//===--- BranchProbabilityInfo.h - Branch Probability Analysis --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is used to evaluate branch probabilties. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/IR/CFG.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" namespace llvm { class LoopInfo; class raw_ostream; /// \brief Analysis providing branch probability information. /// /// This is a function analysis which provides information on the relative /// probabilities of each "edge" in the function's CFG where such an edge is /// defined by a pair (PredBlock and an index in the successors). The /// probability of an edge from one block is always relative to the /// probabilities of other edges from the block. The probabilites of all edges /// from a block sum to exactly one (100%). /// We use a pair (PredBlock and an index in the successors) to uniquely /// identify an edge, since we can have multiple edges from Src to Dst. /// As an example, we can have a switch which jumps to Dst with value 0 and /// value 10. class BranchProbabilityInfo { public: BranchProbabilityInfo() {} BranchProbabilityInfo(const Function &F, const LoopInfo &LI) { calculate(F, LI); } BranchProbabilityInfo(BranchProbabilityInfo &&Arg) : Probs(std::move(Arg.Probs)), LastF(Arg.LastF), PostDominatedByUnreachable(std::move(Arg.PostDominatedByUnreachable)), PostDominatedByColdCall(std::move(Arg.PostDominatedByColdCall)) {} BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) { releaseMemory(); Probs = std::move(RHS.Probs); PostDominatedByColdCall = std::move(RHS.PostDominatedByColdCall); PostDominatedByUnreachable = std::move(RHS.PostDominatedByUnreachable); return *this; } void releaseMemory(); void print(raw_ostream &OS) const; /// \brief Get an edge's probability, relative to other out-edges of the Src. /// /// This routine provides access to the fractional probability between zero /// (0%) and one (100%) of this edge executing, relative to other edges /// leaving the 'Src' block. The returned probability is never zero, and can /// only be one if the source block has only one successor. BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const; /// \brief Get the probability of going from Src to Dst. /// /// It returns the sum of all probabilities for edges from Src to Dst. BranchProbability getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const; BranchProbability getEdgeProbability(const BasicBlock *Src, succ_const_iterator Dst) const; /// \brief Test if an edge is hot relative to other out-edges of the Src. /// /// Check whether this edge out of the source block is 'hot'. We define hot /// as having a relative probability >= 80%. bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const; /// \brief Retrieve the hot successor of a block if one exists. /// /// Given a basic block, look through its successors and if one exists for /// which \see isEdgeHot would return true, return that successor block. const BasicBlock *getHotSucc(const BasicBlock *BB) const; /// \brief Print an edge's probability. /// /// Retrieves an edge's probability similarly to \see getEdgeProbability, but /// then prints that probability to the provided stream. That stream is then /// returned. raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src, const BasicBlock *Dst) const; /// \brief Set the raw edge probability for the given edge. /// /// This allows a pass to explicitly set the edge probability for an edge. It /// can be used when updating the CFG to update and preserve the branch /// probability information. Read the implementation of how these edge /// probabilities are calculated carefully before using! void setEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors, BranchProbability Prob); static BranchProbability getBranchProbStackProtector(bool IsLikely) { static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20); return IsLikely ? LikelyProb : LikelyProb.getCompl(); } void calculate(const Function &F, const LoopInfo &LI); /// Forget analysis results for the given basic block. void eraseBlock(const BasicBlock *BB); private: void operator=(const BranchProbabilityInfo &) = delete; BranchProbabilityInfo(const BranchProbabilityInfo &) = delete; // We need to store CallbackVH's in order to correctly handle basic block // removal. class BasicBlockCallbackVH final : public CallbackVH { BranchProbabilityInfo *BPI; void deleted() override { assert(BPI != nullptr); BPI->eraseBlock(cast(getValPtr())); BPI->Handles.erase(*this); } public: BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI=nullptr) : CallbackVH(const_cast(V)), BPI(BPI) {} }; DenseSet> Handles; // Since we allow duplicate edges from one basic block to another, we use // a pair (PredBlock and an index in the successors) to specify an edge. typedef std::pair Edge; // Default weight value. Used when we don't have information about the edge. // TODO: DEFAULT_WEIGHT makes sense during static predication, when none of // the successors have a weight yet. But it doesn't make sense when providing // weight to an edge that may have siblings with non-zero weights. This can // be handled various ways, but it's probably fine for an edge with unknown // weight to just "inherit" the non-zero weight of an adjacent successor. static const uint32_t DEFAULT_WEIGHT = 16; DenseMap Probs; /// \brief Track the last function we run over for printing. const Function *LastF; /// \brief Track the set of blocks directly succeeded by a returning block. SmallPtrSet PostDominatedByUnreachable; /// \brief Track the set of blocks that always lead to a cold call. SmallPtrSet PostDominatedByColdCall; bool calcUnreachableHeuristics(const BasicBlock *BB); bool calcMetadataWeights(const BasicBlock *BB); bool calcColdCallHeuristics(const BasicBlock *BB); bool calcPointerHeuristics(const BasicBlock *BB); bool calcLoopBranchHeuristics(const BasicBlock *BB, const LoopInfo &LI); bool calcZeroHeuristics(const BasicBlock *BB); bool calcFloatingPointHeuristics(const BasicBlock *BB); bool calcInvokeHeuristics(const BasicBlock *BB); }; /// \brief Analysis pass which computes \c BranchProbabilityInfo. class BranchProbabilityAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static AnalysisKey Key; public: /// \brief Provide the result typedef for this analysis pass. typedef BranchProbabilityInfo Result; /// \brief Run the analysis pass over a function and produce BPI. BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM); }; /// \brief Printer pass for the \c BranchProbabilityAnalysis results. class BranchProbabilityPrinterPass : public PassInfoMixin { raw_ostream &OS; public: explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// \brief Legacy analysis pass which computes \c BranchProbabilityInfo. class BranchProbabilityInfoWrapperPass : public FunctionPass { BranchProbabilityInfo BPI; public: static char ID; BranchProbabilityInfoWrapperPass() : FunctionPass(ID) { initializeBranchProbabilityInfoWrapperPassPass( *PassRegistry::getPassRegistry()); } BranchProbabilityInfo &getBPI() { return BPI; } const BranchProbabilityInfo &getBPI() const { return BPI; } void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnFunction(Function &F) override; void releaseMemory() override; void print(raw_ostream &OS, const Module *M = nullptr) const override; }; } #endif