//===- SampleProfReader.h - Read LLVM sample profile data -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains definitions needed for reading sample profiles. // // NOTE: If you are making changes to this file format, please remember // to document them in the Clang documentation at // tools/clang/docs/UsersManual.rst. // // Text format // ----------- // // Sample profiles are written as ASCII text. The file is divided into // sections, which correspond to each of the functions executed at runtime. // Each section has the following format // // function1:total_samples:total_head_samples // offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ] // offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ] // ... // offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ] // offsetA[.discriminator]: fnA:num_of_total_samples // offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ] // ... // // This is a nested tree in which the identation represents the nesting level // of the inline stack. There are no blank lines in the file. And the spacing // within a single line is fixed. Additional spaces will result in an error // while reading the file. // // Any line starting with the '#' character is completely ignored. // // Inlined calls are represented with indentation. The Inline stack is a // stack of source locations in which the top of the stack represents the // leaf function, and the bottom of the stack represents the actual // symbol to which the instruction belongs. // // Function names must be mangled in order for the profile loader to // match them in the current translation unit. The two numbers in the // function header specify how many total samples were accumulated in the // function (first number), and the total number of samples accumulated // in the prologue of the function (second number). This head sample // count provides an indicator of how frequently the function is invoked. // // There are two types of lines in the function body. // // * Sampled line represents the profile information of a source location. // * Callsite line represents the profile information of a callsite. // // Each sampled line may contain several items. Some are optional (marked // below): // // a. Source line offset. This number represents the line number // in the function where the sample was collected. The line number is // always relative to the line where symbol of the function is // defined. So, if the function has its header at line 280, the offset // 13 is at line 293 in the file. // // Note that this offset should never be a negative number. This could // happen in cases like macros. The debug machinery will register the // line number at the point of macro expansion. So, if the macro was // expanded in a line before the start of the function, the profile // converter should emit a 0 as the offset (this means that the optimizers // will not be able to associate a meaningful weight to the instructions // in the macro). // // b. [OPTIONAL] Discriminator. This is used if the sampled program // was compiled with DWARF discriminator support // (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). // DWARF discriminators are unsigned integer values that allow the // compiler to distinguish between multiple execution paths on the // same source line location. // // For example, consider the line of code ``if (cond) foo(); else bar();``. // If the predicate ``cond`` is true 80% of the time, then the edge // into function ``foo`` should be considered to be taken most of the // time. But both calls to ``foo`` and ``bar`` are at the same source // line, so a sample count at that line is not sufficient. The // compiler needs to know which part of that line is taken more // frequently. // // This is what discriminators provide. In this case, the calls to // ``foo`` and ``bar`` will be at the same line, but will have // different discriminator values. This allows the compiler to correctly // set edge weights into ``foo`` and ``bar``. // // c. Number of samples. This is an integer quantity representing the // number of samples collected by the profiler at this source // location. // // d. [OPTIONAL] Potential call targets and samples. If present, this // line contains a call instruction. This models both direct and // number of samples. For example, // // 130: 7 foo:3 bar:2 baz:7 // // The above means that at relative line offset 130 there is a call // instruction that calls one of ``foo()``, ``bar()`` and ``baz()``, // with ``baz()`` being the relatively more frequently called target. // // Each callsite line may contain several items. Some are optional. // // a. Source line offset. This number represents the line number of the // callsite that is inlined in the profiled binary. // // b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line. // // c. Number of samples. This is an integer quantity representing the // total number of samples collected for the inlined instance at this // callsite // // // Binary format // ------------- // // This is a more compact encoding. Numbers are encoded as ULEB128 values // and all strings are encoded in a name table. The file is organized in // the following sections: // // MAGIC (uint64_t) // File identifier computed by function SPMagic() (0x5350524f463432ff) // // VERSION (uint32_t) // File format version number computed by SPVersion() // // SUMMARY // TOTAL_COUNT (uint64_t) // Total number of samples in the profile. // MAX_COUNT (uint64_t) // Maximum value of samples on a line. // MAX_FUNCTION_COUNT (uint64_t) // Maximum number of samples at function entry (head samples). // NUM_COUNTS (uint64_t) // Number of lines with samples. // NUM_FUNCTIONS (uint64_t) // Number of functions with samples. // NUM_DETAILED_SUMMARY_ENTRIES (size_t) // Number of entries in detailed summary // DETAILED_SUMMARY // A list of detailed summary entry. Each entry consists of // CUTOFF (uint32_t) // Required percentile of total sample count expressed as a fraction // multiplied by 1000000. // MIN_COUNT (uint64_t) // The minimum number of samples required to reach the target // CUTOFF. // NUM_COUNTS (uint64_t) // Number of samples to get to the desrired percentile. // // NAME TABLE // SIZE (uint32_t) // Number of entries in the name table. // NAMES // A NUL-separated list of SIZE strings. // // FUNCTION BODY (one for each uninlined function body present in the profile) // HEAD_SAMPLES (uint64_t) [only for top-level functions] // Total number of samples collected at the head (prologue) of the // function. // NOTE: This field should only be present for top-level functions // (i.e., not inlined into any caller). Inlined function calls // have no prologue, so they don't need this. // NAME_IDX (uint32_t) // Index into the name table indicating the function name. // SAMPLES (uint64_t) // Total number of samples collected in this function. // NRECS (uint32_t) // Total number of sampling records this function's profile. // BODY RECORDS // A list of NRECS entries. Each entry contains: // OFFSET (uint32_t) // Line offset from the start of the function. // DISCRIMINATOR (uint32_t) // Discriminator value (see description of discriminators // in the text format documentation above). // SAMPLES (uint64_t) // Number of samples collected at this location. // NUM_CALLS (uint32_t) // Number of non-inlined function calls made at this location. In the // case of direct calls, this number will always be 1. For indirect // calls (virtual functions and function pointers) this will // represent all the actual functions called at runtime. // CALL_TARGETS // A list of NUM_CALLS entries for each called function: // NAME_IDX (uint32_t) // Index into the name table with the callee name. // SAMPLES (uint64_t) // Number of samples collected at the call site. // NUM_INLINED_FUNCTIONS (uint32_t) // Number of callees inlined into this function. // INLINED FUNCTION RECORDS // A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined // callees. // OFFSET (uint32_t) // Line offset from the start of the function. // DISCRIMINATOR (uint32_t) // Discriminator value (see description of discriminators // in the text format documentation above). // FUNCTION BODY // A FUNCTION BODY entry describing the inlined function. //===----------------------------------------------------------------------===// #ifndef LLVM_PROFILEDATA_SAMPLEPROFREADER_H #define LLVM_PROFILEDATA_SAMPLEPROFREADER_H #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/ProfileData/ProfileCommon.h" #include "llvm/ProfileData/SampleProf.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/GCOV.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" namespace llvm { namespace sampleprof { /// \brief Sample-based profile reader. /// /// Each profile contains sample counts for all the functions /// executed. Inside each function, statements are annotated with the /// collected samples on all the instructions associated with that /// statement. /// /// For this to produce meaningful data, the program needs to be /// compiled with some debug information (at minimum, line numbers: /// -gline-tables-only). Otherwise, it will be impossible to match IR /// instructions to the line numbers collected by the profiler. /// /// From the profile file, we are interested in collecting the /// following information: /// /// * A list of functions included in the profile (mangled names). /// /// * For each function F: /// 1. The total number of samples collected in F. /// /// 2. The samples collected at each line in F. To provide some /// protection against source code shuffling, line numbers should /// be relative to the start of the function. /// /// The reader supports two file formats: text and binary. The text format /// is useful for debugging and testing, while the binary format is more /// compact and I/O efficient. They can both be used interchangeably. class SampleProfileReader { public: SampleProfileReader(std::unique_ptr B, LLVMContext &C) : Profiles(0), Ctx(C), Buffer(std::move(B)) {} virtual ~SampleProfileReader() {} /// \brief Read and validate the file header. virtual std::error_code readHeader() = 0; /// \brief Read sample profiles from the associated file. virtual std::error_code read() = 0; /// \brief Print the profile for \p FName on stream \p OS. void dumpFunctionProfile(StringRef FName, raw_ostream &OS = dbgs()); /// \brief Print all the profiles on stream \p OS. void dump(raw_ostream &OS = dbgs()); /// \brief Return the samples collected for function \p F. FunctionSamples *getSamplesFor(const Function &F) { return &Profiles[F.getName()]; } /// \brief Return all the profiles. StringMap &getProfiles() { return Profiles; } /// \brief Report a parse error message. void reportError(int64_t LineNumber, Twine Msg) const { Ctx.diagnose(DiagnosticInfoSampleProfile(Buffer->getBufferIdentifier(), LineNumber, Msg)); } /// \brief Create a sample profile reader appropriate to the file format. static ErrorOr> create(const Twine &Filename, LLVMContext &C); /// \brief Create a sample profile reader from the supplied memory buffer. static ErrorOr> create(std::unique_ptr &B, LLVMContext &C); /// \brief Return the profile summary. ProfileSummary &getSummary() { return *(Summary.get()); } protected: /// \brief Map every function to its associated profile. /// /// The profile of every function executed at runtime is collected /// in the structure FunctionSamples. This maps function objects /// to their corresponding profiles. StringMap Profiles; /// \brief LLVM context used to emit diagnostics. LLVMContext &Ctx; /// \brief Memory buffer holding the profile file. std::unique_ptr Buffer; /// \brief Profile summary information. std::unique_ptr Summary; /// \brief Compute summary for this profile. void computeSummary(); }; class SampleProfileReaderText : public SampleProfileReader { public: SampleProfileReaderText(std::unique_ptr B, LLVMContext &C) : SampleProfileReader(std::move(B), C) {} /// \brief Read and validate the file header. std::error_code readHeader() override { return sampleprof_error::success; } /// \brief Read sample profiles from the associated file. std::error_code read() override; /// \brief Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); }; class SampleProfileReaderBinary : public SampleProfileReader { public: SampleProfileReaderBinary(std::unique_ptr B, LLVMContext &C) : SampleProfileReader(std::move(B), C), Data(nullptr), End(nullptr) {} /// \brief Read and validate the file header. std::error_code readHeader() override; /// \brief Read sample profiles from the associated file. std::error_code read() override; /// \brief Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); protected: /// \brief Read a numeric value of type T from the profile. /// /// If an error occurs during decoding, a diagnostic message is emitted and /// EC is set. /// /// \returns the read value. template ErrorOr readNumber(); /// \brief Read a string from the profile. /// /// If an error occurs during decoding, a diagnostic message is emitted and /// EC is set. /// /// \returns the read value. ErrorOr readString(); /// Read a string indirectly via the name table. ErrorOr readStringFromTable(); /// \brief Return true if we've reached the end of file. bool at_eof() const { return Data >= End; } /// Read the contents of the given profile instance. std::error_code readProfile(FunctionSamples &FProfile); /// \brief Points to the current location in the buffer. const uint8_t *Data; /// \brief Points to the end of the buffer. const uint8_t *End; /// Function name table. std::vector NameTable; private: std::error_code readSummaryEntry(std::vector &Entries); /// \brief Read profile summary. std::error_code readSummary(); }; typedef SmallVector InlineCallStack; // Supported histogram types in GCC. Currently, we only need support for // call target histograms. enum HistType { HIST_TYPE_INTERVAL, HIST_TYPE_POW2, HIST_TYPE_SINGLE_VALUE, HIST_TYPE_CONST_DELTA, HIST_TYPE_INDIR_CALL, HIST_TYPE_AVERAGE, HIST_TYPE_IOR, HIST_TYPE_INDIR_CALL_TOPN }; class SampleProfileReaderGCC : public SampleProfileReader { public: SampleProfileReaderGCC(std::unique_ptr B, LLVMContext &C) : SampleProfileReader(std::move(B), C), GcovBuffer(Buffer.get()) {} /// \brief Read and validate the file header. std::error_code readHeader() override; /// \brief Read sample profiles from the associated file. std::error_code read() override; /// \brief Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); protected: std::error_code readNameTable(); std::error_code readOneFunctionProfile(const InlineCallStack &InlineStack, bool Update, uint32_t Offset); std::error_code readFunctionProfiles(); std::error_code skipNextWord(); template ErrorOr readNumber(); ErrorOr readString(); /// \brief Read the section tag and check that it's the same as \p Expected. std::error_code readSectionTag(uint32_t Expected); /// GCOV buffer containing the profile. GCOVBuffer GcovBuffer; /// Function names in this profile. std::vector Names; /// GCOV tags used to separate sections in the profile file. static const uint32_t GCOVTagAFDOFileNames = 0xaa000000; static const uint32_t GCOVTagAFDOFunction = 0xac000000; }; } // End namespace sampleprof } // End namespace llvm #endif // LLVM_PROFILEDATA_SAMPLEPROFREADER_H