//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The ScalarEvolution class is an LLVM pass which can be used to analyze and // categorize scalar expressions in loops. It specializes in recognizing // general induction variables, representing them with the abstract and opaque // SCEV class. Given this analysis, trip counts of loops and other important // properties can be obtained. // // This analysis is primarily useful for induction variable substitution and // strength reduction. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H #define LLVM_ANALYSIS_SCALAREVOLUTION_H #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/DataTypes.h" #include namespace llvm { class APInt; class AssumptionCache; class Constant; class ConstantInt; class DominatorTree; class Type; class ScalarEvolution; class DataLayout; class TargetLibraryInfo; class LLVMContext; class Operator; class SCEV; class SCEVAddRecExpr; class SCEVConstant; class SCEVExpander; class SCEVPredicate; class SCEVUnknown; template <> struct FoldingSetTrait; template <> struct FoldingSetTrait; /// This class represents an analyzed expression in the program. These are /// opaque objects that the client is not allowed to do much with directly. /// class SCEV : public FoldingSetNode { friend struct FoldingSetTrait; /// A reference to an Interned FoldingSetNodeID for this node. The /// ScalarEvolution's BumpPtrAllocator holds the data. FoldingSetNodeIDRef FastID; // The SCEV baseclass this node corresponds to const unsigned short SCEVType; protected: /// This field is initialized to zero and may be used in subclasses to store /// miscellaneous information. unsigned short SubclassData; private: SCEV(const SCEV &) = delete; void operator=(const SCEV &) = delete; public: /// NoWrapFlags are bitfield indices into SubclassData. /// /// Add and Mul expressions may have no-unsigned-wrap or /// no-signed-wrap properties, which are derived from the IR /// operator. NSW is a misnomer that we use to mean no signed overflow or /// underflow. /// /// AddRec expressions may have a no-self-wraparound property if, in /// the integer domain, abs(step) * max-iteration(loop) <= /// unsigned-max(bitwidth). This means that the recurrence will never reach /// its start value if the step is non-zero. Computing the same value on /// each iteration is not considered wrapping, and recurrences with step = 0 /// are trivially . is independent of the sign of step and the /// value the add recurrence starts with. /// /// Note that NUW and NSW are also valid properties of a recurrence, and /// either implies NW. For convenience, NW will be set for a recurrence /// whenever either NUW or NSW are set. enum NoWrapFlags { FlagAnyWrap = 0, // No guarantee. FlagNW = (1 << 0), // No self-wrap. FlagNUW = (1 << 1), // No unsigned wrap. FlagNSW = (1 << 2), // No signed wrap. NoWrapMask = (1 << 3) -1 }; explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) : FastID(ID), SCEVType(SCEVTy), SubclassData(0) {} unsigned getSCEVType() const { return SCEVType; } /// Return the LLVM type of this SCEV expression. /// Type *getType() const; /// Return true if the expression is a constant zero. /// bool isZero() const; /// Return true if the expression is a constant one. /// bool isOne() const; /// Return true if the expression is a constant all-ones value. /// bool isAllOnesValue() const; /// Return true if the specified scev is negated, but not a constant. bool isNonConstantNegative() const; /// Print out the internal representation of this scalar to the specified /// stream. This should really only be used for debugging purposes. void print(raw_ostream &OS) const; /// This method is used for debugging. /// void dump() const; }; // Specialize FoldingSetTrait for SCEV to avoid needing to compute // temporary FoldingSetNodeID values. template<> struct FoldingSetTrait : DefaultFoldingSetTrait { static void Profile(const SCEV &X, FoldingSetNodeID& ID) { ID = X.FastID; } static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { return ID == X.FastID; } static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { return X.FastID.ComputeHash(); } }; inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { S.print(OS); return OS; } /// An object of this class is returned by queries that could not be answered. /// For example, if you ask for the number of iterations of a linked-list /// traversal loop, you will get one of these. None of the standard SCEV /// operations are valid on this class, it is just a marker. struct SCEVCouldNotCompute : public SCEV { SCEVCouldNotCompute(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const SCEV *S); }; /// SCEVPredicate - This class represents an assumption made using SCEV /// expressions which can be checked at run-time. class SCEVPredicate : public FoldingSetNode { friend struct FoldingSetTrait; /// A reference to an Interned FoldingSetNodeID for this node. The /// ScalarEvolution's BumpPtrAllocator holds the data. FoldingSetNodeIDRef FastID; public: enum SCEVPredicateKind { P_Union, P_Equal }; protected: SCEVPredicateKind Kind; ~SCEVPredicate() = default; SCEVPredicate(const SCEVPredicate&) = default; SCEVPredicate &operator=(const SCEVPredicate&) = default; public: SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind); SCEVPredicateKind getKind() const { return Kind; } /// \brief Returns the estimated complexity of this predicate. /// This is roughly measured in the number of run-time checks required. virtual unsigned getComplexity() const { return 1; } /// \brief Returns true if the predicate is always true. This means that no /// assumptions were made and nothing needs to be checked at run-time. virtual bool isAlwaysTrue() const = 0; /// \brief Returns true if this predicate implies \p N. virtual bool implies(const SCEVPredicate *N) const = 0; /// \brief Prints a textual representation of this predicate with an /// indentation of \p Depth. virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0; /// \brief Returns the SCEV to which this predicate applies, or nullptr /// if this is a SCEVUnionPredicate. virtual const SCEV *getExpr() const = 0; }; inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) { P.print(OS); return OS; } // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute // temporary FoldingSetNodeID values. template <> struct FoldingSetTrait : DefaultFoldingSetTrait { static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) { ID = X.FastID; } static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { return ID == X.FastID; } static unsigned ComputeHash(const SCEVPredicate &X, FoldingSetNodeID &TempID) { return X.FastID.ComputeHash(); } }; /// SCEVEqualPredicate - This class represents an assumption that two SCEV /// expressions are equal, and this can be checked at run-time. We assume /// that the left hand side is a SCEVUnknown and the right hand side a /// constant. class SCEVEqualPredicate final : public SCEVPredicate { /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a /// constant. const SCEVUnknown *LHS; const SCEVConstant *RHS; public: SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS, const SCEVConstant *RHS); /// Implementation of the SCEVPredicate interface bool implies(const SCEVPredicate *N) const override; void print(raw_ostream &OS, unsigned Depth = 0) const override; bool isAlwaysTrue() const override; const SCEV *getExpr() const override; /// \brief Returns the left hand side of the equality. const SCEVUnknown *getLHS() const { return LHS; } /// \brief Returns the right hand side of the equality. const SCEVConstant *getRHS() const { return RHS; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVPredicate *P) { return P->getKind() == P_Equal; } }; /// SCEVUnionPredicate - This class represents a composition of other /// SCEV predicates, and is the class that most clients will interact with. /// This is equivalent to a logical "AND" of all the predicates in the union. class SCEVUnionPredicate final : public SCEVPredicate { private: typedef DenseMap> PredicateMap; /// Vector with references to all predicates in this union. SmallVector Preds; /// Maps SCEVs to predicates for quick look-ups. PredicateMap SCEVToPreds; public: SCEVUnionPredicate(); const SmallVectorImpl &getPredicates() const { return Preds; } /// \brief Adds a predicate to this union. void add(const SCEVPredicate *N); /// \brief Returns a reference to a vector containing all predicates /// which apply to \p Expr. ArrayRef getPredicatesForExpr(const SCEV *Expr); /// Implementation of the SCEVPredicate interface bool isAlwaysTrue() const override; bool implies(const SCEVPredicate *N) const override; void print(raw_ostream &OS, unsigned Depth) const override; const SCEV *getExpr() const override; /// \brief We estimate the complexity of a union predicate as the size /// number of predicates in the union. unsigned getComplexity() const override { return Preds.size(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVPredicate *P) { return P->getKind() == P_Union; } }; /// The main scalar evolution driver. Because client code (intentionally) /// can't do much with the SCEV objects directly, they must ask this class /// for services. class ScalarEvolution { public: /// An enum describing the relationship between a SCEV and a loop. enum LoopDisposition { LoopVariant, ///< The SCEV is loop-variant (unknown). LoopInvariant, ///< The SCEV is loop-invariant. LoopComputable ///< The SCEV varies predictably with the loop. }; /// An enum describing the relationship between a SCEV and a basic block. enum BlockDisposition { DoesNotDominateBlock, ///< The SCEV does not dominate the block. DominatesBlock, ///< The SCEV dominates the block. ProperlyDominatesBlock ///< The SCEV properly dominates the block. }; /// Convenient NoWrapFlags manipulation that hides enum casts and is /// visible in the ScalarEvolution name space. static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT maskFlags(SCEV::NoWrapFlags Flags, int Mask) { return (SCEV::NoWrapFlags)(Flags & Mask); } static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) { return (SCEV::NoWrapFlags)(Flags | OnFlags); } static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { return (SCEV::NoWrapFlags)(Flags & ~OffFlags); } private: /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a /// Value is deleted. class SCEVCallbackVH final : public CallbackVH { ScalarEvolution *SE; void deleted() override; void allUsesReplacedWith(Value *New) override; public: SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr); }; friend class SCEVCallbackVH; friend class SCEVExpander; friend class SCEVUnknown; /// The function we are analyzing. /// Function &F; /// The target library information for the target we are targeting. /// TargetLibraryInfo &TLI; /// The tracker for @llvm.assume intrinsics in this function. AssumptionCache &AC; /// The dominator tree. /// DominatorTree &DT; /// The loop information for the function we are currently analyzing. /// LoopInfo &LI; /// This SCEV is used to represent unknown trip counts and things. std::unique_ptr CouldNotCompute; /// The typedef for ValueExprMap. /// typedef DenseMap > ValueExprMapType; /// This is a cache of the values we have analyzed so far. /// ValueExprMapType ValueExprMap; /// Mark predicate values currently being processed by isImpliedCond. DenseSet PendingLoopPredicates; /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of /// conditions dominating the backedge of a loop. bool WalkingBEDominatingConds; /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a /// predicate by splitting it into a set of independent predicates. bool ProvingSplitPredicate; /// Information about the number of loop iterations for which a loop exit's /// branch condition evaluates to the not-taken path. This is a temporary /// pair of exact and max expressions that are eventually summarized in /// ExitNotTakenInfo and BackedgeTakenInfo. struct ExitLimit { const SCEV *Exact; const SCEV *Max; /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {} ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) { assert((isa(Exact) || !isa(Max)) && "Exact is not allowed to be less precise than Max"); } /// Test whether this ExitLimit contains any computed information, or /// whether it's all SCEVCouldNotCompute values. bool hasAnyInfo() const { return !isa(Exact) || !isa(Max); } }; /// Information about the number of times a particular loop exit may be /// reached before exiting the loop. struct ExitNotTakenInfo { AssertingVH ExitingBlock; const SCEV *ExactNotTaken; PointerIntPair NextExit; ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {} /// Return true if all loop exits are computable. bool isCompleteList() const { return NextExit.getInt() == 0; } void setIncomplete() { NextExit.setInt(1); } /// Return a pointer to the next exit's not-taken info. ExitNotTakenInfo *getNextExit() const { return NextExit.getPointer(); } void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); } }; /// Information about the backedge-taken count of a loop. This currently /// includes an exact count and a maximum count. /// class BackedgeTakenInfo { /// A list of computable exits and their not-taken counts. Loops almost /// never have more than one computable exit. ExitNotTakenInfo ExitNotTaken; /// An expression indicating the least maximum backedge-taken count of the /// loop that is known, or a SCEVCouldNotCompute. const SCEV *Max; public: BackedgeTakenInfo() : Max(nullptr) {} /// Initialize BackedgeTakenInfo from a list of exact exit counts. BackedgeTakenInfo( SmallVectorImpl< std::pair > &ExitCounts, bool Complete, const SCEV *MaxCount); /// Test whether this BackedgeTakenInfo contains any computed information, /// or whether it's all SCEVCouldNotCompute values. bool hasAnyInfo() const { return ExitNotTaken.ExitingBlock || !isa(Max); } /// Return an expression indicating the exact backedge-taken count of the /// loop if it is known, or SCEVCouldNotCompute otherwise. This is the /// number of times the loop header can be guaranteed to execute, minus /// one. const SCEV *getExact(ScalarEvolution *SE) const; /// Return the number of times this loop exit may fall through to the back /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via /// this block before this number of iterations, but may exit via another /// block. const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const; /// Get the max backedge taken count for the loop. const SCEV *getMax(ScalarEvolution *SE) const; /// Return true if any backedge taken count expressions refer to the given /// subexpression. bool hasOperand(const SCEV *S, ScalarEvolution *SE) const; /// Invalidate this result and free associated memory. void clear(); }; /// Cache the backedge-taken count of the loops for this function as they /// are computed. DenseMap BackedgeTakenCounts; /// This map contains entries for all of the PHI instructions that we /// attempt to compute constant evolutions for. This allows us to avoid /// potentially expensive recomputation of these properties. An instruction /// maps to null if we are unable to compute its exit value. DenseMap ConstantEvolutionLoopExitValue; /// This map contains entries for all the expressions that we attempt to /// compute getSCEVAtScope information for, which can be expensive in /// extreme cases. DenseMap, 2> > ValuesAtScopes; /// Memoized computeLoopDisposition results. DenseMap, 2>> LoopDispositions; /// Compute a LoopDisposition value. LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); /// Memoized computeBlockDisposition results. DenseMap< const SCEV *, SmallVector, 2>> BlockDispositions; /// Compute a BlockDisposition value. BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); /// Memoized results from getRange DenseMap UnsignedRanges; /// Memoized results from getRange DenseMap SignedRanges; /// Used to parameterize getRange enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED }; /// Set the memoized range for the given SCEV. const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint, const ConstantRange &CR) { DenseMap &Cache = Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges; std::pair::iterator, bool> Pair = Cache.insert(std::make_pair(S, CR)); if (!Pair.second) Pair.first->second = CR; return Pair.first->second; } /// Determine the range for a particular SCEV. ConstantRange getRange(const SCEV *S, RangeSignHint Hint); /// We know that there is no SCEV for the specified value. Analyze the /// expression. const SCEV *createSCEV(Value *V); /// Provide the special handling we need to analyze PHI SCEVs. const SCEV *createNodeForPHI(PHINode *PN); /// Helper function called from createNodeForPHI. const SCEV *createAddRecFromPHI(PHINode *PN); /// Helper function called from createNodeForPHI. const SCEV *createNodeFromSelectLikePHI(PHINode *PN); /// Provide special handling for a select-like instruction (currently this /// is either a select instruction or a phi node). \p I is the instruction /// being processed, and it is assumed equivalent to "Cond ? TrueVal : /// FalseVal". const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond, Value *TrueVal, Value *FalseVal); /// Provide the special handling we need to analyze GEP SCEVs. const SCEV *createNodeForGEP(GEPOperator *GEP); /// Implementation code for getSCEVAtScope; called at most once for each /// SCEV+Loop pair. /// const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); /// This looks up computed SCEV values for all instructions that depend on /// the given instruction and removes them from the ValueExprMap map if they /// reference SymName. This is used during PHI resolution. void ForgetSymbolicName(Instruction *I, const SCEV *SymName); /// Return the BackedgeTakenInfo for the given loop, lazily computing new /// values if the loop hasn't been analyzed yet. const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); /// Compute the number of times the specified loop will iterate. BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L); /// Compute the number of times the backedge of the specified loop will /// execute if it exits via the specified block. ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock); /// Compute the number of times the backedge of the specified loop will /// execute if its exit condition were a conditional branch of ExitCond, /// TBB, and FBB. ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB, bool IsSubExpr); /// Compute the number of times the backedge of the specified loop will /// execute if its exit condition were a conditional branch of the ICmpInst /// ExitCond, TBB, and FBB. ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, BasicBlock *TBB, BasicBlock *FBB, bool IsSubExpr); /// Compute the number of times the backedge of the specified loop will /// execute if its exit condition were a switch with a single exiting case /// to ExitingBB. ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch, BasicBlock *ExitingBB, bool IsSubExpr); /// Given an exit condition of 'icmp op load X, cst', try to see if we can /// compute the backedge-taken count. ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS, const Loop *L, ICmpInst::Predicate p); /// Compute the exit limit of a loop that is controlled by a /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip /// count in these cases (since SCEV has no way of expressing them), but we /// can still sometimes compute an upper bound. /// /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred /// RHS`. ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L, ICmpInst::Predicate Pred); /// If the loop is known to execute a constant number of times (the /// condition evolves only from constants), try to evaluate a few iterations /// of the loop until we get the exit condition gets a value of ExitWhen /// (true or false). If we cannot evaluate the exit count of the loop, /// return CouldNotCompute. const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen); /// Return the number of times an exit condition comparing the specified /// value to zero will execute. If not computable, return CouldNotCompute. ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr); /// Return the number of times an exit condition checking the specified /// value for nonzero will execute. If not computable, return /// CouldNotCompute. ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L); /// Return the number of times an exit condition containing the specified /// less-than comparison will execute. If not computable, return /// CouldNotCompute. isSigned specifies whether the less-than is signed. ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool isSigned, bool IsSubExpr); ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool isSigned, bool IsSubExpr); /// Return a predecessor of BB (which may not be an immediate predecessor) /// which has exactly one successor from which BB is reachable, or null if /// no such block is found. std::pair getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); /// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the given FoundCondValue value evaluates to true. bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, Value *FoundCondValue, bool Inverse); /// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is /// true. bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS); /// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS); /// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS); /// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. Utility function used by isImpliedCondOperands. bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS); /// Test whether the condition described by Pred, LHS, and RHS is true /// whenever the condition described by Pred, FoundLHS, and FoundRHS is /// true. /// /// This routine tries to rule out certain kinds of integer overflow, and /// then tries to reason about arithmetic properties of the predicates. bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS); /// If we know that the specified Phi is in the header of its containing /// loop, we know the loop executes a constant number of times, and the PHI /// node is just a recurrence involving constants, fold it. Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L); /// Test if the given expression is known to satisfy the condition described /// by Pred and the known constant ranges of LHS and RHS. /// bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// Try to prove the condition described by "LHS Pred RHS" by ruling out /// integer overflow. /// /// For instance, this will return true for "A s< (A + C)" if C is /// positive. bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to /// prove them individually. bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// Try to match the Expr as "(L + R)". bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R, SCEV::NoWrapFlags &Flags); /// Return true if More == (Less + C), where C is a constant. This is /// intended to be used as a cheaper substitute for full SCEV subtraction. bool computeConstantDifference(const SCEV *Less, const SCEV *More, APInt &C); /// Drop memoized information computed for S. void forgetMemoizedResults(const SCEV *S); /// Return an existing SCEV for V if there is one, otherwise return nullptr. const SCEV *getExistingSCEV(Value *V); /// Return false iff given SCEV contains a SCEVUnknown with NULL value- /// pointer. bool checkValidity(const SCEV *S) const; /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is /// equivalent to proving no signed (resp. unsigned) wrap in /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr` /// (resp. `SCEVZeroExtendExpr`). /// template bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step, const Loop *L); bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred, bool &Increasing); /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X" /// is monotonically increasing or decreasing. In the former case set /// `Increasing` to true and in the latter case set `Increasing` to false. /// /// A predicate is said to be monotonically increasing if may go from being /// false to being true as the loop iterates, but never the other way /// around. A predicate is said to be monotonically decreasing if may go /// from being true to being false as the loop iterates, but never the other /// way around. bool isMonotonicPredicate(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred, bool &Increasing); // Return SCEV no-wrap flags that can be proven based on reasoning // about how poison produced from no-wrap flags on this value // (e.g. a nuw add) would trigger undefined behavior on overflow. SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V); public: ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI); ~ScalarEvolution(); ScalarEvolution(ScalarEvolution &&Arg); LLVMContext &getContext() const { return F.getContext(); } /// Test if values of the given type are analyzable within the SCEV /// framework. This primarily includes integer types, and it can optionally /// include pointer types if the ScalarEvolution class has access to /// target-specific information. bool isSCEVable(Type *Ty) const; /// Return the size in bits of the specified type, for which isSCEVable must /// return true. uint64_t getTypeSizeInBits(Type *Ty) const; /// Return a type with the same bitwidth as the given type and which /// represents how SCEV will treat the given type, for which isSCEVable must /// return true. For pointer types, this is the pointer-sized integer type. Type *getEffectiveSCEVType(Type *Ty) const; /// Return a SCEV expression for the full generality of the specified /// expression. const SCEV *getSCEV(Value *V); const SCEV *getConstant(ConstantInt *V); const SCEV *getConstant(const APInt& Val); const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty); const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty); const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty); const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); const SCEV *getAddExpr(SmallVectorImpl &Ops, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector Ops = {LHS, RHS}; return getAddExpr(Ops, Flags); } const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector Ops = {Op0, Op1, Op2}; return getAddExpr(Ops, Flags); } const SCEV *getMulExpr(SmallVectorImpl &Ops, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector Ops = {LHS, RHS}; return getMulExpr(Ops, Flags); } const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector Ops = {Op0, Op1, Op2}; return getMulExpr(Ops, Flags); } const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags); const SCEV *getAddRecExpr(SmallVectorImpl &Operands, const Loop *L, SCEV::NoWrapFlags Flags); const SCEV *getAddRecExpr(const SmallVectorImpl &Operands, const Loop *L, SCEV::NoWrapFlags Flags) { SmallVector NewOp(Operands.begin(), Operands.end()); return getAddRecExpr(NewOp, L, Flags); } /// \brief Returns an expression for a GEP /// /// \p PointeeType The type used as the basis for the pointer arithmetics /// \p BaseExpr The expression for the pointer operand. /// \p IndexExprs The expressions for the indices. /// \p InBounds Whether the GEP is in bounds. const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, const SmallVectorImpl &IndexExprs, bool InBounds = false); const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getSMaxExpr(SmallVectorImpl &Operands); const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUMaxExpr(SmallVectorImpl &Operands); const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUnknown(Value *V); const SCEV *getCouldNotCompute(); /// \brief Return a SCEV for the constant 0 of a specific type. const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); } /// \brief Return a SCEV for the constant 1 of a specific type. const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); } /// Return an expression for sizeof AllocTy that is type IntTy /// const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy); /// Return an expression for offsetof on the given field with type IntTy /// const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo); /// Return the SCEV object corresponding to -V. /// const SCEV *getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); /// Return the SCEV object corresponding to ~V. /// const SCEV *getNotSCEV(const SCEV *V); /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1. const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); /// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is zero extended. const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty); /// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is sign extended. const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty); /// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is zero extended. The /// conversion must not be narrowing. const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); /// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is sign extended. The /// conversion must not be narrowing. const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); /// Return a SCEV corresponding to a conversion of the input value to the /// specified type. If the type must be extended, it is extended with /// unspecified bits. The conversion must not be narrowing. const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); /// Return a SCEV corresponding to a conversion of the input value to the /// specified type. The conversion must not be widening. const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); /// Promote the operands to the wider of the types using zero-extension, and /// then perform a umax operation with them. const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); /// Promote the operands to the wider of the types using zero-extension, and /// then perform a umin operation with them. const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); /// Transitively follow the chain of pointer-type operands until reaching a /// SCEV that does not have a single pointer operand. This returns a /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner /// cases do exist. const SCEV *getPointerBase(const SCEV *V); /// Return a SCEV expression for the specified value at the specified scope /// in the program. The L value specifies a loop nest to evaluate the /// expression at, where null is the top-level or a specified loop is /// immediately inside of the loop. /// /// This method can be used to compute the exit value for a variable defined /// in a loop by querying what the value will hold in the parent loop. /// /// In the case that a relevant loop exit value cannot be computed, the /// original value V is returned. const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L). const SCEV *getSCEVAtScope(Value *V, const Loop *L); /// Test whether entry to the loop is protected by a conditional between LHS /// and RHS. This is used to help avoid max expressions in loop trip /// counts, and to eliminate casts. bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// Test whether the backedge of the loop is protected by a conditional /// between LHS and RHS. This is used to to eliminate casts. bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// \brief Returns the maximum trip count of the loop if it is a single-exit /// loop and we can compute a small maximum for that loop. /// /// Implemented in terms of the \c getSmallConstantTripCount overload with /// the single exiting block passed to it. See that routine for details. unsigned getSmallConstantTripCount(Loop *L); /// Returns the maximum trip count of this loop as a normal unsigned /// value. Returns 0 if the trip count is unknown or not constant. This /// "trip count" assumes that control exits via ExitingBlock. More /// precisely, it is the number of times that control may reach ExitingBlock /// before taking the branch. For loops with multiple exits, it may not be /// the number times that the loop header executes if the loop exits /// prematurely via another branch. unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock); /// \brief Returns the largest constant divisor of the trip count of the /// loop if it is a single-exit loop and we can compute a small maximum for /// that loop. /// /// Implemented in terms of the \c getSmallConstantTripMultiple overload with /// the single exiting block passed to it. See that routine for details. unsigned getSmallConstantTripMultiple(Loop *L); /// Returns the largest constant divisor of the trip count of this loop as a /// normal unsigned value, if possible. This means that the actual trip /// count is always a multiple of the returned value (don't forget the trip /// count could very well be zero as well!). As explained in the comments /// for getSmallConstantTripCount, this assumes that control exits the loop /// via ExitingBlock. unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock); /// Get the expression for the number of loop iterations for which this loop /// is guaranteed not to exit via ExitingBlock. Otherwise return /// SCEVCouldNotCompute. const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock); /// If the specified loop has a predictable backedge-taken count, return it, /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count /// is the number of times the loop header will be branched to from within /// the loop. This is one less than the trip count of the loop, since it /// doesn't count the first iteration, when the header is branched to from /// outside the loop. /// /// Note that it is not valid to call this method on a loop without a /// loop-invariant backedge-taken count (see /// hasLoopInvariantBackedgeTakenCount). /// const SCEV *getBackedgeTakenCount(const Loop *L); /// Similar to getBackedgeTakenCount, except return the least SCEV value /// that is known never to be less than the actual backedge taken count. const SCEV *getMaxBackedgeTakenCount(const Loop *L); /// Return true if the specified loop has an analyzable loop-invariant /// backedge-taken count. bool hasLoopInvariantBackedgeTakenCount(const Loop *L); /// This method should be called by the client when it has changed a loop in /// a way that may effect ScalarEvolution's ability to compute a trip count, /// or if the loop is deleted. This call is potentially expensive for large /// loop bodies. void forgetLoop(const Loop *L); /// This method should be called by the client when it has changed a value /// in a way that may effect its value, or which may disconnect it from a /// def-use chain linking it to a loop. void forgetValue(Value *V); /// \brief Called when the client has changed the disposition of values in /// this loop. /// /// We don't have a way to invalidate per-loop dispositions. Clear and /// recompute is simpler. void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); } /// Determine the minimum number of zero bits that S is guaranteed to end in /// (at every loop iteration). It is, at the same time, the minimum number /// of times S is divisible by 2. For example, given {4,+,8} it returns 2. /// If S is guaranteed to be 0, it returns the bitwidth of S. uint32_t GetMinTrailingZeros(const SCEV *S); /// Determine the unsigned range for a particular SCEV. /// ConstantRange getUnsignedRange(const SCEV *S) { return getRange(S, HINT_RANGE_UNSIGNED); } /// Determine the signed range for a particular SCEV. /// ConstantRange getSignedRange(const SCEV *S) { return getRange(S, HINT_RANGE_SIGNED); } /// Test if the given expression is known to be negative. /// bool isKnownNegative(const SCEV *S); /// Test if the given expression is known to be positive. /// bool isKnownPositive(const SCEV *S); /// Test if the given expression is known to be non-negative. /// bool isKnownNonNegative(const SCEV *S); /// Test if the given expression is known to be non-positive. /// bool isKnownNonPositive(const SCEV *S); /// Test if the given expression is known to be non-zero. /// bool isKnownNonZero(const SCEV *S); /// Test if the given expression is known to satisfy the condition described /// by Pred, LHS, and RHS. /// bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// Return true if the result of the predicate LHS `Pred` RHS is loop /// invariant with respect to L. Set InvariantPred, InvariantLHS and /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the /// loop invariant form of LHS `Pred` RHS. bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, const SCEV *&InvariantRHS); /// Simplify LHS and RHS in a comparison with predicate Pred. Return true /// iff any changes were made. If the operands are provably equal or /// unequal, LHS and RHS are set to the same value and Pred is set to either /// ICMP_EQ or ICMP_NE. /// bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth = 0); /// Return the "disposition" of the given SCEV with respect to the given /// loop. LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); /// Return true if the value of the given SCEV is unchanging in the /// specified loop. bool isLoopInvariant(const SCEV *S, const Loop *L); /// Return true if the given SCEV changes value in a known way in the /// specified loop. This property being true implies that the value is /// variant in the loop AND that we can emit an expression to compute the /// value of the expression at any particular loop iteration. bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); /// Return the "disposition" of the given SCEV with respect to the given /// block. BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB); /// Return true if elements that makes up the given SCEV dominate the /// specified basic block. bool dominates(const SCEV *S, const BasicBlock *BB); /// Return true if elements that makes up the given SCEV properly dominate /// the specified basic block. bool properlyDominates(const SCEV *S, const BasicBlock *BB); /// Test whether the given SCEV has Op as a direct or indirect operand. bool hasOperand(const SCEV *S, const SCEV *Op) const; /// Return the size of an element read or written by Inst. const SCEV *getElementSize(Instruction *Inst); /// Compute the array dimensions Sizes from the set of Terms extracted from /// the memory access function of this SCEVAddRecExpr. void findArrayDimensions(SmallVectorImpl &Terms, SmallVectorImpl &Sizes, const SCEV *ElementSize) const; void print(raw_ostream &OS) const; void verify() const; /// Collect parametric terms occurring in step expressions. void collectParametricTerms(const SCEV *Expr, SmallVectorImpl &Terms); /// Return in Subscripts the access functions for each dimension in Sizes. void computeAccessFunctions(const SCEV *Expr, SmallVectorImpl &Subscripts, SmallVectorImpl &Sizes); /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the /// subscripts and sizes of an array access. /// /// The delinearization is a 3 step process: the first two steps compute the /// sizes of each subscript and the third step computes the access functions /// for the delinearized array: /// /// 1. Find the terms in the step functions /// 2. Compute the array size /// 3. Compute the access function: divide the SCEV by the array size /// starting with the innermost dimensions found in step 2. The Quotient /// is the SCEV to be divided in the next step of the recursion. The /// Remainder is the subscript of the innermost dimension. Loop over all /// array dimensions computed in step 2. /// /// To compute a uniform array size for several memory accesses to the same /// object, one can collect in step 1 all the step terms for all the memory /// accesses, and compute in step 2 a unique array shape. This guarantees /// that the array shape will be the same across all memory accesses. /// /// FIXME: We could derive the result of steps 1 and 2 from a description of /// the array shape given in metadata. /// /// Example: /// /// A[][n][m] /// /// for i /// for j /// for k /// A[j+k][2i][5i] = /// /// The initial SCEV: /// /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k] /// /// 1. Find the different terms in the step functions: /// -> [2*m, 5, n*m, n*m] /// /// 2. Compute the array size: sort and unique them /// -> [n*m, 2*m, 5] /// find the GCD of all the terms = 1 /// divide by the GCD and erase constant terms /// -> [n*m, 2*m] /// GCD = m /// divide by GCD -> [n, 2] /// remove constant terms /// -> [n] /// size of the array is A[unknown][n][m] /// /// 3. Compute the access function /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k /// The remainder is the subscript of the innermost array dimension: [5i]. /// /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k /// The Remainder is the subscript of the next array dimension: [2i]. /// /// The subscript of the outermost dimension is the Quotient: [j+k]. /// /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i]. void delinearize(const SCEV *Expr, SmallVectorImpl &Subscripts, SmallVectorImpl &Sizes, const SCEV *ElementSize); /// Return the DataLayout associated with the module this SCEV instance is /// operating on. const DataLayout &getDataLayout() const { return F.getParent()->getDataLayout(); } const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS, const SCEVConstant *RHS); /// Re-writes the SCEV according to the Predicates in \p Preds. const SCEV *rewriteUsingPredicate(const SCEV *Scev, SCEVUnionPredicate &A); private: /// Compute the backedge taken count knowing the interval difference, the /// stride and presence of the equality in the comparison. const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride, bool Equality); /// Verify if an linear IV with positive stride can overflow when in a /// less-than comparison, knowing the invariant term of the comparison, /// the stride and the knowledge of NSW/NUW flags on the recurrence. bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned, bool NoWrap); /// Verify if an linear IV with negative stride can overflow when in a /// greater-than comparison, knowing the invariant term of the comparison, /// the stride and the knowledge of NSW/NUW flags on the recurrence. bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned, bool NoWrap); private: FoldingSet UniqueSCEVs; FoldingSet UniquePreds; BumpPtrAllocator SCEVAllocator; /// The head of a linked list of all SCEVUnknown values that have been /// allocated. This is used by releaseMemory to locate them all and call /// their destructors. SCEVUnknown *FirstUnknown; }; /// \brief Analysis pass that exposes the \c ScalarEvolution for a function. class ScalarEvolutionAnalysis { static char PassID; public: typedef ScalarEvolution Result; /// \brief Opaque, unique identifier for this analysis pass. static void *ID() { return (void *)&PassID; } /// \brief Provide a name for the analysis for debugging and logging. static StringRef name() { return "ScalarEvolutionAnalysis"; } ScalarEvolution run(Function &F, AnalysisManager *AM); }; /// \brief Printer pass for the \c ScalarEvolutionAnalysis results. class ScalarEvolutionPrinterPass { raw_ostream &OS; public: explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, AnalysisManager *AM); static StringRef name() { return "ScalarEvolutionPrinterPass"; } }; class ScalarEvolutionWrapperPass : public FunctionPass { std::unique_ptr SE; public: static char ID; ScalarEvolutionWrapperPass(); ScalarEvolution &getSE() { return *SE; } const ScalarEvolution &getSE() const { return *SE; } bool runOnFunction(Function &F) override; void releaseMemory() override; void getAnalysisUsage(AnalysisUsage &AU) const override; void print(raw_ostream &OS, const Module * = nullptr) const override; void verifyAnalysis() const override; }; /// An interface layer with SCEV used to manage how we see SCEV expressions /// for values in the context of existing predicates. We can add new /// predicates, but we cannot remove them. /// /// This layer has multiple purposes: /// - provides a simple interface for SCEV versioning. /// - guarantees that the order of transformations applied on a SCEV /// expression for a single Value is consistent across two different /// getSCEV calls. This means that, for example, once we've obtained /// an AddRec expression for a certain value through expression /// rewriting, we will continue to get an AddRec expression for that /// Value. /// - lowers the number of expression rewrites. class PredicatedScalarEvolution { public: PredicatedScalarEvolution(ScalarEvolution &SE); const SCEVUnionPredicate &getUnionPredicate() const; /// \brief Returns the SCEV expression of V, in the context of the current /// SCEV predicate. /// The order of transformations applied on the expression of V returned /// by ScalarEvolution is guaranteed to be preserved, even when adding new /// predicates. const SCEV *getSCEV(Value *V); /// \brief Adds a new predicate. void addPredicate(const SCEVPredicate &Pred); /// \brief Returns the ScalarEvolution analysis used. ScalarEvolution *getSE() const { return &SE; } private: /// \brief Increments the version number of the predicate. /// This needs to be called every time the SCEV predicate changes. void updateGeneration(); /// Holds a SCEV and the version number of the SCEV predicate used to /// perform the rewrite of the expression. typedef std::pair RewriteEntry; /// Maps a SCEV to the rewrite result of that SCEV at a certain version /// number. If this number doesn't match the current Generation, we will /// need to do a rewrite. To preserve the transformation order of previous /// rewrites, we will rewrite the previous result instead of the original /// SCEV. DenseMap RewriteMap; /// The ScalarEvolution analysis. ScalarEvolution &SE; /// The SCEVPredicate that forms our context. We will rewrite all /// expressions assuming that this predicate true. SCEVUnionPredicate Preds; /// Marks the version of the SCEV predicate used. When rewriting a SCEV /// expression we mark it with the version of the predicate. We use this to /// figure out if the predicate has changed from the last rewrite of the /// SCEV. If so, we need to perform a new rewrite. unsigned Generation; }; } #endif