//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations of classes that represent "derived // types". These are things like "arrays of x" or "structure of x, y, z" or // "function returning x taking (y,z) as parameters", etc... // // The implementations of these classes live in the Type.cpp file. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_DERIVEDTYPES_H #define LLVM_IR_DERIVEDTYPES_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/Type.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include #include namespace llvm { class Value; class APInt; class LLVMContext; /// Class to represent integer types. Note that this class is also used to /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and /// Int64Ty. /// @brief Integer representation type class IntegerType : public Type { friend class LLVMContextImpl; protected: explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ setSubclassData(NumBits); } public: /// This enum is just used to hold constants we need for IntegerType. enum { MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified ///< Note that bit width is stored in the Type classes SubclassData field ///< which has 24 bits. This yields a maximum bit width of 16,777,215 ///< bits. }; /// This static method is the primary way of constructing an IntegerType. /// If an IntegerType with the same NumBits value was previously instantiated, /// that instance will be returned. Otherwise a new one will be created. Only /// one instance with a given NumBits value is ever created. /// @brief Get or create an IntegerType instance. static IntegerType *get(LLVMContext &C, unsigned NumBits); /// @brief Get the number of bits in this IntegerType unsigned getBitWidth() const { return getSubclassData(); } /// Return a bitmask with ones set for all of the bits that can be set by an /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc. uint64_t getBitMask() const { return ~uint64_t(0UL) >> (64-getBitWidth()); } /// Return a uint64_t with just the most significant bit set (the sign bit, if /// the value is treated as a signed number). uint64_t getSignBit() const { return 1ULL << (getBitWidth()-1); } /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. /// @returns a bit mask with ones set for all the bits of this type. /// @brief Get a bit mask for this type. APInt getMask() const; /// This method determines if the width of this IntegerType is a power-of-2 /// in terms of 8 bit bytes. /// @returns true if this is a power-of-2 byte width. /// @brief Is this a power-of-2 byte-width IntegerType ? bool isPowerOf2ByteWidth() const; /// Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == IntegerTyID; } }; unsigned Type::getIntegerBitWidth() const { return cast(this)->getBitWidth(); } /// Class to represent function types /// class FunctionType : public Type { FunctionType(Type *Result, ArrayRef Params, bool IsVarArgs); public: FunctionType(const FunctionType &) = delete; FunctionType &operator=(const FunctionType &) = delete; /// This static method is the primary way of constructing a FunctionType. static FunctionType *get(Type *Result, ArrayRef Params, bool isVarArg); /// Create a FunctionType taking no parameters. static FunctionType *get(Type *Result, bool isVarArg); /// Return true if the specified type is valid as a return type. static bool isValidReturnType(Type *RetTy); /// Return true if the specified type is valid as an argument type. static bool isValidArgumentType(Type *ArgTy); bool isVarArg() const { return getSubclassData()!=0; } Type *getReturnType() const { return ContainedTys[0]; } typedef Type::subtype_iterator param_iterator; param_iterator param_begin() const { return ContainedTys + 1; } param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } ArrayRef params() const { return makeArrayRef(param_begin(), param_end()); } /// Parameter type accessors. Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } /// Return the number of fixed parameters this function type requires. /// This does not consider varargs. unsigned getNumParams() const { return NumContainedTys - 1; } /// Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == FunctionTyID; } }; static_assert(alignof(FunctionType) >= alignof(Type *), "Alignment sufficient for objects appended to FunctionType"); bool Type::isFunctionVarArg() const { return cast(this)->isVarArg(); } Type *Type::getFunctionParamType(unsigned i) const { return cast(this)->getParamType(i); } unsigned Type::getFunctionNumParams() const { return cast(this)->getNumParams(); } /// Common super class of ArrayType, StructType and VectorType. class CompositeType : public Type { protected: explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {} public: /// Given an index value into the type, return the type of the element. Type *getTypeAtIndex(const Value *V) const; Type *getTypeAtIndex(unsigned Idx) const; bool indexValid(const Value *V) const; bool indexValid(unsigned Idx) const; /// Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID || T->getTypeID() == StructTyID || T->getTypeID() == VectorTyID; } }; /// Class to represent struct types. There are two different kinds of struct /// types: Literal structs and Identified structs. /// /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must /// always have a body when created. You can get one of these by using one of /// the StructType::get() forms. /// /// Identified structs (e.g. %foo or %42) may optionally have a name and are not /// uniqued. The names for identified structs are managed at the LLVMContext /// level, so there can only be a single identified struct with a given name in /// a particular LLVMContext. Identified structs may also optionally be opaque /// (have no body specified). You get one of these by using one of the /// StructType::create() forms. /// /// Independent of what kind of struct you have, the body of a struct type are /// laid out in memory consequtively with the elements directly one after the /// other (if the struct is packed) or (if not packed) with padding between the /// elements as defined by DataLayout (which is required to match what the code /// generator for a target expects). /// class StructType : public CompositeType { StructType(LLVMContext &C) : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {} enum { /// This is the contents of the SubClassData field. SCDB_HasBody = 1, SCDB_Packed = 2, SCDB_IsLiteral = 4, SCDB_IsSized = 8 }; /// For a named struct that actually has a name, this is a pointer to the /// symbol table entry (maintained by LLVMContext) for the struct. /// This is null if the type is an literal struct or if it is a identified /// type that has an empty name. void *SymbolTableEntry; public: StructType(const StructType &) = delete; StructType &operator=(const StructType &) = delete; /// This creates an identified struct. static StructType *create(LLVMContext &Context, StringRef Name); static StructType *create(LLVMContext &Context); static StructType *create(ArrayRef Elements, StringRef Name, bool isPacked = false); static StructType *create(ArrayRef Elements); static StructType *create(LLVMContext &Context, ArrayRef Elements, StringRef Name, bool isPacked = false); static StructType *create(LLVMContext &Context, ArrayRef Elements); static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL; /// This static method is the primary way to create a literal StructType. static StructType *get(LLVMContext &Context, ArrayRef Elements, bool isPacked = false); /// Create an empty structure type. static StructType *get(LLVMContext &Context, bool isPacked = false); /// This static method is a convenience method for creating structure types by /// specifying the elements as arguments. Note that this method always returns /// a non-packed struct, and requires at least one element type. static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL; bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } /// Return true if this type is uniqued by structural equivalence, false if it /// is a struct definition. bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } /// Return true if this is a type with an identity that has no body specified /// yet. These prints as 'opaque' in .ll files. bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } /// isSized - Return true if this is a sized type. bool isSized(SmallPtrSetImpl *Visited = nullptr) const; /// Return true if this is a named struct that has a non-empty name. bool hasName() const { return SymbolTableEntry != nullptr; } /// Return the name for this struct type if it has an identity. /// This may return an empty string for an unnamed struct type. Do not call /// this on an literal type. StringRef getName() const; /// Change the name of this type to the specified name, or to a name with a /// suffix if there is a collision. Do not call this on an literal type. void setName(StringRef Name); /// Specify a body for an opaque identified type. void setBody(ArrayRef Elements, bool isPacked = false); void setBody(Type *elt1, ...) LLVM_END_WITH_NULL; /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); // Iterator access to the elements. typedef Type::subtype_iterator element_iterator; element_iterator element_begin() const { return ContainedTys; } element_iterator element_end() const { return &ContainedTys[NumContainedTys];} ArrayRef const elements() const { return makeArrayRef(element_begin(), element_end()); } /// Return true if this is layout identical to the specified struct. bool isLayoutIdentical(StructType *Other) const; /// Random access to the elements unsigned getNumElements() const { return NumContainedTys; } Type *getElementType(unsigned N) const { assert(N < NumContainedTys && "Element number out of range!"); return ContainedTys[N]; } /// Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == StructTyID; } }; StringRef Type::getStructName() const { return cast(this)->getName(); } unsigned Type::getStructNumElements() const { return cast(this)->getNumElements(); } Type *Type::getStructElementType(unsigned N) const { return cast(this)->getElementType(N); } /// This is the superclass of the array and vector type classes. Both of these /// represent "arrays" in memory. The array type represents a specifically sized /// array, and the vector type represents a specifically sized array that allows /// for use of SIMD instructions. SequentialType holds the common features of /// both, which stem from the fact that both lay their components out in memory /// identically. class SequentialType : public CompositeType { Type *ContainedType; ///< Storage for the single contained type. uint64_t NumElements; protected: SequentialType(TypeID TID, Type *ElType, uint64_t NumElements) : CompositeType(ElType->getContext(), TID), ContainedType(ElType), NumElements(NumElements) { ContainedTys = &ContainedType; NumContainedTys = 1; } public: SequentialType(const SequentialType &) = delete; SequentialType &operator=(const SequentialType &) = delete; uint64_t getNumElements() const { return NumElements; } Type *getElementType() const { return ContainedType; } /// Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID; } }; /// Class to represent array types. class ArrayType : public SequentialType { ArrayType(Type *ElType, uint64_t NumEl); public: ArrayType(const ArrayType &) = delete; ArrayType &operator=(const ArrayType &) = delete; /// This static method is the primary way to construct an ArrayType static ArrayType *get(Type *ElementType, uint64_t NumElements); /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); /// Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID; } }; uint64_t Type::getArrayNumElements() const { return cast(this)->getNumElements(); } /// Class to represent vector types. class VectorType : public SequentialType { VectorType(Type *ElType, unsigned NumEl); public: VectorType(const VectorType &) = delete; VectorType &operator=(const VectorType &) = delete; /// This static method is the primary way to construct an VectorType. static VectorType *get(Type *ElementType, unsigned NumElements); /// This static method gets a VectorType with the same number of elements as /// the input type, and the element type is an integer type of the same width /// as the input element type. static VectorType *getInteger(VectorType *VTy) { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); assert(EltBits && "Element size must be of a non-zero size"); Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); return VectorType::get(EltTy, VTy->getNumElements()); } /// This static method is like getInteger except that the element types are /// twice as wide as the elements in the input type. static VectorType *getExtendedElementVectorType(VectorType *VTy) { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2); return VectorType::get(EltTy, VTy->getNumElements()); } /// This static method is like getInteger except that the element types are /// half as wide as the elements in the input type. static VectorType *getTruncatedElementVectorType(VectorType *VTy) { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); assert((EltBits & 1) == 0 && "Cannot truncate vector element with odd bit-width"); Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); return VectorType::get(EltTy, VTy->getNumElements()); } /// This static method returns a VectorType with half as many elements as the /// input type and the same element type. static VectorType *getHalfElementsVectorType(VectorType *VTy) { unsigned NumElts = VTy->getNumElements(); assert ((NumElts & 1) == 0 && "Cannot halve vector with odd number of elements."); return VectorType::get(VTy->getElementType(), NumElts/2); } /// This static method returns a VectorType with twice as many elements as the /// input type and the same element type. static VectorType *getDoubleElementsVectorType(VectorType *VTy) { unsigned NumElts = VTy->getNumElements(); return VectorType::get(VTy->getElementType(), NumElts*2); } /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); /// Return the number of bits in the Vector type. /// Returns zero when the vector is a vector of pointers. unsigned getBitWidth() const { return getNumElements() * getElementType()->getPrimitiveSizeInBits(); } /// Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == VectorTyID; } }; unsigned Type::getVectorNumElements() const { return cast(this)->getNumElements(); } /// Class to represent pointers. class PointerType : public Type { explicit PointerType(Type *ElType, unsigned AddrSpace); Type *PointeeTy; public: PointerType(const PointerType &) = delete; PointerType &operator=(const PointerType &) = delete; /// This constructs a pointer to an object of the specified type in a numbered /// address space. static PointerType *get(Type *ElementType, unsigned AddressSpace); /// This constructs a pointer to an object of the specified type in the /// generic address space (address space zero). static PointerType *getUnqual(Type *ElementType) { return PointerType::get(ElementType, 0); } Type *getElementType() const { return PointeeTy; } /// Return true if the specified type is valid as a element type. static bool isValidElementType(Type *ElemTy); /// Return true if we can load or store from a pointer to this type. static bool isLoadableOrStorableType(Type *ElemTy); /// Return the address space of the Pointer type. inline unsigned getAddressSpace() const { return getSubclassData(); } /// Implement support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == PointerTyID; } }; unsigned Type::getPointerAddressSpace() const { return cast(getScalarType())->getAddressSpace(); } } // end namespace llvm #endif // LLVM_IR_DERIVEDTYPES_H