//===- MCFragment.h - Fragment type hierarchy -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCFRAGMENT_H #define LLVM_MC_MCFRAGMENT_H #include "llvm/ADT/SmallString.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" namespace llvm { class MCSection; class MCSymbol; class MCSubtargetInfo; class MCFragment : public ilist_node_with_parent { friend class MCAsmLayout; MCFragment(const MCFragment &) = delete; void operator=(const MCFragment &) = delete; public: enum FragmentType : uint8_t { FT_Align, FT_Data, FT_CompactEncodedInst, FT_Fill, FT_Relaxable, FT_Org, FT_Dwarf, FT_DwarfFrame, FT_LEB, FT_SafeSEH, FT_Dummy }; private: FragmentType Kind; protected: bool HasInstructions; private: /// \brief Should this fragment be aligned to the end of a bundle? bool AlignToBundleEnd; uint8_t BundlePadding; /// LayoutOrder - The layout order of this fragment. unsigned LayoutOrder; /// The data for the section this fragment is in. MCSection *Parent; /// Atom - The atom this fragment is in, as represented by it's defining /// symbol. const MCSymbol *Atom; /// \name Assembler Backend Data /// @{ // // FIXME: This could all be kept private to the assembler implementation. /// Offset - The offset of this fragment in its section. This is ~0 until /// initialized. uint64_t Offset; /// @} protected: MCFragment(FragmentType Kind, bool HasInstructions, uint8_t BundlePadding, MCSection *Parent = nullptr); ~MCFragment(); private: // This is a friend so that the sentinal can be created. friend struct ilist_sentinel_traits; MCFragment(); public: /// Destroys the current fragment. /// /// This must be used instead of delete as MCFragment is non-virtual. /// This method will dispatch to the appropriate subclass. void destroy(); FragmentType getKind() const { return Kind; } MCSection *getParent() const { return Parent; } void setParent(MCSection *Value) { Parent = Value; } const MCSymbol *getAtom() const { return Atom; } void setAtom(const MCSymbol *Value) { Atom = Value; } unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; } /// \brief Does this fragment have instructions emitted into it? By default /// this is false, but specific fragment types may set it to true. bool hasInstructions() const { return HasInstructions; } /// \brief Should this fragment be placed at the end of an aligned bundle? bool alignToBundleEnd() const { return AlignToBundleEnd; } void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; } /// \brief Get the padding size that must be inserted before this fragment. /// Used for bundling. By default, no padding is inserted. /// Note that padding size is restricted to 8 bits. This is an optimization /// to reduce the amount of space used for each fragment. In practice, larger /// padding should never be required. uint8_t getBundlePadding() const { return BundlePadding; } /// \brief Set the padding size for this fragment. By default it's a no-op, /// and only some fragments have a meaningful implementation. void setBundlePadding(uint8_t N) { BundlePadding = N; } /// \brief Return true if given frgment has FT_Dummy type. bool isDummy() const { return Kind == FT_Dummy; } void dump(); }; class MCDummyFragment : public MCFragment { public: explicit MCDummyFragment(MCSection *Sec) : MCFragment(FT_Dummy, false, 0, Sec){}; static bool classof(const MCFragment *F) { return F->getKind() == FT_Dummy; } }; /// Interface implemented by fragments that contain encoded instructions and/or /// data. /// class MCEncodedFragment : public MCFragment { protected: MCEncodedFragment(MCFragment::FragmentType FType, bool HasInstructions, MCSection *Sec) : MCFragment(FType, HasInstructions, 0, Sec) {} public: static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); switch (Kind) { default: return false; case MCFragment::FT_Relaxable: case MCFragment::FT_CompactEncodedInst: case MCFragment::FT_Data: return true; } } }; /// Interface implemented by fragments that contain encoded instructions and/or /// data. /// template class MCEncodedFragmentWithContents : public MCEncodedFragment { SmallVector Contents; protected: MCEncodedFragmentWithContents(MCFragment::FragmentType FType, bool HasInstructions, MCSection *Sec) : MCEncodedFragment(FType, HasInstructions, Sec) {} public: SmallVectorImpl &getContents() { return Contents; } const SmallVectorImpl &getContents() const { return Contents; } }; /// Interface implemented by fragments that contain encoded instructions and/or /// data and also have fixups registered. /// template class MCEncodedFragmentWithFixups : public MCEncodedFragmentWithContents { /// Fixups - The list of fixups in this fragment. SmallVector Fixups; protected: MCEncodedFragmentWithFixups(MCFragment::FragmentType FType, bool HasInstructions, MCSection *Sec) : MCEncodedFragmentWithContents(FType, HasInstructions, Sec) {} public: typedef SmallVectorImpl::const_iterator const_fixup_iterator; typedef SmallVectorImpl::iterator fixup_iterator; SmallVectorImpl &getFixups() { return Fixups; } const SmallVectorImpl &getFixups() const { return Fixups; } fixup_iterator fixup_begin() { return Fixups.begin(); } const_fixup_iterator fixup_begin() const { return Fixups.begin(); } fixup_iterator fixup_end() { return Fixups.end(); } const_fixup_iterator fixup_end() const { return Fixups.end(); } static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data; } }; /// Fragment for data and encoded instructions. /// class MCDataFragment : public MCEncodedFragmentWithFixups<32, 4> { public: MCDataFragment(MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups<32, 4>(FT_Data, false, Sec) {} void setHasInstructions(bool V) { HasInstructions = V; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Data; } }; /// This is a compact (memory-size-wise) fragment for holding an encoded /// instruction (non-relaxable) that has no fixups registered. When applicable, /// it can be used instead of MCDataFragment and lead to lower memory /// consumption. /// class MCCompactEncodedInstFragment : public MCEncodedFragmentWithContents<4> { public: MCCompactEncodedInstFragment(MCSection *Sec = nullptr) : MCEncodedFragmentWithContents(FT_CompactEncodedInst, true, Sec) { } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_CompactEncodedInst; } }; /// A relaxable fragment holds on to its MCInst, since it may need to be /// relaxed during the assembler layout and relaxation stage. /// class MCRelaxableFragment : public MCEncodedFragmentWithFixups<8, 1> { /// Inst - The instruction this is a fragment for. MCInst Inst; /// STI - The MCSubtargetInfo in effect when the instruction was encoded. const MCSubtargetInfo &STI; public: MCRelaxableFragment(const MCInst &Inst, const MCSubtargetInfo &STI, MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups(FT_Relaxable, true, Sec), Inst(Inst), STI(STI) {} const MCInst &getInst() const { return Inst; } void setInst(const MCInst &Value) { Inst = Value; } const MCSubtargetInfo &getSubtargetInfo() { return STI; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Relaxable; } }; class MCAlignFragment : public MCFragment { /// Alignment - The alignment to ensure, in bytes. unsigned Alignment; /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead /// of using the provided value. The exact interpretation of this flag is /// target dependent. bool EmitNops : 1; /// Value - Value to use for filling padding bytes. int64_t Value; /// ValueSize - The size of the integer (in bytes) of \p Value. unsigned ValueSize; /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment /// cannot be satisfied in this width then this fragment is ignored. unsigned MaxBytesToEmit; public: MCAlignFragment(unsigned Alignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit, MCSection *Sec = nullptr) : MCFragment(FT_Align, false, 0, Sec), Alignment(Alignment), EmitNops(false), Value(Value), ValueSize(ValueSize), MaxBytesToEmit(MaxBytesToEmit) {} /// \name Accessors /// @{ unsigned getAlignment() const { return Alignment; } int64_t getValue() const { return Value; } unsigned getValueSize() const { return ValueSize; } unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; } bool hasEmitNops() const { return EmitNops; } void setEmitNops(bool Value) { EmitNops = Value; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Align; } }; class MCFillFragment : public MCFragment { /// Value - Value to use for filling bytes. int64_t Value; /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if /// this is a virtual fill fragment. unsigned ValueSize; /// Size - The number of bytes to insert. uint64_t Size; public: MCFillFragment(int64_t Value, unsigned ValueSize, uint64_t Size, MCSection *Sec = nullptr) : MCFragment(FT_Fill, false, 0, Sec), Value(Value), ValueSize(ValueSize), Size(Size) { assert((!ValueSize || (Size % ValueSize) == 0) && "Fill size must be a multiple of the value size!"); } /// \name Accessors /// @{ int64_t getValue() const { return Value; } unsigned getValueSize() const { return ValueSize; } uint64_t getSize() const { return Size; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Fill; } }; class MCOrgFragment : public MCFragment { /// Offset - The offset this fragment should start at. const MCExpr *Offset; /// Value - Value to use for filling bytes. int8_t Value; public: MCOrgFragment(const MCExpr &Offset, int8_t Value, MCSection *Sec = nullptr) : MCFragment(FT_Org, false, 0, Sec), Offset(&Offset), Value(Value) {} /// \name Accessors /// @{ const MCExpr &getOffset() const { return *Offset; } uint8_t getValue() const { return Value; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Org; } }; class MCLEBFragment : public MCFragment { /// Value - The value this fragment should contain. const MCExpr *Value; /// IsSigned - True if this is a sleb128, false if uleb128. bool IsSigned; SmallString<8> Contents; public: MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSection *Sec = nullptr) : MCFragment(FT_LEB, false, 0, Sec), Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); } /// \name Accessors /// @{ const MCExpr &getValue() const { return *Value; } bool isSigned() const { return IsSigned; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_LEB; } }; class MCDwarfLineAddrFragment : public MCFragment { /// LineDelta - the value of the difference between the two line numbers /// between two .loc dwarf directives. int64_t LineDelta; /// AddrDelta - The expression for the difference of the two symbols that /// make up the address delta between two .loc dwarf directives. const MCExpr *AddrDelta; SmallString<8> Contents; public: MCDwarfLineAddrFragment(int64_t LineDelta, const MCExpr &AddrDelta, MCSection *Sec = nullptr) : MCFragment(FT_Dwarf, false, 0, Sec), LineDelta(LineDelta), AddrDelta(&AddrDelta) { Contents.push_back(0); } /// \name Accessors /// @{ int64_t getLineDelta() const { return LineDelta; } const MCExpr &getAddrDelta() const { return *AddrDelta; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Dwarf; } }; class MCDwarfCallFrameFragment : public MCFragment { /// AddrDelta - The expression for the difference of the two symbols that /// make up the address delta between two .cfi_* dwarf directives. const MCExpr *AddrDelta; SmallString<8> Contents; public: MCDwarfCallFrameFragment(const MCExpr &AddrDelta, MCSection *Sec = nullptr) : MCFragment(FT_DwarfFrame, false, 0, Sec), AddrDelta(&AddrDelta) { Contents.push_back(0); } /// \name Accessors /// @{ const MCExpr &getAddrDelta() const { return *AddrDelta; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_DwarfFrame; } }; class MCSafeSEHFragment : public MCFragment { const MCSymbol *Sym; public: MCSafeSEHFragment(const MCSymbol *Sym, MCSection *Sec = nullptr) : MCFragment(FT_SafeSEH, false, 0, Sec), Sym(Sym) {} /// \name Accessors /// @{ const MCSymbol *getSymbol() { return Sym; } const MCSymbol *getSymbol() const { return Sym; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_SafeSEH; } }; } // end namespace llvm #endif