//=- llvm/CodeGen/DFAPacketizer.h - DFA Packetizer for VLIW ---*- C++ -*-=====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This class implements a deterministic finite automaton (DFA) based // packetizing mechanism for VLIW architectures. It provides APIs to // determine whether there exists a legal mapping of instructions to // functional unit assignments in a packet. The DFA is auto-generated from // the target's Schedule.td file. // // A DFA consists of 3 major elements: states, inputs, and transitions. For // the packetizing mechanism, the input is the set of instruction classes for // a target. The state models all possible combinations of functional unit // consumption for a given set of instructions in a packet. A transition // models the addition of an instruction to a packet. In the DFA constructed // by this class, if an instruction can be added to a packet, then a valid // transition exists from the corresponding state. Invalid transitions // indicate that the instruction cannot be added to the current packet. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_DFAPACKETIZER_H #define LLVM_CODEGEN_DFAPACKETIZER_H #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include namespace llvm { class MCInstrDesc; class MachineInstr; class MachineLoopInfo; class MachineDominatorTree; class InstrItineraryData; class DefaultVLIWScheduler; class SUnit; // -------------------------------------------------------------------- // Definitions shared between DFAPacketizer.cpp and DFAPacketizerEmitter.cpp // DFA_MAX_RESTERMS * DFA_MAX_RESOURCES must fit within sizeof DFAInput. // This is verified in DFAPacketizer.cpp:DFAPacketizer::DFAPacketizer. // // e.g. terms x resource bit combinations that fit in uint32_t: // 4 terms x 8 bits = 32 bits // 3 terms x 10 bits = 30 bits // 2 terms x 16 bits = 32 bits // // e.g. terms x resource bit combinations that fit in uint64_t: // 8 terms x 8 bits = 64 bits // 7 terms x 9 bits = 63 bits // 6 terms x 10 bits = 60 bits // 5 terms x 12 bits = 60 bits // 4 terms x 16 bits = 64 bits <--- current // 3 terms x 21 bits = 63 bits // 2 terms x 32 bits = 64 bits // #define DFA_MAX_RESTERMS 4 // The max # of AND'ed resource terms. #define DFA_MAX_RESOURCES 16 // The max # of resource bits in one term. typedef uint64_t DFAInput; typedef int64_t DFAStateInput; #define DFA_TBLTYPE "int64_t" // For generating DFAStateInputTable. // -------------------------------------------------------------------- class DFAPacketizer { private: typedef std::pair UnsignPair; const InstrItineraryData *InstrItins; int CurrentState; const DFAStateInput (*DFAStateInputTable)[2]; const unsigned *DFAStateEntryTable; // CachedTable is a map from to ToState. DenseMap CachedTable; // ReadTable - Read the DFA transition table and update CachedTable. void ReadTable(unsigned state); public: DFAPacketizer(const InstrItineraryData *I, const DFAStateInput (*SIT)[2], const unsigned *SET); // Reset the current state to make all resources available. void clearResources() { CurrentState = 0; } // getInsnInput - Return the DFAInput for an instruction class. DFAInput getInsnInput(unsigned InsnClass); // getInsnInput - Return the DFAInput for an instruction class input vector. static DFAInput getInsnInput(const std::vector &InsnClass); // canReserveResources - Check if the resources occupied by a MCInstrDesc // are available in the current state. bool canReserveResources(const llvm::MCInstrDesc *MID); // reserveResources - Reserve the resources occupied by a MCInstrDesc and // change the current state to reflect that change. void reserveResources(const llvm::MCInstrDesc *MID); // canReserveResources - Check if the resources occupied by a machine // instruction are available in the current state. bool canReserveResources(llvm::MachineInstr *MI); // reserveResources - Reserve the resources occupied by a machine // instruction and change the current state to reflect that change. void reserveResources(llvm::MachineInstr *MI); const InstrItineraryData *getInstrItins() const { return InstrItins; } }; // VLIWPacketizerList - Implements a simple VLIW packetizer using DFA. The // packetizer works on machine basic blocks. For each instruction I in BB, the // packetizer consults the DFA to see if machine resources are available to // execute I. If so, the packetizer checks if I depends on any instruction J in // the current packet. If no dependency is found, I is added to current packet // and machine resource is marked as taken. If any dependency is found, a target // API call is made to prune the dependence. class VLIWPacketizerList { protected: MachineFunction &MF; const TargetInstrInfo *TII; AliasAnalysis *AA; // The VLIW Scheduler. DefaultVLIWScheduler *VLIWScheduler; // Vector of instructions assigned to the current packet. std::vector CurrentPacketMIs; // DFA resource tracker. DFAPacketizer *ResourceTracker; // Generate MI -> SU map. std::map MIToSUnit; public: // The AliasAnalysis parameter can be nullptr. VLIWPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA); virtual ~VLIWPacketizerList(); // PacketizeMIs - Implement this API in the backend to bundle instructions. void PacketizeMIs(MachineBasicBlock *MBB, MachineBasicBlock::iterator BeginItr, MachineBasicBlock::iterator EndItr); // getResourceTracker - return ResourceTracker DFAPacketizer *getResourceTracker() {return ResourceTracker;} // addToPacket - Add MI to the current packet. virtual MachineBasicBlock::iterator addToPacket(MachineInstr *MI) { MachineBasicBlock::iterator MII = MI; CurrentPacketMIs.push_back(MI); ResourceTracker->reserveResources(MI); return MII; } // End the current packet and reset the state of the packetizer. // Overriding this function allows the target-specific packetizer // to perform custom finalization. virtual void endPacket(MachineBasicBlock *MBB, MachineInstr *MI); // initPacketizerState - perform initialization before packetizing // an instruction. This function is supposed to be overrided by // the target dependent packetizer. virtual void initPacketizerState() { return; } // ignorePseudoInstruction - Ignore bundling of pseudo instructions. virtual bool ignorePseudoInstruction(const MachineInstr *I, const MachineBasicBlock *MBB) { return false; } // isSoloInstruction - return true if instruction MI can not be packetized // with any other instruction, which means that MI itself is a packet. virtual bool isSoloInstruction(const MachineInstr *MI) { return true; } // Check if the packetizer should try to add the given instruction to // the current packet. One reasons for which it may not be desirable // to include an instruction in the current packet could be that it // would cause a stall. // If this function returns "false", the current packet will be ended, // and the instruction will be added to the next packet. virtual bool shouldAddToPacket(const MachineInstr *MI) { return true; } // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ // together. virtual bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { return false; } // isLegalToPruneDependencies - Is it legal to prune dependece between SUI // and SUJ. virtual bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { return false; } }; } #endif