//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to generate code from scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H #include "llvm/ADT/Optional.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionNormalization.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/ValueHandle.h" #include namespace llvm { class TargetTransformInfo; /// Return true if the given expression is safe to expand in the sense that /// all materialized values are safe to speculate. bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE); /// This class uses information about analyze scalars to /// rewrite expressions in canonical form. /// /// Clients should create an instance of this class when rewriting is needed, /// and destroy it when finished to allow the release of the associated /// memory. class SCEVExpander : public SCEVVisitor { ScalarEvolution &SE; const DataLayout &DL; // New instructions receive a name to identifies them with the current pass. const char* IVName; // InsertedExpressions caches Values for reuse, so must track RAUW. std::map, TrackingVH > InsertedExpressions; // InsertedValues only flags inserted instructions so needs no RAUW. std::set > InsertedValues; std::set > InsertedPostIncValues; /// A memoization of the "relevant" loop for a given SCEV. DenseMap RelevantLoops; /// \brief Addrecs referring to any of the given loops are expanded /// in post-inc mode. For example, expanding {1,+,1} in post-inc mode /// returns the add instruction that adds one to the phi for {0,+,1}, /// as opposed to a new phi starting at 1. This is only supported in /// non-canonical mode. PostIncLoopSet PostIncLoops; /// \brief When this is non-null, addrecs expanded in the loop it indicates /// should be inserted with increments at IVIncInsertPos. const Loop *IVIncInsertLoop; /// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV /// increment at this position. Instruction *IVIncInsertPos; /// \brief Phis that complete an IV chain. Reuse std::set > ChainedPhis; /// \brief When true, expressions are expanded in "canonical" form. In /// particular, addrecs are expanded as arithmetic based on a canonical /// induction variable. When false, expression are expanded in a more /// literal form. bool CanonicalMode; /// \brief When invoked from LSR, the expander is in "strength reduction" /// mode. The only difference is that phi's are only reused if they are /// already in "expanded" form. bool LSRMode; typedef IRBuilder BuilderType; BuilderType Builder; // RAII object that stores the current insertion point and restores it when // the object is destroyed. This includes the debug location. Duplicated // from InsertPointGuard to add SetInsertPoint() which is used to updated // InsertPointGuards stack when insert points are moved during SCEV // expansion. class SCEVInsertPointGuard { IRBuilderBase &Builder; AssertingVH Block; BasicBlock::iterator Point; DebugLoc DbgLoc; SCEVExpander *SE; SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; public: SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), DbgLoc(B.getCurrentDebugLocation()), SE(SE) { SE->InsertPointGuards.push_back(this); } ~SCEVInsertPointGuard() { // These guards should always created/destroyed in FIFO order since they // are used to guard lexically scoped blocks of code in // ScalarEvolutionExpander. assert(SE->InsertPointGuards.back() == this); SE->InsertPointGuards.pop_back(); Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); Builder.SetCurrentDebugLocation(DbgLoc); } BasicBlock::iterator GetInsertPoint() const { return Point; } void SetInsertPoint(BasicBlock::iterator I) { Point = I; } }; /// Stack of pointers to saved insert points, used to keep insert points /// consistent when instructions are moved. SmallVector InsertPointGuards; #ifndef NDEBUG const char *DebugType; #endif friend struct SCEVVisitor; public: /// \brief Construct a SCEVExpander in "canonical" mode. explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, const char *name) : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false), Builder(se.getContext(), TargetFolder(DL)) { #ifndef NDEBUG DebugType = ""; #endif } ~SCEVExpander() { // Make sure the insert point guard stack is consistent. assert(InsertPointGuards.empty()); } #ifndef NDEBUG void setDebugType(const char* s) { DebugType = s; } #endif /// \brief Erase the contents of the InsertedExpressions map so that users /// trying to expand the same expression into multiple BasicBlocks or /// different places within the same BasicBlock can do so. void clear() { InsertedExpressions.clear(); InsertedValues.clear(); InsertedPostIncValues.clear(); ChainedPhis.clear(); } /// \brief Return true for expressions that may incur non-trivial cost to /// evaluate at runtime. /// /// At is an optional parameter which specifies point in code where user is /// going to expand this expression. Sometimes this knowledge can lead to a /// more accurate cost estimation. bool isHighCostExpansion(const SCEV *Expr, Loop *L, const Instruction *At = nullptr) { SmallPtrSet Processed; return isHighCostExpansionHelper(Expr, L, At, Processed); } /// \brief This method returns the canonical induction variable of the /// specified type for the specified loop (inserting one if there is none). /// A canonical induction variable starts at zero and steps by one on each /// iteration. PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty); /// \brief Return the induction variable increment's IV operand. Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, bool allowScale); /// \brief Utility for hoisting an IV increment. bool hoistIVInc(Instruction *IncV, Instruction *InsertPos); /// \brief replace congruent phis with their most canonical /// representative. Return the number of phis eliminated. unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, SmallVectorImpl &DeadInsts, const TargetTransformInfo *TTI = nullptr); /// \brief Insert code to directly compute the specified SCEV expression /// into the program. The inserted code is inserted into the specified /// block. Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I); /// \brief Insert code to directly compute the specified SCEV expression /// into the program. The inserted code is inserted into the SCEVExpander's /// current insertion point. If a type is specified, the result will be /// expanded to have that type, with a cast if necessary. Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr); /// \brief Generates a code sequence that evaluates this predicate. /// The inserted instructions will be at position \p Loc. /// The result will be of type i1 and will have a value of 0 when the /// predicate is false and 1 otherwise. Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); /// \brief A specialized variant of expandCodeForPredicate, handling the /// case when we are expanding code for a SCEVEqualPredicate. Value *expandEqualPredicate(const SCEVEqualPredicate *Pred, Instruction *Loc); /// \brief Generates code that evaluates if the \p AR expression will /// overflow. Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, bool Signed); /// \brief A specialized variant of expandCodeForPredicate, handling the /// case when we are expanding code for a SCEVWrapPredicate. Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); /// \brief A specialized variant of expandCodeForPredicate, handling the /// case when we are expanding code for a SCEVUnionPredicate. Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc); /// \brief Set the current IV increment loop and position. void setIVIncInsertPos(const Loop *L, Instruction *Pos) { assert(!CanonicalMode && "IV increment positions are not supported in CanonicalMode"); IVIncInsertLoop = L; IVIncInsertPos = Pos; } /// \brief Enable post-inc expansion for addrecs referring to the given /// loops. Post-inc expansion is only supported in non-canonical mode. void setPostInc(const PostIncLoopSet &L) { assert(!CanonicalMode && "Post-inc expansion is not supported in CanonicalMode"); PostIncLoops = L; } /// \brief Disable all post-inc expansion. void clearPostInc() { PostIncLoops.clear(); // When we change the post-inc loop set, cached expansions may no // longer be valid. InsertedPostIncValues.clear(); } /// \brief Disable the behavior of expanding expressions in canonical form /// rather than in a more literal form. Non-canonical mode is useful for /// late optimization passes. void disableCanonicalMode() { CanonicalMode = false; } void enableLSRMode() { LSRMode = true; } /// \brief Set the current insertion point. This is useful if multiple calls /// to expandCodeFor() are going to be made with the same insert point and /// the insert point may be moved during one of the expansions (e.g. if the /// insert point is not a block terminator). void setInsertPoint(Instruction *IP) { assert(IP); Builder.SetInsertPoint(IP); } /// \brief Clear the current insertion point. This is useful if the /// instruction that had been serving as the insertion point may have been /// deleted. void clearInsertPoint() { Builder.ClearInsertionPoint(); } /// \brief Return true if the specified instruction was inserted by the code /// rewriter. If so, the client should not modify the instruction. bool isInsertedInstruction(Instruction *I) const { return InsertedValues.count(I) || InsertedPostIncValues.count(I); } void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } /// Try to find existing LLVM IR value for S available at the point At. Value *getExactExistingExpansion(const SCEV *S, const Instruction *At, Loop *L); /// Try to find the ValueOffsetPair for S. The function is mainly /// used to check whether S can be expanded cheaply. /// If this returns a non-None value, we know we can codegen the /// `ValueOffsetPair` into a suitable expansion identical with S /// so that S can be expanded cheaply. /// /// L is a hint which tells in which loop to look for the suitable value. /// On success return value which is equivalent to the expanded S at point /// At. Return nullptr if value was not found. /// /// Note that this function does not perform an exhaustive search. I.e if it /// didn't find any value it does not mean that there is no such value. /// Optional getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L); private: LLVMContext &getContext() const { return SE.getContext(); } /// \brief Recursive helper function for isHighCostExpansion. bool isHighCostExpansionHelper(const SCEV *S, Loop *L, const Instruction *At, SmallPtrSetImpl &Processed); /// \brief Insert the specified binary operator, doing a small amount /// of work to avoid inserting an obviously redundant operation. Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS); /// \brief Arrange for there to be a cast of V to Ty at IP, reusing an /// existing cast if a suitable one exists, moving an existing cast if a /// suitable one exists but isn't in the right place, or or creating a new /// one. Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op, BasicBlock::iterator IP); /// \brief Insert a cast of V to the specified type, which must be possible /// with a noop cast, doing what we can to share the casts. Value *InsertNoopCastOfTo(Value *V, Type *Ty); /// \brief Expand a SCEVAddExpr with a pointer type into a GEP /// instead of using ptrtoint+arithmetic+inttoptr. Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end, PointerType *PTy, Type *Ty, Value *V); /// \brief Find a previous Value in ExprValueMap for expand. ScalarEvolution::ValueOffsetPair FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt); Value *expand(const SCEV *S); /// \brief Determine the most "relevant" loop for the given SCEV. const Loop *getRelevantLoop(const SCEV *); Value *visitConstant(const SCEVConstant *S) { return S->getValue(); } Value *visitTruncateExpr(const SCEVTruncateExpr *S); Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); Value *visitAddExpr(const SCEVAddExpr *S); Value *visitMulExpr(const SCEVMulExpr *S); Value *visitUDivExpr(const SCEVUDivExpr *S); Value *visitAddRecExpr(const SCEVAddRecExpr *S); Value *visitSMaxExpr(const SCEVSMaxExpr *S); Value *visitUMaxExpr(const SCEVUMaxExpr *S); Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); } void rememberInstruction(Value *I); bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, const Loop *L, Type *ExpandTy, Type *IntTy, Type *&TruncTy, bool &InvertStep); Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy, Type *IntTy, bool useSubtract); void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, Instruction *Pos, PHINode *LoopPhi); void fixupInsertPoints(Instruction *I); }; } #endif