator operator+(difference_type n) const { return mapped_iterator(current + n, Fn); } mapped_iterator &operator+=(difference_type n) { current += n; return *this; } mapped_iterator operator-(difference_type n) const { return mapped_iterator(current - n, Fn); } mapped_iterator &operator-=(difference_type n) { current -= n; return *this; } reference operator[](difference_type n) const { return *(*this + n); } bool operator!=(const mapped_iterator &X) const { return !operator==(X); } bool operator==(const mapped_iterator &X) const { return current == X.current; } bool operator<(const mapped_iterator &X) const { return current < X.current; } difference_type operator-(const mapped_iterator &X) const { return current - X.current; } }; template inline mapped_iterator operator+(typename mapped_iterator::difference_type N, const mapped_iterator &X) { return mapped_iterator(X.getCurrent() - N, X.getFunc()); } // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... // template inline mapped_iterator map_iterator(const ItTy &I, FuncTy F) { return mapped_iterator(I, F); } /// Helper to determine if type T has a member called rbegin(). template class has_rbegin_impl { typedef char yes[1]; typedef char no[2]; template static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); template static no& test(...); public: static const bool value = sizeof(test(nullptr)) == sizeof(yes); }; /// Metafunction to determine if T& or T has a member called rbegin(). template struct has_rbegin : has_rbegin_impl::type> { }; // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have rbegin()/rend() methods for this to work. template auto reverse(ContainerTy &&C, typename std::enable_if::value>::type * = nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { return make_range(C.rbegin(), C.rend()); } // Returns a std::reverse_iterator wrapped around the given iterator. template std::reverse_iterator make_reverse_iterator(IteratorTy It) { return std::reverse_iterator(It); } // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have begin()/end() methods which return // bidirectional iterators for this to work. template auto reverse( ContainerTy &&C, typename std::enable_if::value>::type * = nullptr) -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C)))) { return make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C))); } /// An iterator adaptor that filters the elements of given inner iterators. /// /// The predicate parameter should be a callable object that accepts the wrapped /// iterator's reference type and returns a bool. When incrementing or /// decrementing the iterator, it will call the predicate on each element and /// skip any where it returns false. /// /// \code /// int A[] = { 1, 2, 3, 4 }; /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); /// // R contains { 1, 3 }. /// \endcode template class filter_iterator : public iterator_adaptor_base< filter_iterator, WrappedIteratorT, typename std::common_type< std::forward_iterator_tag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>::type> { using BaseT = iterator_adaptor_base< filter_iterator, WrappedIteratorT, typename std::common_type< std::forward_iterator_tag, typename std::iterator_traits::iterator_category>:: type>; struct PayloadType { WrappedIteratorT End; PredicateT Pred; }; Optional Payload; void findNextValid() { assert(Payload && "Payload should be engaged when findNextValid is called"); while (this->I != Payload->End && !Payload->Pred(*this->I)) BaseT::operator++(); } // Construct the begin iterator. The begin iterator requires to know where end // is, so that it can properly stop when it hits end. filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(std::move(Begin)), Payload(PayloadType{std::move(End), std::move(Pred)}) { findNextValid(); } // Construct the end iterator. It's not incrementable, so Payload doesn't // have to be engaged. filter_iterator(WrappedIteratorT End) : BaseT(End) {} public: using BaseT::operator++; filter_iterator &operator++() { BaseT::operator++(); findNextValid(); return *this; } template friend iterator_range, PT>> make_filter_range(RT &&, PT); }; /// Convenience function that takes a range of elements and a predicate, /// and return a new filter_iterator range. /// /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the /// lifetime of that temporary is not kept by the returned range object, and the /// temporary is going to be dropped on the floor after the make_iterator_range /// full expression that contains this function call. template iterator_range, PredicateT>> make_filter_range(RangeT &&Range, PredicateT Pred) { using FilterIteratorT = filter_iterator, PredicateT>; return make_range(FilterIteratorT(std::begin(std::forward(Range)), std::end(std::forward(Range)), std::move(Pred)), FilterIteratorT(std::end(std::forward(Range)))); } // forward declarations required by zip_shortest/zip_first template bool all_of(R &&range, UnaryPredicate P); template struct index_sequence; template struct index_sequence_for; namespace detail { using std::declval; // We have to alias this since inlining the actual type at the usage site // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. template struct ZipTupleType { typedef std::tuple())...> type; }; template using zip_traits = iterator_facade_base< ZipType, typename std::common_type::iterator_category...>::type, // ^ TODO: Implement random access methods. typename ZipTupleType::type, typename std::iterator_traits>::type>::difference_type, // ^ FIXME: This follows boost::make_zip_iterator's assumption that all // inner iterators have the same difference_type. It would fail if, for // instance, the second field's difference_type were non-numeric while the // first is. typename ZipTupleType::type *, typename ZipTupleType::type>; template struct zip_common : public zip_traits { using Base = zip_traits; using value_type = typename Base::value_type; std::tuple iterators; protected: template value_type deref(index_sequence) const { return value_type(*std::get(iterators)...); } template decltype(iterators) tup_inc(index_sequence) const { return std::tuple(std::next(std::get(iterators))...); } template decltype(iterators) tup_dec(index_sequence) const { return std::tuple(std::prev(std::get(iterators))...); } public: zip_common(Iters &&... ts) : iterators(std::forward(ts)...) {} value_type operator*() { return deref(index_sequence_for{}); } const value_type operator*() const { return deref(index_sequence_for{}); } ZipType &operator++() { iterators = tup_inc(index_sequence_for{}); return *reinterpret_cast(this); } ZipType &operator--() { static_assert(Base::IsBidirectional, "All inner iterators must be at least bidirectional."); iterators = tup_dec(index_sequence_for{}); return *reinterpret_cast(this); } }; template struct zip_first : public zip_common, Iters...> { using Base = zip_common, Iters...>; bool operator==(const zip_first &other) const { return std::get<0>(this->iterators) == std::get<0>(other.iterators); } zip_first(Iters &&... ts) : Base(std::forward(ts)...) {} }; template class zip_shortest : public zip_common, Iters...> { template bool test(const zip_shortest &other, index_sequence) const { return all_of(std::initializer_list{std::get(this->iterators) != std::get(other.iterators)...}, identity{}); } public: using Base = zip_common, Iters...>; bool operator==(const zip_shortest &other) const { return !test(other, index_sequence_for{}); } zip_shortest(Iters &&... ts) : Base(std::forward(ts)...) {} }; template