//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // JIT layer for breaking up modules and inserting callbacks to allow // individual functions to be compiled on demand. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H #define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/ExecutionEngine/Orc/IndirectionUtils.h" #include "llvm/ExecutionEngine/Orc/LambdaResolver.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include namespace llvm { namespace orc { /// @brief Compile-on-demand layer. /// /// When a module is added to this layer a stub is created for each of its /// function definitions. The stubs and other global values are immediately /// added to the layer below. When a stub is called it triggers the extraction /// of the function body from the original module. The extracted body is then /// compiled and executed. template class CompileOnDemandLayer { private: template class LambdaMaterializer final : public ValueMaterializer { public: LambdaMaterializer(MaterializerFtor M) : M(std::move(M)) {} Value *materialize(Value *V) final { return M(V); } private: MaterializerFtor M; }; template LambdaMaterializer createLambdaMaterializer(MaterializerFtor M) { return LambdaMaterializer(std::move(M)); } typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT; // Provide type-erasure for the Modules and MemoryManagers. template class ResourceOwner { public: ResourceOwner() = default; ResourceOwner(const ResourceOwner&) = delete; ResourceOwner& operator=(const ResourceOwner&) = delete; virtual ~ResourceOwner() = default; virtual ResourceT& getResource() const = 0; }; template class ResourceOwnerImpl : public ResourceOwner { public: ResourceOwnerImpl(ResourcePtrT ResourcePtr) : ResourcePtr(std::move(ResourcePtr)) {} ResourceT& getResource() const override { return *ResourcePtr; } private: ResourcePtrT ResourcePtr; }; template std::unique_ptr> wrapOwnership(ResourcePtrT ResourcePtr) { typedef ResourceOwnerImpl RO; return llvm::make_unique(std::move(ResourcePtr)); } class StaticGlobalRenamer { public: StaticGlobalRenamer() = default; StaticGlobalRenamer(StaticGlobalRenamer &&) = default; StaticGlobalRenamer &operator=(StaticGlobalRenamer &&) = default; void rename(Module &M) { for (auto &F : M) if (F.hasLocalLinkage()) F.setName("$static." + Twine(NextId++)); for (auto &G : M.globals()) if (G.hasLocalLinkage()) G.setName("$static." + Twine(NextId++)); } private: unsigned NextId = 0; }; struct LogicalDylib { typedef std::function SymbolResolverFtor; typedef std::function, std::unique_ptr)> ModuleAdderFtor; struct SourceModuleEntry { std::unique_ptr> SourceMod; std::set StubsToClone; }; typedef std::vector SourceModulesList; typedef typename SourceModulesList::size_type SourceModuleHandle; SourceModuleHandle addSourceModule(std::unique_ptr> M) { SourceModuleHandle H = SourceModules.size(); SourceModules.push_back(SourceModuleEntry()); SourceModules.back().SourceMod = std::move(M); return H; } Module& getSourceModule(SourceModuleHandle H) { return SourceModules[H].SourceMod->getResource(); } std::set& getStubsToClone(SourceModuleHandle H) { return SourceModules[H].StubsToClone; } JITSymbol findSymbol(BaseLayerT &BaseLayer, const std::string &Name, bool ExportedSymbolsOnly) { if (auto Sym = StubsMgr->findStub(Name, ExportedSymbolsOnly)) return Sym; for (auto BLH : BaseLayerHandles) if (auto Sym = BaseLayer.findSymbolIn(BLH, Name, ExportedSymbolsOnly)) return Sym; return nullptr; } std::unique_ptr ExternalSymbolResolver; std::unique_ptr> MemMgr; std::unique_ptr StubsMgr; StaticGlobalRenamer StaticRenamer; ModuleAdderFtor ModuleAdder; SourceModulesList SourceModules; std::vector BaseLayerHandles; }; typedef std::list LogicalDylibList; public: /// @brief Handle to a set of loaded modules. typedef typename LogicalDylibList::iterator ModuleSetHandleT; /// @brief Module partitioning functor. typedef std::function(Function&)> PartitioningFtor; /// @brief Builder for IndirectStubsManagers. typedef std::function()> IndirectStubsManagerBuilderT; /// @brief Construct a compile-on-demand layer instance. CompileOnDemandLayer(BaseLayerT &BaseLayer, PartitioningFtor Partition, CompileCallbackMgrT &CallbackMgr, IndirectStubsManagerBuilderT CreateIndirectStubsManager, bool CloneStubsIntoPartitions = true) : BaseLayer(BaseLayer), Partition(std::move(Partition)), CompileCallbackMgr(CallbackMgr), CreateIndirectStubsManager(std::move(CreateIndirectStubsManager)), CloneStubsIntoPartitions(CloneStubsIntoPartitions) {} /// @brief Add a module to the compile-on-demand layer. template ModuleSetHandleT addModuleSet(ModuleSetT Ms, MemoryManagerPtrT MemMgr, SymbolResolverPtrT Resolver) { LogicalDylibs.push_back(LogicalDylib()); auto &LD = LogicalDylibs.back(); LD.ExternalSymbolResolver = std::move(Resolver); LD.StubsMgr = CreateIndirectStubsManager(); auto &MemMgrRef = *MemMgr; LD.MemMgr = wrapOwnership(std::move(MemMgr)); LD.ModuleAdder = [&MemMgrRef](BaseLayerT &B, std::unique_ptr M, std::unique_ptr R) { std::vector> Ms; Ms.push_back(std::move(M)); return B.addModuleSet(std::move(Ms), &MemMgrRef, std::move(R)); }; // Process each of the modules in this module set. for (auto &M : Ms) addLogicalModule(LogicalDylibs.back(), std::move(M)); return std::prev(LogicalDylibs.end()); } /// @brief Remove the module represented by the given handle. /// /// This will remove all modules in the layers below that were derived from /// the module represented by H. void removeModuleSet(ModuleSetHandleT H) { LogicalDylibs.erase(H); } /// @brief Search for the given named symbol. /// @param Name The name of the symbol to search for. /// @param ExportedSymbolsOnly If true, search only for exported symbols. /// @return A handle for the given named symbol, if it exists. JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) { for (auto LDI = LogicalDylibs.begin(), LDE = LogicalDylibs.end(); LDI != LDE; ++LDI) { if (auto Sym = LDI->StubsMgr->findStub(Name, ExportedSymbolsOnly)) return Sym; if (auto Sym = findSymbolIn(LDI, Name, ExportedSymbolsOnly)) return Sym; } return BaseLayer.findSymbol(Name, ExportedSymbolsOnly); } /// @brief Get the address of a symbol provided by this layer, or some layer /// below this one. JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name, bool ExportedSymbolsOnly) { return H->findSymbol(BaseLayer, Name, ExportedSymbolsOnly); } /// @brief Update the stub for the given function to point at FnBodyAddr. /// This can be used to support re-optimization. /// @return true if the function exists and the stub is updated, false /// otherwise. // // FIXME: We should track and free associated resources (unused compile // callbacks, uncompiled IR, and no-longer-needed/reachable function // implementations). // FIXME: Return Error once the JIT APIs are Errorized. bool updatePointer(std::string FuncName, JITTargetAddress FnBodyAddr) { //Find out which logical dylib contains our symbol auto LDI = LogicalDylibs.begin(); for (auto LDE = LogicalDylibs.end(); LDI != LDE; ++LDI) { if (auto LMResources = LDI->getLogicalModuleResourcesForSymbol(FuncName, false)) { Module &SrcM = LMResources->SourceModule->getResource(); std::string CalledFnName = mangle(FuncName, SrcM.getDataLayout()); if (auto EC = LMResources->StubsMgr->updatePointer(CalledFnName, FnBodyAddr)) return false; else return true; } } return false; } private: template void addLogicalModule(LogicalDylib &LD, ModulePtrT SrcMPtr) { // Rename all static functions / globals to $static.X : // This will unique the names across all modules in the logical dylib, // simplifying symbol lookup. LD.StaticRenamer.rename(*SrcMPtr); // Bump the linkage and rename any anonymous/privote members in SrcM to // ensure that everything will resolve properly after we partition SrcM. makeAllSymbolsExternallyAccessible(*SrcMPtr); // Create a logical module handle for SrcM within the logical dylib. Module &SrcM = *SrcMPtr; auto LMId = LD.addSourceModule(wrapOwnership(std::move(SrcMPtr))); // Create stub functions. const DataLayout &DL = SrcM.getDataLayout(); { typename IndirectStubsMgrT::StubInitsMap StubInits; for (auto &F : SrcM) { // Skip declarations. if (F.isDeclaration()) continue; // Skip weak functions for which we already have definitions. auto MangledName = mangle(F.getName(), DL); if (F.hasWeakLinkage() || F.hasLinkOnceLinkage()) if (auto Sym = LD.findSymbol(BaseLayer, MangledName, false)) continue; // Record all functions defined by this module. if (CloneStubsIntoPartitions) LD.getStubsToClone(LMId).insert(&F); // Create a callback, associate it with the stub for the function, // and set the compile action to compile the partition containing the // function. auto CCInfo = CompileCallbackMgr.getCompileCallback(); StubInits[MangledName] = std::make_pair(CCInfo.getAddress(), JITSymbolFlags::fromGlobalValue(F)); CCInfo.setCompileAction([this, &LD, LMId, &F]() { return this->extractAndCompile(LD, LMId, F); }); } auto EC = LD.StubsMgr->createStubs(StubInits); (void)EC; // FIXME: This should be propagated back to the user. Stub creation may // fail for remote JITs. assert(!EC && "Error generating stubs"); } // If this module doesn't contain any globals, aliases, or module flags then // we can bail out early and avoid the overhead of creating and managing an // empty globals module. if (SrcM.global_empty() && SrcM.alias_empty() && !SrcM.getModuleFlagsMetadata()) return; // Create the GlobalValues module. auto GVsM = llvm::make_unique((SrcM.getName() + ".globals").str(), SrcM.getContext()); GVsM->setDataLayout(DL); ValueToValueMapTy VMap; // Clone global variable decls. for (auto &GV : SrcM.globals()) if (!GV.isDeclaration() && !VMap.count(&GV)) cloneGlobalVariableDecl(*GVsM, GV, &VMap); // And the aliases. for (auto &A : SrcM.aliases()) if (!VMap.count(&A)) cloneGlobalAliasDecl(*GVsM, A, VMap); // Clone the module flags. cloneModuleFlagsMetadata(*GVsM, SrcM, VMap); // Now we need to clone the GV and alias initializers. // Initializers may refer to functions declared (but not defined) in this // module. Build a materializer to clone decls on demand. auto Materializer = createLambdaMaterializer( [this, &LD, &GVsM](Value *V) -> Value* { if (auto *F = dyn_cast(V)) { // Decls in the original module just get cloned. if (F->isDeclaration()) return cloneFunctionDecl(*GVsM, *F); // Definitions in the original module (which we have emitted stubs // for at this point) get turned into a constant alias to the stub // instead. const DataLayout &DL = GVsM->getDataLayout(); std::string FName = mangle(F->getName(), DL); auto StubSym = LD.StubsMgr->findStub(FName, false); unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(F->getType()); ConstantInt *StubAddr = ConstantInt::get(GVsM->getContext(), APInt(PtrBitWidth, StubSym.getAddress())); Constant *Init = ConstantExpr::getCast(Instruction::IntToPtr, StubAddr, F->getType()); return GlobalAlias::create(F->getFunctionType(), F->getType()->getAddressSpace(), F->getLinkage(), F->getName(), Init, GVsM.get()); } // else.... return nullptr; }); // Clone the global variable initializers. for (auto &GV : SrcM.globals()) if (!GV.isDeclaration()) moveGlobalVariableInitializer(GV, VMap, &Materializer); // Clone the global alias initializers. for (auto &A : SrcM.aliases()) { auto *NewA = cast(VMap[&A]); assert(NewA && "Alias not cloned?"); Value *Init = MapValue(A.getAliasee(), VMap, RF_None, nullptr, &Materializer); NewA->setAliasee(cast(Init)); } // Build a resolver for the globals module and add it to the base layer. auto GVsResolver = createLambdaResolver( [this, &LD, LMId](const std::string &Name) { if (auto Sym = LD.StubsMgr->findStub(Name, false)) return Sym; if (auto Sym = LD.findSymbol(BaseLayer, Name, false)) return Sym; return LD.ExternalSymbolResolver->findSymbolInLogicalDylib(Name); }, [&LD](const std::string &Name) { return LD.ExternalSymbolResolver->findSymbol(Name); }); auto GVsH = LD.ModuleAdder(BaseLayer, std::move(GVsM), std::move(GVsResolver)); LD.BaseLayerHandles.push_back(GVsH); } static std::string mangle(StringRef Name, const DataLayout &DL) { std::string MangledName; { raw_string_ostream MangledNameStream(MangledName); Mangler::getNameWithPrefix(MangledNameStream, Name, DL); } return MangledName; } JITTargetAddress extractAndCompile(LogicalDylib &LD, typename LogicalDylib::SourceModuleHandle LMId, Function &F) { Module &SrcM = LD.getSourceModule(LMId); // If F is a declaration we must already have compiled it. if (F.isDeclaration()) return 0; // Grab the name of the function being called here. std::string CalledFnName = mangle(F.getName(), SrcM.getDataLayout()); auto Part = Partition(F); auto PartH = emitPartition(LD, LMId, Part); JITTargetAddress CalledAddr = 0; for (auto *SubF : Part) { std::string FnName = mangle(SubF->getName(), SrcM.getDataLayout()); auto FnBodySym = BaseLayer.findSymbolIn(PartH, FnName, false); assert(FnBodySym && "Couldn't find function body."); JITTargetAddress FnBodyAddr = FnBodySym.getAddress(); // If this is the function we're calling record the address so we can // return it from this function. if (SubF == &F) CalledAddr = FnBodyAddr; // Update the function body pointer for the stub. if (auto EC = LD.StubsMgr->updatePointer(FnName, FnBodyAddr)) return 0; } return CalledAddr; } template BaseLayerModuleSetHandleT emitPartition(LogicalDylib &LD, typename LogicalDylib::SourceModuleHandle LMId, const PartitionT &Part) { Module &SrcM = LD.getSourceModule(LMId); // Create the module. std::string NewName = SrcM.getName(); for (auto *F : Part) { NewName += "."; NewName += F->getName(); } auto M = llvm::make_unique(NewName, SrcM.getContext()); M->setDataLayout(SrcM.getDataLayout()); ValueToValueMapTy VMap; auto Materializer = createLambdaMaterializer([this, &LD, &LMId, &M, &VMap](Value *V) -> Value * { if (auto *GV = dyn_cast(V)) return cloneGlobalVariableDecl(*M, *GV); if (auto *F = dyn_cast(V)) { // Check whether we want to clone an available_externally definition. if (!LD.getStubsToClone(LMId).count(F)) return cloneFunctionDecl(*M, *F); // Ok - we want an inlinable stub. For that to work we need a decl // for the stub pointer. auto *StubPtr = createImplPointer(*F->getType(), *M, F->getName() + "$stub_ptr", nullptr); auto *ClonedF = cloneFunctionDecl(*M, *F); makeStub(*ClonedF, *StubPtr); ClonedF->setLinkage(GlobalValue::AvailableExternallyLinkage); ClonedF->addFnAttr(Attribute::AlwaysInline); return ClonedF; } if (auto *A = dyn_cast(V)) { auto *Ty = A->getValueType(); if (Ty->isFunctionTy()) return Function::Create(cast(Ty), GlobalValue::ExternalLinkage, A->getName(), M.get()); return new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, A->getName(), nullptr, GlobalValue::NotThreadLocal, A->getType()->getAddressSpace()); } return nullptr; }); // Create decls in the new module. for (auto *F : Part) cloneFunctionDecl(*M, *F, &VMap); // Move the function bodies. for (auto *F : Part) moveFunctionBody(*F, VMap, &Materializer); // Create memory manager and symbol resolver. auto Resolver = createLambdaResolver( [this, &LD, LMId](const std::string &Name) { if (auto Sym = LD.findSymbol(BaseLayer, Name, false)) return Sym; return LD.ExternalSymbolResolver->findSymbolInLogicalDylib(Name); }, [this, &LD](const std::string &Name) { return LD.ExternalSymbolResolver->findSymbol(Name); }); return LD.ModuleAdder(BaseLayer, std::move(M), std::move(Resolver)); } BaseLayerT &BaseLayer; PartitioningFtor Partition; CompileCallbackMgrT &CompileCallbackMgr; IndirectStubsManagerBuilderT CreateIndirectStubsManager; LogicalDylibList LogicalDylibs; bool CloneStubsIntoPartitions; }; } // end namespace orc } // end namespace llvm #endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H